1
|
Segovia X, Srivastava B, Serrato-Arroyo S, Guerrero A, Huijben S. Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management. Malar J 2025; 24:65. [PMID: 40025552 PMCID: PMC11871665 DOI: 10.1186/s12936-025-05286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Artemisinin-based combination therapy (ACT) remains a broadly effective anti-malarial drug combination, but the emergence of resistance is threatening its effectiveness. Limiting the spread of these drug-resistant parasites and delaying the emergence of resistance in new areas are of high priority. Understanding the evolution of resistance relies on discerning the fitness costs and benefits associated with resistance mutations. If the cost associated with resistance in an untreated host is sufficiently large relative to the benefit of resistance in a treated host, then the spread of resistance can be mitigated by ensuring sufficient hosts free from that active pharmaceutical ingredient. There is no straightforward way to measure these fitness costs, and each approach that has been used has its limitations. Here, the evidence of fitness costs as measured using field data, animal models, and in vitro models is reviewed for three of the main current or past first-line treatments for malaria: chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artemisinin derivatives (ART). Despite the difficulties of assessing fitness costs, there is a good amount of evidence of fitness costs in drug-resistant Plasmodium falciparum parasites. The most persuasive evidence comes from resistance reversal observed following the cessation of the use of chloroquine. Comparable evidence cannot be obtained for SP- and ART-resistant parasites, due to the absence of complete cessation of these drugs in the field. Data from in vitro and animal models are variable. While fitness costs are often observed, their presence is not universal across all resistant strains. The extent and nature of these fitness costs can vary greatly depending on the specific genetic factors involved and the ecological context in which the parasites evolve. As a result, it is essential to avoid making broad generalizations about the prevalence or impact of fitness costs in drug-resistant malaria parasites. Focusing on fitness costs as a vulnerability in resistant parasites can guide their evolutionary trajectory towards minimizing their fitness. By accurately predicting these costs, efforts to extend the effectiveness of anti-malarials can be enhanced, limiting resistance evolution and advancing malaria control and elimination goals.
Collapse
Affiliation(s)
- Xyonane Segovia
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Sergio Serrato-Arroyo
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ashley Guerrero
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Akinola O, Afolabi OO, Adebisi-Jose GO, Amusan AI, Olumoh-Adbul HA, Olabanji O, Teslim O, Gbotosho GO. Triple artemisinin-based combination therapy (TACT): Efficacy of dihydroartemisinin-piperaquine plus chloroquine against Plasmodium berghei ANKA strains with different drug sensitivities in a murine malaria model. J Infect Chemother 2025; 31:102556. [PMID: 39536985 DOI: 10.1016/j.jiac.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Evident detection of artemisinin resistance markers in patient isolates of Plasmodium falciparum from East Africa threatens the efficacy of artemisinin-based combination therapies (ACTs) as first-line treatment of malaria in sub-Saharan Africa. Repositioning previously used antimalarials as complementary addition to ACTs has been suggested as a viable option to mitigating this threat. This study evaluated the potential benefit of chloroquine (CQ) as a complementary partner to dihydroartemisinin/piperaquine (DHA/PQ) in the treatment of malaria in a mice model. METHODS The comparative efficacy of the combination of DHA/PQ/CQ and DHA/PQ against two strains of Plasmodium berghei ANKA (MRA 311 and 671) with different levels of sensitivities to chloroquine was evaluated in separate experiments. Parasitological activities including; parasite suppression time, parasite clearance time, recrudescence time, and parasite reduction ratio were evaluated in vivo. The mean survival time was also monitored throughout the duration of the study. RESULTS In both parasite lines, 99.99 % chemo-suppression was observed on day 4 in the drug treatment groups (CQ alone, DHA/PQ and DHA/PQ/CQ). In the curative test, there were significant differences between DHA/PQ/CQ and DHQ/PQ treatment, highlighted by reduced parasite clearance time (4.75 ± 0.3 Vs 5.5 ± 0.3 days, P < 0.05), significantly delayed recrudescence time (28.5 ± 1.04 Vs 13.3 ± 0.48 days, P < 0.01), a 1.5-fold change in parasite reduction ratio, and a prolonged mean survival time (34.5 ± 1.04 Vs 26.7 ± 0.48 days, P < 0.05). CONCLUSION The addition of chloroquine to dihydroartemisinin-piperaquine may be beneficial in the treatment of malaria, especially in areas where malaria parasite sensitivity to chloroquine is predominant.
Collapse
Affiliation(s)
- Olugbenga Akinola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria; Malaria Research Laboratories, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwapelumi O Afolabi
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gbemisola O Adebisi-Jose
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abiodun I Amusan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria; Malaria Research Laboratories, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Hidayah A Olumoh-Adbul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ilorin, Ilorin, Nigeria
| | - Olawale Olabanji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olayinka Teslim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Grace O Gbotosho
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria; Malaria Research Laboratories, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
3
|
Chaves CRS, da Silva C, Salamandane A, Nogueira F. Mapping Antimalarial Drug Resistance in Mozambique: A Systematic Review of Plasmodium falciparum Genetic Markers Post-ACT Implementation. Int J Mol Sci 2024; 25:13645. [PMID: 39769406 PMCID: PMC11728251 DOI: 10.3390/ijms252413645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Malaria continues to be a significant public health burden in many tropical and subtropical regions. Mozambique ranks among the top countries affected by malaria, where it is a leading cause of morbidity and mortality, accounting for 29% of all hospital deaths in the general population and 42% of deaths amongst children under five. This review presents a comparative analysis of data on five critical genes associated with antimalarial drug resistance: pfmdr1, pfcrt, pfk13, pfdhfr, and pfdhps, along with the copy number variation (CNV) in genes pfmdr1 and pfpm2/3. These are genes associated with parasite response to antimalarials currently used to treat uncomplicated P. falciparum malaria in Mozambique. The review synthesizes data collected from published studies conducted in Mozambique after the introduction of artemisinin-based combination therapies (ACTs) (2006) up to June 2024, highlighting the presence or absence of mutations in these genes across Mozambique. We aimed at mapping the prevalence and distribution of these molecular markers across the country in order to contribute to the development of targeted interventions to sustain the efficacy of malaria treatments in Mozambique. Four databases were used to access the articles: PubMed, Science Direct, Scopus, and Google scholar. The search strategy identified 132 studies addressing malaria and antimalarial resistance. Of these, 112 were excluded for various reasons, leaving 20 studies to be included in this review. Children and pregnant women represent the majority of target groups in studies on all types of antimalarials. Most studies (87.5%) were conducted in the provinces of Maputo and Gaza. The primary alleles reported were pfcrt CVMNK, and in the most recent data, its wild-type form was found in the majority of patients. A low prevalence of mutations in the pfk13 gene was identified reflecting the effectiveness of ACTs. In pfk13, only mutation A578S was reported in Niassa and Tete. CNVs were observed in studies carried out in the south of Mozambique, with a frequency of 1.1-5.1% for pfmdr1 and a frequency of 1.1-3.4% for pfpm2. This review indicates that molecular markers linked to malaria resistance show considerable variation across provinces in Mozambique, with most up-to-date data accessible for Maputo and Gaza. In contrast, provinces such as Zambezia and Inhambane have limited data on several genes, while Nampula lacks data on all drug resistance markers.
Collapse
Affiliation(s)
- Celso Raul Silambo Chaves
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.R.S.C.); (C.d.S.)
| | - Clemente da Silva
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.R.S.C.); (C.d.S.)
| | - Acácio Salamandane
- Faculdade de Ciências de Saúde, Universidade Lúrio, Campus Universitário de Marrere, Nampula 4250, Mozambique;
| | - Fatima Nogueira
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.R.S.C.); (C.d.S.)
| |
Collapse
|
4
|
Papa Mze N, Arreh HY, Moussa RA, Elmi MB, Waiss MA, Abdi MM, Robleh HI, Guelleh SK, Abdi AIA, Bogreau H, Basco LK, Khaireh BA. Setting Up an NGS Sequencing Platform and Monitoring Molecular Markers of Anti-Malarial Drug Resistance in Djibouti. BIOLOGY 2024; 13:905. [PMID: 39596860 PMCID: PMC11592001 DOI: 10.3390/biology13110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Djibouti is confronted with malaria resurgence, with malaria having been occurring in epidemic proportions since a decade ago. The current epidemiology of drug-resistant Plasmodium falciparum is not well known. Molecular markers were analyzed by targeted sequencing in 79 P. falciparum clinical isolates collected in Djibouti city in 2023 using the Miseq Illumina platform newly installed in the country. The objective of the study was to analyze the key codons in these molecular markers associated with antimalarial drug resistance. The prevalence of the mutant Pfcrt CVIET haplotype (92%) associated with chloroquine resistance and mutant Pfdhps-Pfdhfr haplotypes (7.4% SGEA and 53.5% IRN, respectively) associated with sulfadoxine-pyrimethamine resistance was high. By contrast, Pfmdr1 haplotypes associated with amodiaquine (YYY) or lumefantrine (NFD) resistance were not observed in any of the isolates. Although the "Asian-type" PfK13 mutations associated with artemisinin resistance were not observed, the "African-type" PfK13 substitution, R622I, was found in a single isolate (1.4%) for the first time in Djibouti. Our genotyping data suggest that most Djiboutian P. falciparum isolates are resistant to chloroquine and sulfadoxine-pyrimethamine but are sensitive to amodiaquine, lumefantrine, and artemisinin. Nonetheless, the presence of an isolate with the R622I PfK13 substitution is a warning signal that calls for a regular surveillance of molecular markers of antimalarial drug resistance.
Collapse
Affiliation(s)
- Nasserdine Papa Mze
- Service de Biologie, Unité de Microbiologie, Hôpital Mignot, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150 Le Chesnay, France
| | - Houssein Yonis Arreh
- Unité de Biologie Moléculaire, Hôpital Général de Peltier, Centre Hospitalier Universitaire de Djibouti, Avenue Marechal, Djibouti ville 98230, Djibouti
| | - Rahma Abdi Moussa
- Caisse Nationale de Sécurité Sociale (CNSS), Ministère de la Santé, Djibouti ville 98230, Djibouti
| | - Mahdi Bachir Elmi
- Unité de Biologie Moléculaire, Hôpital Général de Peltier, Centre Hospitalier Universitaire de Djibouti, Avenue Marechal, Djibouti ville 98230, Djibouti
| | - Mohamed Ahmed Waiss
- Laboratoire du Service de Santé de la Gendarmerie Nationale, Avenue de Brazzaville, Djibouti ville 98230, Djibouti
| | - Mohamed Migane Abdi
- Unité de Biologie Moléculaire, Hôpital Général de Peltier, Centre Hospitalier Universitaire de Djibouti, Avenue Marechal, Djibouti ville 98230, Djibouti
| | - Hassan Ibrahim Robleh
- Unité de Biologie Moléculaire, Hôpital Général de Peltier, Centre Hospitalier Universitaire de Djibouti, Avenue Marechal, Djibouti ville 98230, Djibouti
| | - Samatar Kayad Guelleh
- Programme National de Lutte contre le Paludisme, Ministère de la Santé, Djibouti ville 98230, Djibouti
| | - Abdoul-ilah Ahmed Abdi
- Présidence de la République de Djibouti, Commune de Ras Dika, Djibouti ville 98230, Djibouti
- Service de Santé des Armées, Forces Armées Djiboutiennes, Commune de Boulaos, Djibouti ville 98230, Djibouti
| | - Hervé Bogreau
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Leonardo K. Basco
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), 13005 Marseille, France
| | - Bouh Abdi Khaireh
- Unité de Biologie Moléculaire, Hôpital Général de Peltier, Centre Hospitalier Universitaire de Djibouti, Avenue Marechal, Djibouti ville 98230, Djibouti
- Ministry of Health, Global Fund to Fight AIDS-TB-Malaria Project, Djibouti ville 98230, Djibouti
| |
Collapse
|
5
|
Fola AA, Ciubotariu II, Dorman J, Mwenda MC, Mambwe B, Mulube C, Kasaro R, Hawela MB, Hamainza B, Miller JM, Bailey JA, Moss WJ, Bridges DJ, Carpi G. National genomic profiling of Plasmodium falciparum antimalarial resistance in Zambian children participating in the 2018 Malaria Indicator Survey. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.05.24311512. [PMID: 39148823 PMCID: PMC11326323 DOI: 10.1101/2024.08.05.24311512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The emergence of antimalarial drug resistance is a major threat to malaria control and elimination. Using whole genome sequencing of 282 P. falciparum samples collected during the 2018 Zambia National Malaria Indicator Survey, we determined the prevalence and spatial distribution of known and candidate antimalarial drug resistance mutations. High levels of genotypic resistance were found across Zambia to pyrimethamine, with over 94% (n=266) of samples having the Pfdhfr triple mutant (N51I, C59R, and S108N), and sulfadoxine, with over 84% (n=238) having the Pfdhps double mutant (A437G and K540E). In northern Zambia, 5.3% (n=15) of samples also harbored the Pfdhps A581G mutation. Although 29 mutations were identified in Pfkelch13, these mutations were present at low frequency (<2.5%), and only three were WHO-validated artemisinin partial resistance mutations: P441L (n=1, 0.35%), V568M (n=2, 0.7%) and R622T (n=1, 0.35%). Notably, 91 (32%) of samples carried the E431K mutation in the Pfatpase6 gene, which is associated with artemisinin resistance. No specimens carried any known mutations associated with chloroquine resistance in the Pfcrt gene (codons 72-76). P. falciparum strains circulating in Zambia were highly resistant to sulfadoxine and pyrimethamine but remained susceptible to chloroquine and artemisinin. Despite this encouraging finding, early genetic signs of developing artemisinin resistance highlight the urgent need for continued vigilance and expanded routine genomic surveillance to monitor these changes.
Collapse
Affiliation(s)
- Abebe A. Fola
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
| | - Ilinca I. Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jack Dorman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Mulenga C. Mwenda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Brenda Mambwe
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Conceptor Mulube
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Rachael Kasaro
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Moonga B. Hawela
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital Grounds, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital Grounds, Lusaka, Zambia
| | - John M. Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
| | - William J. Moss
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J. Bridges
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
6
|
Osborne A, Mańko E, Waweru H, Kaneko A, Kita K, Campino S, Gitaka J, Clark TG. Plasmodium falciparum population dynamics in East Africa and genomic surveillance along the Kenya-Uganda border. Sci Rep 2024; 14:18051. [PMID: 39103358 PMCID: PMC11300580 DOI: 10.1038/s41598-024-67623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
East African countries accounted for ~ 10% of all malaria prevalence worldwide in 2022, with an estimated 23.8 million cases and > 53,000 deaths. Despite recent increases in malaria incidence, high-resolution genome-wide analyses of Plasmodium parasite populations are sparse in Kenya, Tanzania, and Uganda. The Kenyan-Ugandan border region is a particular concern, with Uganda confirming the emergence and spread of artemisinin resistant P. falciparum parasites. To establish genomic surveillance along the Kenyan-Ugandan border and analyse P. falciparum population dynamics within East Africa, we generated whole-genome sequencing (WGS) data for 38 parasites from Bungoma, Western Kenya. These sequences were integrated into a genomic analysis of available East African isolate data (n = 599) and revealed parasite subpopulations with distinct genetic structure and diverse ancestral origins. Ancestral admixture analysis of these subpopulations alongside isolates from across Africa (n = 365) suggested potential independent ancestral populations from other major African populations. Within isolates from Western Kenya, the prevalence of biomarkers associated with chloroquine resistance (e.g. Pfcrt K76T) were significantly reduced compared to wider East African populations and a single isolate contained the PfK13 V568I variant, potentially linked to reduced susceptibility to artemisinin. Overall, our work provides baseline WGS data and analysis for future malaria genomic surveillance in the region.
Collapse
Affiliation(s)
- Ashley Osborne
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Emilia Mańko
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Harrison Waweru
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Akira Kaneko
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya.
- Centre for Malaria Elimination, Mount Kenya University, Thika, Kenya.
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
7
|
Sima-Biyang YV, Ontoua SS, Longo-Pendy NM, Mbou-Boutambe C, Makouloutou-Nzassi P, Moussadji CK, Lekana-Douki JB, Boundenga L. Epidemiology of malaria in Gabon: A systematic review and meta-analysis from 1980 to 2023. J Infect Public Health 2024; 17:102459. [PMID: 38870682 DOI: 10.1016/j.jiph.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
The objective of this were conducted to elucidate spatiotemporal variations in malaria epidemiology in Gabon since 1980. For that, five databases, were used to collect and identify all studies published between 1980 and 2023 on malaria prevalence, antimalarial drug resistance, markers of antimalarial drug resistance and insecticide resistance marker. The findings suggest that Gabon continues to face malaria as an urgent public health problem, with persistently high prevalence rates. Markers of resistance to CQ persist despite its withdrawal, and markers of resistance to SP have emerged with a high frequency, reaching 100 %, while ACTs remain effective. Also, recent studies have identified markers of resistance to the insecticides Kdr-w and Kdr-e at frequencies ranging from 25 % to 100 %. Ace1R mutation was reported with a frequency of 0.4 %. In conclusion, the efficacy of ACTs remains above the threshold recommended by the WHO. Organo-phosphates and carbamates could provide an alternative for vector control.
Collapse
Affiliation(s)
- Yann Vital Sima-Biyang
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Central African Regional Doctoral School in Tropical Infectiology (EDR), BP 876 Franceville, Gabon
| | - Steede Seinnat Ontoua
- Central African Regional Doctoral School in Tropical Infectiology (EDR), BP 876 Franceville, Gabon; Unit of Evolution, Epidemiology and Parasite Resistance (UNEEREP), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon
| | - Neil Michel Longo-Pendy
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon
| | - Clark Mbou-Boutambe
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Central African Regional Doctoral School in Tropical Infectiology (EDR), BP 876 Franceville, Gabon
| | - Patrice Makouloutou-Nzassi
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Department of Animal Biology and Ecology, Tropical Ecology Research Institute (IRET/CENAREST), Libreville BP 13354, Gabon
| | - Cyr Kinga Moussadji
- Primatology Center, Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon
| | - Jean-Bernard Lekana-Douki
- Unit of Evolution, Epidemiology and Parasite Resistance (UNEEREP), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Department of Parasitology-Mycology-Tropical Medicine, University of Health Sciences, Faculty of Medicine, BP 4009 Libreville, Gabon
| | - Larson Boundenga
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Department of Anthropology, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
8
|
Figueroa-Romero A, Pons-Duran C, Gonzalez R. Drugs for Intermittent Preventive Treatment of Malaria in Pregnancy: Current Knowledge and Way Forward. Trop Med Infect Dis 2022; 7:tropicalmed7080152. [PMID: 36006244 PMCID: PMC9416188 DOI: 10.3390/tropicalmed7080152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria infection during pregnancy is an important driver of maternal and neonatal health in endemic countries. Intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is recommended for malaria prevention at each scheduled antenatal care visit, starting at the second trimester, in areas of high and moderate transmission. However, the increased resistance to SP in some endemic areas challenges its effectiveness. Furthermore, SP is contraindicated in the first trimester of pregnancy and in HIV-infected women on co-trimoxazole prophylaxis due to potential drug–drug interactions. Thus, in recent last decades, several studies evaluated alternative drugs that could be used for IPTp. A comprehensive literature review was conducted to summarize the evidence on the efficacy and safety of antimalarial drugs being evaluated for IPTp. Chloroquine, amodiaquine, mefloquine and azithromycin as IPTp have proven to be worse tolerated than SP. Mefloquine was found to increase the risk of mother-to-child transmission of HIV. Dihydroartemisin-piperaquine currently constitutes the most promising IPTp drug alternative; it reduced the prevalence of malaria infection, and placental and clinical malaria in studies among HIV-uninfected women, and it is currently being tested in HIV-infected women. Research on effective antimalarial drugs that can be safely administered for prevention to pregnant women should be prioritized. Malaria prevention in the first trimester of gestation and tailored interventions for HIV-infected women remain key research gaps to be addressed.
Collapse
Affiliation(s)
- Antia Figueroa-Romero
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-Universitat de Barcelona, Carrer Rosselló 132, 08036 Barcelona, Spain; (A.F.-R.); (C.P.-D.)
| | - Clara Pons-Duran
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-Universitat de Barcelona, Carrer Rosselló 132, 08036 Barcelona, Spain; (A.F.-R.); (C.P.-D.)
| | - Raquel Gonzalez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-Universitat de Barcelona, Carrer Rosselló 132, 08036 Barcelona, Spain; (A.F.-R.); (C.P.-D.)
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Maputo 1929, Mozambique
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
9
|
Genetic Diversity of Plasmodium falciparum and Distribution of Antimalarial Drug Resistance Mutations in Symptomatic and Asymptomatic Infections. Antimicrob Agents Chemother 2022; 66:e0018822. [DOI: 10.1128/aac.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria control relies on passive case detection, and this strategy fails detecting asymptomatic infections. In addition, infections in endemic areas harbor multiple parasite genotypes that could affect case management and malaria epidemiology.
Collapse
|
10
|
Plowe CV. Malaria chemoprevention and drug resistance: a review of the literature and policy implications. Malar J 2022; 21:104. [PMID: 35331231 PMCID: PMC8943514 DOI: 10.1186/s12936-022-04115-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 01/19/2023] Open
Abstract
Chemoprevention strategies reduce malaria disease and death, but the efficacy of anti-malarial drugs used for chemoprevention is perennially threatened by drug resistance. This review examines the current impact of chemoprevention on the emergence and spread of drug resistant malaria, and the impact of drug resistance on the efficacy of each of the chemoprevention strategies currently recommended by the World Health Organization, namely, intermittent preventive treatment in pregnancy (IPTp); intermittent preventive treatment in infants (IPTi); seasonal malaria chemoprevention (SMC); and mass drug administration (MDA) for the reduction of disease burden in emergency situations. While the use of drugs to prevent malaria often results in increased prevalence of genetic mutations associated with resistance, malaria chemoprevention interventions do not inevitably lead to meaningful increases in resistance, and even high rates of resistance do not necessarily impair chemoprevention efficacy. At the same time, it can reasonably be anticipated that, over time, as drugs are widely used, resistance will generally increase and efficacy will eventually be lost. Decisions about whether, where and when chemoprevention strategies should be deployed or changed will continue to need to be made on the basis of imperfect evidence, but practical considerations such as prevalence patterns of resistance markers can help guide policy recommendations.
Collapse
|
11
|
Njiro BJ, Mutagonda RF, Chamani AT, Mwakyandile T, Sabas D, Bwire GM. Molecular surveillance of chloroquine-resistant Plasmodium falciparum in sub-Saharan African countries after withdrawal of chloroquine for treatment of uncomplicated malaria: a systematic review. J Infect Public Health 2022; 15:550-557. [DOI: 10.1016/j.jiph.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022] Open
|
12
|
Yobi DM, Kayiba NK, Mvumbi DM, Boreux R, Kabututu PZ, Akilimali PZ, Situakibanza HNT, De Mol P, Speybroeck N, Mvumbi GL, Hayette MP. Biennial surveillance of Plasmodium falciparum anti-malarial drug resistance markers in Democratic Republic of Congo, 2017 and 2019. BMC Infect Dis 2022; 22:145. [PMID: 35144535 PMCID: PMC8830975 DOI: 10.1186/s12879-022-07112-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Because of the loss of chloroquine (CQ) effectiveness, the Democratic Republic of Congo (DRC)’s malaria treatment policy replaced CQ by sulfadoxine–pyrimethamine (SP) as first-line treatment of uncomplicated malaria in 2003, which in turn was replaced by artemisinin-based combination therapies (ACT) in 2005. The World Health Organization (WHO) recommends monitoring of anti-malarial drug resistance every 2 years. The study aimed to provide baseline data for biennial molecular surveillance of anti-malarial drug resistance by comparing data from a study conducted in 2019 to previously published data from a similar study conducted in 2017 in the DRC. Methods From July to November 2019, a cross-sectional study was conducted in ten sites which were previously selected for a similar study conducted in 2017 across the DRC. P. falciparum malaria was diagnosed by a rapid diagnostic test (RDT) or by microscopy and dried blood samples (DBS) were taken from patients who had a positive test. Segments of interest in pfcrt and pfk13 genes were amplified by conventional PCR before sequencing. Results Out of 1087 enrolled patients, 906 (83.3%) were PCR-confirmed for P. falciparum. Like in the 2017-study, none of the mutations known to be associated with Artemisinine (ART) resistance in Southeast Asia was detected. However, non-synonymous (NS) mutations with unknown functions were observed among which, A578S was detected in both 2017 and 2019-studies. The overall prevalence of pfcrt-K76T mutation that confers CQ-resistance was 22.7% in 2019-study compared to 28.5% in 2017-study (p-value = 0.069), but there was high variability between sites in the two studies. Like in 2017-study, the pfcrt 72–76 SVMNT haplotype associated with resistance to amodiaquine was not detected. Conclusion The study reported, within 2 years, the non-presence of molecular markers currently known to be associated with resistance to ART and to AQ in P. falciparum isolated in the DRC. However, the presence of polymorphisms with as-yet unknown functions was observed, requiring further characterization. Moreover, an overall decrease in the prevalence of CQ-resistance marker was observed in the DRC, but this prevalence remained highly variable from region to region. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07112-z.
Collapse
Affiliation(s)
- Doudou M Yobi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo.
| | - Nadine K Kayiba
- School of Public Health & Research Institute of Health and Society, Catholic University of Louvain, 1200, Brussels, Belgium.,School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo.,Department of Public Health, Faculty of Medicine, University of Mbujimayi, Mbuji-Mayi, Democratic Republic of Congo
| | - Dieudonné M Mvumbi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Raphael Boreux
- Laboratory of Clinical Microbiology, University of Liège, 4000, Liège, Belgium
| | - Pius Z Kabututu
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Pierre Z Akilimali
- School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Hippolyte N T Situakibanza
- Department of Internal Medicine, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Patrick De Mol
- Laboratory of Clinical Microbiology, University of Liège, 4000, Liège, Belgium
| | - Niko Speybroeck
- School of Public Health & Research Institute of Health and Society, Catholic University of Louvain, 1200, Brussels, Belgium
| | - Georges L Mvumbi
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | |
Collapse
|
13
|
Ndiaye YD, Hartl DL, McGregor D, Badiane A, Fall FB, Daniels RF, Wirth DF, Ndiaye D, Volkman SK. Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. Int J Parasitol Drugs Drug Resist 2021; 17:12-22. [PMID: 34333350 PMCID: PMC8342550 DOI: 10.1016/j.ijpddr.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
The use of antimalarial drugs is an effective strategy in the fight against malaria. However, selection of drug resistant parasites is a constant threat to the continued use of this approach. Antimalarial drugs are used not only to treat infections but also as part of population-level strategies to reduce malaria transmission toward elimination. While there is strong evidence that the ongoing use of antimalarial drugs increases the risk of the emergence and spread of drug-resistant parasites, it is less clear how population-level use of drug-based interventions like seasonal malaria chemoprevention (SMC) or mass drug administration (MDA) may contribute to drug resistance or loss of drug efficacy. Critical to sustained use of drug-based strategies for reducing the burden of malaria is the surveillance of population-level signals related to transmission reduction and resistance selection. Here we focus on Plasmodium falciparum and discuss the genetic signatures of a parasite population that are correlated with changes in transmission and related to drug pressure and resistance as a result of drug use. We review the evidence for MDA and SMC contributing to malaria burden reduction and drug resistance selection and examine the use and impact of these interventions in Senegal. Throughout we consider best strategies for ongoing surveillance of both population and resistance signals in the context of different parasite population parameters. Finally, we propose a roadmap for ongoing surveillance during population-level drug-based interventions to reduce the global malaria burden.
Collapse
Affiliation(s)
| | | | - David McGregor
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme, Senegal.
| | - Rachel F Daniels
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | | | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Simmons University, Boston, MA, USA.
| |
Collapse
|
14
|
Chidimatembue A, Svigel SS, Mayor A, Aíde P, Nhama A, Nhamussua L, Nhacolo A, Bassat Q, Salvador C, Enosse S, Saifodine A, De Carvalho E, Candrinho B, Zulliger R, Goldman I, Udhayakumar V, Lucchi NW, Halsey ES, Macete E. Molecular surveillance for polymorphisms associated with artemisinin-based combination therapy resistance in Plasmodium falciparum isolates collected in Mozambique, 2018. Malar J 2021; 20:398. [PMID: 34641867 PMCID: PMC8507114 DOI: 10.1186/s12936-021-03930-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Due to the threat of emerging anti-malarial resistance, the World Health Organization recommends incorporating surveillance for molecular markers of anti-malarial resistance into routine therapeutic efficacy studies (TESs). In 2018, a TES of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) was conducted in Mozambique, and the prevalence of polymorphisms in the pfk13, pfcrt, and pfmdr1 genes associated with drug resistance was investigated. Methods Children aged 6–59 months were enrolled in four study sites. Blood was collected and dried on filter paper from participants who developed fever within 28 days of initial malaria treatment. All samples were first screened for Plasmodium falciparum using a multiplex real-time PCR assay, and polymorphisms in the pfk13, pfcrt, and pfmdr1 genes were investigated by Sanger sequencing. Results No pfk13 mutations, associated with artemisinin partial resistance, were observed. The only pfcrt haplotype observed was the wild type CVMNK (codons 72–76), associated with chloroquine sensitivity. Polymorphisms in pfmdr1 were only observed at codon 184, with the mutant 184F in 43/109 (39.4%) of the samples, wild type Y184 in 42/109 (38.5%), and mixed 184F/Y in 24/109 (22.0%). All samples possessed N86 and D1246 at these two codons. Conclusion In 2018, no markers of artemisinin resistance were documented. Molecular surveillance should continue to monitor the prevalence of these markers to inform decisions on malaria treatment in Mozambique.
Collapse
Affiliation(s)
| | - Samaly S Svigel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Pedro Aíde
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Abel Nhama
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Lídia Nhamussua
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Arsénio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Crizólgo Salvador
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Sónia Enosse
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Abuchahama Saifodine
- United States President's Malaria Initiative, US Agency for International Development, Maputo, Mozambique
| | | | - Baltazar Candrinho
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | - Rose Zulliger
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.,United States President's Malaria Initiative, Centers for Disease Control and Prevention, Maputo, Mozambique
| | - Ira Goldman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric S Halsey
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.,United States President's Malaria Initiative, Atlanta, GA, USA
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique. .,National Directorate of Public Health, Ministry of Health, Maputo, Mozambique.
| |
Collapse
|
15
|
Mharakurwa S, Matsena-Zingoni Z, Mudare N, Matimba C, Gara TX, Makuwaza A, Maponga G, Munyati S, Gwanzura L, Mutambu SL, Mason P, Kobayashi T, Midzi N, Moss WJ, Ippolito MM. Steep Rebound of Chloroquine-Sensitive Plasmodium falciparum in Zimbabwe. J Infect Dis 2021; 223:306-309. [PMID: 32594154 DOI: 10.1093/infdis/jiaa368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Removal of chloroquine from national malaria formularies can lead to the reversion of resistant Plasmodium falciparum to wild-type. We report a steep decline in chloroquine-resistant P falciparum within 10 years of national discontinuation of chloroquine monotherapy in Zimbabwe. Drug resistance surveillance is a vital component of malaria control programs, and the experience with chloroquine in Zimbabwe and elsewhere in sub-Saharan Africa is illustrative of the potentially rapid and dramatic impact of drug policy on antimalarial resistance.
Collapse
Affiliation(s)
| | | | - Nobert Mudare
- Department of Health Sciences, Africa University, Mutare, Zimbabwe
| | | | | | - Aramu Makuwaza
- National Institute of Health Research Malaria Section, Harare, Zimbabwe
| | - Gladys Maponga
- National Institute of Health Research Malaria Section, Harare, Zimbabwe
| | - Shungu Munyati
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Lovemore Gwanzura
- Biomedical Research and Training Institute, Harare, Zimbabwe.,College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Susan L Mutambu
- Department of Health Sciences, Africa University, Mutare, Zimbabwe
| | - Peter Mason
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nicholas Midzi
- National Institute of Health Research Malaria Section, Harare, Zimbabwe
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Matthew M Ippolito
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Division of Clinical Pharmacology and Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Tuedom AGB, Sarah-Matio EM, Moukoko CEE, Feufack-Donfack BL, Maffo CN, Bayibeki AN, Awono-Ambene HP, Ayong L, Berry A, Abate L, Morlais I, Nsango SE. Antimalarial drug resistance in the Central and Adamawa regions of Cameroon: Prevalence of mutations in P. falciparum crt, Pfmdr1, Pfdhfr and Pfdhps genes. PLoS One 2021; 16:e0256343. [PMID: 34411157 PMCID: PMC8376100 DOI: 10.1371/journal.pone.0256343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
The spread of Plasmodium falciparum resistant parasites remains one of the major challenges for malaria control and elimination in Sub Saharan Africa. Monitoring of molecular markers conferring resistance to different antimalarials is important to track the spread of resistant parasites and to optimize the therapeutic lifespan of current drugs. This study aimed to evaluate the prevalence of known mutations in the drug resistance genes Pfcrt, Pfmdr1, Pfdhfr and Pfdhps in two different epidemiological settings in Cameroon. Dried blood spots collected in 2018 and 2019 from asymptomatic individuals were used for DNA extraction and then the Plasmodium infection status was determined byPCR. Detection of SNPs was performed by nested PCR followed by allele-specific restriction analysis (ASRA). The prevalence of each genotype was compared between sites using the Chi square and Fisher's exact tests. A high prevalence of the Pfcrt K76 wild type allele was found in both sites (88.5 and 62.29% respectively; P< 0,0001). The prevalence of Pfmdr1 mutations 86Y and 1246Y was respectively 55.83 and 1.45% in Mfou and 45.87 and 5.97% in Tibati, with significant difference between the studied areas (P<0.0001). Overall, the Pfdhfr triple-mutant genotype (51I/59R/108N) was highly prevalent (> 96%), however no SNP was detected at codon 164. In Pfdhps, the prevalence of the 437G mutation reached (90%) and was at higher frequency in Mfou (P< 0.0001). Overall, the Pfdhps mutations 540E and 581G were less common (0.33 and 3.26%, respectively). The quadruple resistant genotype (Pfdhfr 51I/59R/108N+Pfdhp437G) was found almost 90% of the samples. The wild-type genotype (Pfdhfr N51/C59/S108/164I+Pfdhps A437/K540/A581) was never identified and the sextuple mutant (Pfdhfr 51I/59R/108N+Pfdhp437G/540E/581G), kwon as super resistant appeared in two samples from Tibati. These findings demonstrate declining trends in the prevalence of mutations conferring resistance to 4-aminoquinolines, especially to chloroquine. However, a high level of mutations in P. falciparum genes related to SP resistance was detected and this raises concerns about the future efficacy of IPTp-SP and SMC in Cameroon.
Collapse
Affiliation(s)
- Aline Gaelle Bouopda Tuedom
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Elangwe Milo Sarah-Matio
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Brice Lionel Feufack-Donfack
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- CNRS UPR9022, INSERM U963, Strasbourg, France
| | - Christelle Ngou Maffo
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Albert Ngano Bayibeki
- Université Catholique d’Afrique Centrale, Yaoundé-Campus Messa Cameroun, Yaoundé, Cameroun
| | - Hermann Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroun
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse et UMR152 UPS-IRD, Université de Toulouse, Toulouse, France
| | - Luc Abate
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Isabelle Morlais
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Sandrine Eveline Nsango
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| |
Collapse
|
17
|
Mulenga MC, Sitali L, Ciubotariu II, Hawela MB, Hamainza B, Chipeta J, Mharakurwa S. Decreased prevalence of the Plasmodium falciparum Pfcrt K76T and Pfmdr1 and N86Y mutations post-chloroquine treatment withdrawal in Katete District, Eastern Zambia. Malar J 2021; 20:329. [PMID: 34320992 PMCID: PMC8317340 DOI: 10.1186/s12936-021-03859-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Background In 2002, Zambia withdrew chloroquine as first-line treatment for Plasmodium falciparum malaria due to increased treatment failure and worldwide spread of chloroquine resistance. The artemisinin combination regimen, artemether–lumefantrine, replaced chloroquine (CQ) as first choice malaria treatment. The present study determined the prevalence of CQ resistance molecular markers in the Pfcrt and Pfmdr1 genes in Eastern Zambia at 9 and 13 years after the removal of drug pressure. Methods Samples collected from Katete District during the drug therapeutic efficacy assessments conducted in 2012 and 2016 were assayed by polymerase chain reaction (PCR) and restriction fragment length polymorphisms (RFLP) to determine the prevalence of genetic mutations, K76T on the Pfcrt gene and N86Y on the Pfmdr1 gene. A total of 204 P. falciparum-positive DBS samples collected at these two time points were further analysed. Results Among the samples analysed for Pfcrt K76T and Pfmdr1 N86Y in the present study, 112 (82.4%) P. falciparum-infected samples collected in 2012 were successfully amplified for Pfcrt and 94 (69.1%) for Pfmdr1, while 69 (65.7%) and 72 (68.6%) samples from 2016 were successfully amplified for Pfcrt and Pfmdr1, respectively. In 2012, the prevalence of Pfcrt 76K (sensitive) was 97.3%, 76T (resistant) was 1.8%, and 0.8% had both 76K and 76T codons (mixed). Similarly in 2012, the prevalence of Pfmdr1 86N (sensitive) was 97.9% and 86Y (resistant) was 2.1%. In the 2016 samples, the prevalence of the respective samples was 100% Pfcrt 76K and Pfmdr1 86N. Conclusion This study shows that there was a complete recovery of chloroquine-sensitive parasites by 2016 in Katete District, Eastern Zambia, 13 years following the withdrawal of CQ in the country. These findings add to the body of evidence for a fitness cost in CQ-resistant P. falciparum in Zambia and elsewhere. Further studies are recommended to monitor resistance countrywide and explore the feasibility of integration of the former best anti-malarial in combination therapy in the future.
Collapse
Affiliation(s)
- Mwenda C Mulenga
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Ministry of Health, Chainama Grounds, Lusaka, Zambia.
| | - Lungowe Sitali
- School of Health Sciences, Biomedical Sciences Department, Ridgeway campus, Lusaka, Zambia.,School of Medicine, University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Lusaka, Zambia
| | - Ilinca I Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Moonga B Hawela
- Malaria Elimination Centre, Ministry of Health, Chainama Hospital and College Grounds, Lusaka, Zambia
| | - Busiku Hamainza
- Malaria Elimination Centre, Ministry of Health, Chainama Hospital and College Grounds, Lusaka, Zambia
| | - James Chipeta
- School of Medicine, University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Lusaka, Zambia
| | - Sungano Mharakurwa
- College of Health, Agriculture and Natural Sciences, Africa University, Mutare, Zimbabwe
| |
Collapse
|
18
|
Roux AT, Maharaj L, Oyegoke O, Akoniyon OP, Adeleke MA, Maharaj R, Okpeku M. Chloroquine and Sulfadoxine-Pyrimethamine Resistance in Sub-Saharan Africa-A Review. Front Genet 2021; 12:668574. [PMID: 34249090 PMCID: PMC8267899 DOI: 10.3389/fgene.2021.668574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Malaria is a great concern for global health and accounts for a large amount of morbidity and mortality, particularly in Africa, with sub-Saharan Africa carrying the greatest burden of the disease. Malaria control tools such as insecticide-treated bed nets, indoor residual spraying, and antimalarial drugs have been relatively successful in reducing the burden of malaria; however, sub-Saharan African countries encounter great challenges, the greatest being antimalarial drug resistance. Chloroquine (CQ) was the first-line drug in the 20th century until it was replaced by sulfadoxine-pyrimethamine (SP) as a consequence of resistance. The extensive use of these antimalarials intensified the spread of resistance throughout sub-Saharan Africa, thus resulting in a loss of efficacy for the treatment of malaria. SP was replaced by artemisinin-based combination therapy (ACT) after the emergence of resistance toward SP; however, the use of ACTs is now threatened by the emergence of resistant parasites. The decreased selective pressure on CQ and SP allowed for the reintroduction of sensitivity toward those antimalarials in regions of sub-Saharan Africa where they were not the primary drug for treatment. Therefore, the emergence and spread of antimalarial drug resistance should be tracked to prevent further spread of the resistant parasites, and the re-emergence of sensitivity should be monitored to detect the possible reappearance of sensitivity in sub-Saharan Africa.
Collapse
Affiliation(s)
- Alexandra T. Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Olukunle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Oluwasegun P. Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
19
|
The COVID-19 pandemic: a threat to antimicrobial resistance containment. Future Sci OA 2021; 7:FSO736. [PMID: 34290883 PMCID: PMC8204817 DOI: 10.2144/fsoa-2021-0012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
As of 23 April 2021, the outbreak of COVID-19 claimed around 150 million confirmed cases with over 3 million deaths worldwide. Yet, an even more serious but silent pandemic, that of antimicrobial resistance (AMR), is likely complicating the outcome of COVID-19 patients. This study discusses the current knowledge on the emergence of the SARS-CoV-2 and highlights the likely contribution of the COVID-19 pandemic on the escalation of AMR. COVID-19 engenders extensive antibiotic overuse and misuse, and will undoubtedly and substantially increase AMR rates worldwide. Amid the expanding COVID-19 pandemic, policymakers should consider the hidden threat of AMR much more, which may well be enhanced through improper use of antibiotics to treat patients with severe COVID-19 infection. Antimicrobial resistance (AMR) is a natural phenomenon that allows microorganisms to resist to the action of antimicrobial medicines that were previously active against them and cured the infection. AMR is caused by the appropriate and inappropriate use of antimicrobial medicines. The occurrence of the COVID-19 pandemic engenders extensive antimicrobial use that is likely to aggravated the AMR pandemic. This paper discusses the current knowledge on the SARS-CoV-2, and underscores the contribution of the COVID-19 pandemic on the escalation of AMR. Beyond the expanding COVID-19 pandemic, the hidden threat of AMR should also be considered by the decision-makers.
Collapse
|
20
|
Zhao D, Zhang H, Ji P, Li S, Yang C, Liu Y, Qian D, Deng Y, Wang H, Lu D, Zhou R, Zhao Y. Surveillance of Antimalarial Drug-Resistance Genes in Imported Plasmodium falciparum Isolates From Nigeria in Henan, China, 2012-2019. Front Cell Infect Microbiol 2021; 11:644576. [PMID: 33968801 PMCID: PMC8102827 DOI: 10.3389/fcimb.2021.644576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/31/2021] [Indexed: 12/01/2022] Open
Abstract
Malaria remains a major public health issue in Nigeria, and Nigeria is one of the main sources of imported malaria in China. Antimalarial drug resistance is a significant obstacle to the control and prevention of malaria globally. The molecular markers associated with antimalarial drug resistance can provide early warnings about the emergence of resistance. The prevalence of antimalarial drug resistant genes and mutants, including PfK13, Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps, was evaluated among the imported Plasmodium falciparum isolates from Nigeria in Henan, China, from 2012 to 2019. Among the 167 imported P. falciparum isolates, the wild-type frequency of PfK13, Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps was 98.7, 63.9, 34.8, 3.1, and 3.1%, respectively. The mutation of PfK13 was rare, with just two nonsynonymous (S693F and Q613H) and two synonymous mutations (C469C and G496G) identified from four isolates. The prevalence of Pfcrt mutation at codon 74–76 decreased year-by-year, while the prevalence of pfmdr1 86Y also decreased significantly with time. The prevalence of Pfdhfr and Pfdhps mutants was high. Combined mutations of Pfdhfr and Pfdhps had a high prevalence of the quadruple mutant I51R59N108-G437 (39.0%), followed by the octal mutant I51R59N108-V431A436G437G581S613 (17.0%). These molecular findings update the known data on antimalarial drug-resistance genes and provide supplemental information for Nigeria.
Collapse
Affiliation(s)
- Dongyang Zhao
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Hongwei Zhang
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Penghui Ji
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Suhua Li
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Chengyun Yang
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Ying Liu
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Dan Qian
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Yan Deng
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Hao Wang
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Deling Lu
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Ruimin Zhou
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Yuling Zhao
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| |
Collapse
|
21
|
Pereira LM, de Luca G, Abichabki NDLM, Brochi JCV, Baroni L, Abreu-Filho PG, Yatsuda AP. Atovaquone, chloroquine, primaquine, quinine and tetracycline: antiproliferative effects of relevant antimalarials on Neospora caninum. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2021; 30:e022120. [PMID: 33787719 DOI: 10.1590/s1984-29612021006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/20/2021] [Indexed: 01/21/2023]
Abstract
Neospora caninum is an apicomplexan parasite that causes abortion in cattle, resulting in significant economic losses. There is no commercial treatment for neosporosis, and drug repositioning is a fast strategy to test possible candidates against N. caninum. In this article, we describe the effects of atovaquone, chloroquine, quinine, primaquine and tetracycline on N. caninum proliferation. The IC50 concentrations in N. caninum were compared to the current information based on previous studies for Plasmodium and Toxoplasma gondii, correlating to the described mechanisms of action of each tested drug. The inhibitory patterns indicate similarities and differences among N. caninum, Plasmodium and T. gondii. For example, atovaquone demonstrates high antiparasitic activity in all the analyzed models, while chloroquine does not inhibit N. caninum. On the other hand, tetracycline is effective against Plasmodium and N. caninum, despite its low activity in T. gondii models. The repurposing of antimalarial drugs in N. caninum is a fast and inexpensive way to develop novel formulations using well-established compounds.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Gabriela de Luca
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Nathália de Lima Martins Abichabki
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Jade Cabestre Venancio Brochi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Luciana Baroni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Péricles Gama Abreu-Filho
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Ana Patrícia Yatsuda
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| |
Collapse
|
22
|
Ippolito MM, Moser KA, Kabuya JBB, Cunningham C, Juliano JJ. Antimalarial Drug Resistance and Implications for the WHO Global Technical Strategy. CURR EPIDEMIOL REP 2021; 8:46-62. [PMID: 33747712 PMCID: PMC7955901 DOI: 10.1007/s40471-021-00266-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Five years have passed since the World Health Organization released its Global Technical Strategy for Malaria (GTS). In that time, progress against malaria has plateaued. This review focuses on the implications of antimalarial drug resistance for the GTS and how interim progress in parasite genomics and antimalarial pharmacology offer a bulwark against it. RECENT FINDINGS For the first time, drug resistance-conferring genes have been identified and validated before their global expansion in malaria parasite populations. More efficient methods for their detection and elaboration have been developed, although low-density infections and polyclonality remain a nuisance to be solved. Clinical trials of alternative regimens for multidrug-resistant malaria have delivered promising results. New agents continue down the development pipeline, while a nascent infrastructure in sub-Saharan Africa for conducting phase I trials and trials of transmission-blocking agents has come to fruition after years of preparation. SUMMARY These and other developments can help inform the GTS as the world looks ahead to the next two decades of its implementation. To remain ahead of the threat that drug resistance poses, wider application of genomic-based surveillance and optimization of existing and forthcoming antimalarial drugs are essential.
Collapse
Affiliation(s)
- Matthew M. Ippolito
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University School of Public Health, Baltimore, MD USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kara A. Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA
| | | | - Clark Cunningham
- School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, CB#7030, 130 Mason Farm Rd, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
23
|
Hassett MR, Roepe PD. In vitro growth competition experiments that suggest consequences of the substandard artemisinin epidemic that may be accelerating drug resistance in P. falciparum malaria. PLoS One 2021; 16:e0248057. [PMID: 33690638 PMCID: PMC7942984 DOI: 10.1371/journal.pone.0248057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Over the past decade, artemisinin (ART)-combination therapies (ACTs) have shown declining efficacy within Southeast Asia (SEA). These resistance-like phenomena manifest as a delayed clearance phenotype (DCP) in some patients treated with ACTs. ACTs are currently the recommended treatment for P. falciparum infections by the World Health Organization (WHO), and they are our last line of defense to effectively treat all strains of malaria. Acceleration of antimicrobial resistance (AMR) is often theorized to be exacerbated by the use of subtherapeutic dosages of drugs ("substandard" drug), which for ACTs has been well documented over the last decade. Troublingly, in 2017, the WHO estimated that nearly 1 in 10 medical products tested in low- and middle-income countries failed to meet quality standards. We have developed a tissue culture-based approach for testing possible connections between substandard treatment and the spread of ACT resistant blood stage forms of P. falciparum. Via sequencing of pfk13, a molecular marker that is predictive for ART resistance (ARTR), we monitor competition of sensitive vs resistant strains over time and under various conditions and define conditions that favor emergence of ARTR parasites. Our findings help to define the conditions under which substandard drug treatments might favor the proliferation of mutant PfK13-mediated drug resistant strains over drug sensitive.
Collapse
Affiliation(s)
- Matthew R. Hassett
- Dept. of Chemistry and Dept. of Biochemistry & Cellular & Molecular Biology, Georgetown University (MRH, PDR), Washington, DC, United States of America
| | - Paul D. Roepe
- Dept. of Chemistry and Dept. of Biochemistry & Cellular & Molecular Biology, Georgetown University (MRH, PDR), Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
24
|
Kayode AT, Akano K, Ajogbasile FV, Uwanibe JN, Oluniyi PE, Bankole BE, Eromon PJ, Sowunmi A, Folarin OA, Volkman SK, McInnis B, Sabeti P, Wirth DF, Happi CT. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter (Pfcrt) and multidrug-resistant gene 1 (Pfmdr-1) in Nigerian children 10 years post-adoption of artemisinin-based combination treatments. Int J Parasitol 2021; 51:301-310. [PMID: 33359205 PMCID: PMC7940560 DOI: 10.1016/j.ijpara.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/08/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022]
Abstract
The emergence and spread of Plasmodium falciparum parasites resistant to artemisinin derivatives and their partners in southeastern Asia threatens malaria control and elimination efforts, and heightens the need for an alternative therapy. We have explored the distribution of P. falciparum chloroquine resistance transporter (Pfcrt) and multidrug-resistant gene 1 (Pfmdr-1) haplotypes 10 years following adoption of artemisinin-based combination therapies in a bid to investigate the possible re-emergence of Chloroquine-sensitive parasites in Nigeria, and investigated the effect of these P. falciparum haplotypes on treatment outcomes of patients treated with artemisinin-based combination therapies. A total of 271 children aged <5 years with uncomplicated falciparum malaria were included in this study. Polymorphisms on codons 72-76 of the Pfcrt gene and codon 86 and 184 of Pfmdr-1 were determined using the high resolution melting assay. Of 240 (88.6%) samples successfully genotyped with HRM for Pfcrt, wildtype C72M74N75K76 (42.9%) and mutant C72I74E75T76 (53.8%) were observed. Also, wildtype N86Y184 (62.9%) and mutant N86F184 (21.1%), Y86Y184 (6.4%), and Y86F184 (0.4%) haplotypes of Pfmdr-1 were observed. Measures of responsiveness to ACTs were similar in children infected with P. falciparum crt haplotypes (C72I74E75T76 and C72M74N75K76) and major mdr-1 haplotypes (N86Y184, N86F184 and Y86Y184). Despite a 10 year gap since the malaria treatment policy changed to ACTs, over 50% of the P. falciparum parasites investigated in this study harboured the Chloroquine-resistant C72I74E75T76 haplotype, however this did not compromise the efficacy of artemisinin-based combination therapies. Should complete artemisinin resistance emerge from or spread to Nigeria, chloroquine might not be a good alternative therapy.
Collapse
Affiliation(s)
- Adeyemi T Kayode
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Kazeem Akano
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Fehintola V Ajogbasile
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Jessica N Uwanibe
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Paul E Oluniyi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Bolajoko E Bankole
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Philomena J Eromon
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Akintunde Sowunmi
- Institute of Medical Research and Training, College of Medicine, University of Ibadan; Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| | - Onikepe A Folarin
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Pardis Sabeti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Christian T Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria; Department of Biological Sciences, Redeemer's University, Ede, Nigeria; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
25
|
Aborode AT, David KB, Uwishema O, Nathaniel AL, Imisioluwa JO, Onigbinde SB, Farooq F. Fighting COVID-19 at the Expense of Malaria in Africa: The Consequences and Policy Options. Am J Trop Med Hyg 2021; 104:26-29. [PMID: 33205743 PMCID: PMC7790111 DOI: 10.4269/ajtmh.20-1181] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Malaria remains a major global health burden, killing hundreds of thousands annually, especially in sub-Saharan Africa. In December 2019, a novel illness termed COVID-19, caused by SARS-CoV-2, was reported in China. This disease soon spread around the world and was declared a pandemic by the WHO on March 11, 2020. Considering that the malaria burden is high in many low-income tropical countries with little capacity to fund malaria control and eradication programs, the fight against malaria in these regions is likely to be hindered by COVID-19. Indeed, access to health care has generally been limited during the pandemic, whereas malaria interventions, such as seasonal malaria chemoprevention, and distribution of long-lasting insecticide-treated bed nets, have been suspended because of lockdowns. Likewise, the repurposing of antimalarials for the treatment of COVID-19 and a shift in focus from the production of malaria rapid diagnostic tests to COVID-19 rapid diagnostic tests are causes for concern in malaria-endemic regions. COVID-19 has disproportionately affected developed countries, threatening their capacity to aid in malaria control efforts. Here, we address impacts of the COVID-19 pandemic on the management and control of malaria in Africa.
Collapse
Affiliation(s)
- Abdullahi Tunde Aborode
- 1Healthy Africans Platform, Research and Development Hub, Ibadan, Nigeria.,2Brain Builders Youth Development Initiative, Research Directorate, Ilorin, Nigeria
| | - Kenneth Bitrus David
- 3Hull York Medical School, University of Hull, Hull, United Kingdom.,4Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | - Olivier Uwishema
- 5Department of General Medicine, Karadeniz Technical University, Trabzon, Turkey.,6Oli Health Magazine Organization (OHMO), Kigali, Rwanda
| | | | | | | | - Fozia Farooq
- 10Faculty of Pharmaceutical Science, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
26
|
Mohamed NS, Abdelbagi H, Osman HA, Ahmed AE, Yousif AM, Edris YB, Osman EY, Elsadig AR, Siddig EE, Mustafa M, Mohammed AA, Ali Y, Osman MM, Ali MS, Omer RA, Ahmed A, Sibley CH. A snapshot of Plasmodium falciparum malaria drug resistance markers in Sudan: a pilot study. BMC Res Notes 2020; 13:512. [PMID: 33160417 PMCID: PMC7648977 DOI: 10.1186/s13104-020-05363-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Malaria infection is still known to be a worldwide public health problem, especially in tropical and sub-tropical African countries like Sudan. A pilot study conducted to describe the trend of P. falciparum drug resistance markers in 2017-2018 in comparison to CQ and AS/SP eras in Sudan. The Pfcrt, Pfmdr-1, Pfdhfr, and Pfdhps genes were investigated. Data deposited by the worldwide antimalarial resistance network was consulted, and the molecular markers previously reported from Sudan were analyzed. RESULTS Drug molecular markers analysis was successfully done on 20 P. falciparum isolates. The Pfcrt K76 showed high frequency; 16 (80%). For the Pfmdr-1, 9 (45%) isolates were carrying the N86 allele, and 11 (55%) were 86Y allele. While the Y184F of the Pfmdr-1 showed a higher frequency of 184F compared to Y184; 16 (80%) and 4 (20%), respectively. In the Pfdhfr, 51I allele showed higher frequency compared to N51; 18 (90%) and 2 (10%), respectively. For S108N, 18 (90%) were 108 N and 2 (10%) were S108. In the Pfdhps, all isolates were carrying the mutant alleles; 437G and 540E. The frequency distribution of the Pfcrt, Pfmdr-1, Pfdhfr, Pfdhps was significantly different across the whole years in Sudan.
Collapse
Affiliation(s)
- Nouh S. Mohamed
- Department of Molecular Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile University, Khartoum, Sudan
- Department of Biotechnology, School of Pharmacy, Ahfad University for Women, Omdurman, Sudan
- Alfarrabi College for Science and Technology, Khartoum, Sudan
- Parasitology and Medical Entomology Department, Faculty of Medicine, Sinnar University, Sinnar, Sudan
| | - Hanadi Abdelbagi
- Department of Biotechnology, School of Pharmacy, Ahfad University for Women, Omdurman, Sudan
| | - Hussam A. Osman
- Department of Biotechnology, School of Pharmacy, Ahfad University for Women, Omdurman, Sudan
| | | | - Alaa M. Yousif
- Department of Biotechnology, School of Pharmacy, Ahfad University for Women, Omdurman, Sudan
| | - Yusraa B. Edris
- Department of Biotechnology, School of Pharmacy, Ahfad University for Women, Omdurman, Sudan
| | - Eman Y. Osman
- Department of Biotechnology, School of Pharmacy, Ahfad University for Women, Omdurman, Sudan
| | | | - Emmanuel E. Siddig
- Alfarrabi College for Science and Technology, Khartoum, Sudan
- Mycetoma Research Center, University of Khartoum, Khartoum, Sudan
| | - Madinna Mustafa
- Department of Molecular Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile University, Khartoum, Sudan
| | | | - Yousif Ali
- Sudan Federal Ministry of Health, Khartoum, Sudan
| | - Maha M. Osman
- Alfarrabi College for Science and Technology, Khartoum, Sudan
| | - Mohamed S. Ali
- Faculty of Medicine, Neelain University, Khartoum, Sudan
| | - Rihab A. Omer
- Department of Molecular Biology, Institute of Parasitology, University of Leipzig, Leipzig, Germany
| | - Ayman Ahmed
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | |
Collapse
|
27
|
Alnefaie A, Albogami S. Current approaches used in treating COVID-19 from a molecular mechanisms and immune response perspective. Saudi Pharm J 2020; 28:1333-1352. [PMID: 32905015 PMCID: PMC7462599 DOI: 10.1016/j.jsps.2020.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared by the World Health Organization (WHO) as a global pandemic on March 11, 2020. SARS-CoV-2 targets the respiratory system, resulting in symptoms such as fever, headache, dry cough, dyspnea, and dizziness. These symptoms vary from person to person, ranging from mild to hypoxia with acute respiratory distress syndrome (ARDS) and sometimes death. Although not confirmed, phylogenetic analysis suggests that SARS-CoV-2 may have originated from bats; the intermediary facilitating its transfer from bats to humans is unknown. Owing to the rapid spread of infection and high number of deaths caused by SARS-CoV-2, most countries have enacted strict curfews and the practice of social distancing while awaiting the availability of effective U.S. Food and Drug Administration (FDA)-approved medications and/or vaccines. This review offers an overview of the various types of coronaviruses (CoVs), their targeted hosts and cellular receptors, a timeline of their emergence, and the roles of key elements of the immune system in fighting pathogen attacks, while focusing on SARS-CoV-2 and its genomic structure and pathogenesis. Furthermore, we review drugs targeting COVID-19 that are under investigation and in clinical trials, in addition to progress using mesenchymal stem cells to treat COVID-19. We conclude by reviewing the latest updates on COVID-19 vaccine development. Understanding the molecular mechanisms of how SARS-CoV-2 interacts with host cells and stimulates the immune response is extremely important, especially as scientists look for new strategies to guide their development of specific COVID-19 therapies and vaccines.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AHFS, American Hospital Formula Service
- ANGII, angiotensin II
- APCs, antigen presenting cells
- ARDS, acute respiratory distress syndrome
- COVID-19, coronavirus disease
- CoVs, coronaviruses
- Coronavirus
- GVHD, graft versus host disease
- HCoVs, human coronoaviruses
- IBV, infectious bronchitis coronavirus
- IFN-γ, interferon-gamma
- ILCs, innate lymphoid cells
- Investigational medications
- MERS-CoV, Middle East respiratory syndrome
- NKs, natural killer cells
- ORFs, open reading frames
- PAMPs, pathogen-associated molecular patterns
- Pandemic
- Pathophysiology
- RdRp, RNA-dependent RNA polymerase
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SLE, systemic lupus erythematosus
- TMPRSS2, transmembrane serine protease 2
- Viral immune response
- WHO, World Health Organization
- nsps, nonstructural proteins
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
28
|
Ippolito MM, Pringle JC, Siame M, Katowa B, Aydemir O, Oluoch PO, Huang L, Aweeka FT, Bailey JA, Juliano JJ, Meshnick SR, Shapiro TA, Moss WJ, Thuma PE. Therapeutic Efficacy of Artemether-Lumefantrine for Uncomplicated Falciparum Malaria in Northern Zambia. Am J Trop Med Hyg 2020; 103:2224-2232. [PMID: 33078701 DOI: 10.4269/ajtmh.20-0852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Artemether-lumefantrine (AL) is a first-line agent for uncomplicated malaria caused by Plasmodium falciparum. The WHO recommends periodic therapeutic efficacy studies of antimalarial drugs for the detection of malaria parasite drug resistance and to inform national malaria treatment policies. We conducted a therapeutic efficacy study of AL in a high malaria transmission region of northern Zambia from December 2014 to July 2015. One hundred children of ages 6 to 59 months presenting to a rural health clinic with uncomplicated falciparum malaria were admitted for treatment with AL (standard 6-dose regimen) and followed weekly for 5 weeks. Parasite counts were taken every 6 hours during treatment to assess parasite clearance. Recurrent episodes during follow-up (n = 14) were genotyped to distinguish recrudescence from reinfection and to identify drug resistance single nucleotide polymorphisms (SNPs) and multidrug resistance protein 1 (mdr1) copy number variation. Day 7 lumefantrine concentrations were measured for correspondence with posttreatment reinfection. All children who completed the parasite clearance portion of the study (n = 94) were microscopy-negative by 72 hours. The median parasite elimination half-life was 2.7 hours (interquartile range: 2.1-3.3). Genotype-corrected therapeutic efficacy was 98.8% (95% CI: 97.6-100). Purported artemisinin and lumefantrine drug resistance SNPs in atp6, 3D7_1451200, and mdr1 were detected but did not correlate with parasite recurrence, nor did day 7 lumefantrine concentrations. In summary, AL was highly effective for the treatment of uncomplicated falciparum malaria in northern Zambia during the study period. The high incidence of recurrent parasitemia was consistent with reinfection due to high, perennial malaria transmission.
Collapse
Affiliation(s)
- Matthew M Ippolito
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julia C Pringle
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Mwiche Siame
- Ministry of Health, Government of the Republic of Zambia, Lusaka, Zambia
| | | | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Peter O Oluoch
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Liusheng Huang
- Department of Clinical Pharmacology, University of California San Francisco School of Pharmacy, San Francisco, California
| | - Francesca T Aweeka
- Department of Clinical Pharmacology, University of California San Francisco School of Pharmacy, San Francisco, California
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Jonathan J Juliano
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Steven R Meshnick
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Theresa A Shapiro
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William J Moss
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Philip E Thuma
- Macha Research Trust, Macha, Zambia.,The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
29
|
Nghochuzie NN, Olwal CO, Udoakang AJ, Amenga-Etego LNK, Amambua-Ngwa A. Pausing the Fight Against Malaria to Combat the COVID-19 Pandemic in Africa: Is the Future of Malaria Bleak? Front Microbiol 2020; 11:1476. [PMID: 32625198 PMCID: PMC7314964 DOI: 10.3389/fmicb.2020.01476] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
Malaria remains a major global health burden, killing hundreds of thousands annually, especially in sub-Saharan Africa. In 2019, a Phase IV Expanded Programme on Immunization (EPI)-linked malaria vaccine implementation was underway. However, in December 2019, a novel pneumonia condition termed coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with many clinical, epidemiological, and biological parallels to malaria, was reported in Wuhan, China. COVID-19 is spreading rapidly, and, as of the 3rd of June, 2020, more than 382,507 persons had died from COVID-19. Children under 5 years who suffer high malaria-attributable mortalities are largely asymptomatic for COVID-19. Considering that the malaria burden is highest in low-income tropical countries with little capacity to fund malaria control and eradication programs, the fight against malaria in these regions is likely to be hampered. Access to healthcare has generally been limited, while malaria interventions, such as seasonal malaria chemotherapy and distribution of insecticide-treated bed nets, have been suspended due to lockdowns. Likewise, the repurposing of antimalarials for treatment of COVID-19 shared symptoms and the shift in focus from the production of malaria rapid diagnostic tests (RDTs) to COVID-19 RDTs is a cause for concern in malaria-endemic regions. Children are less affected by the COVID-19 pandemic compared to the elderly. However, due to the fears of contracting SARS-CoV-2, the elderly who are worst affected by COVID-19 may not take children for malaria medication, resulting in high malaria-related mortalities among children. COVID-19 has disproportionately affected developed countries, threatening their donation capacity. These are likely to thwart malaria control efforts in low-income regions. Here, we present perspectives on the collateral impact of COVID-19 on malaria, especially in Africa.
Collapse
Affiliation(s)
- Nora Nganyewo Nghochuzie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Charles Ochieng' Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Aniefiok John Udoakang
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Lucas Naam-Kayagre Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit The Gambia at LSHTM, Banjul, The Gambia
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| |
Collapse
|
30
|
Molecular surveillance of anti-malarial drug resistance in Democratic Republic of Congo: high variability of chloroquinoresistance and lack of amodiaquinoresistance. Malar J 2020; 19:121. [PMID: 32197607 PMCID: PMC7085146 DOI: 10.1186/s12936-020-03192-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background The loss of chloroquine (CQ) effectiveness has led to its withdrawal from national policies as a first-line treatment for uncomplicated malaria in several endemic countries, such as the Democratic Republic of Congo (DRC). The K76T mutation on the pfcrt gene has been identified as a marker of CQ resistance and the SVMNT haplotype in codons 72–76 on the same gene has been associated with resistance to amodiaquine (AQ). In the DRC, the prevalence of K76T has decreased from 100% in 2000 to 63.9% in 2014. The purpose of this study was to determine the prevalence of K76T mutations in circulating strains of Plasmodium falciparum, 16 years after CQ withdrawal in the DRC and to investigate the presence of the SVMNT haplotype. Methods In 2017, ten geographical sites across the DRC were selected. Dried blood samples were collected from patients attending health centres. Malaria was first detected by a rapid diagnostic test (RDT) available on site (SD Bioline Malaria Ag Pf or CareStart Malaria Pf) or thick blood smear and then confirmed by a P. falciparum species-specific real-time PCR assay. A pfcrt gene segment containing a fragment that encodes amino acids at positions 72–76 was amplified by conventional PCR before sequencing. Results A total of 1070 patients were enrolled. Of the 806 PCR-confirmed P. falciparum positive samples, 764 were successfully sequenced. The K76T mutation was detected in 218 samples (28.5%; 95% CI 25.4%–31.9%), mainly (96%) with the CVIET haplotype. Prevalence of CQ resistance marker was unequally distributed across the country, ranging from 1.5% in Fungurume to 89.5% in Katana. The SVMNT haplotype, related to AQ resistance, was not detected. Conclusion Overall, the frequency of the P. falciparum CQ resistance marker has decreased significantly and no resistance marker to AQ was detected in the DRC in 2017. However, the between regions variability of CQ resistance remains high in the country. Further studies are needed for continuous monitoring of the CQ resistance level for its prospective re-use in malaria management. The absence of the AQ resistance marker is in line with the use of this drug in the current DRC malaria treatment policy.
Collapse
|
31
|
Bwire GM, Ngasala B, Mikomangwa WP, Kilonzi M, Kamuhabwa AAR. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci Rep 2020; 10:3500. [PMID: 32103124 PMCID: PMC7044163 DOI: 10.1038/s41598-020-60549-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
In Tanzania, chloroquine was replaced by sulphadoxine- pyrimethamine (SP) as a first-line for treatment of uncomplicated malaria. Due to high resistance in malaria parasites, SP lasted for only 5 years and by the end of 2006 it was replaced with the current artemisinin combination therapy. We therefore, set a study to determine the current genotypic mutations associated with Plasmodium falciparum resistance to artemisinin, partner drugs and chloroquine. Parasites DNA were extracted from dried blood spots collected by finger-prick from Tanzanian malaria infected patients. DNA were sequenced using MiSeq then genotypes were translated into drug resistance haplotypes at Wellcome Sanger Institute, UK. About 422 samples were successful sequenced for K13 gene (marker for artemisinin resistance), the wild type (WT) was found in 391 samples (92.7%) whereby 31 samples (7.3%) had mutations in K13 gene. Of 31 samples with mutations, one sample had R561H, a mutation that has been associated with delayed parasite clearance in Southeast Asia, another sample had A578S, a mutation not associated with artemisinin whilst 29 samples had K13 novel mutations. There were no mutations in PGB, EXO, P23_BP and PfMDR1 at position 86 and 1246 (markers for resistance in artemisinin partner drugs) but 270 samples (60.4%) had mutations at PfMDR1 Y184F. Additionally, genotyped PfCRT at positions 72-76 (major predictors for chroquine resistance), found WT gene in 443 out of 444 samples (99.8%). In conclusion, this study found mutations in K13-propeller gene and high prevalence of chloroquine susceptible P. falciparum in Southeast of Tanzania.
Collapse
Affiliation(s)
- George M Bwire
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania.
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Wigilya P Mikomangwa
- Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| | - Manase Kilonzi
- Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| |
Collapse
|
32
|
Sitali L, Mwenda MC, Miller JM, Bridges DJ, Hawela MB, Chizema-Kawesha E, Chipeta J, Lindtjørn B. En-route to the 'elimination' of genotypic chloroquine resistance in Western and Southern Zambia, 14 years after chloroquine withdrawal. Malar J 2019; 18:391. [PMID: 31796087 PMCID: PMC6889585 DOI: 10.1186/s12936-019-3031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/24/2019] [Indexed: 11/16/2022] Open
Abstract
Background Anti-malarial resistance is, and continues to be a significant challenge in the fight against malaria and a threat to achieving malaria elimination. In Zambia, chloroquine (CQ), a safe, affordable and well-tolerated drug, was removed from use in 2003 due to high levels of resistance evidenced with treatment failure. This study sought to investigate the prevalence of chloroquine resistance markers in Southern and Western Provinces of Zambia 14 years after the withdrawal of CQ. Methods Data from a cross-sectional, all-age household survey, conducted during the peak malaria transmission season (April–May 2017) was analysed. During the all-age survey, socio-demographic information and coverage of malaria interventions were collected. Consenting individuals were tested for malaria with a rapid diagnostic test and a spot of blood collected on filter paper to create a dried blood spot (DBS). Photo-induced electronic transfer–polymerase chain reaction (PET–PCR) was used to analyse the DBS for the presence of all four malaria species. Plasmodium falciparum positive samples were analysed by high resolution melt (HRM) PCR to detect the presence of genotypic markers of drug resistance in the P. falciparum chloroquine resistance transporter (Pfcrt) and P. falciparum multi-drug resistance (Pfmdr) genes. Results A total of 181 P. falciparum positive samples were examined for pfcrt K76T and MDR N86. Of the 181 samples 155 successfully amplified for Pfcrt and 145 for Pfmdr N86. The overall prevalence of CQ drug-resistant parasites was 1.9% (3/155), with no significant difference between the two provinces. No N86Y/F mutations in the Pfmdr gene were observed in any of the sample. Conclusion This study reveals the return of CQ sensitive parasites in Southern and Western Provinces of Zambia 14 years after its withdrawal. Surveillance of molecular resistant markers for anti-malarials should be included in the Malaria Elimination Programme so that resistance is monitored country wide.
Collapse
Affiliation(s)
- Lungowe Sitali
- Centre for International Health, Faculty of Medicine, University of Bergen, Bergen, Norway. .,Department of Biomedical Science, School of Health Sciences, University of Zambia, Lusaka, Zambia. .,School of Medicine and University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Lusaka, Zambia.
| | - Mulenga C Mwenda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Ministry of Health, Chainama Grounds, Lusaka, Zambia
| | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Ministry of Health, Chainama Grounds, Lusaka, Zambia
| | - Daniel J Bridges
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Ministry of Health, Chainama Grounds, Lusaka, Zambia
| | - Moonga B Hawela
- Malaria Elimination Centre, Ministry of Health, Chainama Hospital and College Grounds, Lusaka, Zambia
| | - Elizabeth Chizema-Kawesha
- Malaria Elimination Centre, Ministry of Health, Chainama Hospital and College Grounds, Lusaka, Zambia
| | - James Chipeta
- School of Medicine and University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Lusaka, Zambia.,Department of Paediatrics and Child Health, University of Zambia School of Medicine, Lusaka, Zambia
| | - Bernt Lindtjørn
- Centre for International Health, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
34
|
Idowu AO, Oyibo WA, Bhattacharyya S, Khubbar M, Mendie UE, Bumah VV, Black C, Igietseme J, Azenabor AA. Rare mutations in Pfmdr1 gene of Plasmodium falciparum detected in clinical isolates from patients treated with anti-malarial drug in Nigeria. Malar J 2019; 18:319. [PMID: 31533729 PMCID: PMC6751857 DOI: 10.1186/s12936-019-2947-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/06/2019] [Indexed: 01/18/2023] Open
Abstract
Background Plasmodium falciparum, the deadliest causative agent of malaria, has high prevalence in Nigeria. Drug resistance causing failure of previously effective drugs has compromised anti-malarial treatment. On this basis, there is need for a proactive surveillance for resistance markers to the currently recommended artemisinin-based combination therapy (ACT), for early detection of resistance before it become widespread. Methods This study assessed anti-malarial resistance genes polymorphism in patients with uncomplicated P. falciparum malaria in Lagos, Nigeria. Sanger and Next Generation Sequencing (NGS) methods were used to screen for mutations in thirty-seven malaria positive blood samples targeting the P. falciparum chloroquine-resistance transporter (Pfcrt), P. falciparum multidrug-resistance 1 (Pfmdr1), and P. falciparum kelch 13 (Pfk13) genes, which have been previously associated with anti-malarial resistance. Results Expectedly, the NGS method was more proficient, detecting six Pfmdr1, seven Pfcrt and three Pfk13 mutations in the studied clinical isolates from Nigeria, a malaria endemic area. These mutations included rare Pfmdr1 mutations, N504K, N649D, F938Y and S967N, which were previously unreported. In addition, there was moderate prevalence of the K76T mutation (34.6%) associated with chloroquine and amodiaquine resistance, and high prevalence of the N86 wild type allele (92.3%) associated with lumefantrine resistance. Conclusion Widespread circulation of mutations associated with resistance to current anti-malarial drugs could potentially limit effective malaria therapy in endemic populations.
Collapse
Affiliation(s)
- Abel O Idowu
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin, 2400 E. Hartford Avenue, Milwaukee, WI, 53211, USA.,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Wellington A Oyibo
- ANDI Centre of Excellence in Malaria Diagnosis, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | - Manjeet Khubbar
- City of Milwaukee Health Department Laboratory, Milwaukee, USA
| | - Udoma E Mendie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Violet V Bumah
- Department of Biology, North Life Science 317, San Diego State University, San Diego, CA, 92182, USA
| | - Carolyn Black
- Molecular Pathogenesis Laboratory, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph Igietseme
- Molecular Pathogenesis Laboratory, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anthony A Azenabor
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin, 2400 E. Hartford Avenue, Milwaukee, WI, 53211, USA. .,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
| |
Collapse
|
35
|
Prevalence of Plasmodium falciparum Pfcrt and Pfmdr1 alleles in settings with different levels of Plasmodium vivax co-endemicity in Ethiopia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:8-12. [PMID: 31539706 PMCID: PMC6796752 DOI: 10.1016/j.ijpddr.2019.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
Plasmodium falciparum and P. vivax co-exist at different endemicity levels across Ethiopia. For over two decades Artemether-Lumefantrine (AL) is the first line treatment for uncomplicated P. falciparum, while chloroquine (CQ) is still used to treat P. vivax. It is currently unclear whether a shift from CQ to AL for P. falciparum treatment has implications for AL efficacy and results in a reversal of mutations in genes associated to CQ resistance, given the high co-endemicity of the two species and the continued availability of CQ for the treatment of P. vivax. This study thus assessed the prevalence of Pfcrt-K76T and Pfmdr1-N86Y point mutations in P. falciparum. 18S RNA gene based nested PCR confirmed P. falciparum samples (N = 183) collected through community and health facility targeted cross-sectional surveys from settings with varying P. vivax and P. falciparum endemicity were used. The proportion of Plasmodium infections that were P. vivax was 62.2% in Adama, 41.4% in Babile, 30.0% in Benishangul-Gumuz to 6.9% in Gambella. The Pfcrt-76T mutant haplotype was observed more from samples with higher endemicity of P. vivax as being 98.4% (61/62), 100% (31/31), 65.2% (15/23) and 41.5% (22/53) in samples from Adama, Babile, Benishangul-Gumuz and Gambella, respectively. However, a relatively higher proportion of Pfmdr1-N86 allele (77.3–100%) were maintained in all sites. The observed high level of the mutant Pfcrt-76T allele in P. vivax co-endemic sites might require that utilization of CQ needs to be re-evaluated in settings co-endemic for the two species. A country-wide assessment is recommended to clarify the implication of the observed level of variation in drug resistance markers on the efficacy of AL-based treatment against uncomplicated P. falciparum malaria.
Collapse
|
36
|
Ocan M, Akena D, Nsobya S, Kamya MR, Senono R, Kinengyere AA, Obuku EA. Persistence of chloroquine resistance alleles in malaria endemic countries: a systematic review of burden and risk factors. Malar J 2019; 18:76. [PMID: 30871535 PMCID: PMC6419488 DOI: 10.1186/s12936-019-2716-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Chloroquine, a previous highly efficacious, easy to use and affordable anti-malarial agent was withdrawn from malaria endemic regions due to high levels of resistance. This review collated evidence from published-reviewed articles to establish prevalence of Pfcrt 76T and Pfmdr-1 86Y alleles in malaria affected countries following official discontinuation of chloroquine use. Methods A review protocol was developed, registered in PROSPERO (#CRD42018083957) and published in a peer-reviewed journal. Article search was done in PubMed, Scopus, Lilacs/Vhl and Embase databases by two experienced librarians (AK, RS) for the period 1990-to-Febuary 2018. Mesh terms and Boolean operators (AND, OR) were used. Data extraction form was designed in Excel spread sheet 2007. Data extraction was done by three reviewers (NL, BB and MO), discrepancies were resolved by discussion. Random effects analysis was done in Open Meta Analyst software. Heterogeneity was established using I2-statistic. Results A total of 4721 citations were retrieved from article search (Pubmed = 361, Lilac/vhl = 28, Science Direct = 944, Scopus = 3388). Additional targeted search resulted in three (03) eligible articles. After removal of duplicates (n = 523) and screening, 38 articles were included in the final review. Average genotyping success rate was 63.6% (18,343/28,820) for Pfcrt K76T and 93.5% (16,232/17,365) for Pfmdr-1 86Y mutations. Prevalence of Pfcrt 76T was as follows; East Africa 48.9% (2528/5242), Southern Africa 18.6% (373/2163), West Africa 58.3% (3321/6608), Asia 80.2% (1951/2436). Prevalence of Pfmdr-1 86Y was; East Africa 32.4% (1447/5722), Southern Africa 36.1% (544/1640), West Africa 52.2% (1986/4200), Asia 46.4% (1276/2217). Over half, 52.6% (20/38) of included studies reported continued unofficial chloroquine use following policy change. Studies done in Madagascar and Kenya reported re-emergence of chloroquine sensitive parasites (IC50 < 30.9 nM). The average time (years) since discontinuation of chloroquine use to data collection was 8.7 ± 7.4. There was high heterogeneity (I2 > 95%). Conclusion The prevalence of chloroquine resistance alleles among Plasmodium falciparum parasites have steadily declined since discontinuation of chloroquine use. However, Pfcrt K76T and Pfmdr-1 N86Y mutations still persist at moderate frequencies in most malaria affected countries.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072, Kampala, Uganda. .,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.
| | - Dickens Akena
- Department of Psychiatry, Makerere University, P.O. Box 7072, Kampala, Uganda.,Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda
| | - Sam Nsobya
- Department of Medical Microbiology, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Richard Senono
- Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Alison Annet Kinengyere
- Albert Cook Library, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Ekwaro A Obuku
- Clinical Epidemiology Unit, Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
37
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
38
|
Konaté A, Gnagne PA, Bédia-Tanoh VA, Amiah-Droh M, Tano DK, Ignace Eby Menan H, Yavo W. Low rates of Plasmodium falciparum Pfcrt K76T mutation in three sentinel sites of malaria monitoring in Côte d'Ivoire. Acta Parasitol 2018; 63:795-801. [PMID: 30367773 DOI: 10.1515/ap-2018-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/21/2018] [Indexed: 11/15/2022]
Abstract
Despite efforts to eliminate it, malaria remains a major public health concern, particularly in Côte d'Ivoire. Chloroquine (CQ) was one of the first drugs used for its treatment, but was officially withdrawn from the market in 2007 following reports of high levels of chloroquine resistance. The present study was carried out after the withdrawal of CQ and provides an update on the rates of CQ resistance in Côte d'Ivoire. Samples were collected between September 2013 and March 2014 in Abidjan and from January to May 2016 in Abengourou and San Pedro through cross-sectional studies. Parasitemia was assessed by microscopy, and single nucleotide polymorphism in the Pfcrt (codon 76) gene was analyzed by nested PCR and restriction fragment length polymorphism. A total of 343 samples were analyzed: 119, 106 and 118 were from Abidjan, Abengourou, and San Pedro, respectively. The sex ratio of patients was 0.92. The mean age of patients enrolled was 9.6 years (SD = 10.8). The geometric mean of parasite density was 21,337 parasites/μL (SD = 49,508; range, 2,000-200,000). Molecular analysis revealed 57 K76T mutants (16.6%): 33, 9, and 15 in Abidjan, Abengourou and in San Pedro, respectively. Most of these were found in patients aged ≤15 years (42/57) who had parasitemia greater than 10,000 parasites/μL (40/57). This is the first study conducted in Côte d'Ivoire reporting a decline in Pfcrt K76T mutation rate. Thus, our results indicate the importance of following up on the observed trend also at a national level.
Collapse
Affiliation(s)
- Abibatou Konaté
- Department of Parasitology, Mycology, Animal Biology and, Zoology, Felix Houphouët-Boigny University, BPV 34,Abidjan, Côte d'Ivoire
- Malaria Research and Control Centre/National Institute of Public Health, Abidjan, Côte d'Ivoire, BPV 47,Abidjan, Côte d'Ivoire
| | - Paterne Akpa Gnagne
- Malaria Research and Control Centre/National Institute of Public Health, Abidjan, Côte d'Ivoire, BPV 47,Abidjan, Côte d'Ivoire
| | - Valérie Akoua Bédia-Tanoh
- Department of Parasitology, Mycology, Animal Biology and, Zoology, Felix Houphouët-Boigny University, BPV 34,Abidjan, Côte d'Ivoire
- Malaria Research and Control Centre/National Institute of Public Health, Abidjan, Côte d'Ivoire, BPV 47,Abidjan, Côte d'Ivoire
| | - Mireille Amiah-Droh
- Malaria Research and Control Centre/National Institute of Public Health, Abidjan, Côte d'Ivoire, BPV 47,Abidjan, Côte d'Ivoire
| | - Dominique Konan Tano
- Malaria Research and Control Centre/National Institute of Public Health, Abidjan, Côte d'Ivoire, BPV 47,Abidjan, Côte d'Ivoire
| | - Hervé Ignace Eby Menan
- Department of Parasitology, Mycology, Animal Biology and, Zoology, Felix Houphouët-Boigny University, BPV 34,Abidjan, Côte d'Ivoire
- Parasitology and Mycology Laboratory of the Diagnosis and Research Centre on AIDS and the others infectious diseases, 01 BPV 13,Abidjan, Côte d'Ivoire
| | - William Yavo
- Department of Parasitology, Mycology, Animal Biology and, Zoology, Felix Houphouët-Boigny University, BPV 34,Abidjan, Côte d'Ivoire
- Malaria Research and Control Centre/National Institute of Public Health, Abidjan, Côte d'Ivoire, BPV 47,Abidjan, Côte d'Ivoire
| |
Collapse
|
39
|
Abugri J, Ansah F, Asante KP, Opoku CN, Amenga-Etego LA, Awandare GA. Prevalence of chloroquine and antifolate drug resistance alleles in Plasmodium falciparum clinical isolates from three areas in Ghana. AAS Open Res 2018; 1:1. [PMID: 32382694 PMCID: PMC7185243 DOI: 10.12688/aasopenres.12825.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 01/24/2023] Open
Abstract
Background: The emergence and spread of resistance in
Plasmodium falciparum to chloroquine (CQ) necessitated the change from CQ to artemisinin-based combination therapies (ACTs) as first-line drug for the management of uncomplicated malaria in Ghana in 2005. Sulphadoxine-pyrimethamine (SP) which was the second line antimalarial drug in Ghana, was now adopted for intermittent preventive treatment of malaria in pregnancy (IPTp). Methods: To examine the prevalence of molecular markers associated with CQ and antifolate drug resistance in Ghana, we employed restriction fragment length polymorphism polymerase chain reaction to genotype and compare single nucleotide polymorphisms (SNPs) in the
P. falciparum chloroquine resistance transporter (
pfcrt, PF3D7_0709000), multidrug resistance (
pfmdr1, PF3D7_0523000), bifunctional dihydrofolate reductase-thymidylate synthase (
pfdhfr, PF3D7_0417200) and dihydropteroate synthase (
pfdhps, PF3D7_0810800) genes. Parasites were collected from children with malaria reporting to hospitals in three different epidemiological areas of Ghana (Accra, Kintampo and Navrongo) in 2012-2013 and 2016-2017. Results: The overall prevalence of the CQ resistance-associated
pfcrt 76T allele was 8%, whereas
pfmdr1 86Y and 184F alleles were present in 10.2% and 65.1% of infections, respectively. The majority of the isolates harboured the antifolate resistance-associated
pfdhfr alleles 51I (83.4%), 59R (85.9 %) and 108N (90.5%).
Pfdhps 437G and 540E were detected in 90.6% and 0.7% of infections, respectively. We observed no significant difference across the three study sites for all the polymorphisms except for
pfdhps 437G
, which was more common in Accra compared to Kintampo for the 2016-2017 isolates. Across both
pfdhfr and
pfdhps genes, a large proportion (61%) of the isolates harboured the quadruple mutant combination (
I51R59N108/
G437). CQ resistance alleles decreased during the 12 years after CQ withdrawal, but an mediate SP resistance alleles increased. Conclusion: Surveillance of the prevalence of resistance alleles is necessary in monitoring the efficacy of antimalarial drugs.
Collapse
Affiliation(s)
- James Abugri
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, University for Development Studies, Tamale, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kwaku P Asante
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | | | - Lucas A Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Navrongo Health Research Centre, Navrongo, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
40
|
Abugri J, Ansah F, Asante KP, Opoku CN, Amenga-Etego LA, Awandare GA. Prevalence of chloroquine and antifolate drug resistance alleles in Plasmodium falciparum clinical isolates from three areas in Ghana. AAS Open Res 2018; 1:1. [PMID: 32382694 PMCID: PMC7185243 DOI: 10.12688/aasopenres.12825.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 11/25/2023] Open
Abstract
Background: The emergence and spread of resistance in Plasmodium falciparum to chloroquine (CQ) necessitated the change from CQ to artemisinin-based combination therapies (ACTs) as first-line drug for the management of uncomplicated malaria in Ghana in 2005. Sulphadoxine-pyrimethamine (SP) which was the second line antimalarial drug in Ghana, was now adopted for intermittent preventive treatment of malaria in pregnancy (IPTp). Methods: To examine the prevalence of molecular markers associated with CQ and antifolate drug resistance in Ghana, we employed restriction fragment length polymorphism polymerase chain reaction to genotype and compare single nucleotide polymorphisms (SNPs) in the P. falciparum chloroquine resistance transporter ( pfcrt, PF3D7_0709000), multidrug resistance ( pfmdr1, PF3D7_0523000), bifunctional dihydrofolate reductase-thymidylate synthase ( pfdhfr, PF3D7_0417200) and dihydropteroate synthase ( pfdhps, PF3D7_0810800) genes. Parasites were collected from children with malaria reporting to hospitals in three different epidemiological areas of Ghana (Accra, Kintampo and Navrongo) in 2012-2013 and 2016-2017. Results: The overall prevalence of the CQ resistance-associated pfcrt 76T allele was 8%, whereas pfmdr1 86Y and 184F alleles were present in 10.2% and 65.1% of infections, respectively. The majority of the isolates harboured the antifolate resistance-associated pfdhfr alleles 51I (83.4%), 59R (85.9 %) and 108N (90.5%). Pfdhps 437G and 540E were detected in 90.6% and 0.7% of infections, respectively. We observed no significant difference across the three study sites for all the polymorphisms except for pfdhps 437G , which was more common in Accra compared to Kintampo for the 2016-2017 isolates. Across both pfdhfr and pfdhps genes, a large proportion (61%) of the isolates harboured the quadruple mutant combination ( I 51 R 59 N 108/ G 437). CQ resistance alleles decreased during the 12 years after CQ withdrawal, but an mediate SP resistance alleles increased. Conclusion: Surveillance of the prevalence of resistance alleles is necessary in monitoring the efficacy of antimalarial drugs.
Collapse
Affiliation(s)
- James Abugri
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, University for Development Studies, Tamale, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kwaku P. Asante
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | | | - Lucas A. Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Navrongo Health Research Centre, Navrongo, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
41
|
Moore BR, Davis TME. Pharmacotherapy for the prevention of malaria in pregnant women: currently available drugs and challenges. Expert Opin Pharmacother 2018; 19:1779-1796. [PMID: 30289730 DOI: 10.1080/14656566.2018.1526923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Malaria in pregnancy continues to be a significant public health burden globally, with over 100 million women at risk each year. Sulfadoxine-pyrimethamine (SP) is the only antimalarial recommended for intermittent preventive therapy in pregnancy (IPTp) but increasing parasite resistance threatens its viability. There are few other available antimalarial therapies that currently have sufficient evidence of tolerability, safety, and efficacy to replace SP. AREAS COVERED Novel antimalarial combinations are under investigation for potential use as chemoprophylaxis and in IPTp regimens. The present review summarizes currently available therapies, emerging candidate combination therapies, and the potential challenges to integrating these into mainstream policy. EXPERT OPINION Alternative drugs or combination therapies to SP for IPTp are desperately required. Dihydroartemisinin-piperaquine and azithromycin-based combinations are showing great promise as potential candidates for IPTp but pharmacokinetic data suggest that dose modification may be required to ensure adequate prophylactic efficacy. If a suitable candidate regimen is not identified in the near future, the success of chemopreventive strategies such as IPTp may be in jeopardy.
Collapse
Affiliation(s)
- Brioni R Moore
- a School of Pharmacy and Biomedical Sciences , Curtin University , Bentley , Western Australia , Australia.,b Medical School , University of Western Australia , Crawley , Western Australia , Australia
| | - Timothy M E Davis
- b Medical School , University of Western Australia , Crawley , Western Australia , Australia
| |
Collapse
|
42
|
Divala TH, Mungwira RG, Mawindo PM, Nyirenda OM, Kanjala M, Ndaferankhande M, Tsirizani LE, Masonga R, Muwalo F, Boudová S, Potter GE, Kennedy J, Goswami J, Wylie BJ, Muehlenbachs A, Ndovie L, Mvula P, Mbilizi Y, Tomoka T, Laufer MK. Chloroquine as weekly chemoprophylaxis or intermittent treatment to prevent malaria in pregnancy in Malawi: a randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2018; 18:1097-1107. [PMID: 30195996 PMCID: PMC6217965 DOI: 10.1016/s1473-3099(18)30415-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Sulfadoxine-pyrimethamine resistance threatens efficacy of intermittent preventive treatment of malaria during pregnancy, and alternative regimens need to be identified. With the return of chloroquine efficacy in southern Africa, we postulated that chloroquine either as an intermittent therapy or as weekly chemoprophylaxis would be more efficacious than intermittent sulfadoxine-pyrimethamine for prevention of malaria in pregnancy and associated maternal and newborn adverse outcomes. METHODS We did an open-label, single-centre, randomised controlled trial at Ndirande Health Centre, Blantyre, in southern Malawi. We enrolled pregnant women (first or second pregnancy) at 20-28 weeks' gestation who were HIV negative. Participants were randomly assigned in a 1:1:1 ratio using a computer-generated list to either intermittent sulfadoxine-pyrimethamine (two doses of 1500 mg sulfadoxine and 75 mg pyrimethamine, 4 weeks apart), intermittent chloroquine (two doses of 600 mg on day 1, 600 mg on day 2, and 300 mg on day 3), or chloroquine prophylaxis (600 mg on day 1 then 300 mg every week). The primary endpoint was placental malaria in the modified intent-to-treat population, which consisted of participants who contributed placental histopathology data at birth. Secondary outcomes included clinical malaria, maternal anaemia, low birthweight, and safety. This trial is registered with ClinicalTrials.gov, number NCT01443130. FINDINGS Between February, 2012, and May, 2014, we enrolled and randomly allocated 900 women, of whom 765 contributed histopathological data and were included in the primary analysis. 108 (14%) women had placental malaria, which was lower than the anticipated prevalence of placental malaria infection. Protection from placental malaria was not improved by chloroquine as either prophylaxis (30 [12%] of 259 had positive histopathology; relative risk [RR] 0·75, 95% CI 0·48-1·17) or intermittent therapy (39 [15%] of 253; RR 1·00, 0·67-1·50) compared with intermittent sulfadoxine-pyrimethamine (39 [15%] of 253). In protocol-specified analyses adjusted for maternal age, gestational age at enrolment, bednet use the night before enrolment, anaemia at enrolment, and malaria infection at enrolment, women taking chloroquine as prophylaxis had 34% lower placental infections than did those allocated intermittent sulfadoxine-pyrimethamine (RR 0·66, 95% CI 0·46-0·95). Clinical malaria was reported in nine women assigned intermittent sulfadoxine-pyrimethamine, four allocated intermittent chloroquine (p=0·26), and two allocated chloroquine prophylaxis (p=0·063). Maternal anaemia was noted in five women assigned intermittent sulfadoxine-pyrimethamine, 15 allocated intermittent chloroquine (p=0·038), and six assigned chloroquine prophylaxis (p>0·99). Low birthweight was recorded for 31 babies born to women allocated intermittent sulfadoxine-pyrimethamine, 29 assigned intermittent chloroquine (p=0·78), and 41 allocated chloroquine prophylaxis (p=0·28). Four women assigned intermittent sulfadoxine-pyrimethamine had adverse events possibly related to study product compared with 94 women allocated intermittent chloroquine (p<0·0001) and 26 allocated chloroquine prophylaxis (p<0·0001). Three women had severe or life-threatening adverse events related to study product, of whom all were assigned intermittent chloroquine (p=0·25). INTERPRETATION Chloroquine administered as intermittent therapy did not provide better protection from malaria and related adverse effects compared with intermittent sulfadoxine-pyrimethamine in a setting of high resistance to sulfadoxine-pyrimethamine. Chloroquine chemoprophylaxis might provide benefit in protecting against malaria during pregnancy, but studies with larger sample sizes are needed to confirm these results. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Titus H Divala
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Randy G Mungwira
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Patricia M Mawindo
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Osward M Nyirenda
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Maxwell Kanjala
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Masiye Ndaferankhande
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Lufina E Tsirizani
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Rhoda Masonga
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Francis Muwalo
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Sarah Boudová
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Jaya Goswami
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Blair J Wylie
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Lughano Ndovie
- Department of Obstetrics and Gynaecology, University of Malawi College of Medicine, Blantyre, Malawi
| | - Priscilla Mvula
- Department of Obstetrics and Gynaecology, University of Malawi College of Medicine, Blantyre, Malawi
| | - Yamikani Mbilizi
- Department of Obstetrics and Gynaecology, University of Malawi College of Medicine, Blantyre, Malawi
| | - Tamiwe Tomoka
- Pathology Department, University of Malawi College of Medicine, Blantyre, Malawi
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
43
|
Ouji M, Augereau JM, Paloque L, Benoit-Vical F. Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination. Parasite 2018; 25:24. [PMID: 29676250 PMCID: PMC5909375 DOI: 10.1051/parasite/2018021] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 01/28/2023] Open
Abstract
The use of artemisinin-based combination therapies (ACTs), which combine an artemisinin derivative with a partner drug, in the treatment of uncomplicated malaria has largely been responsible for the significant reduction in malaria-related mortality in tropical and subtropical regions. ACTs have also played a significant role in the 18% decline in the incidence of malaria cases from 2010 to 2016. However, this progress is seriously threatened by the reduced clinical efficacy of artemisinins, which is characterised by delayed parasitic clearance and a high rate of recrudescence, as reported in 2008 in Western Cambodia. Resistance to artemisinins has already spread to several countries in Southeast Asia. Furthermore, resistance to partner drugs has been shown in some instances to be facilitated by pre-existing decreased susceptibility to the artemisinin component of the ACT. A major concern is not only the spread of these multidrug-resistant parasites to the rest of Asia but also their possible appearance in Sub-Saharan Africa, the continent most affected by malaria, as has been the case in the past with parasite resistance to other antimalarial treatments. It is therefore essential to understand the acquisition of resistance to artemisinins by Plasmodium falciparum to adapt malaria treatment policies and to propose new therapeutic solutions.
Collapse
Affiliation(s)
- Manel Ouji
- LCC (Laboratoire de Chimie de Coordination du CNRS),
BP 44099, 205 Route de Narbonne,
31077
Toulouse cedex 4 France
- Université de Toulouse; UPS, INPT; LCC;
F-31077
Toulouse France
| | - Jean-Michel Augereau
- LCC (Laboratoire de Chimie de Coordination du CNRS),
BP 44099, 205 Route de Narbonne,
31077
Toulouse cedex 4 France
- Université de Toulouse; UPS, INPT; LCC;
F-31077
Toulouse France
| | - Lucie Paloque
- LCC (Laboratoire de Chimie de Coordination du CNRS),
BP 44099, 205 Route de Narbonne,
31077
Toulouse cedex 4 France
- Université de Toulouse; UPS, INPT; LCC;
F-31077
Toulouse France
| | - Françoise Benoit-Vical
- LCC (Laboratoire de Chimie de Coordination du CNRS),
BP 44099, 205 Route de Narbonne,
31077
Toulouse cedex 4 France
- Université de Toulouse; UPS, INPT; LCC;
F-31077
Toulouse France
| |
Collapse
|
44
|
Huijben S, Paaijmans KP. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl 2018; 11:415-430. [PMID: 29636796 PMCID: PMC5891050 DOI: 10.1111/eva.12530] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Since 2000, the world has made significant progress in reducing malaria morbidity and mortality, and several countries in Africa, South America and South-East Asia are working hard to eliminate the disease. These elimination efforts continue to rely heavily on antimalarial drugs and insecticide-based interventions, which remain the cornerstones of malaria treatment and prevention. However, resistance has emerged against nearly every antimalarial drug and insecticide that is available. In this review we discuss the evolutionary consequences of the way we currently implement antimalarial interventions, which is leading to resistance and may ultimately lead to control failure, but also how evolutionary principles can be applied to extend the lifespan of current and novel interventions. A greater understanding of the general evolutionary principles that are at the core of emerging resistance is urgently needed if we are to develop improved resistance management strategies with the ultimate goal to achieve a malaria-free world.
Collapse
Affiliation(s)
- Silvie Huijben
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
| | - Krijn P. Paaijmans
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
- Centro de Investigação em Saúde de ManhiçaMaputoMozambique
| |
Collapse
|
45
|
Zhang T, Xu X, Jiang J, Yu C, Tian C, Li W. Surveillance of Antimalarial Resistance Molecular Markers in Imported Plasmodium falciparum Malaria Cases in Anhui, China, 2012-2016. Am J Trop Med Hyg 2018; 98:1132-1136. [PMID: 29436339 DOI: 10.4269/ajtmh.17-0864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Between 2012 and 2016, over 80% of registered malaria cases in Anhui province were Plasmodium falciparum returned from Africa. However, drug-resistance marker polymorphisms in imported P. falciparum cases have not been assessed. This study looked at the distribution of antimalarial-drug resistance by evaluating K13-propeller, pfmdr1, and pfcrt gene mutations. Fourteen synonymous and 15 nonsynonymous mutations in the K13-propeller gene were detected in samples from nine African countries, yet no candidate and validated K13 resistance mutations were found. The prevalence of pfcrt K76T and pfmdr1 N86Y mutants was 27.7% and 19.9%, respectively. Six different pfcrt genotypes were found, with C72V73M74N75T76 being the most common (89.2%). The pfcrt 76-pfmdr1 86 haplotype combination was evaluated in 173 isolates, and the N86T76 genotype was the most prevalent (50.3%). Notably, the prevalence of the N86Y mutation in Africa marked a decline from 31.0% in 2012 to 8.2% in 2016. Our findings suggest that there is no immediate threat to artemisinin efficacy in imported P. falciparum infections returned from Africa to Anhui province. Nevertheless, pfcrt K76T and pfmdr1 N86Y mutations were modestly prevalent, suggesting the presence of chloroquine resistance in these cases. Accordingly, dihydroartemisinin + piperaquine may be a better choice than artesunate + amodiaquine for the treatment of uncomplicated P. falciparum infections in Anhui province. In addition to, artemether-lumefantrine can be introduced as an alternative measure.
Collapse
Affiliation(s)
- Tao Zhang
- Anhui Provincial Center for Disease Control and Prevention, Anhui, China
| | - Xian Xu
- Anhui Provincial Center for Disease Control and Prevention, Anhui, China
| | - Jingjing Jiang
- Anhui Provincial Center for Disease Control and Prevention, Anhui, China
| | - Chen Yu
- Anhui Provincial Center for Disease Control and Prevention, Anhui, China
| | - Cuicui Tian
- Anhui Provincial Center for Disease Control and Prevention, Anhui, China
| | - Weidong Li
- Anhui Provincial Center for Disease Control and Prevention, Anhui, China
| |
Collapse
|
46
|
Ajani OO, Tolu-Bolaji OO, Olorunshola SJ, Zhao Y, Aderohunmu DV. Structure-based design of functionalized 2-substituted and 1,2-disubstituted benzimidazole derivatives and their in vitro antibacterial efficacy. J Adv Res 2017; 8:703-712. [PMID: 29188079 PMCID: PMC5678364 DOI: 10.1016/j.jare.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 11/30/2022] Open
Abstract
The aim of this present study was to synthesize 2-substituted and 1,2-disubstituted benzimidazole derivatives to investigate their antibacterial diversity for possible future drug design. The structure-based design of precursors 2-(1H-benzimidazol-2-yl)aniline 1, 2-(3,5-dinitro phenyl)-1H-benzimidazole 3 and 2-benzyl-1H-benzimidazole 5 were achieved by the condensation reaction of o-phenylenediamine with anthranilic acid, 3,5-dinitrophenylbenzoic acid, and phenylacetic acid, respectively. The precursors 1, 3 and 5, upon reaction with six different electrophile-releasing agents, furnished the corresponding 2-substituted benzimidazole, 2a-f and 1,2-disubstituted benzimidazole derivatives 4a-f and 6a-f, respectively. The structural identity of the targeted compounds was authenticated by elemental analytical data and spectral information from FT-IR, UV, 1H, and 13C NMR. The outcome of the findings from the in vitro screening unveiled 2-benzyl-1-(phenylsulfonyl)-1H-benzimidazole 6b as the most active derivative with lowest MIC value of 15.63 µg/mL.
Collapse
Affiliation(s)
- Olayinka O Ajani
- Department of Chemistry, C.S.T., Covenant University, Canaanland, km 10, Idiroko Road, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Olayinka O Tolu-Bolaji
- Department of Chemistry, C.S.T., Covenant University, Canaanland, km 10, Idiroko Road, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Shade J Olorunshola
- Department of Biological Sciences, C.S.T., Covenant University, Canaanland, km 10, Idiroko Road, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Yuxia Zhao
- Technical Institute of Physics and Chemistry, CAS, No 29, Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Damilola V Aderohunmu
- Department of Chemistry, C.S.T., Covenant University, Canaanland, km 10, Idiroko Road, P.M.B. 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
47
|
Alam MS, Ley B, Nima MK, Johora FT, Hossain ME, Thriemer K, Auburn S, Marfurt J, Price RN, Khan WA. Molecular analysis demonstrates high prevalence of chloroquine resistance but no evidence of artemisinin resistance in Plasmodium falciparum in the Chittagong Hill Tracts of Bangladesh. Malar J 2017; 16:335. [PMID: 28806961 PMCID: PMC5557264 DOI: 10.1186/s12936-017-1995-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/10/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Artemisinin resistance is present in the Greater Mekong region and poses a significant threat for current anti-malarial treatment guidelines in Bangladesh. The aim of this molecular study was to assess the current status of drug resistance in the Chittagong Hill Tracts of Bangladesh near the Myanmar border. METHODS Samples were obtained from patients enrolled into a Clinical Trial (NCT02389374) conducted in Alikadam, Bandarban between August 2014 and January 2015. Plasmodium falciparum infections were confirmed by PCR and all P. falciparum positive isolates genotyped for the pfcrt K76T and pfmdr1 N86Y markers. The propeller region of the kelch 13 (k13) gene was sequenced from isolates from patients with delayed parasite clearance. RESULTS In total, 130 P. falciparum isolates were available for analysis. The pfcrt mutation K76T, associated with chloroquine resistance was found in 81.5% (106/130) of cases and the pfmdr1 mutation N86Y in 13.9% (18/130) cases. No single nucleotide polymorphisms were observed in the k13 propeller region. CONCLUSION This study provides molecular evidence for the ongoing presence of chloroquine resistant P. falciparum in Bangladesh, but no evidence of mutations in the k13 propeller domain associated with artemisinin resistance. Monitoring for artemisinin susceptibility in Bangladesh is needed to ensure early detection and containment emerging anti-malarial resistance.
Collapse
Affiliation(s)
- Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, 1212 Bangladesh
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Maisha Khair Nima
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, 1212 Bangladesh
| | - Fatema Tuj Johora
- Department of Zoology, University of Dhaka, Ramna, Dhaka, 1000 Bangladesh
| | - Mohammad Enayet Hossain
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, 1212 Bangladesh
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Wasif A. Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, 1212 Bangladesh
| |
Collapse
|
48
|
Soniran OT, Idowu OA, Ogundapo SS. Factors associated with high prevalence of PfCRT K76T mutation in Plasmodium falciparum isolates in a rural and urban community of Ogun State, Nigeria. MALARIAWORLD JOURNAL 2017; 8:13. [PMID: 34532236 PMCID: PMC8415070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Antimalarial drug-resistant Plasmodium falciparum strains have been a major obstacle to the global efforts of controlling and eliminating malaria. The hope of reintroducing chloroquine for the treatment of uncomplicated malaria follows recent reports on decreases in the prevalence of chloroquine-resistant P. falciparum in several countries and recently, its total disappearance in Malawi and Zambia. In Nigeria, the discontinued use of chloroquine for malaria treatment was officially announced in 2005. A few available reports have shown a persistent high prevalence of the major biomarker of chloroquine resistance in southwest Nigeria. However, information on its prevalence in rural and urban areas is scanty. We investigated possible factors associated with the prevalence of a biomarker for chloroquine-resistance in Ogun State, southwest Nigeria. MATERIALS AND METHODS Parasite DNA was extracted from dried blood spots collected by finger-prick in malaria symptomatic and asymptomatic subjects attending the urban-based State General Hospital and a rural-based Primary Health Centre. A structured questionnaire was used to collect data on malaria/fever treatment history. Nested Polymerase Chain Reaction (PCR) followed by Restriction Fragment Length Polymorphisms (RFLP) analysis was used to detect mutations in the P. falciparum chloroquine resistance transporter (Pfcrt). RESULTS Of the 243 participants recruited for this study, 56 were found to harbour P. falciparum parasites, of which 62.5% (35/56) showed symptoms of malaria. Prevalence of P. falciparum chloroquine-resistant strains (Pfcrt K76T) was 69.6%. The prevalence of Pfcrt K76T recorded in the rural area (91.7%) was significantly higher (P<0.05) than that in the urban area (53.1%). There was no correlation between prevalence of chloroquine-resistant strains and malaria symptoms in the rural area. However, prevalence of chloroquine-resistant strains was significantly higher in malaria-symptomatic subjects from the urban area. CONCLUSIONS Drug-resistant P. falciparum strains recorded in the rural area were associated with self-medication and patronage of drug vendors who continue to sell chloroquine. These findings present the importance of continuous surveillance of biomarkers indicating drug resistance especially now that antimalarial drug resistance is a threat to malaria eradication.
Collapse
Affiliation(s)
- Olajoju T. Soniran
- Biology Research Unit, Akanu Ibiam Federal Polytechnic, Unwana, Ebonyi State, Nigeria
| | - Olufunmilayo A. Idowu
- Pure and Applied Zoology Department, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Segun S. Ogundapo
- Biochemistry Research Unit, Akanu Ibiam Federal Polytechnic, Unwana, Ebonyi State, Nigeria
| |
Collapse
|
49
|
Lu F, Zhang M, Culleton RL, Xu S, Tang J, Zhou H, Zhu G, Gu Y, Zhang C, Liu Y, Wang W, Cao Y, Li J, He X, Cao J, Gao Q. Return of chloroquine sensitivity to Africa? Surveillance of African Plasmodium falciparum chloroquine resistance through malaria imported to China. Parasit Vectors 2017; 10:355. [PMID: 28747223 PMCID: PMC5530567 DOI: 10.1186/s13071-017-2298-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/18/2017] [Indexed: 01/08/2023] Open
Abstract
Background Chloroquine (CQ) was the cornerstone of anti-malarial treatment in Africa for almost 50 years, but has been widely withdrawn due to the emergence and spread of resistance. Recent reports have suggested that CQ-susceptibility may return following the cessation of CQ usage. Here, we monitor CQ sensitivity and determine the prevalence of genetic polymorphisms in the CQ resistance transporter gene (pfcrt) of Plasmodium falciparum isolates recently imported from Africa to China. Methods Blood samples were collected from falciparum malaria patients returning to China from various countries in Africa. Isolates were tested for their sensitivity to CQ using the SYBR Green I test ex vivo, and for a subset of samples, in vitro following culture adaptation. Mutations at positions 72–76 and codon 220 of the pfcrt gene were analyzed by sequencing and confirmed by PCR-RFLP. Correlations between drug sensitivity and pfcrt polymorphisms were investigated. Results Of 32 culture adapted isolates assayed, 17 (53.1%), 6 (18.8%) and 9 (28.1%) were classified as sensitive, moderately resistant, and highly resistant, respectively. In vitro CQ susceptibility was related to point mutations in the pfcrt gene, the results indicating a strong association between pfcrt genotype and drug sensitivity. A total of 292 isolates were typed at the pfcrt locus, and the prevalence of the wild type (CQ sensitive) haplotype CVMNK in isolates from East, South, North, West and Central Africa were 91.4%, 80.0%, 73.3%, 53.3% and 51.7%, respectively. The only mutant haplotype observed was CVIET, and this was almost always linked to an additional mutation at A220S. Conclusions Our results suggest that a reduction in drug pressure following withdrawal of CQ as a first-line drug may lead to a resurgence in CQ sensitive parasites. The prevalence of wild-type pfcrt CQ sensitive parasites from East, South and North Africa was higher than from the West and Central areas, but this varied greatly between countries. Further surveillance is required to assess whether the prevalence of CQ resistant parasites will continue to decrease in the absence of widespread CQ usage.
Collapse
Affiliation(s)
- Feng Lu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China.,Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, Jiangsu Province, People's Republic of China
| | - Meihua Zhang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Richard L Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, 852-8501, Japan
| | - Sui Xu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Jianxia Tang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Huayun Zhou
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Guoding Zhu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Yaping Gu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Chao Zhang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Yaobao Liu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Weiming Wang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Yuanyuan Cao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Julin Li
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China
| | - Xinlong He
- The Third People's Hospital of Wuxi, Wuxi, 214041, Jiangsu Province, People's Republic of China
| | - Jun Cao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China. .,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| | - Qi Gao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu Province, People's Republic of China.
| |
Collapse
|
50
|
In-Vivo Efficacy of Chloroquine to Clear Asymptomatic Infections in Mozambican Adults: A Randomized, Placebo-controlled Trial with Implications for Elimination Strategies. Sci Rep 2017; 7:1356. [PMID: 28465550 PMCID: PMC5430993 DOI: 10.1038/s41598-017-01365-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
Recent reports regarding the re-emergence of parasite sensitivity to chloroquine call for a new consideration of this drug as an interesting complementary tool in malaria elimination efforts, given its good safety profile and long half-life. A randomized (2:1), single-blind, placebo-controlled trial was conducted in Manhiça, Mozambique, to assess the in-vivo efficacy of chloroquine to clear plasmodium falciparum (Pf) asymptomatic infections. Primary study endpoint was the rate of adequate and parasitological response (ACPR) to therapy on day 28 (PCR-corrected). Day 0 isolates were analyzed to assess the presence of the PfCRT-76T CQ resistance marker. A total of 52 and 27 male adults were included in the CQ and Placebo group respectively. PCR-corrected ACPR was significantly higher in the CQ arm 89.4% (95%CI 80–98%) compared to the placebo (p < 0.001). CQ cleared 49/50 infections within the first 72 h while placebo cleared 12/26 (LRT p < 0.001). The PfCRT-76T mutation was present only in one out of 108 (0.9%) samples at baseline, well below the 84% prevalence found in 1999 in the same area. This study presents preliminary evidence of a return of chloroquine sensitivity in Mozambican Pf isolates, and calls for its further evaluation in community-based malaria elimination efforts, in combination with other effective anti-malarials. Trial registration: www.clinicalTrials.gov NCT02698748.
Collapse
|