1
|
Zeng C, Niu F, Li H, Huang Z, Ke Y, Yu L, Chen M. Progress of IL-10 and liver metastasis. Cytokine 2025; 190:156932. [PMID: 40168924 DOI: 10.1016/j.cyto.2025.156932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Liver metastasis can occur in a wide range of cancers and have a significant impact on patient survival and prognosis. Once liver metastasis occurs, patients often lose the opportunity for surgery, and although a small percentage of patients can undergo hepatic resection to prolong survival, the benefit is not great. There were also many factors affecting liver metastasis, including reprogramming of the primary tumor metabolism, disturbances in the immune microenvironment and immune cells, alterations in the gut microbiota, and epigenetic changes. Interleukin-10 (IL-10) has a dual role as a cytokine that has been found in recent years to be pro-inflammatory as well as pro-liver metastasis. IL-10 exerts pro-metastatic effects mainly by regulating the polarization of tumor macrophages in the tumor microenvironment, especially by promoting the polarization of M2 macrophages. However, the role of IL-10 in tumorigenesis and progression remains controversial and the molecular mechanism involved in promoting liver metastasis is currently unclear. In view of the increasing role of IL-10 in promoting liver metastasis, this review summarizes the role of IL-10 in liver metastasis of colorectal cancer, breast cancer and other tumors in recent years, and provides ideas for subsequent clinical practice and basic research.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Fengyuan Niu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Yujia Ke
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Linxin Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
2
|
Sun Z, Zhang Z, Zhang J, Yang Z, Pan S, Li X, Wang X, Zhu X. F-box only protein 25-mediated α-actinin 1 upregulation drives ovarian cancer progression via ERK1/2 signaling in tumor cells and macrophage M2 polarization. Int Immunopharmacol 2025; 153:114479. [PMID: 40117808 DOI: 10.1016/j.intimp.2025.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND ACTN1 belongs to the α-actinin family and is considered a tumor-promoting gene in various tumor types; however, the biological function and fundamental molecular mechanisms of ACTN1 in ovarian cancer remain unclear. METHODS The HPA and The Cancer Genome Atlas (TCGA) databases were used to compare the expression of ACTN1 in normal ovarian and OC tissues. The Kaplan-Meier Plotter database was used to analyze the relationship between the expression of ACTN1 and the prognosis of ovarian cancer. The TIMER2.0 database was used to analyze the correlation between the expression of ACTN1 and macrophages. CCK-8, colony formation, and Transwell assays as well as flow cytometry were used to determine the biological properties of the cells. Protein expression was assessed by immunohistochemistry, immunofluorescence, and western blot analysis. A co-culture experiment was used to analyze the effect of ovarian cancer cells on the polarization of macrophages. Co-immunoprecipitation was performed to validate the interaction between FBXO25 and ACTN1. RESULTS ACTN1 was highly expressed in OC tissues and cell lines. Downregulation of ACTN1 attenuated the proliferation, migration, and invasion of OC cells, promoted apoptosis and reduced the aggregation of M2 macrophages and the expression of CD163. The opposite effect was observed following the upregulation of ACTN1. Mechanistically, ACTN1 knockdown reduced ERK1/2 phosphorylation and inhibited epithelial-mesenchymal transition (EMT), whereas its overexpression resulted in the opposite effect. The ERK1/2 inhibitor LY3214996 partially reversed cell proliferation, migration, and M2 polarization of macrophages promoted by ACTN1 overexpression. Moreover, FBXO25, which is upstream of ACTN1 and interacts with it. FBXO25 upregulation partially reversed cell proliferation and migration inhibited by ACTN1 knockdown. CONCLUSION Upregulation of ACTN1 by FBXO25 promotes the progression of ovarian cancer by activating the ERK1/2 signaling pathway and M2 polarization of macrophages. The FBXO25/ACTN1/ERK1/2 axis and M2 macrophages may represent promising targets for developing ovarian cancer treatments.
Collapse
Affiliation(s)
- Zhengwei Sun
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zihan Zhang
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jiamin Zhang
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ziyi Yang
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shuya Pan
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaosheng Li
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xujing Wang
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Fu X, Zhang G, Hou Z, Fu T, Cui G. PKN2 enhances the immunosuppressive activity of polymorphonuclear myeloid-derived suppressor cells in esophageal carcinoma by mediating fatty acid oxidation. Mol Med 2025; 31:92. [PMID: 40069590 PMCID: PMC11900251 DOI: 10.1186/s10020-025-01132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) in tumor microenvironment reduce the efficacy of immunotherapy. PKN2 plays a role in colon cancer, but its function in esophageal cancer (EC) remains unclear. This study investigated PKN2 expression in MDSCs derived from EC tissues and determined whether PKN2 regulates immunosuppressive activity of MDSCs by mediating fatty acid oxidation (FAO). MATERIALS AND METHODS PKN2 expression was determined in GEO database, EC patients, and 4-NQO-induced EC mice, as well as in different types of immune cells. The effect of PKN2 on the function of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) was investigated by co-culture of PMN-MDSCs and CD4+/CD8+ T cells. The co-culture of patient-derived organoids and autologous immune cells was performed to observe the effect of PKN2 on the immunosuppressive function of PMN-MDSCs. RESULTS PKN2 is highly expressed in EC tumor tissues compared to normal tissues, especially in tumor-infiltrated PMN-MDSCs. Overexpressing PKN2 in PMN-MDSCs contributes to the immunosuppressive activity of PMN-MDSCs in vitro. PKN2-overexpressing PMN-MDSCs inhibited the killing ability of cytotoxic T lymphocytes and promoted EC organoid growth. PKN2 promotes FAO in PMN-MDSCs via CPT1B (a key enzyme of FAO). Mechanistically, PKN2 promotes CPT1B transcription by upregulating STAT3 phosphorylation. CONCLUSIONS PKN2 expression was increased in PMN-MDSCs derived from human and mouse EC tissues. PKN2 plays a role in enhancing the immunosuppressive activity of PMN-MDSCs by facilitating STAT3 phosphorylation and CPT1B transcription, which in turn leads to increased CPT1B-mediated FAO in PMN-MDSCs. Targeted inhibition of PKN2 is expected to improve immunotherapeutic efficacy in EC patients.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, China
| | - GuoQing Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, China
| | - ZhiChao Hou
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, China
| | - TingTing Fu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - GuangHui Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Liu G, Huang K, Lin B, Zhang R, Zhu Y, Dong X, Wu C, Zhu H, Lin J, Bao M, Li S, Zheng R, Jing F. IKZF1 promotes pyroptosis and prevents M2 macrophage polarization by inhibiting JAK2/STAT5 pathway in colon cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167690. [PMID: 39862997 DOI: 10.1016/j.bbadis.2025.167690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Pyroptosis and macrophage pro-inflammatory activation play an important role in hepatocellular carcinoma (HCC) progression. However, the specific regulatory mechanisms remain unclear. We identified pyroptosis-related differentially expressed genes (DEGs) based on the GSE4183 and GSE44861 datasets as well as EVenn database. Expression levels of key genes were detected by qRT-PCR. IKZF1 was overexpressed in colon cancer cells and tumor-bearing mice, and its functions were assessed by various cell biology assays in vitro and in vivo. To investigate the interactions between IKZF1 and macrophages, a co-culture system was constructed. The activator RO8191 or inhibitor ruxolitinib of the JAK/STAT pathway was employed to confirm whether IKZF1 inhibited colon cancer development by regulating JAK2/STAT5 pathway. Pyroptosis-related hub genes RBBP7, HSP90AB1, and RBBP4 were highly expressed, while IKZF1, NLRP1, and PYCARD were lowly expressed. These hub genes had good performance in distinguishing colon cancer from controls. Furthermore, overexpression of IKZF1 inhibited tumor growth and promoted pyroptosis. Overexpression of IKZF1 suppressed cell proliferation, metastasis, and inactivated JAK2/STAT5 signaling pathway in colon cancer cells. Furthermore, upregulation of IKZF1 promoted M1 macrophage polarization while inhibiting M2 macrophage polarization in vivo and in vitro by inhibiting the JAK2/STAT5 signaling pathway. This study identifies IKZF1 as a potential biomarker inactivating JAK2/STAT5 pathway for colon cancer.
Collapse
Affiliation(s)
- Guanglong Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, China
| | - Kaihua Huang
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Bingheng Lin
- The First School of Clinical Medicine, Southern Medical University, China
| | - Renyi Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Yu Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Xiaoyu Dong
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Chaosong Wu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Huacong Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Jiabao Lin
- Department of Health Management, Nanfang Hospital, Southern Medical University, China
| | - Ming Bao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Shenglong Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Ruinian Zheng
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), China
| | - Fangyan Jing
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
5
|
Du L, Min H, Meng Y, Zhang K, Wang L, Zhang Y, Sun P, Zhang W, Qi Y, Wu G. LRG1-Targeted Camptothecin Nanomicelles with Simultaneous Delivery of Olaparib for Enhanced Colorectal Cancer Chemotherapy. NANO LETTERS 2025; 25:3130-3140. [PMID: 39947227 DOI: 10.1021/acs.nanolett.4c05354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Camptothecin (CPT), an effective topoisomerase I inhibitor used in colorectal cancer chemotherapy, often faces limitations due to severe toxicities. Addressing this, we developed OCENM, a nanomedicine featuring the CPT-ET conjugate─comprising a cathepsin B-sensitive linker and CPT linked to the ET peptide targeting leucine-rich alpha-2-glycoprotein 1 (LRG1) and encapsulating Olaparib, a potent poly ADP-ribose polymerase (PARP) inhibitor. OCENM aims for precise CPT delivery to colorectal cancer sites overexpressing LRG1, while Olaparib disrupts compromised DNA repair pathways, enhancing DNA damage and promoting increased tumor cell apoptosis. Our results show OCENM accumulates preferentially in colorectal cancer models through LRG1 targeting and triggers synergistic tumor cell apoptosis through the dual action of enhanced DNA damage and inhibited repair mechanisms. This study not only highlights the potential of LRG1 as a strategic target for nanomedicine delivery but also underscores the therapeutic promise of combining CPT with Olaparib for colorectal cancer treatment.
Collapse
Affiliation(s)
- Lin Du
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial Research Center for Precision Control Engineering of Digestive Tract Tumors, Zhengzhou 450003, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Huan Min
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongkang Meng
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial Research Center for Precision Control Engineering of Digestive Tract Tumors, Zhengzhou 450003, China
| | - Kejuan Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial Research Center for Precision Control Engineering of Digestive Tract Tumors, Zhengzhou 450003, China
| | - Longdi Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Yana Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial Research Center for Precision Control Engineering of Digestive Tract Tumors, Zhengzhou 450003, China
| | - Wei Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial Research Center for Precision Control Engineering of Digestive Tract Tumors, Zhengzhou 450003, China
| | - Yingqiu Qi
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial Research Center for Precision Control Engineering of Digestive Tract Tumors, Zhengzhou 450003, China
| |
Collapse
|
6
|
Wu H, Zhang W, Chang J, Wu J, Zhang X, Jia F, Li L, Liu M, Zhu J. Comprehensive analysis of mitochondrial-related gene signature for prognosis, tumor immune microenvironment evaluation, and candidate drug development in colon cancer. Sci Rep 2025; 15:6173. [PMID: 39979377 PMCID: PMC11842742 DOI: 10.1038/s41598-024-85035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
Colon adenocarcinoma (COAD), a common digestive system malignancy, involves crucial alterations in mitochondria-related genes influencing tumor growth, metastasis, and immune evasion. Despite limited studies on prognostic models for these genes in COAD, we established a mitochondrial-related risk prognostic model, including nine genes based on available TCGA and MitoCarta 3.0 databases, and validated its predictive power. We investigated the tumor microenvironment (TME), immune cell infiltration, complex cell communication, tumor mutation burden, and drug sensitivity of COAD patients using R language, CellChat, and additional bioinformatic tools from single-cell and bulk-tissue sequencing data. The risk model revealed significant differences in immune cell infiltration between high-risk and low-risk groups, with the strongest correlation found between tissue stem cells and macrophages in COAD. The risk score exhibited a robust correlation with TME signature genes and immune checkpoint molecules. Integrating the risk score with the immune score, microsatellite status, or TMB through TIDE analysis enhanced the accuracy of predicting immunotherapy benefits. Predicted drug efficacy offered options for both high- and low-risk group patients. Our study established a novel mitochondrial-related nine-gene prognostic signature, providing insights for prognostic assessment and clinical decision-making in COAD patients.
Collapse
Affiliation(s)
- Hao Wu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Wentao Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Jingjia Chang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin Wu
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Xintong Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Fengfeng Jia
- Taiyuan Technology Transfer Promotion Center, Taiyuan, 030006, China
| | - Li Li
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Ming Liu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianjun Zhu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
7
|
Png CW, Weerasooriya M, Li H, Hou X, Teo FY, Huang S, Ser Z, Weng FYK, Rethnam M, Chia G, Sobota RM, Chong CS, Tan KK, Zhang Y. DUSP6 regulates Notch1 signalling in colorectal cancer. Nat Commun 2024; 15:10087. [PMID: 39572549 PMCID: PMC11582695 DOI: 10.1038/s41467-024-54383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Notch1 plays various roles in cancer development, and Notch1-induced transactivation is controlled by phosphorylation of its cleaved intracellular domain. However, it is unclear whether there are phosphatases capable of dephosphorylating the cleaved Notch1 transmembrane/intracellular region (NTM) to regulate its function. Here, we show that DUSP6 can function as a phosphatase for Notch1, thereby regulating NTM stability and transcriptional activity, thus influencing colorectal cancer (CRC) development. In human CRC cells, elevated DUSP6 expression correlates with increased NTM levels, leading to enhanced CRC cell proliferation both in vitro and in vivo. High tumoral DUSP6 protein expression is associated with poorer overall CRC patient survival. In mice, DUSP6 deficiency results in reduced CRC development. Mechanistically, DUSP6 dephosphorylates phospho-Y2116, which in turn reduces NTM ubiquitination, leading to increased NTM stability and transcriptional activity. As a result, the expression of Notch1-targeted proliferation genes is increased to promote tumour cell growth.
Collapse
Affiliation(s)
- Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Madhushanee Weerasooriya
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Heng Li
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Xiaowen Hou
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Fiona Yayuan Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Shiying Huang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Franklin Yau Kok Weng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Malini Rethnam
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117597, Singapore
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, 117597, Singapore
| | - Gloryn Chia
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117597, Singapore
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, 117597, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Choon Seng Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
8
|
Chung FFL, Khoueiry R, Sallé A, Cuenin C, Bošković M, Herceg Z. Sodium arsenite-induced DNA methylation alterations exacerbated by p53 knockout in MCF7 cells. Heliyon 2024; 10:e39548. [PMID: 39512451 PMCID: PMC11539298 DOI: 10.1016/j.heliyon.2024.e39548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Epigenetic alterations are ubiquitous across human malignancies. Thus, functional characterization of epigenetic events deregulated by environmental pollutants should enhance our understanding of the mechanisms of carcinogenesis and inform preventive strategies. Recent reports showing the presence of known cancer-driving mutations in normal tissues have sparked debate on the importance of non-mutational stressors potentially acting as cancer promoters. Here, we aimed to test the hypothesis that the presence of mutations in p53, a commonly mutated gene in human malignancies, may influence cellular response to an environmental non-mutagenic agent, potentially involving epigenetic mechanism. We used the CRISPR-Cas9 system to generate knockouts of p53 in MCF7 and T47D breast cancer cell lines and characterized DNA methylome changes by targeted pyrosequencing and methylome-wide Infinium MethylationEPIC BeadChip arrays after exposure to sodium arsenite, a well-established human carcinogen with documented effects on the epigenome. We found that the knockout of p53 alone was associated with extensive alterations in DNA methylation content, with predominant CpG hypermethylation concurrent with global demethylation, as determined by LINE-1 repetitive element pyrosequencing. While exposure to sodium arsenite induced little to no effects in parental cell lines, mutant cells, upon treatment with sodium arsenite, exhibited a markedly altered response in comparison to their wild-type counterparts. We further performed genome regional analyses and found that differentially methylated regions (DMRs) associated with exposure to sodium arsenite map to genes involved in chromatin remodeling and cancer development. Reconstitution of wild-type p53 only partially restored p53-mutant-specific differential methylation states in response to sodium arsenite exposure, which may be due to the insufficient reconstitution of p53 function, or suggestive of a potential exposure-specific epigenetic memory. Together, our results revealed wide-spread epigenetic alterations associated with p53 mutation that influence cellular response to sodium arsenite exposure, which may constate an important epigenetic mechanism by which tumour promoting agents synergize with driver mutations in cancer promotion.
Collapse
Affiliation(s)
- Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan University, Bandar Sunway, Subang Jaya, 47500, Malaysia
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Aurélie Sallé
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Maria Bošković
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| |
Collapse
|
9
|
Zhang Y, Gao S, Mao J, Song Y, Wang X, Jiang J, Lv L, Zhou Z, Wang J. The Inhibitory Effect and Mechanism of the Histidine-Rich Peptide rAj-HRP from Apostichopus japonicus on Human Colon Cancer HCT116 Cells. Molecules 2024; 29:5214. [PMID: 39519855 PMCID: PMC11548021 DOI: 10.3390/molecules29215214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Colon cancer is a common and lethal malignancy, ranking second in global cancer-related mortality, highlighting the urgent need for novel targeted therapies. The sea cucumber (Apostichopus japonicus) is a marine organism known for its medicinal properties. After conducting a bioinformatics analysis of the cDNA library of Apostichopus japonicus, we found and cloned a cDNA sequence encoding histidine-rich peptides, and the recombinant peptide was named rAj-HRP. Human histidine-rich peptides are known for their anti-cancer properties, raising questions as to whether rAj-HRP might exhibit similar effects. To investigate whether rAj-HRP can inhibit colon cancer, we used human colon cancer HCT116 cells as a model and studied the tumor suppressive activity in vitro and in vivo. The results showed that rAj-HRP inhibited HCT116 cell proliferation, migration, and adhesion to extracellular matrix (ECM) proteins in vitro. It also disrupted the cytoskeleton and induced apoptosis in these cells. In vivo, rAj-HRP significantly inhibited the growth of HCT116 tumors in BALB/c mice, reducing tumor volume and weight without affecting the body weight of the tumor-bearing mice. Western blot analysis showed that rAj-HRP inhibited HCT116 cell proliferation and induced apoptosis by upregulating BAX and promoting PARP zymogen degradation. Additionally, rAj-HRP inhibited HCT116 cell adhesion and migration by reducing MMP2 levels. Further research showed that rAj-HRP downregulated EGFR expression in HCT116 cells and inhibited key downstream molecules, including AKT, P-AKT, PLCγ, P38 MAPK, and c-Jun. In conclusion, rAj-HRP exhibits significant inhibitory effects on HCT116 cells in both in vitro and in vivo, primarily through the EGFR and apoptosis pathways. These findings suggest that rAj-HRP has the potential as a novel targeted therapy for colon cancer.
Collapse
Affiliation(s)
- Yuebin Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Jiaming Mao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Yuyao Song
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Xueting Wang
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (X.W.); (L.L.)
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Li Lv
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (X.W.); (L.L.)
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| |
Collapse
|
10
|
Pan M, Xu X, Zhang D, Cao W. Exploring the Immune Landscape of ccRCC: Prognostic Signatures and Therapeutic Implications. J Cell Mol Med 2024; 28:e70212. [PMID: 39557632 PMCID: PMC11573483 DOI: 10.1111/jcmm.70212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024] Open
Abstract
The tumour immunological microenvironment is involved in the development of clear cell renal cell carcinoma (ccRCC). Nevertheless, the role of the immunological microenvironment in ccRCC has not been thoroughly investigated. In this study, we combined six ccRCC cohorts into a large cohort and quantified the expression matrix into 53 immunological terms using the ssGSEA algorithm. Five immune terms related to prognosis were screened through 1000 iterations of L1-penalised (lasso) estimation and Cox regression analysis for immune-related risk score (IRS) calculation. The IRS showed satisfactory prognosis prediction efficacy in ccRCC. We then compared the clinical and genomic characteristics of two IRS subgroups. Patients with low IRS showed a high level of tumour mutational burden (TMB) and a low level of copy number variation (CNV), indicating that low IRS group patients have a higher probability of responding to immunotherapy. We employed TIDE and subclass mapping analyses to corroborate our results, and the findings demonstrated that patients with a low IRS had a significantly greater percentage of immunotherapy response. According to the Genomics of Drug Sensitivity in Cancer (GDSC), patients with a high IRS had a decreased IC50 for sunitinib, which is the first-line treatment for ccRCC patients. As a result, the immune characteristics of the microenvironment of ccRCC tumours have been explored, and a signature has been constructed. Analysis demonstrated that our signature could effectively predict prognosis and immunotherapy response rate.
Collapse
Affiliation(s)
- Minjie Pan
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xinchi Xu
- The State Key Lab of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dong Zhang
- The State Key Lab of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Cao
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
11
|
Tu R, Ma J, Chen Y, Kang Y, Ren D, Cai Z, Zhang R, Pan Y, Liu Y, Da Y, Xu Y, Yu Y, Wang D, Wang J, Dong Y, Lu X, Zhang C. USP7 depletion potentiates HIF2α degradation and inhibits clear cell renal cell carcinoma progression. Cell Death Dis 2024; 15:749. [PMID: 39406703 PMCID: PMC11482519 DOI: 10.1038/s41419-024-07136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel Lindau (VHL) gene loss of function mutation, which leads to the accumulation of hypoxia-inducible factor 2α (HIF2α). HIF2α has been well-established as one of the major oncogenic drivers of ccRCC, however, its therapeutic targeting remains a challenge. Through an analysis of proteomic data from ccRCCs and adjacent non-tumor tissues, we herein revealed that Ubiquitin-Specific Peptidase 7 (USP7) was upregulated in tumor tissues, and its depletion by inhibitors or shRNAs caused significant suppression of tumor progression in vitro and in vivo. Mechanistically, USP7 expression is activated by the transcription factors FUBP1 and FUBP3, and it promotes tumor progression mainly by deubiquitinating and stabilizing HIF2α. Moreover, the combination of USP7 inhibitors and afatinib (an ERBB family inhibitor) coordinately induce cell death and tumor suppression. In mechanism, afatinib indirectly inhibits USP7 transcription and accelerates the degradation of HIF2α protein, and the combination of them caused a more profound suppression of HIF2α abundance. These findings reveal a FUBPs-USP7-HIF2α regulatory axis that underlies the progression of ccRCC and provides a rationale for therapeutic targeting of oncogenic HIF2α via combinational treatment of USP7 inhibitor and afatinib.
Collapse
Affiliation(s)
- Rongfu Tu
- The First Affiliated Hospital of Xi'an Jiaotong University, Center for Precision Cancer Medicine, MED-X Institute, 710000, Xi'an, China.
| | - Junpeng Ma
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Center for Molecular Diagnosis and Precision Medicine, 1519 Dongyue Dadao, 330209, Nanchang, China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Department of Clinical Laboratory, 1519 Dongyue Dadao, 330209, Nanchang, China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, 1519 DongYue Dadao, 330209, Nanchang, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710000, Xi'an, China
| | - Ye Kang
- The First Affiliated Hospital of Xi'an Jiaotong University, Center for Precision Cancer Medicine, MED-X Institute, 710000, Xi'an, China
| | - Doudou Ren
- The First Affiliated Hospital of Xi'an Jiaotong University, Center for Precision Cancer Medicine, MED-X Institute, 710000, Xi'an, China
| | - Zeqiong Cai
- The First Affiliated Hospital of Xi'an Jiaotong University, Center for Precision Cancer Medicine, MED-X Institute, 710000, Xi'an, China
| | - Ru Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Center for Precision Cancer Medicine, MED-X Institute, 710000, Xi'an, China
| | - Yiwen Pan
- The First Affiliated Hospital of Xi'an Jiaotong University, Precision Medicine Center, 710000, Xi'an, China
| | - Yijia Liu
- The First Affiliated Hospital of Xi'an Jiaotong University, Precision Medicine Center, 710000, Xi'an, China
| | - Yanyan Da
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Center for Molecular Diagnosis and Precision Medicine, 1519 Dongyue Dadao, 330209, Nanchang, China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Department of Clinical Laboratory, 1519 Dongyue Dadao, 330209, Nanchang, China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, 1519 DongYue Dadao, 330209, Nanchang, China
| | - Yao Xu
- The First Affiliated Hospital of Xi'an Jiaotong University, Center for Precision Cancer Medicine, MED-X Institute, 710000, Xi'an, China
| | - Yahuan Yu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, 266100, Qingdao, China
| | - Donghai Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, 430071, Wuhan, China
| | - Jingchao Wang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, 518055, Shenzhen, China
| | - Yang Dong
- Department of Pathology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, 710000, Xi'an, China
| | - Chengsheng Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Center for Precision Cancer Medicine, MED-X Institute, 710000, Xi'an, China.
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Center for Molecular Diagnosis and Precision Medicine, 1519 Dongyue Dadao, 330209, Nanchang, China.
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Department of Clinical Laboratory, 1519 Dongyue Dadao, 330209, Nanchang, China.
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, 1519 DongYue Dadao, 330209, Nanchang, China.
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, 330209, Nanchang, China.
| |
Collapse
|
12
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
13
|
Gao C, Wang S, Xie X, Ramadori P, Li X, Liu X, Ding X, Liang J, Xu B, Feng Y, Tan X, Wang H, Zhang Y, Zhang H, Zhang T, Mi P, Li S, Zhang C, Yuan D, Heikenwalder M, Zhang P. Single-cell Profiling of Intrahepatic Immune Cells Reveals an Expansion of Tissue-resident Cytotoxic CD4 + T Lymphocyte Subset Associated With Pathogenesis of Alcoholic-associated Liver Diseases. Cell Mol Gastroenterol Hepatol 2024; 19:101411. [PMID: 39349248 PMCID: PMC11719870 DOI: 10.1016/j.jcmgh.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS The immunological mechanisms underpinning the pathogenesis of alcoholic-associated liver disease (ALD) remain incompletely elucidated. This study aims to explore the transcriptomic profiles of hepatic immune cells in ALD compared with healthy individuals and those with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS We utilized single-cell RNA sequencing to analyze liver samples from healthy subjects and patients with MASLD and ALD, focusing on the immune cell landscapes within the liver. Key alterations in immune cell subsets were further validated using liver biopsy samples from additional patient cohorts. RESULTS We observed a significant accumulation of CD4+ T cells in livers of patients with ALD, surpassing the prevalence of CD8+ T cells, in contrast to patients with MASLD and healthy counterparts, whereas natural killer (NK) cells and γδT cells exhibited reduced intrahepatic infiltration. In-depth transcriptional and developmental trajectory analyses unveiled that a distinct CD4+ subset characterized by granzyme K (GZMK) expression, displaying a tissue-resident signature and terminal effector state, prominently enriched among CD4+ T cells infiltrating the livers of patients with ALD. Subsequent examination of an independent ALD patient cohort corroborated the substantial enrichment of GZMK+CD4+ T lymphocytes, primarily within liver fibrotic zones, suggesting their potential involvement in disease progression. Additionally, we noted shifts in myeloid populations, with expanded APOE+ macrophage and FCGR3B+ monocyte subsets in ALD samples relative to MASLD and healthy tissues. CONCLUSIONS In summary, this study unravels the intricate cellular diversity within hepatic immune cell populations, highlighting the pivotal immune pathogenic role of the GZMK+CD4+ T lymphocyte subset in ALD pathogenesis.
Collapse
Affiliation(s)
- Chao Gao
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shiguan Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyu Xie
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Tübingen, Germany
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyu Liu
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Xue Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyuan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bowen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yawei Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueying Tan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haoran Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haiyan Zhang
- Department of Biochemistry, Heze Medical College, Heze, Shandong, China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shiyang Li
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Tübingen, Germany.
| | - Peng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
14
|
Feng X, Wang L, Pu L, Li J, Li H, Liu D, Li R. An Ingenane-Type Diterpene from Euphorbia kansui Promoted Cell Apoptosis and Macrophage Polarization via the Regulation of PKC Signaling Pathways. Int J Mol Sci 2024; 25:10123. [PMID: 39337608 PMCID: PMC11432454 DOI: 10.3390/ijms251810123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Euphorbia kansui, a toxic Chinese medicine used for more than 2000 years, has the effect of "purging water to promote drinking" and "reducing swelling and dispersing modules". Diterpenes and triterpenes are the main bioactive components of E. kansui. Among them, ingenane-type diterpenes have multiple biological activities as a protein kinase C δ (PKC-δ) activator, which have previously been shown to promote anti-proliferative and pro-apoptotic effects in several human cancer cell lines. However, the activation of PKC subsequently promoted the survival of macrophages. Recently, we found that 13-hydroxyingenol-3-(2,3-dimethylbutanoate)-13-dodecanoate (compound A) from E. kansui showed dual bioactivity, including the inhibition of tumor-cell-line proliferation and regulation of macrophage polarization. This study identifies the possible mechanism of compound A in regulating the polarization state of macrophages, by regulating PKC-δ-extracellular signal regulated kinases (ERK) signaling pathways to exert anti-tumor immunity effects in vitro, which might provide a new treatment method from the perspective of immune cell regulation.
Collapse
Affiliation(s)
- Xiaoyi Feng
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lizhong Wang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Li Pu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianchun Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongmei Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Rongtao Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
15
|
Ren J, Jin Z, Huang Y. Exosomal miR-106a-5p derived from intermittently hypoxic non-small-cell lung cancer increases tumor malignancy. Physiol Rep 2024; 12:e16157. [PMID: 39085755 PMCID: PMC11291016 DOI: 10.14814/phy2.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA), which is related to tumorigenesis and progression. We explored the possible mechanisms by which OSA may promote the development of non-small cell lung cancer (NSCLC). In this study, NSCLC cells with and without miR-106a-5p inhibition were exposed to IH or room air (RA), and subsequently, exosomes were extracted and identified. Macrophages were incubated with these exosomes to detect the expression of the STAT3 signaling pathway and M2-type macrophage markers, as well as the effect of the macrophages on the malignancy of NSCLC cells. A nude mouse tumorigenesis model was constructed to detect the effects of exosomal miR-106a-5p on M2 macrophage polarization and NSCLC cell malignancy. Our results showed that IH exosomes promoted the polarization of M2 macrophages, thereby promoting the proliferation, invasion, and metastasis of NSCLC cells. Further, Based on microarray analysis of RA and IH exosomes, we discovered that miR-106a-5p, transferred to the macrophages through exosomes, participated in this mechanism by promoting M2 macrophage polarization via down-regulating PTEN and activating the STAT3 signaling pathway in vitro and in vivo. For patients with NSCLC and OSA, exosomal miR-106a-5p levels showed a positive relation to AHI. Exosomal miR-106a-5p represents a potential therapeutic target among patients with concomitant cancer and NSCLC.
Collapse
Affiliation(s)
- Jie Ren
- Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhuan Jin
- Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yongjie Huang
- Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
16
|
Wang H, Lou J, Liu H, Liu Y, Xie B, Zhang W, Xie J, Pan H, Han W. TRIM59 deficiency promotes M1 macrophage activation and inhibits colorectal cancer through the STAT1 signaling pathway. Sci Rep 2024; 14:16081. [PMID: 38992114 PMCID: PMC11239810 DOI: 10.1038/s41598-024-66388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Tumor-associated macrophages play a crucial role in the tumor microenvironment. Tripartite motif 59 (TRIM59), a member of the tripartite motif (TRIM) family, is known to be associated with immunological diseases and macrophage activation. The functional and molecular mechanisms by which TRIM59 affects the occurrence and development of colorectal cancer (CRC) through macrophages are still not well understood. To address this, we generated macrophage-specific TRIM59 conditional knockout mice and utilized these mice to establish colitis-associated cancer and MC38 transplanted CRC models for further investigation. We found that the deficiency of TRIM59 in macrophages inhibited colorectal tumorigenesis in mice. This tumor-suppressive effect was achieved by promoting the activation of M1 macrophages via STAT1 signaling pathway. Further mechanistic studies revealed that TRIM59 could regulate macrophage polarization by ubiquitinating and degrading STAT1. These findings provide evidence that TRIM59 deficiency promotes M1 macrophage activation and inhibits CRC through the STAT1 signaling pathway, suggesting that the TRIM59/STAT1 signaling pathway may be a promising target for CRC.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Hao Liu
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Yunlong Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, People's Republic of China.
- Department of Colorectal Medical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou, 310022, People's Republic of China.
| |
Collapse
|
17
|
Mashayekhi V, Schomisch A, Rasheed S, Aparicio-Puerta E, Risch T, Yildiz D, Koch M, Both S, Ludwig N, Legroux TM, Keller A, Müller R, Fuhrmann G, Hoppstädter J, Kiemer AK. The RNA binding protein IGF2BP2/IMP2 alters the cargo of cancer cell-derived extracellular vesicles supporting tumor-associated macrophages. Cell Commun Signal 2024; 22:344. [PMID: 38937789 PMCID: PMC11212187 DOI: 10.1186/s12964-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Annika Schomisch
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Ernesto Aparicio-Puerta
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Timo Risch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Simon Both
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Thierry M Legroux
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Department of Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
18
|
ZHANG Z, JIA Z, SONG Y, ZHANG X, WANG C, WANG S, ZHANG P, REN Q, WANG X, MAO J. Optimized new Shengmai powder inhibits myocardial fibrosis in heart failure by regulating the rat sarcoma/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase kinase/extracellular regulated protein kinases signaling pathway. J TRADIT CHIN MED 2024; 44:448-457. [PMID: 38767628 PMCID: PMC11077160 DOI: 10.19852/j.cnki.jtcm.20240402.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/25/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE Exploring the effect of Optimized New Shengmai powder (, ONSMP) on myocardial fibrosis in heart failure (HF) based on rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. METHODS Randomized 70 Sprague-Dawley rats into sham (n = 10) and operation (n = 60) groups, then established the HF rat by ligating the left anterior descending branch of the coronary artery. We randomly divided the operation group rats into the model, ONSMP [including low (L), medium (M), and high (H) dose], and enalapril groups. After the 4-week drug intervention, echocardiography examines the cardiac function and calculates the ratios of the whole/left heart to the rat's body weight. Finally, we observed the degree of myocardial fibrosis by pathological sections, determined myocardium collagen (COL) I and COL Ⅲ content by enzyme-linked immunosorbent assay, detected the mRNA levels of COL I, COL Ⅲ, α-smooth muscle actin (α-SMA), and c-Fos proto-oncogene (c-Fos) by universal real-time, and detected the protein expression of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ETS-like-1 transcription factor (p-ELK1), p-c-Fos, α-SMA, COL I, and COL Ⅲ by Western blot. RESULTS ONSMP can effectively improve HF rat's cardiac function, decrease cardiac organ coefficient, COL volume fraction, and COL I/Ⅲ content, down-regulate the mRNA of COL I/Ⅲ, α-SMA and c-Fos, and the protein of p-RAS, p-RAF, p-MEK1/ 2, p-ERK1/2, p-ELK1, c-Fos, COL Ⅰ/Ⅲ, and α-SMA. CONCLUSIONS ONSMP can effectively reduce myocardial fibrosis in HF rats, and the mechanism may be related to the inhibition of the RAS/RAF/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Zeyu ZHANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Zhuangzhuang JIA
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuwei SONG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xuan ZHANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Ci WANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Shuai WANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Peipei ZHANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Qiuan REN
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang WANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jingyuan MAO
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
19
|
Ye Z, Cheng P, Huang Q, Hu J, Huang L, Hu G. Immunocytes interact directly with cancer cells in the tumor microenvironment: one coin with two sides and future perspectives. Front Immunol 2024; 15:1388176. [PMID: 38840908 PMCID: PMC11150710 DOI: 10.3389/fimmu.2024.1388176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.
Collapse
Affiliation(s)
- Zhiyi Ye
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Hu
- School of Medicine, Shaoxing University, Zhejiang, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Targeting MAPK-ERK/JNK pathway: A potential intervention mechanism of myocardial fibrosis in heart failure. Biomed Pharmacother 2024; 173:116413. [PMID: 38461687 DOI: 10.1016/j.biopha.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Myocardial fibrosis is a significant pathological basis of heart failure. Overactivation of the ERK1/2 and JNK1/2 signaling pathways of MAPK family members synergistically promotes the proliferation of myocardial fibroblasts and accelerates the development of myocardial fibrosis. In addition to some small molecule inhibitors and Western drugs, many Chinese medicines can also inhibit the activity of ERK1/2 and JNK1/2, thus slowing down the development of myocardial fibrosis, and are generally safe and effective. However, the specific biological mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis still need to be fully understood, and there is no systematic review of existing drugs and methods to inhibit them from improving myocardial fibrosis. This study aims to summarize the roles and cross-linking mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis and to systematically sort out the small-molecule inhibitors, Western drugs, traditional Chinese medicines, and non-pharmacological therapies that inhibit ERK1/2 and JNK1/2 to alleviate myocardial fibrosis. In the future, we hope to conduct more in-depth research from the perspective of precision-targeted therapy, using this as a basis for developing new drugs that provide new perspectives on the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
21
|
Feng Y, Jin C, Wang T, Chen Z, Ji D, Zhang Y, Zhang C, Zhang D, Peng W, Sun Y. The Uridylyl Transferase TUT7-Mediated Accumulation of Exosomal miR-1246 Reprograms TAMs to Support CRC Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304222. [PMID: 38342611 PMCID: PMC11022710 DOI: 10.1002/advs.202304222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/06/2023] [Indexed: 02/13/2024]
Abstract
Tumor-associated macrophages (TAMs) play a crucial role in promoting tumor growth and dissemination, motivating a search for key targets to interfere with the activation of TAMs or reprogram TAMs into the tumor-suppressive type. To gain insight into the mechanisms of macrophage polarization, a designed co-culture system is established, allowing for the education of macrophages in a manner that closely mimics the intricacies of TAMs in the tumor immune microenvironment (TIME). Through database mining, exosomal miR-1246 is identified and is then validated. Exosomal miR-1246-driven polarization of TAMs disrupts the infiltration and function of CD8+ T cells. Mechanically, the amassment of exosomal miR-1246 stems from TUT7-mediated degradation of small noncoding RNA, a process stabilized by SNRPB, but not the precursor of miR-1246. Moreover, an Exo-motif is present in the exosomal miR-1246 sequence, enabling it to bind with the exosomal sorting protein hnRNPA2B1. RNA-seq analysis reveals that exogenous miR-1246 modulates the polarization of TAMs at a post-transcriptional level, emphasizing the pivotal role of the NLRP3 in macrophage polarization. In conclusion, the findings underscore the importance of exosomal miR-1246 as a trigger of macrophage reprogramming and uncover a novel mechanism for its enhanced presence in the TIME.
Collapse
Affiliation(s)
- Yifei Feng
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Chi Jin
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Tuo Wang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Zhihao Chen
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Dongjian Ji
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Yue Zhang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Chuan Zhang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Dongsheng Zhang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Wen Peng
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Yueming Sun
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| |
Collapse
|
22
|
Guo X, Zhang H, He C, Qin K, Lai Q, Fang Y, Chen Q, Li W, Wang Y, Wang X, Li A, Liu S, Li Q. RUNX1 promotes angiogenesis in colorectal cancer by regulating the crosstalk between tumor cells and tumor associated macrophages. Biomark Res 2024; 12:29. [PMID: 38419056 PMCID: PMC10903076 DOI: 10.1186/s40364-024-00573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide. Angiogenesis and metastasis are the critical hallmarks of malignant tumor. Runt-related transcription factor 1 (RUNX1), an efficient transcription factor, facilitates CRC proliferation, metastasis and chemotherapy resistance. We aimed to investigate the RUNX1 mediated crosstalk between tumor cells and M2 polarized tumor associated macrophages (TAMs) in CRC, as well as its relationship with neoplastic angiogenesis. We found that RUNX1 recruited macrophages and induced M2 polarized TAMs in CRC by promoting the production of chemokine 2 (CCL2) and the activation of Hedgehog pathway. In addition, we found that the M2 macrophage-specific generated cytokine, platelet-derived growth factor (PDGF)-BB, promoted vessel formation both in vitro and vivo. PDGF-BB was also found to enhance the expression of RUNX1 in CRC cell lines, and promote its migration and invasion in vitro. A positive feedback loop of RUNX1 and PDGF-BB was thus formed. In conclusion, our data suggest that RUNX1 promotes CRC angiogenesis by regulating M2 macrophages during the complex crosstalk between tumor cells and TAMs. This observation provides a potential combined therapy strategy targeting RUNX1 and TAMs-related PDGF-BB in CRC.
Collapse
Affiliation(s)
- Xuxue Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haonan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kaiwen Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- The First School of Clinical Medicine), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weize Li
- The First School of Clinical Medicine), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiqing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
- Pazhou Lab, Guangzhou, Guangdong, China.
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
23
|
Zhang Z, Song Y, Zhang X, Wang S, Jia Z, Wang L, Wang C, Wang X, Mao J. Optimized new Shengmai powder ameliorates myocardial fibrosis in rats with heart failure by inhibition of the MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117210. [PMID: 37739104 DOI: 10.1016/j.jep.2023.117210] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Optimized New Shengmai Powder (ONSMP) is a traditional Chinese medicine (TCM) formula for heart failure treatment. MAPK signaling pathway is the key driver of myocardial fibrosis in heart failure. However, the mechanism of ONSMP on myocardial fibrosis and MAPK signaling pathway remains unclear. AIM OF THE STUDY To evaluate the effect of ONSMP against myocardial fibrosis in heart failure and the underlying mechanisms. MATERIALS AND METHODS Firstly, UHPLC-Q-Exactive-MS/MS was used to identify the active components in ONSMP. Secondly, a rat model of heart failure was established by ligating the left anterior descending branch of the coronary artery. After four weeks of intragastric administration of ONSMP, we used various classic tests, including echocardiography, exhaustive swimming, cardiopulmonary coefficient, heart failure markers, and cardiac pathological section, to assess the prescription's anti-myocardial fibrosis in heart failure properties. AGEs, Ang Ⅱ, VEGF, CTGF, and TGFβ levels in rat serum were quantified using ELISA. The positive expression of p-ERK1/2 and p-JNK1/2 of rat myocardium was determined immunohistochemical. The protein and mRNA levels of genes involved in the MAPK signaling pathway and myocardial fibrosis were measured using western blotting or real-time PCR. RESULTS The main components of ONSMP that regulate the MAPK signaling pathway are isorhamnetin, kaempferol, quercetin, and tanshinone ⅡA. ONSMP ameliorated cardiac function and exercise tolerance and reduced cardiopulmonary coefficient, heart failure marker levels, and myocardial fibrosis in the heart failure rats. In addition, ONSMP diminished the serum MAPK pathway activator levels, positive expression level of p-ERK1/2 and p-JNK1/2, protein and mRNA levels of components of the MAPK signaling pathway in the myocardial tissue of heart failure rat, indicating that it inhibits MAPK signaling pathway. CONCLUSIONS ONSMP delayed heart failure by inhibiting myocardial fibrosis via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Yuwei Song
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Xuan Zhang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Shuai Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Zhuangzhuang Jia
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Lin Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Ci Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Xianliang Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Jingyuan Mao
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| |
Collapse
|
24
|
Tu R, Kang Y, Pan Y, Da Y, Ren D, Zhang R, Cai Z, Liu Y, Xu J, Ma J, Zhou Z, Yin S, Li X, Zhang P, Zhang Q, Wang J, Lu X, Zhang C. USP29 activation mediated by FUBP1 promotes AURKB stability and oncogenic functions in gastric cancer. Cancer Cell Int 2024; 24:33. [PMID: 38233848 PMCID: PMC10792871 DOI: 10.1186/s12935-024-03224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Gastric cancer is a highly prevalent cancer type and the underlying molecular mechanisms are not fully understood. Ubiquitin-specific peptidase (USP) 29 has been suggested to regulate cell fate in several types of cancer, but its potential role in gastric carcinogenesis remains unclear. METHODS The expression of USP29 in normal and gastric cancer tissues was analyzed by bioinformatics analysis, immunohistochemistry and immunoblot. Gene overexpression, CRISPR-Cas9 technology, RNAi, and Usp29 knockout mice were used to investigate the roles of USP29 in cell culture, xenograft, and benzo[a]pyrene (BaP)-induced gastric carcinogenesis models. We then delineated the underlying mechanisms using mass spectrometry, co-immunoprecipitation (Co-IP), immunoblot, ubiquitination assay, chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and luciferase assays. RESULTS In this study, we found that USP29 expression was significantly upregulated in gastric cancers and associated with poor patient survival. Ectopic expression of USP29 promoted, while depletion suppressed the tumor growth in vitro and in vivo mouse model. Mechanistically, transcription factor far upstream element binding protein 1 (FUBP1) directly activates USP29 gene transcription, which then interacts with and stabilizes aurora kinase B (AURKB) by suppressing K48-linked polyubiquitination, constituting a FUBP1-USP29-AURKB regulatory axis that medicates the oncogenic role of USP29. Importantly, systemic knockout of Usp29 in mice not only significantly decreased the BaP-induced carcinogenesis but also suppressed the Aurkb level in forestomach tissues. CONCLUSIONS These findings uncovered a novel FUBP1-USP29-AURKB regulatory axis that may play important roles in gastric carcinogenesis and tumor progression, and suggested that USP29 may become a promising drug target for cancer therapy.
Collapse
Affiliation(s)
- Rongfu Tu
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China.
| | - Ye Kang
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China
| | - Yiwen Pan
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanyan Da
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Doudou Ren
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China
| | - Ru Zhang
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China
| | - Zeqiong Cai
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China
| | - Yijia Liu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Junpeng Ma
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Zhiyong Zhou
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Shupeng Yin
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Xiaozhuang Li
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Peng Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China
| | - Qi Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingchao Wang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chengsheng Zhang
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Xi'an, China.
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China.
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 DongYue Dadao, Nanchang, 330209, China.
| |
Collapse
|
25
|
Zhu W, Liu C, Tan C, Zhang J. Predictive biomarkers of disease progression in idiopathic pulmonary fibrosis. Heliyon 2024; 10:e23543. [PMID: 38173501 PMCID: PMC10761784 DOI: 10.1016/j.heliyon.2023.e23543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial disease that cannot be cured, and treatment options for IPF are very limited. Early diagnosis, close monitoring of disease progression, and timely treatment are therefore the best options for patients due to the irreversibility of IPF. Effective markers help doctors judge the development and prognosis of disease. Recent research on traditional biomarkers (KL-6, SP-D, MMP-7, TIMPs, CCL18) has provided novel ideas for predicting disease progression and prognosis. Some emerging biomarkers (HE4, GDF15, PRDX4, inflammatory cells, G-CSF) also provide more possibilities for disease prediction. In addition to markers in serum and bronchoalveolar lavage fluid (BALF), some improvements related to the GAP model and chest HRCT also show good predictive ability for disease prognosis.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, China
| | - Chunquan Liu
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, China
| | - Chunting Tan
- Department of Pulmonary and Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, China
| | - Jie Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, China
| |
Collapse
|
26
|
Gao X, Long R, Qin M, Zhu W, Wei L, Dong P, Chen J, Luo J, Feng J. Gab2 promotes the growth of colorectal cancer by regulating the M2 polarization of tumor‑associated macrophages. Int J Mol Med 2024; 53:3. [PMID: 37937666 PMCID: PMC10688767 DOI: 10.3892/ijmm.2023.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are pivotal components in colorectal cancer (CRC) progression, markedly influencing the tumor microenvironment through their polarization into the pro‑inflammatory M1 or pro‑tumorigenic M2 phenotypes. Recent studies have highlighted that the Grb2‑associated binder 2 (Gab2) is a critical gene involved in the development of various types of tumor, including CRC. However, the precise role of Gab2 in mediating TAM polarization remains incompletely elucidated. In the present study, it was discovered that Gab2 was highly expressed within CRC tissue TAMs, and was associated with a poor prognosis of patients with CRC. Functionally, it was identified that the tumor‑conditioned medium (TCM) induced Gab2 expression, facilitating the TAMs towards an M2‑like phenotype polarization. Of note, the suppression of Gab2 expression using shRNA markedly inhibited the TCM‑induced expression of M2‑associated molecules, without affecting M1‑type markers. Furthermore, the xenotransplantation model demonstrated that Gab2 deficiency in TAMs inhibited tumor growth in the mouse model of CRC. Mechanistically, Gab2 induced the M2 polarization of TAMs by regulating the AKT and ERK signaling pathways, promoting CRC growth and metastasis. In summary, the present study study elucidates that decreasing Gab2 expression hinders the transition of TAMs towards the M2 phenotype, thereby suppressing the growth of CRC. The exploration of the regulatory mechanisms of Gab2 in TAM polarization may enhance the current understanding of the core molecular pathways of CRC development and may thus provide a foundation for the development of novel immunotherapeutic strategies targeted against TAMs.
Collapse
Affiliation(s)
- Xuehan Gao
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Runying Long
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Ming Qin
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Wenfang Zhu
- Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Linna Wei
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Pinzhi Dong
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jin Chen
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Junmin Luo
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jihong Feng
- Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
27
|
Thapa R, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Saleem S, Khan R, Altwaijry N, Dureja H, Singh SK, Dua K. A review of Glycogen Synthase Kinase-3 (GSK3) inhibitors for cancers therapies. Int J Biol Macromol 2023; 253:127375. [PMID: 37839597 DOI: 10.1016/j.ijbiomac.2023.127375] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The intricate molecular pathways governing cancer development and progression have spurred intensive investigations into novel therapeutic targets. Glycogen Synthase Kinase-3 (GSK3), a complex serine/threonine kinase, has emerged as a key player with intricate roles in various cellular processes, including cell proliferation, differentiation, apoptosis, and metabolism. Harnessing GSK3 inhibitors as potential candidates for cancer therapy has garnered significant interest due to their ability to modulate key signalling pathways that drive oncogenesis. The review encompasses a thorough examination of the molecular mechanisms underlying GSK3's involvement in cancer progression, shedding light on its interaction with critical pathways such as Wnt/β-catenin, PI3K/AKT, and NF-κB. Through these interactions, GSK3 exerts influence over tumour growth, invasion, angiogenesis, and metastasis, rendering it an attractive target for therapeutic intervention. The discussion includes preclinical and clinical studies, showcasing the inhibitors efficacy across a spectrum of cancer types, including pancreatic, ovarian, lung, and other malignancies. Insights from recent studies highlight the potential synergistic effects of combining GSK3 inhibitors with conventional chemotherapeutic agents or targeted therapies, opening avenues for innovative combinatorial approaches. This review provides a comprehensive overview of the current state of research surrounding GSK3 inhibitors as promising agents for cancer treatment.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
28
|
Patysheva MR, Prostakishina EA, Budnitskaya AA, Bragina OD, Kzhyshkowska JG. Dual-Specificity Phosphatases in Regulation of Tumor-Associated Macrophage Activity. Int J Mol Sci 2023; 24:17542. [PMID: 38139370 PMCID: PMC10743672 DOI: 10.3390/ijms242417542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.
Collapse
Affiliation(s)
- Marina R. Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Elizaveta A. Prostakishina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Arina A. Budnitskaya
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| | - Olga D. Bragina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia G. Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Mannheim Institute of Innate Immunosciences (MI3), University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 69117 Mannheim, Germany
| |
Collapse
|
29
|
Hermawan A, Wulandari F, Yudi Utomo R, Asmah Susidarti R, Kirihata M, Meiyanto E. Transcriptomics analyses reveal the effects of Pentagamaboronon-0-ol on PI3K/Akt and cell cycle of HER2+ breast cancer cells. Saudi Pharm J 2023; 31:101847. [PMID: 38028209 PMCID: PMC10652209 DOI: 10.1016/j.jsps.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Monoclonal antibodies and targeted therapies against HER2+ breast cancer has improved overall and disease-free survival in patients; however, encountering drug resistance causes recurrence, necessitating the development of newer HER2-targeted medications. A curcumin analog PGB-0-ol showed most cytotoxicity against HCC1954 HER2+ breast cancer cells than against other subtypes of breast cancer cells. Objective Here, we employed next-generation sequencing technology to elucidate the molecular mechanism underlying the effect of PGB-0-ol on HCC1954 HER2+ breast cancer cells. Methods The molecular mechanism underlying the action of PGB-0-ol on HCC1954 HER2+ breast cancer cells was determined using next-generation sequencing technologies. Additional bioinformatics studies were performed, including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, disease-gene, and drug-gene associations, network topology analysis (NTA), and gene set enrichment analysis (GSEA). Results We detected 2,263 differentially expressed genes (DEGs) (1,459 upregulated and 804 downregulated) in the PGB-0-ol- and DMSO-treated HCC1954 cells. KEGG enrichment data revealed the control of phosphatidylinositol signaling system, and ErbB signaling following PGB-0-ol treatment. Gene ontology (GO) enrichment analysis demonstrated that these DEGs governed cell cycle, participated in the mitotic spindle and nuclear membrane, and controlled kinase activity at the molecular level. According to the NTA data for GO enrichment, GSEA data for KEGG, drug-gene and disease-gene, PGB-0-ol regulated PI3K/Akt signaling and cell cycle in breast cancer. Overall, our investigation revealed the transcriptomic profile of PGB-0-ol-treated HCC1954 breast cancer cells following PGB-0-ol therapy. Bioinformatics analyses showed that PI3K/Akt signaling and cell cycle was modulated. However, further studies are required to validate the findings of this study.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Febri Wulandari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Ratna Asmah Susidarti
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Mitsunori Kirihata
- Research Center for BNCT, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Edy Meiyanto
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
30
|
Li Y, Tang D, Zhang J, Ou W, Sun X, Yang Q, Wu J. LncRNA SPRY4-IT1 regulates 16HBE cell malignant transformation induced by particulate matter through DUSP6-ERK1/2-Chk1 signaling pathway. CHEMOSPHERE 2023; 344:140358. [PMID: 37797900 DOI: 10.1016/j.chemosphere.2023.140358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Particulate matter (PM), one of the most serious air contaminants, could easily pass through the airway and deposit at the deep alveoli. Thus, it might trigger respiratory diseases like inflammation, asthma and lung cancer on human. Long non-coding RNAs (lncRNAs) are considered as important regulator in promotion and progression of diverse cancers. However, the molecular mechanism of lncRNAs mediating PM-induced lung carcinogenesis remains unclear. In this study, we established a 16HBE malignant transformed cell induced by PM (Cells were treated with 20 μg/ml PM, which named PM-T cells) and explored the roles and mechanisms of lncRNAs in the malignant transformation induced by PM. Compared with 16HBE cells, various biological functions were changed in PM-T cells, such as cell proliferation, migration, cell cycle and apoptosis. LncRNA SPRY4-IT1 was significant down-regulated expression and associated with these biological effects. Our results showed that lncRNA SPRY4-IT1 overexpression reversed these functional changes mentioned above. The further studies indicated that lncRNA SPRY4-IT1 involved in PM-induced cell transformation by modulating Chk1 expression via negative regulation of DUSP6-ERK1/2. In conclusion, our studies suggested that lncRNA SPRY4-IT1 played the role as a tumor suppressor gene and might mediate 16HBE cells malignant transformation induced by PM through regulating DUSP6-ERK1/2-Chk1 signaling pathway.
Collapse
Affiliation(s)
- Yanli Li
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Dan Tang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Jian Zhang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Wanting Ou
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Xuan Sun
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Qiaoyuan Yang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Jianjun Wu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
31
|
Liu Y, An Y, Li G, Wang S. Regulatory mechanism of macrophage polarization based on Hippo pathway. Front Immunol 2023; 14:1279591. [PMID: 38090595 PMCID: PMC10715437 DOI: 10.3389/fimmu.2023.1279591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Macrophages are found to infiltrate and migrate in a large number of Tumor-associated macrophages (TMEs) and other macrophages in the microenvironment of tumors and related diseases, and undergo phenotypic changes in response to a variety of cytokines, mainly including the primary phenotype M2 and the anti-tumor phenotype M1. The Hippo signaling pathway affects the development of cancer and other diseases through various biological processes, such as inhibition of cell growth. In this review, we focus on immune cells within the microenvironment of tumors and other diseases, and the role of the Hippo pathway in tumors on macrophage polarization in the tumor microenvironment (TME) and other diseases.
Collapse
Affiliation(s)
- Yuanqing Liu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yina An
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gebin Li
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuaiyu Wang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Luo Y, Xie Y, Wu D, Wang B, Lu H, Wang Z, Quan Y, Han B. AL360181.1 promotes proliferation and invasion in colon cancer and is one of ten m6A-related lncRNAs that predict overall survival. PeerJ 2023; 11:e16123. [PMID: 37953780 PMCID: PMC10638913 DOI: 10.7717/peerj.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/27/2023] [Indexed: 11/14/2023] Open
Abstract
Background N6-methyladenosine (m6A) exerted a pivotal role in colon cancer. Nevertheless, the long non-coding RNAs (lncRNAs) associated with this process have yet to be elucidated. Methods The open-access data used for analysis was downloaded from The Cancer Genome Atlas (TCGA) database for analysis, employing the R software for computational evaluations. The RNA level of specific molecules was assessed using the quantitative real-time PCR. CCK8, colony formation and transwell assay were used to evaluate the proliferation, invasion and migration ability of colon cancer cells. Results Here, we identified the m6A regulators from TCGA data and subsequently pinpointed lncRNAs with a -Cor- > 0.3 and P < 0.05, categorizing them as m6A-associated lncRNAs. Moreover, we formulated a prognosis signature rooted in ten m6A-related lncRNAs, consisting of AL360181.1, PCAT6, SNHG26, AC016876.1, AC104667.2, AL114730.3, LINC02257, AC147067.1, AP006621.3 and AC009237.14. This signature exhibited notable predictive accuracy in gauging patient survival. Immune-related evaluations revealed varied immune cell infiltration patterns across different risk groups, with our findings suggesting superior immunotherapy response in low-risk patients. Biological enrichment analysis indicated that the high-risk patients had a higher activity of multiple carcinogenic pathways, including glycolysis. The previously unreported lncRNA, AL360181.1, displayed a connection to glycolytic activity and diminished survival rates, warranting further investigation. The result indicated that AL360181.1 was correlated with more aggressive clinical characteristics. Immune infiltration assessments found AL360181.1 to have a positive correlation with Tcm infiltration, but an inverse relationship with entities like Th2 cells, T cells, neutrophils and macrophages. Biological enrichment analysis indicated that the pathways of WNT/β-catenin, pancreas beta cells, hedgehog signaling and some metabolism pathways were upregulated in high AL360181.1 patients. In vitro experiments showed that AL360181.1 was upregulated in the colon cancer cells. Moreover, AL360181.1 significantly promotes the proliferation, invasion and migration of colon cancer cells. Conclusions Our results can provide direction for future studies on m6A-related lncRNA in colon cancer.
Collapse
Affiliation(s)
- Yi Luo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yayun Xie
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dejun Wu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Bingyi Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Helei Lu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiqiang Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Quan
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Han
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Zheng X, Jiang Q, Han M, Ye F, Wang M, Qiu Y, Wang J, Gao M, Hou F, Wang H. FBXO38 regulates macrophage polarization to control the development of cancer and colitis. Cell Mol Immunol 2023; 20:1367-1378. [PMID: 37821621 PMCID: PMC10616184 DOI: 10.1038/s41423-023-01081-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/27/2023] [Indexed: 10/13/2023] Open
Abstract
Macrophages are highly plastic cells that differentially regulate multiple pathological conditions, including cancer and autoimmune diseases. In response to various stimuli, macrophages activate different intrinsic signaling pathways and polarize into distinct macrophage subsets. We aimed to identify key new effectors that could control macrophage polarization and impact the development of cancer or colitis. Following treatment with the supernatants of tumor cells, macrophages showed an upregulation in Fbxo38 expression. Subsequently, we further identified that FBXO38 promotes macrophage immunosuppressive function by upregulating the expression of M2-like genes via MAPK and IRF4 signaling without affecting M1-like macrophage polarization. Deletion of Fbxo38 in macrophages was found to block tumor development and protect against DSS-induced colitis. Considering the distinct regulation of tumor development by FBXO38 in T cells and macrophages, we suggest that a comprehensive understanding of FBXO38 function in different cell types is critical for its further translational usage.
Collapse
Affiliation(s)
- Xin Zheng
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi Jiang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Mingshun Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fenfen Ye
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Mingchang Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jialu Wang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Minxia Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fajian Hou
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongyan Wang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
34
|
Zhang G, Gao Z, Guo X, Ma R, Wang X, Zhou P, Li C, Tang Z, Zhao R, Gao P. CAP2 promotes gastric cancer metastasis by mediating the interaction between tumor cells and tumor-associated macrophages. J Clin Invest 2023; 133:e166224. [PMID: 37707957 PMCID: PMC10617780 DOI: 10.1172/jci166224] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
The metastasis of cancer cells is the main cause of death in patients with gastric cancer (GC). Mounting evidence has demonstrated the vital importance of tumor-associated macrophages in promoting tumor invasion and metastasis; however, the interaction between tumor cells and macrophages in GC is largely unknown. In this study, we demonstrated that cyclase-associated protein 2 (CAP2) was upregulated in GC, especially in cases with lymph node metastasis, and was correlated with a poorer prognosis. The transcription factor JUN directly bound to the promoter region of CAP2 and activated CAP2 transcription. The N-terminal domain of CAP2 bound to the WD5 to WD7 domains of receptor for activated C kinase 1 (RACK1) and induced M2 macrophage polarization by activating the SRC/focal adhesion kinase (FAK)/ERK signaling pathway, which resulted in IL-4 and IL-10 secretion. Polarized M2 macrophages induced premetastatic niche formation and promoted GC metastasis by secreting TGFB1, which created a TGFB1/JUN/CAP2 positive-feedback loop to activate CAP2 expression continuously. Furthermore, we identified salvianolic acid B as an inhibitor of CAP2, which effectively inhibited GC cell invasion capabilities by suppressing the SRC/FAK/ERK signaling pathway. Our data suggest that CAP2, a key molecule mediating the interaction between GC cells and tumor-associated macrophages, may be a promising therapeutic target for suppressing tumor metastasis in GC.
Collapse
|
35
|
Zhang Y, Jiang M, Du G, Zhong X, He C, Qin M, Hou Y, Liu R, Sun X. An antigen self-assembled and dendritic cell-targeted nanovaccine for enhanced immunity against cancer. Acta Pharm Sin B 2023; 13:3518-3534. [PMID: 37655327 PMCID: PMC10465870 DOI: 10.1016/j.apsb.2022.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
The rise of nanotechnology has opened new horizons for cancer immunotherapy. However, most nanovaccines fabricated with nanomaterials suffer from carrier-related concerns, including low drug loading capacity, unpredictable metabolism, and potential systemic toxicity, which bring obstacles for their clinical translation. Herein, we developed an antigen self-assembled nanovaccine, which was resulted from a simple acryloyl modification of the antigen to induce self-assembly. Furthermore, a dendritic cell targeting head mannose monomer and a mevalonate pathway inhibitor zoledronic acid (Zol) were integrated or absorbed onto the nanoparticles (denoted as MEAO-Z) to intensify the immune response. The synthesized nanovaccine with a diameter of around 70 nm showed successful lymph node transportation, high dendritic cell internalization, promoted costimulatory molecule expression, and preferable antigen cross-presentation. In virtue of the above superiorities, MEAO-Z induced remarkably higher titers of serum antibody, stronger cytotoxic T lymphocyte immune responses and IFN-γ secretion than free antigen and adjuvants. In vivo, MEAO-Z significantly suppressed EG7-OVA tumor growth and prolonged the survival time of tumor-bearing mice. These results indicated the translation promise of our self-assembled nanovaccine for immune potentiation and cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofang Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ming Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yingying Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Li X, Zhou Y, Jiang Q, Huang J, Liu Z, Li Y, Guo G. A novel scoring model based on RNA modification "writers" can predict the prognosis and guide immunotherapy in gastric cancer. Funct Integr Genomics 2023; 23:162. [PMID: 37188931 DOI: 10.1007/s10142-023-01098-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
Although extensive research has been carried out on the epigenetic regulation of single RNA modifications in gastric cancer, little is known regarding the crosstalk of four major RNA adenosine modifications, namely, m6A, m1A, alternative polyadenylation and adenosine-to-inosine RNA editing. By analyzing 26 RNA modification "writers" in 1750 gastric cancer samples, we creatively constructed a scoring model called the "Writers" of the RNA Modification Score (WRM_Score), which was able to quantify the RNA modification subtypes of individual patients. In addition, we explored the relationship between WRM_Score and transcriptional and posttranscriptional regulation, tumor microenvironment, clinical features and molecular subtypes. We constructed an RNA modification scoring model including two different subgroups: WRM_Score_low and WRM_Score_high. The former was associated with survival benefit and good efficacy of immune checkpoint inhibitors (ICIs) due to gene repair and immune activation, while the latter was related to poor prognosis and bad efficacy of ICIs because of stromal activation and immunosuppression. The WRM score based on immune and molecular characteristics of the RNA modification pattern is a reliable predictor of the prognosis of gastric cancer and the therapeutic efficacy of immune checkpoint inhibitors in gastric cancer.
Collapse
Affiliation(s)
- Xujia Li
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yixin Zhou
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qi Jiang
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jinsheng Huang
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yongqiang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Guifang Guo
- VIP Department, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
37
|
Zhang Z, Chen Y, Zheng L, Du J, Wei S, Zhu X, Xiong JW. A DUSP6 inhibitor suppresses inflammatory cardiac remodeling and improves heart function after myocardial infarction. Dis Model Mech 2023; 16:285836. [PMID: 36478044 PMCID: PMC9789401 DOI: 10.1242/dmm.049662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (MI) results in loss of cardiomyocytes and abnormal cardiac remodeling with severe inflammation and fibrosis. However, how cardiac repair can be achieved by timely resolution of inflammation and cardiac fibrosis remains incompletely understood. Our previous findings have shown that dual-specificity phosphatase 6 (DUSP6) is a regeneration repressor from zebrafish to rats. In this study, we found that intravenous administration of the DUSP6 inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) improved heart function and reduced cardiac fibrosis in MI rats. Mechanistic analysis revealed that BCI attenuated macrophage inflammation through NF-κB and p38 signaling, independent of DUSP6 inhibition, leading to the downregulation of various cytokines and chemokines. In addition, BCI suppressed differentiation-related signaling pathways and decreased bone-marrow cell differentiation into macrophages through inhibiting DUSP6. Furthermore, intramyocardial injection of poly (D, L-lactic-co-glycolic acid)-loaded BCI after MI had a notable effect on cardiac repair. In summary, BCI improves heart function and reduces abnormal cardiac remodeling by inhibiting macrophage formation and inflammation post-MI, thus providing a promising pro-drug candidate for the treatment of MI and related heart diseases. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zongwang Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Yang Chen
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Jianyong Du
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Shicheng Wei
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Authors for correspondence (; )
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Authors for correspondence (; )
| |
Collapse
|
38
|
Shen Y, Chen JX, Li M, Xiang Z, Wu J, Wang YJ. Role of tumor-associated macrophages in common digestive system malignant tumors. World J Gastrointest Oncol 2023; 15:596-616. [PMID: 37123058 PMCID: PMC10134211 DOI: 10.4251/wjgo.v15.i4.596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Many digestive system malignant tumors are characterized by high incidence and mortality rate. Increasing evidence has revealed that the tumor microenvironment (TME) is involved in cancer initiation and tumor progression. Tumor-associated macrophages (TAMs) are a predominant constituent of the TME, and participate in the regulation of various biological behaviors and influence the prognosis of digestive system cancer. TAMs can be mainly classified into the antitumor M1 phenotype and protumor M2 phenotype. The latter especially are crucial drivers of tumor invasion, growth, angiogenesis, metastasis, immunosuppression, and resistance to therapy. TAMs are of importance in the occurrence, development, diagnosis, prognosis, and treatment of common digestive system malignant tumors. In this review, we summarize the role of TAMs in common digestive system malignant tumors, including esophageal, gastric, colorectal, pancreatic and liver cancers. How TAMs promote the development of tumors, and how they act as potential therapeutic targets and their clinical applications are also described.
Collapse
Affiliation(s)
- Yue Shen
- Department of Dermatology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Jia-Xi Chen
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ming Li
- Department of Pathology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Yi-Jin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
39
|
Li Y, Shi Y, Zhang X, Li P, Ma L, Hu P, Xu L, Dai Y, Xia S, Qiu H. FGFR2 upregulates PAI-1 via JAK2/STAT3 signaling to induce M2 polarization of macrophages in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166665. [PMID: 36781088 DOI: 10.1016/j.bbadis.2023.166665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is frequently activated by overexpression or mutation, and an abnormal fibroblast growth factor (FGF)/FGFR signaling pathway is associated with the occurrence, development, and poor prognosis of colorectal cancer (CRC). Our preliminary analysis found that plasminogen activator inhibitor-1 (PAI-1) expression may be related to FGF/FGFR signaling, however, their role in the tumor immune microenvironment remains unclear. In this study, we observed markedly higher PAI-1 expression in CRC patients with poor survival rates. PAI-1 is regulated by FGF/FGFR2 in colon cancer cells and is involved in M2 macrophage polarization. Mechanistically, inhibiting the JAK2/STAT3 signaling pathway could cause PAI-1 downregulation. Furthermore, the activation of phosphorylated STAT3 upregulated PAI-1. In vivo, FGFR2 overexpression in tumor-bearing mouse models suggested that a PAI-1 inhibitor could rescue FGFR2/PAI-1 axis-induced M2 macrophage polarization, which leads to effective immune activity and tumor suppression. Moreover, the combination of a PAI-1 inhibitor and anti-PD-1 therapy exhibited superior antitumor activity in mice. These findings offer novel insights into the molecular mechanisms underlying tumor deterioration and provide potential therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Yiming Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yongkang Shi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiuyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Piao Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Pengbo Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Liang Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yuhong Dai
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
40
|
Tang Y, Hu S, Li T, Qiu X. Tumor cells-derived exosomal circVCP promoted the progression of colorectal cancer by regulating macrophage M1/M2 polarization. Gene 2023; 870:147413. [PMID: 37028610 DOI: 10.1016/j.gene.2023.147413] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is among the most frequent tumors of the digestive tract and the second leading cause of cancer death worldwide. Tumor-associated macrophages (TAMs) are one of the most critical immune cells in the tumor microenvironment, which closely interact with tumor cells to promote tumor incidence and progression. However, the precise mechanism of action between CRC cells and TAMs polarization is still being investigated. METHODS Transmission electronic microscopy (TEM), NanoSight and western blotting were used to characterize exosomes (Exo) isolated from the culture medium of CRC cells. The cellular uptake and internalization of Exo were detected by confocal laser scanning microscopy. M1/ M2 phenotype markers expression were examined by ELISA and flow cytometry. Cell migration, invasion and proliferation were determined by transwell and CCK-8 assay, respectively. A xenograft tumor model was established to explore the role of circVCP in vivo. The target genes of circVCP or miR-9-5p were predicted by StarBase2.0. The target association among miR-9-5p and circVCP or NRP1 was confirmed using the luciferase assay and RNA-pull down assay. RESULTS circVCP was highly accumulated in exosomes derived from plasma of CRC patients and CRC cells. Additionally, exosomal circVCP derived from CRC cells promoted cell proliferation, migration and invasion by regulating the miR-9-5p/NRP1 axis, and induced macrophage M2 polarization and inhibited macrophage M1 polarization. CONCLUSIONS Over-expressed exosomal circVCP promoted the progression of CRC by regulating macrophage M1/M2 polarization through miR-9-5p/NRP1 axis. CircVCP may be a diagnostic biomarker and potential target for CRC therapy.
Collapse
|
41
|
Lai W, Liao J, Li X, Liang P, He L, Huang K, Liang X, Wang Y. Characterization of the microenvironment in different immune-metabolism subtypes of cervical cancer with prognostic significance. Front Genet 2023; 14:1067666. [PMID: 36816023 PMCID: PMC9935837 DOI: 10.3389/fgene.2023.1067666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Immune cell infiltration and metabolic reprogramming may have great impact on the tumorigenesis and progression of malignancies. The interaction between these two factors in cervical cancer remains to be clarified. Here we constructed a gene set containing immune and metabolism related genes and we applied this gene set to molecular subtyping of cervical cancer. Methods: Bulk sequencing and single-cell sequencing data were downloaded from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database respectively. Immune and metabolism related genes were collected from Immport and Kyoto encyclopedia of genes and genomes (KEGG) database respectively. Unsupervised consensus clustering was performed to identify the molecular subtypes. Cibersort was applied to evaluate the immune cells infiltration status. Differential expression analysis and Gene set enrichment analysis (GSEA) were performed to characterize the molecular pattern of different subtypes. Multivariate Cox regression analysis was used for prognosis prediction model construction and receiver operating characteristic (ROC) curve was used for performance evaluation. The hub genes in the model were verified in single-cell sequencing dataset and clinical specimens. In vitro experiments were performed to validate the findings in our research. Results: Three subtypes were identified with prognostic implications. C1 subgroup was in an immunosuppressive state with activation of mitochondrial cytochrome P450 metabolism, C2 had poor immune cells infiltration and was characterized by tRNA anabolism, and the C3 subgroup was in an inflammatory state with activation of aromatic amino acid synthesis. The area under the ROC curve of the constructed model was 0.8, which showed better performance than clinical features. IMPDH1 was found to be significantly upregulated in tumor tissue and it was demonstrated that IMPDH1 could be a novel therapeutic target in vitro. Discussion: In summary, our findings suggested novel molecular subtypes of cervical cancer with distinct immunometabolic profiles and uncovered a novel therapeutic target.
Collapse
Affiliation(s)
- Wujiang Lai
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrong Liao
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Li
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peili Liang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqing He
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Keke Huang
- Department of Obstetrics, Shunde Hospital, The First People’s Hospital of Shunde, Southern Medical University, Foshan, Guangdong, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| | - Xiaomei Liang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| |
Collapse
|
42
|
Yang B, Wang L, Tian Z. Silencing of RhoC induces macrophage M1 polarization to inhibit migration and invasion in colon cancer via regulating the PTEN/FOXO1 pathway. Int J Exp Pathol 2023; 104:33-42. [PMID: 36576072 PMCID: PMC9845608 DOI: 10.1111/iep.12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 10/18/2022] [Indexed: 12/29/2022] Open
Abstract
Ras homologue family member C (RhoC) is an oncogene in diverse types of human cancers, whereas its regulatory mechanisms involving macrophage polarization is rarely investigated. This study is designed to explore the regulatory role of RhoC in colon cancer and the underlying molecular mechanisms involving macrophage polarization. We detected RhoC expression by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, and analysed the biological function of RhoC knockdown in CC cells by the MTT, wound healing and transwell assay. Macrophage polarization-associated markers, genes associated with migration, phosphatase and tensin homologue (PTEN) and forkhead box O (FOXO) were determined by qRT-PCR and western blot. The xenograft tumour mouse model was used to assess the role of RhoC in vivo. RhoC is highly expressed in CC cells. The cell viability, invasion and migration abilities of CC cells were reduced by knockdown of RhoC. RhoC knockdown promoted M1 polarization, inhibited M2 polarization and decreased levels of genes associated with migration (matrix metalloproteinase-2 and matrix metalloproteinase-9). Silencing of RhoC inhibited tumour growth and expression of genes associated with migration in the xenografted model. In addition, silencing of RhoC promoted PTEN/FOXO1 expression, and PTEN inhibitor (SF1670) reversed the inhibitory effects of RhoC silencing. We demonstrated that silencing of RhoC reduced CC cells invasion and migration, and tumour growth by suppressing M2 macrophage polarization via regulating the PTEN/FOXO1 pathway.
Collapse
Affiliation(s)
- Bin Yang
- Department of GastroenterologyHarrison International Peace HospitalHengshuiChina
| | - Lihua Wang
- Department of GastroenterologyHarrison International Peace HospitalHengshuiChina
| | - Zhiying Tian
- Department of GastroenterologyHarrison International Peace HospitalHengshuiChina
| |
Collapse
|
43
|
Ummarino A, Anfray C, Maeda A, Andón FT, Allavena P. In Vitro Methods to Evaluate Macrophage Polarization and Function in Cancer. Methods Mol Biol 2023; 2614:81-91. [PMID: 36587120 DOI: 10.1007/978-1-0716-2914-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor-associated macrophages (TAMs) play a key immunosuppressive role that limits the ability of the immune system to fight cancer and hinder the anti-tumoral efficacy of most treatments currently applied in the clinic. However, a key feature of macrophages is their phenotypical and functional plasticity, which called their attention as promising targets for therapeutic intervention based on their elimination or reprogramming toward M1-like cytotoxic effector cells, with anti-tumor functions. This polarization status of macrophages can be studied in terms of molecular markers and functional activities, using an appropriate combination of experimental methodologies, both in vitro and in vivo. Here we focus on describing in vitro protocols to isolate primary monocytes from buffy coats and to study macrophage phenotype and function, after exposure to new therapies, by a combination of flow cytometry, RT-PCR, and ELISA analysis. We also provide the methodology to evaluate in vitro the cytotoxic activity of treated macrophages toward cancer cells.
Collapse
Affiliation(s)
- Aldo Ummarino
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.,Humanitas University, Rozzano-Milano, Italy
| | - Clément Anfray
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano-Milano, Italy
| | - Akihiro Maeda
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Fernando Torres Andón
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.,Center for Research in Molecular Medicine & Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paola Allavena
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy. .,Humanitas University, Rozzano-Milano, Italy.
| |
Collapse
|
44
|
He Z, Wang J, Zhu C, Xu J, Chen P, Jiang X, Chen Y, Jiang J, Sun C. Exosome-derived FGD5-AS1 promotes tumor-associated macrophage M2 polarization-mediated pancreatic cancer cell proliferation and metastasis. Cancer Lett 2022; 548:215751. [PMID: 35718269 DOI: 10.1016/j.canlet.2022.215751] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Inflammatory molecules and exosomes are crucial for signal transduction between tumor-associated macrophages and tumor cells. IL-6, a key inflammatory molecule secreted by M2 macrophages after polarization, can mediate malignant progression of pancreatic cancer (PC). However, the functions and mechanisms of IL-6 and tumor-derived exosomes in tumor-associated macrophages and PC remain unclear. Transcriptome chip and quantitative reverse transcription PCR experiments indicated that FGD5-AS1 induced IL-6 and high FGD5-AS1 expression correlated with the poor prognosis in PC patients. RNA pulldown, mass spectrometry, and dual luciferase reporter assays were used to identify the mechanism of exosomal FGD5-AS1 in promoting PC progression and M2 macrophage polarization. FGD5-AS1 exerted cancer-promoting functions when co-cultured with M2 macrophages. PC-derived exosomal FGD5-AS1 stimulated M2 macrophage polarization by activating STAT3/NF-κB pathway. FGD5-AS1 interacts with p300, resulting in STAT3 acetylation, thus promoting nuclear localization and transcriptional activity of STAT3/NF-κB. These data indicated that PC cells generate FGD5-AS1-rich exosomes, which cause M2 macrophage polarization to promote the malignant behaviors of PC cells. Targeting exosomal FGD5-AS1 may provide a potential diagnosis and treatment strategy for PC.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, PR China
| | - Changhao Zhu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, PR China
| | - Peng Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Xueyi Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Yankun Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, PR China.
| | - Chengyi Sun
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China.
| |
Collapse
|
45
|
Luo Y, Tian G, Fang X, Bai S, Yuan G, Pan Y. Ferroptosis and Its Potential Role in Glioma: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants (Basel) 2022; 11:2123. [PMID: 36358495 PMCID: PMC9686959 DOI: 10.3390/antiox11112123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common intracranial malignant tumor, and the current main standard treatment option is a combination of tumor surgical resection, chemotherapy and radiotherapy. Due to the terribly poor five-year survival rate of patients with gliomas and the high recurrence rate of gliomas, some new and efficient therapeutic strategies are expected. Recently, ferroptosis, as a new form of cell death, has played a significant role in the treatment of gliomas. Specifically, studies have revealed key processes of ferroptosis, including iron overload in cells, occurrence of lipid peroxidation, inactivation of cysteine/glutathione antiporter system Xc- (xCT) and glutathione peroxidase 4 (GPX4). In the present review, we summarized the molecular mechanisms of ferroptosis and introduced the application and challenges of ferroptosis in the development and treatment of gliomas. Moreover, we highlighted the therapeutic opportunities of manipulating ferroptosis to improve glioma treatments, which may improve the clinical outcome.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guopeng Tian
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiang Fang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Shengwei Bai
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
46
|
Chang Z, Li R, Zhang J, An L, Zhou G, Lei M, Deng J, Yang R, Song Z, Zhong W, Qi D, Duan X, Li S, Sun B, Wu W. Distinct immune and inflammatory response patterns contribute to the identification of poor prognosis and advanced clinical characters in bladder cancer patients. Front Immunol 2022; 13:1008865. [PMID: 36389789 PMCID: PMC9646535 DOI: 10.3389/fimmu.2022.1008865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2023] Open
Abstract
Due to the molecular heterogeneity, most bladder cancer (BLCA) patients show no pathological responses to immunotherapy and chemotherapy yet suffer from their toxicity. This study identified and validated three distinct and stable molecular clusters of BLCA in cross-platform databases based on personalized immune and inflammatory characteristics. H&E-stained histopathology images confirmed the distinct infiltration of immune and inflammatory cells among clusters. Cluster-A was characterized by a favorable prognosis and low immune and inflammatory infiltration but showed the highest abundance of prognosis-related favorable immune cell and inflammatory activity. Cluster-B featured the worst prognosis and high immune infiltration, but numerous unfavorable immune cells exist. Cluster-C had a favorable prognosis and the highest immune and inflammatory infiltration. Based on machine learning, a highly precise predictive model (immune and inflammatory responses signature, IIRS), including FN1, IL10, MYC, CD247, and TLR2, was developed and validated to identify the high IIRS-score group that had a poor prognosis and advanced clinical characteristics. Compared to other published models, IIRS showed the highest AUC in 5 years of overall survival (OS) and a favorable predictive value in predicting 1- and 3- year OS. Moreover, IIRS showed an excellent performance in predicting immunotherapy and chemotherapy's response. According to immunohistochemistry and qRT-PCR, IIRS genes were differentially expressed between tumor tissues with corresponding normal or adjacent tissues. Finally, immunohistochemical and H&E-stained analyses were performed on the bladder tissues of 13 BLCA patients to further demonstrate that the IIRS score is a valid substitute for IIR patterns and can contribute to identifying patients with poor clinical and histopathology characteristics. In conclusion, we established a novel IIRS depicting an IIR pattern that could independently predict OS and acts as a highly precise predictive biomarker for advanced clinical characters and the responses to immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongqi Li
- Department of Hepatobiliary Surgery, Foshan Hospital of Traditional Chinese Medical, Foshan, Guangdong, China
| | - Jinhu Zhang
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyue An
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gaoxiang Zhou
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Lei
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiwang Deng
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Riwei Yang
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenfeng Song
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen Zhong
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Defeng Qi
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolu Duan
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shujue Li
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Department of Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenqi Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
47
|
Wang X, Cheng W, Zeng X, Dou X, Zhou Z, Pei Q. EPSTI1 as an immune biomarker predicts the prognosis of patients with stage III colon cancer. Front Immunol 2022; 13:987394. [PMID: 36330510 PMCID: PMC9623419 DOI: 10.3389/fimmu.2022.987394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The poor prognosis and heterogeneity of stage III colon cancer (CC) suggest the need for more prognostic biomarkers. The tumor microenvironment (TME) plays a crucial role in tumor progression. We aimed to explore novel immune infiltration-associated molecules that serve as potential prognostic and therapeutic targets. Methods TME immune scores were calculated using “TMEscore” algorithm. Differentially expressed genes between the high and low TME immune score groups were identified and further investigated through a protein-protein interaction network and the Molecular Complex Detection algorithm. Cox regression, meta-analysis and immunohistochemistry were applied to identify genes significantly correlated with relapse-free survival (RFS). We estimated immune infiltration using three different algorithms (TIMER 2.0, CIBERSORTx, and TIDE). Single-cell sequencing data were processed by Seurat software. Results Poor RFS was observed in the low TME immune score groups (log-rank P < 0.05). EPSTI1 was demonstrated to be significantly correlated with RFS (P < 0.05) in stage III CC. Meta-analysis comprising 547 patients revealed that EPSTI1 was a protective factor (HR = 0.79, 95% CI, 0.65-0. 96; P < 0.05)). More immune infiltrates were observed in the high EPSTI1 group, especially M1 macrophage and myeloid dendritic cell infiltration (P < 0.05). Conclusion The TME immune score is positively associated with better survival outcomes. EPSTI1 could serve as a novel immune prognostic biomarker for stage III CC.
Collapse
Affiliation(s)
- Xitao Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xingzhi Zeng
- Department of General Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, China
| | - Xiaolin Dou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyi Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Pei
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qian Pei,
| |
Collapse
|
48
|
Menegatti J, Nakel J, Stepanov YK, Caban KM, Ludwig N, Nord R, Pfitzner T, Yazdani M, Vilimova M, Kehl T, Lenhof HP, Philipp SE, Meese E, Fröhlich T, Grässer FA, Hart M. Changes of Protein Expression after CRISPR/Cas9 Knockout of miRNA-142 in Cell Lines Derived from Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14205031. [PMID: 36291816 PMCID: PMC9600116 DOI: 10.3390/cancers14205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The gene of the human tumor suppressive microRNA-142 (miR-142) carries mutations in about 20% of cases of diffuse large B-cell lymphoma (DLBCL). Because microRNAs post-transcriptionally regulate the protein expression of their cognate messenger RNA (mRNAs) targets, we determined the effect of miR-142 knockout on protein expression in two cell lines derived from DLBCL. We found a significant up-regulation of 52 proteins but also a down-regulation of 41 proteins upon miR-142 deletion. Knockout of a miRNA may be used to identify novel targets, and seed-sequence mutants of a miRNA unable to bind to their targets can be used to confirm potential novel targets. With this approach, we identify AKT1S1, CCNB1, LIMA1 and TFRC as novel targets of miR-142. As miR-142 is highly present in the miRNA processing RISC complexes, the deletion of this miRNA might result in its replacement by other miRNAs, thus introducing an additional layer of complexity regarding gene regulation. Abstract Background: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. Methods: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. Results: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. Conclusions: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.
Collapse
Affiliation(s)
- Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Jacqueline Nakel
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Youli K. Stepanov
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Karolina M. Caban
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Ruth Nord
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Thomas Pfitzner
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Maryam Yazdani
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Monika Vilimova
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Saarland University Medical School, 66421 Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Friedrich A. Grässer
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
- Correspondence: (F.A.G.); (M.H.)
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
- Correspondence: (F.A.G.); (M.H.)
| |
Collapse
|
49
|
Wang L, Wang Y, Bi J. In silico development and experimental validation of a novel 7-gene signature based on PI3K pathway-related genes in bladder cancer. Funct Integr Genomics 2022; 22:797-811. [PMID: 35896848 PMCID: PMC9550739 DOI: 10.1007/s10142-022-00884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/04/2022]
Abstract
Although bladder cancer (BLCA) is the 10th most common tumor worldwide, particularly practical markers and prognostic models that might guide therapy are needed. We used a non-negative matrix factorization algorithm to classify PI3K pathway-related genes into molecular subtypes. A weighted gene co-expression network analysis (WGCNA) was generated to identify co-expression modules. Univariate Cox regression, least absolute shrinkage sum selection operator-Cox regression, and multivariate Cox regression were utilized to develop a prognostic score model. Kaplan-Meier analysis and receiver operating characteristics were utilized to measure the model's effectiveness. A nomogram was constructed to improve the predictive ability of the model based on clinical parameters and risk. Decision curve analysis (DCA) was used to evaluate the nomogram. To evaluate the immune microenvironment, an estimate algorithm was used. Drug sensitivity was identified using the R package "pRRophetic." UM-UC-3 cell line was used to measure the effect of CDK6 in Western blotting, proliferation assay, and 5-ethynyl-20-deoxyuridine assay. Based on PI3K pathway-related genes, The Cancer Genome Atlas (TCGA)-BLCA and GSE32894 patients were divided into two subtypes. Twenty-five co-expression modules were established using the WGCNA algorithm. A seven-gene signature (CDK6, EGFR, IGF1, ITGB7, PDGFRA, RPS6, and VWF) demonstrated robustness in TCGA and GSE32894 datasets. Expression levels of CDK6 and risk positively correlated with M2 macrophages and IgG. Cisplatin, gemcitabine, methotrexate, mitomycin C, paclitaxel, and vinblastine are sensitive to different groups based on the expression of CDK6 and risk. Functional experiments suggested that CDK6 promotes the proliferation of UM-UC-3 cells. We constructed a seven-gene prognostic signature as an effective marker to predict the outcomes of BLCA patients and guide individual treatment.
Collapse
Affiliation(s)
- Linhui Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutao Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianbin Bi
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
50
|
Role of a mixed probiotic product, VSL#3, in the prevention and treatment of colorectal cancer. Eur J Pharmacol 2022; 930:175152. [PMID: 35835181 DOI: 10.1016/j.ejphar.2022.175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/09/2022]
Abstract
Colorectal cancer (CRC) is a multifactorial disease. The incidence of this type of cancer in younger patients has increased in recent years, and more strategies are needed to prevent and delay the progression of CRC. Probiotics play an adjunctive role in the prevention and treatment of CRC and can not only prevent the onset and delay the progression of disease but also reduce the side effects after the application of anti-cancer drugs. The anti-cancer effect of individual probiotics has been extensively studied, and the exact curative effect of various probiotics has been found, but the anti-cancer effect of mixed probiotics is still not well summarized. In this review, we discuss the positive effects of mixed probiotics on CRC and the related mechanisms of action, especially VSL#3 (VSL Pharmaceuticals, Inc., Gaithersburg, MD, USA), thus providing new ideas for the treatment of CRC. Moreover, we suggest the need to search for more therapeutic possibilities, especially via the research and application of synbiotics and postbiotics.
Collapse
|