1
|
Shen ZQ, Chiu WT, Kao CH, Chen YC, Chen LH, Teng TW, Hsiung SY, Tzeng TY, Tung CY, Juan CC, Tsai TF. Wolfram syndrome 2 gene (CISD2) deficiency disrupts Ca 2+-mediated insulin secretion in β-cells. Mol Metab 2025; 96:102140. [PMID: 40189101 PMCID: PMC12020879 DOI: 10.1016/j.molmet.2025.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
OBJECTIVE Diabetes, characterized by childhood-onset, autoantibody-negativity and insulin-deficiency, is a major manifestation of Wolfram syndrome 2 (WFS2), which is caused by recessive mutations of CISD2. Nevertheless, the mechanism underlying β-cell dysfunction in WFS2 remains elusive. Here we delineate the essential role of CISD2 in β-cells. METHODS We use β-cell specific Cisd2 knockout (Cisd2KO) mice, a CRISPR-mediated Cisd2KO MIN6 β-cell line and transcriptomic analysis. RESULTS Four findings are pinpointed. Firstly, β-cell specific Cisd2KO in mice disrupts systemic glucose homeostasis via impairing β-granules synthesis and insulin secretion; hypertrophy of the β-islets and the presence of a loss of identity that affects certain β-cells. Secondly, Cisd2 deficiency leads to impairment of glucose-induced extracellular Ca2+ influx, which compromises Ca2+-mediated insulin secretory signaling, causing mitochondrial dysfunction and, thereby impairing insulin secretion in the MIN6-Cisd2KO β-cells. Thirdly, transcriptomic analysis of β-islets reveals that Cisd2 modulates proteostasis and ER stress, mitochondrial function, insulin secretion and vesicle transport. Finally, the activated state of two potential upstream regulators, Glis3 and Hnf1a, is significantly suppressed under Cisd2 deficiency; notably, their downstream target genes are deeply involved in β-cell function and identity. CONCLUSIONS These findings provide mechanistic insights and form a basis for developing therapeutics for the effective treatment of diabetes in WFS2 patients.
Collapse
Affiliation(s)
- Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Chen Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Li-Hsien Chen
- Department of Pharmacology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tsai-Wen Teng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shao-Yu Hsiung
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tsai-Yu Tzeng
- The National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Yi Tung
- The National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chi-Chang Juan
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan.
| |
Collapse
|
2
|
Centonze M, Aloisio Caruso E, De Nunzio V, Cofano M, Saponara I, Pinto G, Notarnicola M. The Antiaging Potential of Dietary Plant-Based Polyphenols: A Review on Their Role in Cellular Senescence Modulation. Nutrients 2025; 17:1716. [PMID: 40431456 DOI: 10.3390/nu17101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Aging is a complex biological process characterized by a progressive decline in physiological functions and an increased risk of chronic diseases. A key mechanism of this process is cellular senescence, the permanent arrest of the cell cycle in response to stress or damage, which contributes to the accumulation of dysfunctional cells in tissues. Recent research has highlighted the role of polyphenols, bioactive compounds present in numerous plant-based foods, in positively modulating these processes. Polyphenols exert antioxidant effects, regulate gene expression and improve mitochondrial function, helping to delay cellular aging and prevent age-related diseases. In addition, some polyphenols exhibit senolytic properties, selectively eliminating senescent cells and promoting tissue regeneration. This review summarizes the current evidence on the effects of polyphenols on aging and cellular senescence, exploring the underlying molecular mechanisms and discussing their potential in nutritional strategies aimed at promoting healthy aging.
Collapse
Affiliation(s)
- Matteo Centonze
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Emanuela Aloisio Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Miriam Cofano
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Ilenia Saponara
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Giuliano Pinto
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| |
Collapse
|
3
|
Qiu Z, Han Y, Li J, Ren Y, Liu X, Li S, Zhao GR, Du L. Metabolic division engineering of Escherichia coli consortia for de novo biosynthesis of flavonoids and flavonoid glycosides. Metab Eng 2025; 89:60-75. [PMID: 39947347 DOI: 10.1016/j.ymben.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/17/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
Heterologous biosynthesis of natural products with long biosynthetic pathways in microorganisms often suffers from diverse problems, such as enzyme promiscuity and metabolic burden. Flavonoids and their glycosides are important phytochemicals in the diet of human beings, with various health benefits and biological activities. Despite previous efforts and achievements, efficient microbial production of plant-derived flavonoid compounds with long pathways remains challenging. Herein, we applied metabolic division engineering of Escherichia coli consortia to overcome these limitations. By establishing new biosynthetic pathways, rationally adjusting metabolic node intermediates, and engineering different auxotrophic and orthogonal carbon sources for hosts, we established stable two- and three-bacteria co-culture systems to efficiently de novo produce 12 flavonoids (61.15-325.31 mg/L) and 36 corresponding flavonoid glycosides (1.31-191.79 mg/L). Furthermore, the co-culture system was rapidly extended in a plug-and-play manner to produce isoflavonoids, dihydrochalcones, and their glycosides. This study successfully alleviates metabolic burden and overcomes enzyme promiscuity, and provides significant insights that could guide the biosynthesis of other complex secondary metabolites.
Collapse
Affiliation(s)
- Zetian Qiu
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Yumei Han
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Jia Li
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Yi Ren
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Xue Liu
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Guang-Rong Zhao
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China.
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Liang Z, Tang Q, Liang H, Liang X, Fu C, Kang W, Zhang Y, Lv P. Glucomannogalactan inhibits senescence by promoting nuclear translocation of NRF2. Int J Biol Macromol 2025; 305:141059. [PMID: 39961569 DOI: 10.1016/j.ijbiomac.2025.141059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
For a potential resource to improve healthspan, polysaccharides present unique advantages in terms of side effects and long-term use owing to their low cytotoxicity. In this study, we demonstrate that a glucomannogalactan (PGP) derived from Pleurotus geesteranus extends the healthspan of both naturally senescent and therapy-induced senescence (TIS) mice. Daily treatment of naturally senescent mice with PGP resulted in a reduced accumulation of senescent cells and alleviation of senescence-related parameters, including metabolic dysfunction, underlying lesions in multiple organs, and oxidative damage. PGP treatment also attenuated senescence in TIS mice. Furthermore, in an in vitro model of oxidative stress-induced senescence using a human cell line, we discovered that PGP alleviated senescence by promoting the nuclear translocation of NRF2. This study suggests that PGP may extend the healthspan of senescent mice by facilitating the nuclear translocation of NRF2.
Collapse
Affiliation(s)
- Zhenhua Liang
- Cardiovascular Medical Science Center, Department of Cell Biology, the Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Qi Tang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Haiyang Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Xuan Liang
- Cardiovascular Medical Science Center, Department of Cell Biology, the Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Chenghao Fu
- Cardiovascular Medical Science Center, Department of Cell Biology, the Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| | - Yan Zhang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China.
| | - Pin Lv
- Cardiovascular Medical Science Center, Department of Cell Biology, the Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
5
|
Beaver LM, Jamieson PE, Wong CP, Hosseinikia M, Stevens JF, Ho E. Promotion of Healthy Aging Through the Nexus of Gut Microbiota and Dietary Phytochemicals. Adv Nutr 2025; 16:100376. [PMID: 39832641 PMCID: PMC11847308 DOI: 10.1016/j.advnut.2025.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Aging is associated with the decline of tissue and cellular functions, which can promote the development of age-related diseases like cancer, cardiovascular disease, neurodegeneration, and disorders of the musculoskeletal and immune systems. Healthspan is the length of time an individual is in good health and free from chronic diseases and disabilities associated with aging. Two modifiable factors that can influence healthspan, promote healthy aging, and prevent the development of age-related diseases, are diet and microbiota in the gastrointestinal tract (gut microbiota). This review will discuss how dietary phytochemicals and gut microbiota can work in concert to promote a healthy gut and healthy aging. First, an overview is provided of how the gut microbiota influences healthy aging through its impact on gut barrier integrity, immune function, mitochondria function, and oxidative stress. Next, the mechanisms by which phytochemicals effect gut health, inflammation, and nurture a diverse and healthy microbial composition are discussed. Lastly, we discuss how the gut microbiota can directly influence health by producing bioactive metabolites from phytochemicals in food like urolithin A, equol, hesperetin, and sulforaphane. These and other phytochemical-derived microbial metabolites that may promote healthspan are discussed. Importantly, an individual's capacity to produce health-promoting microbial metabolites from cruciferous vegetables, berries, nuts, citrus, and soy products will be dependent on the specific bacteria present in the individual's gut.
Collapse
Affiliation(s)
- Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Paige E Jamieson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Carmen P Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Mahak Hosseinikia
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
6
|
Tang X, Zhong J, Luo H, Zhou F, Wang L, Lin S, Xiong J, Lv H, Zhou Z, Yu H, Cao K. Efficacy of Naringenin against aging and degeneration of nucleus pulposus cells through IGFBP3 inhibition. Sci Rep 2025; 15:6780. [PMID: 40000729 PMCID: PMC11861589 DOI: 10.1038/s41598-025-90909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Naringenin (NAR), a natural flavonoid, exerts anti-inflammatory and antioxidant pharmacology. However, the pharmacological mechanisms through which NAR prevents and treats intervertebral disc degeneration (IDD) remain unclear. We utilized bioinformatics, machine learning, and network pharmacology to identify shared targets among NAR, senescence, and IDD. Subsequently, molecular docking was conducted to evaluate NAR's binding affinity to common target. Additionally, we used IL-1β to induce senescence and degeneration in nucleus pulposus cells (NPCs) and conducted a series of cellular assays, including immunoblotting, immunofluorescence, β-galactosidase staining, cell proliferation, cell cycle analysis, and measurement of reactive oxygen species levels, to investigate NAR's impact on IL-1β-induced senescence and degeneration of NPCs. Our study revealed that Insulin-like growth factor binding protein 3 (IGFBP3) was the only common target. IGFBP3 exhibited significant differences between the IDD and healthy groups and proved to be an effective diagnostic marker for IDD. Molecular docking confirmed the binding between NAR and IGFBP3. In vitro experiments, we observed that Igfbp3 expression increased in the senescence and degeneration groups. Igfbp3 knockdown and NAR attenuated IL-1β-induced senescence and degenerative phenotypes in NPCs. In contrast, the effect of NAR was attenuated by recombinant IGFBP3 protein. In conclusion, our findings suggest that NAR plays a preventive and therapeutic role in IDD, likely achieved through the inhibition of Igfbp3 expression.
Collapse
Affiliation(s)
- Xiaokai Tang
- Department of Orthopedics, People's Hospital of Deyang City, Deyang, China
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, #1519 Dongyue Avenue, Nanchang, 330209, Jiangxi, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, #1519 Dongyue Avenue, Nanchang, 330209, Jiangxi, China
| | - Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, #1519 Dongyue Avenue, Nanchang, 330209, Jiangxi, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Faxin Zhou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, #1519 Dongyue Avenue, Nanchang, 330209, Jiangxi, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Lixia Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, #1519 Dongyue Avenue, Nanchang, 330209, Jiangxi, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Sijian Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, #1519 Dongyue Avenue, Nanchang, 330209, Jiangxi, China
| | - Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, #1519 Dongyue Avenue, Nanchang, 330209, Jiangxi, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Zhenhai Zhou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, #1519 Dongyue Avenue, Nanchang, 330209, Jiangxi, China
| | - Honggui Yu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, #1519 Dongyue Avenue, Nanchang, 330209, Jiangxi, China.
| | - Kai Cao
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China.
| |
Collapse
|
7
|
Liu Y, Jin Z, Sun D, Xu B, Lan T, Zhao Q, He Y, Li J, Cui Y, Zhang Y. Preparation of hapten and monoclonal antibody of hesperetin and establishment of enzyme-linked immunosorbent assay. Talanta 2025; 281:126912. [PMID: 39305766 DOI: 10.1016/j.talanta.2024.126912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Hesperetin is the aglycone of hesperidin and is widely found in the Rutaceae plants and herbal medicines. It exhibits antioxidant, detoxifying, anti-inflammatory, and antimicrobial properties, similar to hesperidin. It has also shown potential in the regulation of certain diseases. In order to detect hesperetin in complex matrix samples such as citrus and herbal, we developed an anti-hesperetin monoclonal antibody and established an indirect competitive enzyme-linked immunosorbent assay (icELISA). The half maximal inhibitory concentration (IC50) was determined to be 2.03 ng/mL, the detection range was 0.39-12.73 ng/mL. In practical sample testing, the concentration of hesperidin measured by icELISA is consistent with the result of UPLC-MS/MS, and the correlation coefficient (R2) is 0.97. These results showed that the established method has good accuracy, reproducibility and broad application prospects, and can be used for the detection of hesperetin in complex matrix samples (such as citrus and herbal samples).
Collapse
Affiliation(s)
- Yifan Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Zihui Jin
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Di Sun
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Bo Xu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Tianyu Lan
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Qiyang Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Jing Li
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China.
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China.
| |
Collapse
|
8
|
Zhao Z, Hu L, Song B, Jiang T, Wu Q, Lin J, Li X, Cai Y, Li J, Qian B, Liu S, Lang J, Yang Z. Constitutively active receptor ADGRA3 signaling induces adipose thermogenesis. eLife 2024; 13:RP100205. [PMID: 39718208 DOI: 10.7554/elife.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.
Collapse
Affiliation(s)
- Zewei Zhao
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Longyun Hu
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Bigui Song
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Tao Jiang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Qian Wu
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Jiejing Lin
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Xiaoxiao Li
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Yi Cai
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Jin Li
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Bingxiu Qian
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Siqi Liu
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Jilu Lang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhonghan Yang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
9
|
Wang RJ, Ni YJ, Liu YQ. Hesperetin Increases Lifespan and Antioxidant Ability Correlating with IIS, HSP, mtUPR, and JNK Pathways of Chronic Oxidative Stress in Caenorhabditis elegans. Int J Mol Sci 2024; 25:13148. [PMID: 39684858 DOI: 10.3390/ijms252313148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Hesperetin (Hst) is a common citrus fruit flavonoid with antioxidant, anti-inflammatory, and anti-neurodegenerative effects. To explore the antioxidant and anti-aging effects and mechanisms of Hst, we induced chronic oxidative stress in Caenorhabditis elegans (C. elegans) using low-concentration H2O2 and examined its effects on lifespan, healthy life index, reactive oxygen species (ROS), antioxidant enzymes, and transcriptomic metrics. Hst significantly prolonged lifespan, increased body bending and pharyngeal pumping frequency, decreased ROS accumulation, and increased antioxidant enzyme activity in normal and stressed C. elegans. Hst significantly upregulated daf-18, daf-16, gst-2, gst-3, gst-4, gst-39, hsp-16.11, sip-1, clpp-1, and dve-1 and downregulated ist-1 and kgb-1 mRNAs in stressed C. elegans. These genes are involved in the insulin/insulin-like growth factor-1 signaling (IIS), heat shock protein (HSP), mitochondrial unfolded protein response (mtUPR), and c-Jun N-terminal kinase (JNK) pathways. In summary, Hst increases lifespan and antioxidant ability, correlating with these pathways, during chronic oxidative stress in C. elegans.
Collapse
Affiliation(s)
- Run-Jia Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ya-Jing Ni
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Song B, Hao M, Zhang S, Niu W, Li Y, Chen Q, Li S, Tong C. Comprehensive review of Hesperetin: Advancements in pharmacokinetics, pharmacological effects, and novel formulations. Fitoterapia 2024; 179:106206. [PMID: 39255908 DOI: 10.1016/j.fitote.2024.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Hesperetin is a flavonoid compound naturally occurring in the peel of Citrus fruits from the Rutaceae family. Previous studies have demonstrated that hesperetin exhibits various pharmacological effects, such as anti-inflammatory, anti-tumor, antioxidative, anti-aging, and neuroprotective properties. In recent years, with the increasing prevalence of diseases and the rising awareness of traditional Chinese medicine, hesperetin has garnered growing attention for its wide-ranging pharmacological effects. To substantiate its health benefits and elucidate potential mechanisms, knowledge of pharmacokinetics is crucial. However, the limited solubility of hesperetin restricts its bioavailability, thereby diminishing its efficacy as a beneficial health agent. To enhance the bioavailability of hesperetin, various novel formulations have been developed, including nanoparticles, liposomes, and cyclodextrin inclusion complexes. This article reviews recent advances in the pharmacokinetics of hesperetin and methods to improve its bioavailability, as well as its pharmacological effects and mechanisms, aiming to provide a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Bocui Song
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Meihan Hao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Zhang
- Administration Committee of Jilin Yongji Economic Development Zone, Jilin, Jilin, China
| | - Wenqi Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuqi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qian Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
| |
Collapse
|
11
|
Wu HH, Zhu Q, Liang N, Xiang Y, Xu TY, Huang ZC, Cai JY, Weng LL, Ge HS. CISD2 regulates oxidative stress and mitophagy to maintain the balance of the follicular microenvironment in PCOS. Redox Rep 2024; 29:2377870. [PMID: 39010730 PMCID: PMC467114 DOI: 10.1080/13510002.2024.2377870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of CISD2 to the onset and progression of PCOS. METHODS Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage. RESULTS We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. CISD2 inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress. CONCLUSIONS Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.
Collapse
Affiliation(s)
- Hong-Hui Wu
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
| | - Qi Zhu
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Na Liang
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
| | - Yu Xiang
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tian-Yue Xu
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Zi-Chao Huang
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie-Yu Cai
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ling-Lin Weng
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hong-Shan Ge
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing Medical University, Nanjing, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
12
|
Baig SI, Naseer M, Munir AR, Ali Y, Razzaq MA. Immunoinformatic-based drug design utilizing hesperetin to target CISD2 activation for liver aging in humans. Biogerontology 2024; 25:1189-1213. [PMID: 39196437 DOI: 10.1007/s10522-024-10130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
The CISD protein family, consisting of CISD1, CISD2, and CISD3, encodes proteins that feature CDGSH iron-sulfur domains crucial for cellular functions and share a common 2Fe-2S domain. CISD2, which is pivotal in cells, regulates intracellular calcium levels, maintains the endoplasmic reticulum and mitochondrial function, and is associated with longevity and overall health, with exercise stimulating CISD2 production. However, CISD2 expression decreases with age, impacting age-related processes. According to in silico docking, HST is a CISD2 activator that affects metabolic dysfunction and age-related illnesses by affecting metabolic pathways. This study investigated the ability of CISD2 and HST to reduce age-related ailments, with a particular emphasis on liver aging. CISD2 deficiency has a major effect on the function of cells, as it undermines the integrity of the ER, mitochondria, and calcium homeostasis. It also increases susceptibility to oxidative stress and metabolic dysregulation, which is linked to Wolfram syndrome and exacerbates age-related illnesses and metabolic disorders. By shielding cells from stress, CISD2 extends the life of cells and maintains liver health as people age. Its protective effecfts on the liver during aging are further enhanced by its control of translation factors such as Nrf2 and IL-6. This work paves the way for future investigations and clinical applications by examining the structural and functional properties of CISD2 and the interaction between CISD2 and HST. This highlights the therapeutic potential of these findings in promoting healthy livers in humans and battling age-related illnesses.
Collapse
Affiliation(s)
- Saad Ilyas Baig
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan.
| | - Maria Naseer
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Abdur-Rehman Munir
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Yasir Ali
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
13
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Ullah A, Bo Y, Li J, Li J, Khatun P, Lyu Q, Kou G. Insights into the Therapeutic Potential of Active Ingredients of Citri Reticulatae Pericarpium in Combatting Sarcopenia: An In Silico Approach. Int J Mol Sci 2024; 25:11451. [PMID: 39519004 PMCID: PMC11546236 DOI: 10.3390/ijms252111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Sarcopenia is a systemic medical disorder characterized by a gradual decline in muscular strength, function, and skeletal muscle mass. Currently, there is no medication specifically approved for the treatment of this condition. Therefore, the identification of new pharmacological targets may offer opportunities for the development of novel therapeutic strategies. The current in silico study investigated the active ingredients and the mode of action of Citri Reticulatae Pericarpium (CRP) in addressing sarcopenia. The active ingredients of CRP and the potential targets of CRP and sarcopenia were determined using various databases. The STRING platform was utilized to construct a protein-protein interaction network, and the key intersecting targets were enriched through the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Molecular docking was used to determine the binding interactions of the active ingredients with the hub targets. The binding affinities obtained from molecular docking were subsequently validated through molecular dynamics simulation analyses. Five active ingredients and 45 key intersecting targets between CRP and sarcopenia were identified. AKT1, IL6, TP53, MMP9, ESR1, NFKB1, MTOR, IGF1R, ALB, and NFE2L2 were identified as the hub targets with the highest degree node in the protein-protein interaction network. The results indicated that the targets were mainly enriched in PIK3-AKT, HIF-1, and longevity-regulating pathways. The active ingredients showed a greater interaction affinity with the hub targets, as indicated by the results of molecular docking and molecular dynamics simulations. Our findings suggest that the active ingredients of Citri Reticulatae Pericarpium, particularly Sitosterol and Hesperetin, have the potential to improve sarcopenia by interacting with AKT1 and MTOR proteins through the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yacong Bo
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangtao Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjie Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Pipasha Khatun
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanjun Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Chi X, Chen T, Luo F, Zhao R, Li Y, Hu S, Li Y, Jiang W, Chen L, Wu D, Du Y, Hu J. Targeted no-releasing L-arginine-induced hesperetin self-assembled nanoparticles for ulcerative colitis intervention. Acta Biomater 2024:S1742-7061(24)00628-7. [PMID: 39461688 DOI: 10.1016/j.actbio.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Overproduction of reactive oxygen species (ROS) plays a crucial role in initiating and advancing ulcerative colitis (UC), and the persistent cycle between ROS and inflammation accelerates disease development. Therefore, developing strategies that can effectively scavenge ROS and provide targeted intervention are crucial for the management of UC. In this study, we synthesized natural carrier-free nanoparticles (HST-Arg NPs) using the Mannich reaction and π-π stacking for the intervention of UC. HST-Arg NPs are an oral formulation that exhibit good antioxidant capabilities and gastrointestinal stability. Benefiting from the negatively charged characteristics, HST-Arg NPs can specifically accumulate in positively charged inflamed regions of the colon. Furthermore, in the oxidative microenvironment of colonic inflammation, HST-Arg NPs respond to ROS by releasing nitric oxide (NO). In mice model of UC induced by dextran sulfate sodium (DSS), HST-Arg NPs significantly mitigated colonic injury by modulating oxidative stress, lowering pro-inflammatory cytokines, and repairing intestinal barrier integrity. In summary, this convenient and targeted oral nanoparticle can effectively scavenge ROS at the site of inflammation and achieve gas intervention, offering robust theoretical support for the development of subsequent oral formulations in related inflammatory interventions. STATEMENT OF SIGNIFICANCE: Nanotechnology has been extensively explored in the biomedical field, but the application of natural carrier-free nanotechnology in this area remains relatively rare. In this study, we developed a natural nanoparticle system based on hesperetin (HST), L-arginine (L-Arg), and vanillin (VA) to scavenge ROS and alleviate inflammation. In the context of ulcerative colitis (UC), the synthesized nanoparticles exhibited excellent intervention effects, effectively protecting the colon from damage. Consequently, these nanoparticles provide a promising and precise nutritional intervention strategy by addressing both oxidative stress and inflammatory pathways simultaneously, demonstrating significant potential for application.
Collapse
Affiliation(s)
- Xuesong Chi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fengxian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yangjing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shumeng Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wen Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - LiHang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
16
|
Piragine E, De Felice M, Germelli L, Brinkmann V, Flori L, Martini C, Calderone V, Ventura N, Da Pozzo E, Testai L. The Citrus flavanone naringenin prolongs the lifespan in C. elegans and slows signs of brain aging in mice. Exp Gerontol 2024; 194:112495. [PMID: 38897393 DOI: 10.1016/j.exger.2024.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Aging is one of the main risk factors for neurodegenerative disorders, which represent a global burden on healthcare systems. Therefore, identifying new strategies to slow the progression of brain aging is a compelling challenge. In this article, we first assessed the potential anti-aging effects of the Citrus flavanone naringenin (NAR), an activator of the enzyme sirtuin-1 (SIRT1), in a 3R-compliant and short-lived aging model (i.e., the nematode C. elegans). Then, we investigated the preventive effects of a 6-month treatment with NAR (100 mg/kg, orally) against brain aging and studied its mechanism of action in middle-aged mice. We demonstrated that NAR (100 μM) extends lifespan and improves healthspan in C. elegans. In the brain of middle-aged mice, NAR promotes the activity of metabolic enzymes (citrate synthase, cytochrome C oxidase) and increases the expression of the SIRT1 enzyme. Consistently, NAR up-regulates the expression of downstream antioxidant (Foxo3, Nrf2, Ho-1), anti-senescence (p16), and anti-inflammatory (Il-6, Il-18) markers. Our findings support NAR supplementation to slow the signs of brain aging.
Collapse
Affiliation(s)
- Eugenia Piragine
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | | | | | - Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.
| | | | - Claudia Martini
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| |
Collapse
|
17
|
Li X, Sun Y, Zhou Z, Li J, Liu S, Chen L, Shi Y, Wang M, Zhu Z, Wang G, Lu Q. Deep Learning-Driven Exploration of Pyrroloquinoline Quinone Neuroprotective Activity in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308970. [PMID: 38454653 PMCID: PMC11095145 DOI: 10.1002/advs.202308970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Alzheimer's disease (AD) is a pressing concern in neurodegenerative research. To address the challenges in AD drug development, especially those targeting Aβ, this study uses deep learning and a pharmacological approach to elucidate the potential of pyrroloquinoline quinone (PQQ) as a neuroprotective agent for AD. Using deep learning for a comprehensive molecular dataset, blood-brain barrier (BBB) permeability is predicted and the anti-inflammatory and antioxidative properties of compounds are evaluated. PQQ, identified in the Mediterranean-DASH intervention for a diet that delays neurodegeneration, shows notable BBB permeability and low toxicity. In vivo tests conducted on an Aβ₁₋₄₂-induced AD mouse model verify the effectiveness of PQQ in reducing cognitive deficits. PQQ modulates genes vital for synapse and anti-neuronal death, reduces reactive oxygen species production, and influences the SIRT1 and CREB pathways, suggesting key molecular mechanisms underlying its neuroprotective effects. This study can serve as a basis for future studies on integrating deep learning with pharmacological research and drug discovery.
Collapse
Affiliation(s)
- Xinuo Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Yuan Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Zheng Zhou
- Department of Computer ScienceRWTH Aachen University52074AachenGermany
| | - Jinran Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Sai Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Long Chen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Yiting Shi
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Min Wang
- Affiliated Brain Hospital of Nanjing Medical UniversityNanjing210029China
| | - Zheying Zhu
- School of PharmacyThe University of NottinghamNottinghamNG7 2RDUK
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| | - Qiulun Lu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing211166China
| |
Collapse
|
18
|
Shen X, Li M, Li Y, Jiang Y, Niu K, Zhang S, Lu X, Zhang R, Zhao Z, Zhou L, Guo Z, Wang S, Wei C, Chang L, Hou Y, Wu Y. Bazi Bushen ameliorates age-related energy metabolism dysregulation by targeting the IL-17/TNF inflammatory pathway associated with SASP. Chin Med 2024; 19:61. [PMID: 38594761 PMCID: PMC11005220 DOI: 10.1186/s13020-024-00927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Chronic inflammation and metabolic dysfunction are key features of systemic aging, closely associated with the development and progression of age-related metabolic diseases. Bazi Bushen (BZBS), a traditional Chinese medicine used to alleviate frailty, delays biological aging by modulating DNA methylation levels. However, the precise mechanism of its anti-aging effect remains unclear. In this study, we developed the Energy Expenditure Aging Index (EEAI) to estimate biological age. By integrating the EEAI with transcriptome analysis, we aimed to explore the impact of BZBS on age-related metabolic dysregulation and inflammation in naturally aging mice. METHODS We conducted indirect calorimetry analysis on five groups of mice with different ages and utilized the data to construct EEAI. 12 -month-old C57BL/6 J mice were treated with BZBS or β-Nicotinamide Mononucleotide (NMN) for 8 months. Micro-CT, Oil Red O staining, indirect calorimetry, RNA sequencing, bioinformatics analysis, and qRT-PCR were performed to investigate the regulatory effects of BZBS on energy metabolism, glycolipid metabolism, and inflammaging. RESULTS The results revealed that BZBS treatment effectively reversed the age-related decline in energy expenditure and enhanced overall metabolism, as indicated by the aging index of energy expenditure derived from energy metabolism parameters across various ages. Subsequent investigations showed that BZBS reduced age-induced visceral fat accumulation and hepatic lipid droplet aggregation. Transcriptomic analysis of perirenal fat and liver indicated that BZBS effectively enhanced lipid metabolism pathways, such as the PPAR signaling pathway, fatty acid oxidation, and cholesterol metabolism, and improved glycolysis and mitochondrial respiration. Additionally, there was a significant improvement in inhibiting the inflammation-related arachidonic acid-linoleic acid metabolism pathway and restraining the IL-17 and TNF inflammatory pathways activated via senescence associated secretory phenotype (SASP). CONCLUSIONS BZBS has the potential to alleviate inflammation in metabolic organs of naturally aged mice and maintain metabolic homeostasis. This study presents novel clinical therapeutic approaches for the prevention and treatment of age-related metabolic diseases.
Collapse
Affiliation(s)
- Xiaogang Shen
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Mengnan Li
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
| | - Yawen Li
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Yuning Jiang
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Kunxu Niu
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Shixiong Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xuan Lu
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Runtao Zhang
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Zhiqin Zhao
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Liangxing Zhou
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Zhifang Guo
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
| | - Siwei Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, People's Republic of China
| | - Cong Wei
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Hebei Yiling Hospital, Shijiazhuang, 050091, Hebei Province, People's Republic of China
- Shijiazhuang New Drug Technology Innovation Center of Compound Traditional Chinese Medicine, Shijiazhuang, 050035, People's Republic of China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
- Shijiazhuang New Drug Technology Innovation Center of Compound Traditional Chinese Medicine, Shijiazhuang, 050035, People's Republic of China
| | - Yunlong Hou
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China.
| | - Yiling Wu
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China.
| |
Collapse
|
19
|
Proshkina E, Koval L, Platonova E, Golubev D, Ulyasheva N, Babak T, Shaposhnikov M, Moskalev A. Polyphenols as Potential Geroprotectors. Antioxid Redox Signal 2024; 40:564-593. [PMID: 38251662 DOI: 10.1089/ars.2023.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Significance: Currently, a large amount of evidence of beneficial effects of diets enriched with polyphenols on various aspects of health has been accumulated. These phytochemicals have a geroprotective potential slowing down the pathological processes associated with aging and ensuring longevity. In this study, a comprehensive analysis was conducted to determine the adherence of individual polyphenols to geroprotector criteria. Data from experimental models, clinical trials, and epidemiological studies were analyzed. Recent Advances: Sixty-two polyphenols have been described to increase the life span and improve biomarkers of aging in animal models. They act via evolutionarily conserved molecular mechanisms, including hormesis and maintenance of redox homeostasis, epigenetic regulation, response to cellular damage, metabolic control, and anti-inflammatory and senolytic activity. Epidemiological and clinical studies suggest that certain polyphenols have a potential for prevention and treatment of various diseases, including cancer, metabolic disorders, and cardiovascular conditions in humans. Critical Issues: Among the reviewed phytochemicals, chlorogenic acid, quercetin, epicatechin, genistein, resveratrol, and curcumin were identified as compounds with the highest geroprotective potential. However, there is a lack of unambiguous information on the effectiveness and safety of polyphenols for increasing health span, preventing and treating aging-associated diseases in humans. Future Directions: Further research is needed to fully understand the effects of polyphenols considering their long-term consumption, metabolic modification and bioavailability, complex interactions between different groups of polyphenols and with other phytochemicals, as well as their effects on individuals with different health status. Antioxid. Redox Signal. 40, 564-593.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Denis Golubev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Natalia Ulyasheva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| |
Collapse
|
20
|
Shen ZQ, Chang CY, Yeh CH, Lu CK, Hung HC, Wang TW, Wu KS, Tung CY, Tsai TF. Hesperetin activates CISD2 to attenuate senescence in human keratinocytes from an older person and rejuvenates naturally aged skin in mice. J Biomed Sci 2024; 31:15. [PMID: 38263133 PMCID: PMC10807130 DOI: 10.1186/s12929-024-01005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND CDGSH iron-sulfur domain-containing protein 2 (CISD2), a pro-longevity gene, mediates healthspan in mammals. CISD2 is down-regulated during aging. Furthermore, a persistently high level of CISD2 promotes longevity and ameliorates an age-related skin phenotype in transgenic mice. Here we translate the genetic evidence into a pharmaceutical application using a potent CISD2 activator, hesperetin, which enhances CISD2 expression in HEK001 human keratinocytes from an older person. We also treated naturally aged mice in order to study the activator's anti-aging efficacy. METHODS We studied the biological effects of hesperetin on aging skin using, firstly, a cell-based platform, namely a HEK001 human keratinocyte cell line established from an older person. Secondly, we used a mouse model, namely old mice at 21-month old. In the latter case, we investigate the anti-aging efficacy of hesperetin on ultraviolet B (UVB)-induced photoaging and naturally aged skin. Furthermore, to identify the underlying mechanisms and potential biological pathways involved in this process we carried out transcriptomic analysis. Finally, CISD2 knockdown HEK001 keratinocytes and Cisd2 knockout mice were used to study the Cisd2-dependent effects of hesperetin on skin aging. RESULTS Four findings are pinpointed. Firstly, in human skin, CISD2 is mainly expressed in proliferating keratinocytes from the epidermal basal layer and, furthermore, CISD2 is down-regulated in the sun-exposed epidermis. Secondly, in HEK001 human keratinocytes from an older person, hesperetin enhances mitochondrial function and protects against reactive oxygen species-induced oxidative stress via increased CISD2 expression; this enhancement is CISD2-dependent. Additionally, hesperetin alleviates UVB-induced damage and suppresses matrix metalloproteinase-1 expression, the latter being a major indicator of UVB-induced damage in keratinocytes. Thirdly, transcriptomic analysis revealed that hesperetin modulates a panel of differentially expressed genes that are associated with mitochondrial function, redox homeostasis, keratinocyte function, and inflammation in order to attenuate senescence. Intriguingly, hesperetin activates two known longevity-associated regulators, namely FOXO3a and FOXM1, in order to suppress the senescence-associated secretory phenotype. Finally, in mouse skin, hesperetin enhances CISD2 expression to ameliorate UVB-induced photoaging and this occurs via a mechanism involving CISD2. Most strikingly, late-life treatment with hesperetin started at 21-month old and lasting for 5 months, is able to retard skin aging and rejuvenate naturally aged skin in mice. CONCLUSIONS Our results reveal that a pharmacological elevation of CISD2 expression at a late-life stage using hesperetin treatment is a feasible approach to effectively mitigating both intrinsic and extrinsic skin aging and that hesperetin could act as a functional food or as a skincare product for fighting skin aging.
Collapse
Affiliation(s)
- Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Cheng-Yen Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Kuang Lu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Hao-Chih Hung
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Tai-Wen Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Kuan-Sheng Wu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan.
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
21
|
Wang W, Qu L, Cui Z, Lu F, Li L, Liu F. Citrus Flavonoid Hesperetin Inhibits α-Synuclein Fibrillogenesis, Disrupts Mature Fibrils, and Reduces Their Cytotoxicity: In Vitro and In Vivo Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16174-16183. [PMID: 37870747 DOI: 10.1021/acs.jafc.3c06816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Misfolding and subsequent fibrillogenesis of α-synuclein (αSN) significantly influence the development of Parkinson's disease (PD). This study reports the inhibitory effect of citrus flavonoid hesperetin (Hst) on αSN fibrillation. Based on thioflavin T fluorometry and atomic force microscopy studies, Hst inhibited αSN fibrillation by interfering with initial nucleation and slowing the elongation rate. Furthermore, the inhibitory effect was concentration-dependent with a half-maximal inhibitory concentration of 24.4 μM. Cytotoxicity experiments showed that 100 μM Hst significantly reduced the cytotoxicity of αSN aggregates and maintained 98.4% cell activity. In addition, Hst disassembled the preprepared αSN fibrils into smaller and less-toxic aggregates. Excitingly, supplementation with 100 μM Hst inhibited the accumulation of 36.3% αSN in NL5901 and restored the amyloid-induced reduction in NL5901 lipid abundance, extending the mean lifespan of NL5901 to 23 d. These findings could support the use of Hst as a dietary supplement to regulate αSN fibrillation and prevent the development of PD.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Li Li
- College of Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
22
|
Qiu Y, Cai C, Mo X, Zhao X, Wu L, Liu F, Li R, Liu C, Chen J, Tian M. Transcriptome and metabolome analysis reveals the effect of flavonoids on flower color variation in Dendrobium nobile Lindl. FRONTIERS IN PLANT SCIENCE 2023; 14:1220507. [PMID: 37680360 PMCID: PMC10481954 DOI: 10.3389/fpls.2023.1220507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Introduction Dendrobium nobile L. is a rare orchid plant with high medicinal and ornamentalvalue, and extremely few genetic species resources are remaining in nature. In the normal purple flower population, a type of population material with a white flower variation phenotype has been discovered, and through pigment component determination, flavonoids were preliminarily found to be the main reason for the variation. Methods This study mainly explored the different genes and metabolites at different flowering stages and analysed the flower color variation mechanism through transcriptome- and flavonoid-targeted metabolomics. The experimental materials consisted of two different flower color phenotypes, purple flower (PF) and white flower (WF), observed during three different periods. Results and discussion The results identified 1382, 2421 and 989 differentially expressed genes (DEGs) in the white flower variety compared with the purple flower variety at S1 (bud stage), S2 (chromogenic stage) and S3 (flowering stage), respectively. Among these, 27 genes enriched in the ko00941, ko00942, ko00943 and ko00944 pathways were screened as potential functional genes affecting flavonoid synthesis and flower color. Further analysis revealed that 15 genes are potential functional genes that lead to flavonoid changes and flower color variations. The metabolomics results at S3 found 129 differentially accumulated metabolites (DAMs), which included 8 anthocyanin metabolites, all of which (with the exception of delphinidin-3-o-(2'''-o-malonyl) sophoroside-5-o-glucoside) were found at lower amounts in the WF variety compared with the PF variety, indicating that a decrease in the anthocyanin content was the main reason for the inability to form purple flowers. Therefore, the changes in 19 flavone and 62 flavonol metabolites were considered the main reasons for the formation of white flowers. In this study, valuable materials responsible for flower color variation in D. nobile were identified and further analyzed the main pathways and potential genes affecting changes in flavonoids and the flower color. This study provides a material basis and theoretical support for the hybridization and molecular-assisted breeding of D. nobile.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Yao CH, Shen ZQ, Rajan YC, Huang YW, Lin CY, Song JS, Shiao HY, Ke YY, Fan YS, Tsai CH, Yeh TK, Tsai TF, Lee JC. Discovery of tetrasubstituted thiophenes as Cisd2 activators: A potential novel therapeutic option in nonalcoholic fatty liver disease. Eur J Med Chem 2023; 258:115583. [PMID: 37393792 DOI: 10.1016/j.ejmech.2023.115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Down-regulation of Cisd2 in the liver has been implicated in the development of nonalcoholic fatty liver disease (NAFLD) and increasing the level of Cisd2 is therefore a potential therapeutic approach to this group of diseases. Herein, we describe the design, synthesis, and biological evaluation of a series of Cisd2 activators, all thiophene analogs, based on a hit obtained using two-stage screening and prepared via either the Gewald reaction or by intramolecular aldol-type condensation of an N,S-acetal. Metabolic stability studies of the resulting potent Cisd2 activators suggest that thiophenes 4q and 6 are suitable for in vivo studies. The results from studies on 4q-treated and 6-treated Cisd2hKO-het mice, which carry a heterozygous hepatocyte-specific Cisd2 knockout, confirm that (1) there is a correlation between Cisd2 levels and NAFLD and (2) these compounds have the ability to prevent, without detectable toxicity, the development and progression of NAFLD.
Collapse
Affiliation(s)
- Chun-Hsu Yao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yesudoss Christu Rajan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Yu-Wen Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chin-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Hui-Yi Shiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Yu-Shiou Fan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chi-Hui Tsai
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan.
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, 350, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Jinq-Chyi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 350, Taiwan.
| |
Collapse
|
24
|
Jung UJ. Sarcopenic Obesity: Involvement of Oxidative Stress and Beneficial Role of Antioxidant Flavonoids. Antioxidants (Basel) 2023; 12:antiox12051063. [PMID: 37237929 DOI: 10.3390/antiox12051063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenic obesity, which refers to concurrent sarcopenia and obesity, is characterized by decreased muscle mass, strength, and performance along with abnormally excessive fat mass. Sarcopenic obesity has received considerable attention as a major health threat in older people. However, it has recently become a health problem in the general population. Sarcopenic obesity is a major risk factor for metabolic syndrome and other complications such as osteoarthritis, osteoporosis, liver disease, lung disease, renal disease, mental disease and functional disability. The pathogenesis of sarcopenic obesity is multifactorial and complicated, and it is caused by insulin resistance, inflammation, hormonal changes, decreased physical activity, poor diet and aging. Oxidative stress is a core mechanism underlying sarcopenic obesity. Some evidence indicates a protective role of antioxidant flavonoids in sarcopenic obesity, although the precise mechanisms remain unclear. This review summarizes the general characteristics and pathophysiology of sarcopenic obesity and focuses on the role of oxidative stress in sarcopenic obesity. The potential benefits of flavonoids in sarcopenic obesity have also been discussed.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
25
|
An Updated Overview on the Role of Small Molecules and Natural Compounds in the "Young Science" of Rejuvenation. Antioxidants (Basel) 2023; 12:antiox12020288. [PMID: 36829846 PMCID: PMC9951981 DOI: 10.3390/antiox12020288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Aging is a gradual process that occurs over time which leads to a progressive decline of cells and tissues. Telomere shortening, genetic instability, epigenetic alteration, and the accumulation of misfolded proteins represent the main hallmarks that cause perturbed cellular functions; this occurs in conjunction with the progression of the so-called "aging clocks". Rejuvenation aims to influence the natural evolution of such aging clocks and to enhance regenerative capacity, thus overcoming the limitations of common anti-aging interventions. Current rejuvenation processes are based on heterochronic parabiosis, cell damage dilution through asymmetrical cell division, the excretion of extracellular vesicles, the modulation of genetic instability involving G-quadruplexes and DNA methylation, and cell reprogramming using Yamanaka factors and the actions of antioxidant species. In this context, we reviewed the most recent contributions that report on small molecules acting as senotherapeutics; these molecules act by promoting one or more of the abovementioned processes. Candidate drugs and natural compounds that are being studied as potential rejuvenation therapies act by interfering with CDGSH iron-sulfur domain 2 (CISD2) expression, G-quadruplex structures, DNA methylation, and mitochondrial decay. Moreover, direct and indirect antioxidants have been reported to counteract or revert aging through a combination of mixed mechanisms.
Collapse
|
26
|
Malik P, Bernela M, Seth M, Kaushal P, Mukherjee TK. Recent Progress in the Hesperetin Delivery Regimes: Significance of Pleiotropic Actions and Synergistic Anticancer Efficacy. Curr Pharm Des 2023; 29:2954-2976. [PMID: 38173051 DOI: 10.2174/0113816128253609231030070414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/25/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND In the plant kingdom, flavonoids are widely distributed with multifunctional immunomodulatory actions. Hesperetin (HST) remains one of the well-studied compounds in this domain, initially perceived in citrus plants as an aglycone derivative of hesperidin (HDN). OBSERVATIONS Natural origin, low in vivo toxicity, and pleiotropic functional essence are the foremost fascinations for HST use as an anticancer drug. However, low aqueous solubility accompanied with a prompt degradation by intestinal and hepatocellular enzymes impairs HST physiological absorption. MOTIVATION Remedies attempted herein comprise the synthesis of derivatives and nanocarrier (NC)-mediated delivery. As the derivative synthesis aggravates the structural complexity, NC-driven HST delivery has emerged as a sustainable approach for its sustained release. Recent interest in HST has been due to its significant anticancer potential, characterized via inhibited cell division (proliferation), new blood vessel formation (angiogenesis), forceful occupation of neighboring cell's space (invasion), migration to erstwhile physiological locations (metastasis) and apoptotic induction. The sensitization of chemotherapeutic drugs (CDs) by HST is driven via stoichiometrically regulated synergistic actions. Purpose and Conclusion: This article sheds light on HST structure-function correlation and pleiotropic anticancer mechanisms, in unaided and NC-administered delivery in singular and with CDs synergy. The discussion could streamline the HST usefulness and long-term anticancer efficacy.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Manju Bernela
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143001, India
| | - Mahima Seth
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
| | - Priya Kaushal
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
| | | |
Collapse
|
27
|
Rejuvenation: Turning Back Time by Enhancing CISD2. Int J Mol Sci 2022; 23:ijms232214014. [PMID: 36430496 PMCID: PMC9695557 DOI: 10.3390/ijms232214014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The aging human population with age-associated diseases has become a problem worldwide. By 2050, the global population of those who are aged 65 years and older will have tripled. In this context, delaying age-associated diseases and increasing the healthy lifespan of the aged population has become an important issue for geriatric medicine. CDGSH iron-sulfur domain 2 (CISD2), the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928), plays a pivotal role in mediating lifespan and healthspan by maintaining mitochondrial function, endoplasmic reticulum integrity, intracellular Ca2+ homeostasis, and redox status. Here, we summarize the most up-to-date publications on CISD2 and discuss the crucial role that this gene plays in aging and age-associated diseases. This review mainly focuses on the following topics: (1) CISD2 is one of the few pro-longevity genes identified in mammals. Genetic evidence from loss-of-function (knockout mice) and gain-of-function (transgenic mice) studies have demonstrated that CISD2 is essential to lifespan control. (2) CISD2 alleviates age-associated disorders. A higher level of CISD2 during natural aging, when achieved by transgenic overexpression, improves Alzheimer's disease, ameliorates non-alcoholic fatty liver disease and steatohepatitis, and maintains corneal epithelial homeostasis. (3) CISD2, the expression of which otherwise decreases during natural aging, can be pharmaceutically activated at a late-life stage of aged mice. As a proof-of-concept, we have provided evidence that hesperetin is a promising CISD2 activator that is able to enhance CISD2 expression, thus slowing down aging and promoting longevity. (4) The anti-aging effect of hesperetin is mainly dependent on CISD2 because transcriptomic analysis of the skeletal muscle reveals that most of the differentially expressed genes linked to hesperetin are regulated by hesperetin in a CISD2-dependent manner. Furthermore, three major metabolic pathways that are affected by hesperetin have been identified in skeletal muscle, namely lipid metabolism, protein homeostasis, and nitrogen and amino acid metabolism. This review highlights the urgent need for CISD2-based pharmaceutical development to be used as a potential therapeutic strategy for aging and age-associated diseases.
Collapse
|