1
|
Sun L, Zhao Q, Miao L. Combination therapy with oncolytic viruses for lung cancer treatment. Front Oncol 2025; 15:1524079. [PMID: 40248194 PMCID: PMC12003109 DOI: 10.3389/fonc.2025.1524079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related death globally. Despite various treatment options, adverse reactions and treatment resistance limit their clinical application and efficacy, therefore, new effective treatment options are still needed. Oncolytic viruses (OVs) are a new anti-cancer option. With a powerful anti-tumor effect, OVs are gradually being applied to the treatment of solid tumor. In clinical practice, we have found that in patients with NSCLC and SCLC, OVs combined with immune checkpoint inhibitors (ICI) treatment make tumor with poor response to immunotherapy become sensitive. Furthermore, studies have shown that OVs combined with chemotherapy, radiation therapy, and other immune approaches (such as anti-pd1 drugs) have synergistic effects. These studies suggest that OVs combined therapy may bring hope for the treatment of lung cancer patients. This article will review the current status and prospect of OVs combination therapy in the field of lung cancer treatment and summarizes the mechanism of action.
Collapse
Affiliation(s)
- Lei Sun
- Department of Pharmacy, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu, China
| | - Qi Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Liyun Miao
- Department of Pharmacy, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wang X, He J, Sun M, Wang S, Qu J, Shi H, Rao B. High-dose vitamin C as a metabolic treatment of cancer: a new dimension in the era of adjuvant and intensive therapy. Clin Transl Oncol 2025; 27:1366-1382. [PMID: 39259387 DOI: 10.1007/s12094-024-03553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024]
Abstract
The anti-cancer mechanism of High-dose Vitamin C (HDVC) is mainly to participate in the Fenton reaction, hydroxylation reaction, and epigenetic modification, which leads to the energy crisis, metabolic collapse, and severe peroxidation stress that results in the proliferation inhibition or death of cancer cells. However, the mainstream view is that HDVC does not significantly improve cancer treatment outcomes. In clinical work and scientific research, we found that some drugs or therapies can significantly improve the anti-cancer effects of HDVC, such as PD-1 inhibitors that can increase the anti-cancer effects of cancerous HDVC by nearly three times. Here, the adjuvant and intensive therapy and synergistic mechanisms including HDVC combined application of chemoradiotherapies multi-vitamins, targeted drugs, immunotherapies, and oncolytic virus are discussed in detail. Adjuvant and intensive therapy of HDVC can significantly improve the therapeutic effect of HDVC in the metabolic treatment of cancer, but more clinical evidence is needed to support its clinical application.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jia He
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Minmin Sun
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shiwan Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Hanping Shi
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
| |
Collapse
|
3
|
Zhao X, Li W, Sun Y, Ma J. Oncolytic senecavirus A in tumor immunotherapy: Mechanisms, progress, and future directions. Virology 2025; 603:110338. [PMID: 39667099 DOI: 10.1016/j.virol.2024.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Oncolytic virotherapy has emerged as a promising immunotherapy strategy against cancer. As the first picornavirus tested in humans for its oncolytic potential, Senecavirus A (SVA) possesses several advantageous features, including its small size, rapid replication, and ability to penetrate the vascular system of solid tumors, allowing for the specific targeting and lysis of tumor cells. Additionally, SVA does not integrate into the host genome, thus avoiding potential genomic damage, and it lacks oncogenes or other virulence genes. Importantly, no significant pathogenic effects have been observed in humans or companion animals. Due to its simple genetic structure, SVA is amenable to various genetic modifications, allowing it to carry exogenous genes to further enhance tumor therapy. This review summarizes current knowledge of SVA's mechanisms of action and its progress in oncolytic therapy research, while also addressing the challenges and future directions.
Collapse
Affiliation(s)
- Xiaoya Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Wenjie Li
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuan Sun
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
4
|
Zhang M, Lin W, Wang Q, Wang S, Song A, Wang Y, Li H, Sun Z. Oncolytic herpes simplex virus propagates tertiary lymphoid structure formation via CXCL10/CXCR3 to boost antitumor immunity. Cell Prolif 2025; 58:e13740. [PMID: 39219056 PMCID: PMC11693575 DOI: 10.1111/cpr.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Inducing tertiary lymphoid structure (TLS) formation can fuel antitumor immunity. It is necessary to create mouse models containing TLS to explore strategies of TLS formation. Oncolytic herpes simplex virus-1 (oHSV) exhibited intense effects in preclinical and clinical trials. However, the role of oHSV in TLS formation remains to be elucidated. Here, we observed the presence of TLS in 4MOSC1 and MC38 subcutaneous tumour models. Interestingly, oHSV evoked TLS formation, and increased infiltration of B cells and stem-like TCF1+CD8+ T cells proliferation. Mechanistically, oHSV increased the expression of TLS-related chemokines, along with upregulated CXCL10/CXCR3 to facilitate TLS formation. Notably, CXCL10 and CXCR3 were favourable prognostic factors for cancer patients, and closely related with immune cells infiltration. Inhibiting CXCL10/CXCR3 reduced TCF1+CD8+ T cells and granzyme B expression, and impaired oHSV-mediated TLS formation. Furthermore, oHSV-mediated TLS formation revealed superior response and survival rate when combined with αPD-1 treatment. Collectively, these findings indicate that oHSV recruits stem-like TCF1+CD8+ T cells through CXCL10/CXCR3 pathway to propagate TLS formation, and warrants future antitumor immunity development.
Collapse
Affiliation(s)
- Meng‐Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Wen‐Ping Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Qing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Yuan‐Yuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
- Department of Oral Maxillofacial‐Head Neck Oncology, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Zhi‐Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical SciencesWuhan UniversityWuhanChina
- Department of Oral Maxillofacial‐Head Neck Oncology, School & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
5
|
Fu Q, Luo Y, Li J, Zhang P, Tang S, Song X, Fu J, Liu M, Mo R, Wei M, Li H, Liu X, Wang T, Ni G. Improving the efficacy of cancer immunotherapy by host-defence caerin 1.1 and 1.9 peptides. Hum Vaccin Immunother 2024; 20:2385654. [PMID: 39193797 PMCID: PMC11364082 DOI: 10.1080/21645515.2024.2385654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer remains a major global health challenge. Immunotherapy has revolutionized the management of cancer, yet only a limited number of patients respond to such treatments. This is largely attributed to the immunosuppressive tumor microenvironment, which diminishes the effectiveness of immunotherapy. Recent studies have underscored the potential of naturally derived caerin 1 peptides, particularly caerin 1.1 and caerin 1.9, which exhibit strong antitumor effects and enhance the efficacy of immunotherapies in animal models. This review encapsulates the current research aimed at augmenting the effectiveness of immunotherapy, focusing on the role of caerin 1.1 and caerin 1.9 in boosting immunotherapeutic outcomes, elucidating possible mechanisms, and discussing their limitations and challenges.
Collapse
Affiliation(s)
- Quanlan Fu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Yuandong Luo
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Junjie Li
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
| | - Pingping Zhang
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Shuxian Tang
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xinyi Song
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiawei Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mengqi Liu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Rongmi Mo
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ming Wei
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Xiaosong Liu
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Guoying Ni
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Toader C, Tataru CP, Munteanu O, Covache-Busuioc RA, Serban M, Ciurea AV, Enyedi M. Revolutionizing Neuroimmunology: Unraveling Immune Dynamics and Therapeutic Innovations in CNS Disorders. Int J Mol Sci 2024; 25:13614. [PMID: 39769374 PMCID: PMC11728275 DOI: 10.3390/ijms252413614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Neuroimmunology is reshaping the understanding of the central nervous system (CNS), revealing it as an active immune organ rather than an isolated structure. This review delves into the unprecedented discoveries transforming the field, including the emerging roles of microglia, astrocytes, and the blood-brain barrier (BBB) in orchestrating neuroimmune dynamics. Highlighting their dual roles in both repair and disease progression, we uncover how these elements contribute to the intricate pathophysiology of neurodegenerative diseases, cerebrovascular conditions, and CNS tumors. Novel insights into microglial priming, astrocytic cytokine networks, and meningeal lymphatics challenge the conventional paradigms of immune privilege, offering fresh perspectives on disease mechanisms. This work introduces groundbreaking therapeutic innovations, from precision immunotherapies to the controlled modulation of the BBB using nanotechnology and focused ultrasound. Moreover, we explore the fusion of immune modulation with neuromodulatory technologies, underscoring new frontiers for personalized medicine in previously intractable diseases. By synthesizing these advancements, we propose a transformative framework that integrates cutting-edge research with clinical translation, charting a bold path toward redefining CNS disease management in the era of precision neuroimmunology.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section, Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
7
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
9
|
Guo M, Sun Y, Wang X, Wang Z, Yuan X, Chen X, Yuan X, Wang L. The MCIB Model: A Novel Theory for Describing the Spatial Heterogeneity of the Tumor Microenvironment. Int J Mol Sci 2024; 25:10486. [PMID: 39408814 PMCID: PMC11476373 DOI: 10.3390/ijms251910486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment (TME) can be regarded as a complex and dynamic microecosystem generated by the interactions of tumor cells, interstitial cells, the extracellular matrix, and their products and plays an important role in the occurrence, progression and metastasis of tumors. In a previous study, we constructed an IEO model (prI-, prE-, and pOst-metastatic niche) according to the chronological sequence of TME development. In this paper, to fill the theoretical gap in spatial heterogeneity in the TME, we defined an MCIB model (Metabolic, Circulatory, Immune, and microBial microenvironment). The MCIB model divides the TME into four subtypes that interact with each other in terms of mechanism, corresponding to the four major links of metabolic reprogramming, vascular remodeling, immune response, and microbial action, providing a new way to assess the TME. The combination of the MCIB model and IEO model comprehensively depicts the spatiotemporal evolution of the TME and can provide a theoretical basis for the combination of clinical targeted therapy, immunotherapy, and other comprehensive treatment modalities for tumors according to the combination and crosstalk of different subtypes in the MCIB model and provide a powerful research paradigm for tumor drug-resistance mechanisms and tumor biological behavior.
Collapse
Affiliation(s)
- Minghao Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Yinan Sun
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zikun Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| |
Collapse
|
10
|
Zhao J, Wang H, Chen J, Wang C, Gong N, Zhou F, Li X, Cao Y, Zhang H, Wang W, Zheng H, Zhang C. An oncolytic HSV-1 armed with Visfatin enhances antitumor effects by remodeling tumor microenvironment against murine pancreatic cancer. Biochem Biophys Res Commun 2024; 718:149931. [PMID: 38723415 DOI: 10.1016/j.bbrc.2024.149931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024]
Abstract
Oncolytic viruses (OVs) have shown potential in converting a "cold" tumor into a "hot" one and exhibit effectiveness in various cancer types. However, only a subset of patients respond to oncolytic virotherapy. It is important to understand the resistance mechanisms to OV treatment in pancreatic ductal adenocarcinoma (PDAC) to engineer oncolytic viruses. In this study, we used transcriptome RNA sequencing (RNA-seq) to identify Visfatin, which was highly expressed in the responsive tumors following OV treatment. To explore the antitumor efficacy, we modified OV-mVisfatin, which effectively inhibited tumor growth. For the first time, we revealed that Visfatin promoted the antitumor efficacy of OV by remodeling the tumor microenvironment, which involved enhancing CD8+ T cell and DC cell infiltration and activation, repolarizing macrophages towards the M1-like phenotype, and decreasing Treg cells using single-cell RNA sequencing (scRNA-seq) and flow cytometry. Furthermore, PD-1 blockade significantly enhanced OV-mVisfatin antitumor efficacy, offering a promising new therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Jiliang Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Han Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Jinhua Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Chunlei Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Nanxin Gong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Feilong Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Youjia Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China; Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Hao Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Cuizhu Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China; Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China.
| |
Collapse
|
11
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang K, Ma X, Qin JJ, Yan Y. Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance. Drug Resist Updat 2024; 75:101098. [PMID: 38833804 DOI: 10.1016/j.drup.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
12
|
Mahasa KJ, Ouifki R, de Pillis L, Eladdadi A. A Role of Effector CD 8 + T Cells Against Circulating Tumor Cells Cloaked with Platelets: Insights from a Mathematical Model. Bull Math Biol 2024; 86:89. [PMID: 38884815 DOI: 10.1007/s11538-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Cancer metastasis accounts for a majority of cancer-related deaths worldwide. Metastasis occurs when the primary tumor sheds cells into the blood and lymphatic circulation, thereby becoming circulating tumor cells (CTCs) that transverse through the circulatory system, extravasate the circulation and establish a secondary distant tumor. Accumulating evidence suggests that circulating effector CD 8 + T cells are able to recognize and attack arrested or extravasating CTCs, but this important antitumoral effect remains largely undefined. Recent studies highlighted the supporting role of activated platelets in CTCs's extravasation from the bloodstream, contributing to metastatic progression. In this work, a simple mathematical model describes how the primary tumor, CTCs, activated platelets and effector CD 8 + T cells participate in metastasis. The stability analysis reveals that for early dissemination of CTCs, effector CD 8 + T cells can present or keep secondary metastatic tumor burden at low equilibrium state. In contrast, for late dissemination of CTCs, effector CD 8 + T cells are unlikely to inhibit secondary tumor growth. Moreover, global sensitivity analysis demonstrates that the rate of the primary tumor growth, intravascular CTC proliferation, as well as the CD 8 + T cell proliferation, strongly affects the number of the secondary tumor cells. Additionally, model simulations indicate that an increase in CTC proliferation greatly contributes to tumor metastasis. Our simulations further illustrate that the higher the number of activated platelets on CTCs, the higher the probability of secondary tumor establishment. Intriguingly, from a mathematical immunology perspective, our simulations indicate that if the rate of effector CD 8 + T cell proliferation is high, then the secondary tumor formation can be considerably delayed, providing a window for adjuvant tumor control strategies. Collectively, our results suggest that the earlier the effector CD 8 + T cell response is enhanced the higher is the probability of preventing or delaying secondary tumor metastases.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | | | - Amina Eladdadi
- Division of Mathematical Sciences, The National Science Foundation, Alexandria, VA, USA
| |
Collapse
|
13
|
Lin C, Teng W, Tian Y, Li S, Xia N, Huang C. Immune landscape and response to oncolytic virus-based immunotherapy. Front Med 2024; 18:411-429. [PMID: 38453818 DOI: 10.1007/s11684-023-1048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024]
Abstract
Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Chaolong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Wenzhong Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yang Tian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
14
|
Yang H, Lei G, Deng Z, Sun F, Tian Y, Cheng J, Yu H, Li C, Bai C, Zhang S, An G, Yang P. An Engineered Influenza a Virus Expressing the Co-Stimulator OX40L as an Oncolytic Agent Against Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1-13. [PMID: 38223555 PMCID: PMC10787515 DOI: 10.2147/jhc.s410703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/24/2023] [Indexed: 01/16/2024] Open
Abstract
Background Oncolytic virus (OV) therapy has emerged as a promising novel form of immunotherapy. Moreover, an increasing number of studies have shown that the therapeutic efficacy of OV can be further improved by arming OVs with immune-stimulating molecules. Methods In this study, we used reverse genetics to produce a novel influenza A virus, termed IAV-OX40L, which contained the immune-stimulating molecule OX40L gene in the influenza virus nonstructural (NS1) protein gene. The oncolytic effect of IAV-OX40L was explored on hepatocellular carcinoma (HCC)HCC cells in vitro and in vivo. Results Hemagglutination titers of the IAV-OX40L virus were stably 27-28 in specific-pathogen-free chicken embryos. The morphology and size distribution of IAV-OX40L are similar to those of the wild-type influenza. Expression of OX40L protein was confirmed by Western blot and immunofluorescence. MTS assays showed that the cytotoxicity of IAV-OX40L was higher in HCC cells (HepG2 and Huh7) than in normal liver cells (MIHA) in a time- and dose-dependent manner in vitro. We found that intratumoral injection of IAV-OX40L reduced tumor growth and increased the survival rate of mice compared with PR8-treated controls in vivo. In addition, the pathological results showed that IAV-OX40L selectively destroyed tumor tissues without harming liver and lung tissues. CD4+ and CD8+ T cells of the IAV-OX40L group were significantly increased in the splenic lymphocytes of mice. Further validation confirmed that IAV-OX40L enhanced the immune response mainly by activating Th1-dominant immune cells, releasing interferon-γ and interleukin-2. Conclusion Taken together, our findings demonstrate the novel chimeric influenza OV could provide a potential therapeutic strategy for combating HCC and improve the effectiveness of virotherapy for cancer therapy.
Collapse
Affiliation(s)
- Hao Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- Department of Hepatological Surgery, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
- Department of Surgery, Taian City Central Hospital, Taian, People's Republic of China
| | - Guanglin Lei
- Department of Hepatological Surgery, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhuoya Deng
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Fang Sun
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yuying Tian
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jinxia Cheng
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongyu Yu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Cong Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Changqing Bai
- Department of Respiratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Guangdong, People's Republic of China
| | - Shaogeng Zhang
- Department of Hepatological Surgery, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Guangwen An
- Department of Pharmacy, No. 984 Hospital of the PLA, Beijing, People's Republic of China
| | - Penghui Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
15
|
Khushalani NI, Harrington KJ, Melcher A, Bommareddy PK, Zamarin D. Breaking the barriers in cancer care: The next generation of herpes simplex virus-based oncolytic immunotherapies for cancer treatment. Mol Ther Oncolytics 2023; 31:100729. [PMID: 37841530 PMCID: PMC10570124 DOI: 10.1016/j.omto.2023.100729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Since the US Food and Drug Administration first approved talimogene laherparepvec for the treatment of melanoma in 2015, the field of oncolytic immunotherapy (OI) has rapidly evolved. There are numerous ongoing clinical studies assessing the clinical activity of OIs across a wide range of tumor types. Further understanding of the mechanisms underlying the anti-tumor immune response has led to the development of OIs with improved immune-mediated preclinical efficacy. In this review, we discuss the key approaches for developing the next generation of herpes simplex virus-based OIs. Modifications to the viral genome and incorporation of transgenes to promote safety, tumor-selective replication, and immune stimulation are reviewed. We also review the advantages and disadvantages of intratumoral versus intravenous administration, summarize clinical evidence supporting the use of OIs as a strategy to overcome resistance to immune checkpoint blockade, and consider emerging opportunities to improve OI efficacy in the combination setting.
Collapse
|
16
|
Dan J, Cai J, Zhong Y, Wang C, Huang S, Zeng Y, Fan Z, Xu C, Hu L, Zhang J, Hu J, Liu Y, Su X, Zhu W, Yan G, Liang J, Lin Y. Oncolytic virus M1 functions as a bifunctional checkpoint inhibitor to enhance the antitumor activity of DC vaccine. Cell Rep Med 2023; 4:101229. [PMID: 37820722 PMCID: PMC10591054 DOI: 10.1016/j.xcrm.2023.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/03/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Although promising, dendritic cell (DC) vaccines still provide limited clinical benefits, mainly due to the immunosuppressive tumor microenvironment (TME) and the lack of tumor-associated antigens (TAAs). Oncolytic virus therapy is an ideal strategy to overcome immunosuppression and expose TAAs; therefore, they may work synergistically with DC vaccines. In this study, we demonstrate that oncolytic virus M1 (OVM) can enhance the antitumor effects of DC vaccines across diverse syngeneic mouse tumor models by increasing the infiltration of CD8+ effector T cells in the TME. Mechanically, we show that tumor cells counteract DC vaccines through the SIRPα-CD47 immune checkpoint, while OVM can downregulate SIRPα in DCs and CD47 in tumor cells. Since OVM upregulates PD-L1 in DCs, combining PD-L1 blockade with DC vaccines and OVM further enhances antitumor activity. Overall, OVM strengthens the antitumor efficacy of DC vaccines by targeting the SIRPα-CD47 axis, which exerts dominant immunosuppressive effects on DC vaccines.
Collapse
Affiliation(s)
- Jia Dan
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingqian Zhong
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaoqun Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanyu Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Zeng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhen Fan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cuiying Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Linyi Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiayu Zhang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiankai Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuan Lin
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Liao ZX, Hsu SH, Tang SC, Kempson I, Yang PC, Tseng SJ. Potential targeting of the tumor microenvironment to improve cancer virotherapy. Pharmacol Ther 2023; 250:108521. [PMID: 37657673 DOI: 10.1016/j.pharmthera.2023.108521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
In 2015, oncolytic virotherapy was approved for clinical use, and in 2017, recombinant adeno-associated virus (AAV) delivery was also approved. However, systemic administration remains challenging due to the limited number of viruses that successfully reach the target site. Although the US Food and Drug Administration (FDA) permits the use of higher doses of AAV to achieve greater rates of transduction, most AAV still accumulates in the liver, potentially leading to toxicity there and elsewhere. Targeting the tumor microenvironment is a promising strategy for cancer treatment due to the critical role of the tumor microenvironment in controlling tumor progression and influencing the response to therapies. Newly discovered evidence indicates that administration routes focusing on the tumor microenvironment can promote delivery specificity and transduction efficacy within the tumor. Here, we review approaches that involve modifying viral surface features, modulating the immune system, and targeting the physicochemical characteristics in tumor microenvironment to regulate therapeutic delivery. Targeting tumor acidosis presents advantages that can be leveraged to enhance virotherapy outcomes and to develop new therapeutic approaches that can be integrated with standard treatments.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10051, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - S Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan; Program in Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
18
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
19
|
Pawar VA, Tyagi A, Verma C, Sharma KP, Ansari S, Mani I, Srivastva SK, Shukla PK, Kumar A, Kumar V. Unlocking therapeutic potential: integration of drug repurposing and immunotherapy for various disease targeting. Am J Transl Res 2023; 15:4984-5006. [PMID: 37692967 PMCID: PMC10492070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Drug repurposing, also known as drug repositioning, entails the application of pre-approved or formerly assessed drugs having potentially functional therapeutic amalgams for curing various disorders or disease conditions distinctive from their original remedial indication. It has surfaced as a substitute for the development of drugs for treating cancer, cardiovascular diseases, neurodegenerative disorders, and various infectious diseases like Covid-19. Although the earlier lines of findings in this area were serendipitous, recent advancements are based on patient centered approaches following systematic, translational, drug targeting practices that explore pathophysiological ailment mechanisms. The presence of definite information and numerous records with respect to beneficial properties, harmfulness, and pharmacologic characteristics of repurposed drugs increase the chances of approval in the clinical trial stages. The last few years have showcased the successful emergence of repurposed drug immunotherapy in treating various diseases. In this light, the present review emphasises on incorporation of drug repositioning with Immunotherapy targeted for several disorders.
Collapse
Affiliation(s)
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied ScienceDelhi 110054, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State UniversityColumbus, Ohio 43201, USA
| | - Kanti Prakash Sharma
- Department of Nutrition Biology, Central University of HaryanaMahendragarh 123029, India
| | - Sekhu Ansari
- Division of Pathology, Cincinnati Children’s Hospital Medical CenterCincinnati, Ohio 45229, USA
| | - Indra Mani
- Department of Microbiology, Gargi College, University of DelhiNew Delhi 110049, India
| | | | - Pradeep Kumar Shukla
- Department of Biological Sciences, Faculty of Science, Sam Higginbottom University of Agriculture, Technology of SciencePrayagraj 211007, UP, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of HaryanaMahendergarh 123031, Haryana, India
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, Ohio 43210, USA
| |
Collapse
|
20
|
Muthukutty P, Yoo SY. Oncolytic Virus Engineering and Utilizations: Cancer Immunotherapy Perspective. Viruses 2023; 15:1645. [PMID: 37631987 PMCID: PMC10459766 DOI: 10.3390/v15081645] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Oncolytic viruses have positively impacted cancer immunotherapy over the past 20 years. Both natural and genetically modified viruses have shown promising results in treating various cancers. Various regulatory authorities worldwide have approved four commercial oncolytic viruses, and more are being developed to overcome this limitation and obtain better anti-tumor responses in clinical trials at various stages. Faster advancements in translating research into the commercialization of cancer immunotherapy and a comprehensive understanding of the modification strategies will widen the current knowledge of future technologies related to the development of oncolytic viruses. In this review, we discuss the strategies of virus engineering and the progress of clinical trials to achieve virotherapeutics.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
21
|
Pathak U, Pal RB, Malik N. The Viral Knock: Ameliorating Cancer Treatment with Oncolytic Newcastle Disease Virus. Life (Basel) 2023; 13:1626. [PMID: 37629483 PMCID: PMC10455894 DOI: 10.3390/life13081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
The prospect of cancer treatment has drastically transformed over the last four decades. The side effects caused by the traditional methods of cancer treatment like surgery, chemotherapy, and radiotherapy through the years highlight the prospect for a novel, complementary, and alternative cancer therapy. Oncolytic virotherapy is an evolving treatment modality that utilizes oncolytic viruses (OVs) to selectively attack cancer cells by direct lysis and can also elicit a strong anti-cancer immune response. Newcastle disease virus (NDV) provides a very high safety profile compared to other oncolytic viruses. Extensive research worldwide concentrates on experimenting with and better understanding the underlying mechanisms by which oncolytic NDV can be effectively applied to intercept cancer. This review encapsulates the potential of NDV to be explored as an oncolytic agent and discusses current preclinical and clinical research scenarios involving various NDV strains.
Collapse
Affiliation(s)
- Upasana Pathak
- Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai 400004, Maharashtra, India
- Vivekanand Education Society’s College of Arts, Science and Commerce, Chembur, Mumbai 400071, Maharashtra, India
| | - Ramprasad B. Pal
- Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai 400004, Maharashtra, India
| | - Nagesh Malik
- Vivekanand Education Society’s College of Arts, Science and Commerce, Chembur, Mumbai 400071, Maharashtra, India
| |
Collapse
|
22
|
Wang X, Shen Y, Wan X, Hu X, Cai WQ, Wu Z, Xin Q, Liu X, Gui J, Xin HY, Xin HW. Oncolytic virotherapy evolved into the fourth generation as tumor immunotherapy. J Transl Med 2023; 21:500. [PMID: 37491263 PMCID: PMC10369732 DOI: 10.1186/s12967-023-04360-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Oncolytic virotherapy (OVT) is a promising anti-tumor modality that utilizes oncolytic viruses (OVs) to preferentially attack cancers rather than normal tissues. With the understanding particularly in the characteristics of viruses and tumor cells, numerous innovative OVs have been engineered to conquer cancers, such as Talimogene Laherparepvec (T-VEC) and tasadenoturev (DNX-2401). However, the therapeutic safety and efficacy must be further optimized and balanced to ensure the superior safe and efficient OVT in clinics, and reasonable combination therapy strategies are also important challenges worthy to be explored. MAIN BODY Here we provided a critical review of the development history and status of OVT, emphasizing the mechanisms of enhancing both safety and efficacy. We propose that oncolytic virotherapy has evolved into the fourth generation as tumor immunotherapy. Particularly, to arouse T cells by designing OVs expressing bi-specific T cell activator (BiTA) is a promising strategy of killing two birds with one stone. Amazing combination of therapeutic strategies of OVs and immune cells confers immense potential for managing cancers. Moreover, the attractive preclinical OVT addressed recently, and the OVT in clinical trials were systematically reviewed. CONCLUSION OVs, which are advancing into clinical trials, are being envisioned as the frontier clinical anti-tumor agents coming soon.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Yihua Shen
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xingxia Wan
- College of Arts and Sciences, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xiaoqing Hu
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Wen-Qi Cai
- Xinzhou Traditional Chinese Medicine Hospital, Zhongnan Hospital of Wuhan University (Xinzhou), Wuhan, 430000, Hubei, China
| | - Zijun Wu
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Qiang Xin
- School of Graduate Students, Inner Mongolia Medical University, Inner Mongolian Autonomous Region, Hohhot, 010110, China
| | - Xiaoqing Liu
- College of Arts and Sciences, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong, 524400, China.
- The Doctoral Scientific Research Center, Affiliated People's Hospital of Lianjiang, Guangdong Medical University, Guangdong, 524400, China.
| | - Hong-Wu Xin
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| |
Collapse
|
23
|
Zhang H, Du Y, Qi L, Xiao S, Braun FK, Kogiso M, Huang Y, Huang F, Abdallah A, Suarez M, Karthick S, Ahmed NM, Salsman VS, Baxter PA, Su JM, Brat DJ, Hellenbeck PL, Teo WY, Patel AJ, Li XN. Targeting GBM with an Oncolytic Picornavirus SVV-001 alone and in combination with fractionated Radiation in a Novel Panel of Orthotopic PDX models. J Transl Med 2023; 21:444. [PMID: 37415222 PMCID: PMC10324131 DOI: 10.1186/s12967-023-04237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Animal models representing different molecular subtypes of glioblastoma multiforme (GBM) is desired for developing new therapies. SVV-001 is an oncolytic virus selectively targeting cancer cells. It's capacity of passing through the blood brain barrier makes is an attractive novel approach for GBM. MATERIALS AND METHODS 23 patient tumor samples were implanted into the brains of NOD/SCID mice (1 × 105 cells/mouse). Tumor histology, gene expression (RNAseq), and growth rate of the developed patient-derived orthotopic xenograft (PDOX) models were compared with the originating patient tumors during serial subtransplantations. Anti-tumor activities of SVV-001 were examined in vivo; and therapeutic efficacy validated in vivo via single i.v. injection (1 × 1011 viral particle) with or without fractionated (2 Gy/day x 5 days) radiation followed by analysis of animal survival times, viral infection, and DNA damage. RESULTS PDOX formation was confirmed in 17/23 (73.9%) GBMs while maintaining key histopathological features and diffuse invasion of the patient tumors. Using differentially expressed genes, we subclassified PDOX models into proneural, classic and mesenchymal groups. Animal survival times were inversely correlated with the implanted tumor cells. SVV-001 was active in vitro by killing primary monolayer culture (4/13 models), 3D neurospheres (7/13 models) and glioma stem cells. In 2/2 models, SVV-001 infected PDOX cells in vivo without harming normal brain cells and significantly prolonged survival times in 2/2 models. When combined with radiation, SVV-001 enhanced DNA damages and further prolonged animal survival times. CONCLUSION A panel of 17 clinically relevant and molecularly annotated PDOX modes of GBM is developed, and SVV-001 exhibited strong anti-tumor activities in vitro and in vivo.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Lin Qi
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Sophie Xiao
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mari Kogiso
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery, Dushou Lake Hospital, Soochow University Medical School, Suzhou, Jiangsu, China
| | - Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Aalaa Abdallah
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Sekar Karthick
- Pediatric Brain Tumor Research Office, Cancer and Stem Cell Biology Program, SingHealth Duke-NUS Academic Medical Center, Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Duke-NUS Medical School, 169610, Singapore, Singapore
| | | | | | - Patricia A Baxter
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack M Su
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Wan-Yee Teo
- Texas Children's Cancer Center, Houston, TX, USA
- Pediatric Brain Tumor Research Office, Cancer and Stem Cell Biology Program, SingHealth Duke-NUS Academic Medical Center, Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Duke-NUS Medical School, 169610, Singapore, Singapore
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA.
- Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Xiao-Nan Li
- Texas Children's Cancer Center, Houston, TX, USA.
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
24
|
Guo L, Hu C, Liu Y, Chen X, Song D, Shen R, Liu Z, Jia X, Zhang Q, Gao Y, Deng Z, Zuo T, Hu J, Zhu W, Cai J, Yan G, Liang J, Lin Y. Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile. Nat Commun 2023; 14:3410. [PMID: 37296165 PMCID: PMC10256765 DOI: 10.1038/s41467-023-39156-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Oncolytic viruses (OVs) represent a type of encouraging multi-mechanistic drug for the treatment of cancer. However, attenuation of virulence, which is generally required for the development of OVs based on pathogenic viral backbones, is frequently accompanied by a compromised killing effect on tumor cells. By exploiting the property of viruses to evolve and adapt in cancer cells, we perform directed natural evolution on refractory colorectal cancer cell HCT-116 and generate a next-generation oncolytic virus M1 (NGOVM) with an increase in the oncolytic effect of up to 9690-fold. The NGOVM has a broader antitumor spectrum and a more robust oncolytic effect in a range of solid tumors. Mechanistically, two critical mutations are identified in the E2 and nsP3 genes, which accelerate the entry of M1 virus by increasing its binding to the Mxra8 receptor and antagonize antiviral responses by inhibiting the activation of PKR and STAT1 in tumor cells, respectively. Importantly, the NGOVM is well tolerated in both rodents and nonhuman primates. This study implies that directed natural evolution is a generalizable approach for developing next-generation OVs with an expanded scope of application and high safety.
Collapse
Affiliation(s)
- Li Guo
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yang Liu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Chen
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Deli Song
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Runling Shen
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhanzhen Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xudong Jia
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qinfen Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanzhu Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Tao Zuo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Hu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Cai
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yuan Lin
- Department of Pharmacology, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
25
|
Zolaly MA, Mahallawi W, Khawaji ZY, Alahmadi MA. The Clinical Advances of Oncolytic Viruses in Cancer Immunotherapy. Cureus 2023; 15:e40742. [PMID: 37485097 PMCID: PMC10361339 DOI: 10.7759/cureus.40742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
A promising future for oncology treatment has been brought about by the emergence of a novel approach utilizing oncolytic viruses in cancer immunotherapy. Oncolytic viruses are viruses that have been exploited genetically to assault malignant cells and activate a robust immune response. Several techniques have been developed to endow viruses with an oncolytic activity through genetic engineering. For instance, redirection capsid modification, stimulation of anti-neoplastic immune response, and genetically arming viruses with cytokines such as IL-12. Oncolytic viral clinical outcomes are sought after, particularly in more advanced cancers. The effectiveness and safety profile of the oncolytic virus in clinical studies with or without the combination of standard treatment (chemotherapy, radiotherapy, or primary excision) has been assessed using response evaluation criteria in solid tumors (RECIST). This review will comprehensively outline the most recent clinical applications and provide the results from various phases of clinical trials in a variety of cancers in the latest published literature.
Collapse
Affiliation(s)
- Mohammed A Zolaly
- Pediatric Hematology Oncology, Taibah University, Al-Madinah al-Munawwarah, SAU
| | - Waleed Mahallawi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah al-Munawwarah, SAU
| | - Zakaria Y Khawaji
- Medicine and Surgery, Taibah University, Al-Madinah al-Munawwarah, SAU
| | | |
Collapse
|
26
|
Hecht JR, Mitchell J, Morelli MP, Anandappa G, Yang JC. Next-Generation Approaches to Immuno-Oncology in GI Cancers. Am Soc Clin Oncol Educ Book 2023; 43:e389072. [PMID: 37290032 DOI: 10.1200/edbk_389072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunotherapy has only had a modest impact on the treatment of advanced GI malignancies. Microsatellite-stable colorectal cancer and pancreatic adenocarcinoma, the most common GI tumors, have not benefited from treatment with standard immune checkpoint inhibitors. With this huge unmet need, multiple approaches are being tried to overcome barriers to better anticancer outcomes. This article reviews a number of novel approaches to immunotherapy for these tumors. These include the use of novel checkpoint inhibitors such as a modified anti-cytotoxic T lymphocyte-associated antigen-4 antibody and antibodies to lymphocyte-activation gene 3, T cell immunoreceptor with immunoglobulin and ITIM domains, T-cell immunoglobulin-3, CD47, and combinations with signal transduction inhibitors. We will discuss other trials that aim to elicit an antitumor T-cell response using cancer vaccines and oncolytic viruses. Finally, we review attempts to replicate in GI cancers the frequent and durable responses seen in hematologic malignancies with immune cell therapies.
Collapse
|
27
|
Shakiba Y, Vorobyev PO, Mahmoud M, Hamad A, Kochetkov DV, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:823-841. [PMID: 37748878 DOI: 10.1134/s000629792306010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 09/27/2023]
Abstract
Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Marah Mahmoud
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Azzam Hamad
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Gaukhar M Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
28
|
Duan S, Wang S, Qiao L, Yu X, Wang N, Chen L, Zhang X, Zhao X, Liu H, Wang T, Wu Y, Li N, Liu F. Oncolytic Virus-Driven Biotherapies from Bench to Bedside. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206948. [PMID: 36879416 DOI: 10.1002/smll.202206948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/17/2023] [Indexed: 06/08/2023]
Abstract
With advances in cancer biology and an ever-deepening understanding of molecular virology, oncolytic virus (OV)-driven therapies have developed rapidly and become a promising alternative to traditional cancer therapies. In recent years, satisfactory results for oncolytic virus therapy (OVT) are achieved at both the cellular and organismal levels, and efforts are being increasingly directed toward clinical trials. Unfortunately, OVT remains ineffective in these trials, especially when performed using only a single OV reagent. In contrast, integrated approaches, such as using immunotherapy, chemotherapy, or radiotherapy, alongside OVT have demonstrated considerable efficacy. The challenges of OVT in clinical efficacy include the restricted scope of intratumoral injections and poor targeting of intravenous administration. Further optimization of OVT delivery is needed before OVs become a viable therapy for tumor treatment. In this review, the development process and antitumor mechanisms of OVs are introduced. The advances in OVT delivery routes to provide perspectives and directions for the improvement of OVT delivery are highlighted. This review also discusses the advantages and limitations of OVT monotherapy and combination therapy through the lens of recent clinical trials and aims to chart a course toward safer and more effective OVT strategies.
Collapse
Affiliation(s)
- Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Qiao
- Colorectal and Henia Minimally Invasive Surgery Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xu Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Wu
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Department of General Practice, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
29
|
Liu CH, Tai CJ, Kuo YT, Chang SS, Lin LT. Combination of Oncolytic Measles Virus and Ursolic Acid Synergistically Induces Oncolysis of Hepatocellular Carcinoma Cells. Viruses 2023; 15:1294. [PMID: 37376594 DOI: 10.3390/v15061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a difficult-to-treat cancer due to late diagnosis and limited curative treatment options. Developing more effective therapeutic strategies is essential for the management of HCC. Oncolytic virotherapy is a novel treatment modality for cancers, and its combination with small molecules merits further exploration. In this study, we combined oncolytic measles virus (MV) with the natural triterpenoid compound ursolic acid (UA) and evaluated their combination effect against HCC cells, including those harboring hepatitis B virus (HBV) or hepatitis C virus (HCV) replication. We found that the combination of MV and UA synergistically induced more cell death in Huh-7 HCC cells through enhanced apoptosis. In addition, increased oxidative stress and loss of mitochondrial potential were observed in the treated cells, indicating dysregulation of the mitochondria-dependent pathway. Similar synergistic cytotoxic effects were also found in HCC cells harboring HBV or HCV genomes. These findings underscore the potential of oncolytic MV and UA combination for further development as a treatment strategy for HCC.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Chen-Jei Tai
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 100, Taiwan
| | - Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Shen-Shong Chang
- Division of Gastroenterology, Taipei City Hospital Yang-Ming Branch, Taipei 111, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
30
|
Deng X, Shen Y, Yi M, Zhang C, Zhao B, Zhong G, Xue D, Leng Q, Ding J, Zhao R, Jia W, Dong C, Dai Z. Combination of novel oncolytic herpesvirus with paclitaxel as an efficient strategy for breast cancer therapy. J Med Virol 2023; 95:e28768. [PMID: 37212336 DOI: 10.1002/jmv.28768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND New strategies are needed to improve the treatment of patients with breast cancer (BC). Oncolytic virotherapy is a promising new tool for cancer treatment but still has a limited overall durable antitumor response. A novel replicable recombinant oncolytic herpes simplex virus type 1 called VG161 has been developed and has demonstrated antitumor effects in several cancers. Here, we explored the efficacy and the antitumor immune response of VG161 cotreatment with paclitaxel (PTX) which as a novel oncolytic viral immunotherapy for BC. METHODS The antitumor effect of VG161 and PTX was confirmed in a BC xenograft mouse model. The immunostimulatory pathways were tested by RNA-seq and the remodeling of tumor microenvironment was detected by Flow cytometry analysis or Immunohistochemistry. Pulmonary lesions were analyzed by the EMT6-Luc BC model. RESULTS In this report, we demonstrate that VG161 can significantly represses BC growth and elicit a robust antitumor immune response in a mouse model. The effect is amplified when combined with PTX treatment. The antitumor effect is associated with the infiltration of lymphoid cells, including CD4+ T cells, CD8+ T cells, and NK cells (expressing TNF and IFN-γ), and myeloid cells, including macrophages, myeloid-derived suppressor cells, and dendritic cell cells. Additionally, VG161 cotreatment with PTX showed a significant reduction in BC lung metastasis, which may result from the enhanced CD4+ and CD8+ T cell-mediated responses. CONCLUSIONS The combination of PTX and VG161 is effective for repressing BC growth by inducing proinflammatory changes in the tumor microenvironment and reducing BC pulmonary metastasis. These data will provide a new strategy and valuable insight for oncolytic virus therapy applications in primary solid or metastatic BC tumors.
Collapse
Affiliation(s)
- Xinyue Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaomei Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Zhao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dixuan Xue
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Leng
- Department of Geriatics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ding
- Shanghai Virogin Biotech Co. Ltd., Shanghai, China
| | - Ronghua Zhao
- Shanghai Virogin Biotech Co. Ltd., Shanghai, China
- CNBG-Virogin Biotech (Shanghai) Co. Ltd., Shanghai, China
| | - Weiguo Jia
- Shanghai Virogin Biotech Co. Ltd., Shanghai, China
- CNBG-Virogin Biotech (Shanghai) Co. Ltd., Shanghai, China
| | - Chenfang Dong
- Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Waqqar S, Lee K, Lawley B, Bilton T, Quiñones-Mateu ME, Bostina M, Burga LN. Directed Evolution of Seneca Valley Virus in Tumorsphere and Monolayer Cell Cultures of a Small-Cell Lung Cancer Model. Cancers (Basel) 2023; 15:cancers15092541. [PMID: 37174006 PMCID: PMC10177334 DOI: 10.3390/cancers15092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses.
Collapse
Affiliation(s)
- Shakeel Waqqar
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Kai Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Timothy Bilton
- Invermay Agricultural Centre, AgResearch, Mosgiel 9092, New Zealand
| | | | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
32
|
Luo X, Wu S, Xiao M, Gu H, Zhang H, Chen J, Liu Y, Zhang C, Zhang J. Advances and Prospects of Prolamine Corn Protein Zein as Promising Multifunctional Drug Delivery System for Cancer Treatment. Int J Nanomedicine 2023; 18:2589-2621. [PMID: 37213352 PMCID: PMC10198181 DOI: 10.2147/ijn.s402891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 05/23/2023] Open
Abstract
Zein is a type of prolamine protein that is derived from corn, and it has been recognized by the US FDA as one of the safest biological materials available. Zein possesses valuable characteristics that have made it a popular choice for the preparation of drug carriers, which can be administered through various routes to improve the therapeutic effect of antitumor drugs. Additionally, zein contains free hydroxyl and amino groups that offer numerous modification sites, enabling it to be hybridized with other materials to create functionalized drug delivery systems. However, despite its potential, the clinical translation of drug-loaded zein-based carriers remains challenging due to insufficient basic research and relatively strong hydrophobicity. In this paper, we aim to systematically introduce the main interactions between loaded drugs and zein, administration routes, and the functionalization of zein-based antitumor drug delivery systems, in order to demonstrate its development potential and promote their further application. We also provide perspectives and future directions for this promising area of research.
Collapse
Affiliation(s)
- Xi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Sudan Wu
- Blood Purification Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Huan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Jianping Chen
- Lika Shing Faculty of Medicine, School of Chinese Medicine, the University of Hong KOng, Hong Kong, People’s Republic of China
| | - Yang Liu
- Department of Vascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Correspondence: Yang Liu, Hospital of Chengdu University of Traditional Chinese Medicine, No. 37, Shierqiao Road, Jinniu District, Chengdu, Sichuan, People’s Republic of China, Email
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
- Jinming Zhang, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan, People’s Republic of China, Email
| |
Collapse
|
33
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21:196. [PMID: 36221123 PMCID: PMC9554963 DOI: 10.1186/s12943-022-01664-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
Collapse
Affiliation(s)
- Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weijian Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
34
|
Therapeutic Efficacy of Oncolytic Viruses in Fighting Cancer: Recent Advances and Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3142306. [PMID: 35910836 PMCID: PMC9337963 DOI: 10.1155/2022/3142306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022]
Abstract
Immunotherapy is at the cutting edge of modern cancer treatment. Innovative medicines have been developed with varying degrees of success that target all aspects of tumor biology: tumors, niches, and the immune system. Oncolytic viruses (OVs) are a novel and potentially immunotherapeutic approach for cancer treatment. OVs reproduce exclusively in cancer cells, causing the tumor mass to lyse. OVs can also activate the immune system in addition to their primary activity. Tumors create an immunosuppressive environment by suppressing the immune system’s ability to respond to tumor cells. By injecting OVs into the tumor, the immune system is stimulated, allowing it to generate a robust and long-lasting response against the tumor. The essential biological properties of oncolytic viruses, as well as the underlying mechanisms that enable their usage as prospective anticancer medicines, are outlined in this review. We also discuss the increased efficacy of virotherapy when combined with other cancer medications.
Collapse
|
35
|
Lauer UM, Beil J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape. Future Oncol 2022; 18:2713-2732. [PMID: 35818970 DOI: 10.2217/fon-2022-0440] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite advances in treatment, cancer remains a leading cause of death worldwide. Although treatment strategies are continually progressing, cancers have evolved many mechanisms for evading therapies and the host immune system. Oncolytic viruses (OVs) could provide a much-needed option for cancers that are resistant to existing treatments. OVs can be engineered to specifically target and kill cancer cells, while simultaneously triggering an immune response at the site of infection. This review will focus on the challenges of developing a successful OV and translation to clinical practice, discussing the innovative strategies that are being used to optimize the potential of OVs. Here, we will also explore the current clinical landscape and the prospects of OVs in early clinical development.
Collapse
Affiliation(s)
- Ulrich M Lauer
- Department of Internal Medicine VIII, Virotherapy Center Tübingen, Medical Oncology & Pneumology, Medical University Hospital Tübingen, Otfried-Mueller-Str. 10, Tübingen, 72076, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Mueller-Str. 10, Tübingen, 72076, Germany
| | - Julia Beil
- Department of Internal Medicine VIII, Virotherapy Center Tübingen, Medical Oncology & Pneumology, Medical University Hospital Tübingen, Otfried-Mueller-Str. 10, Tübingen, 72076, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Mueller-Str. 10, Tübingen, 72076, Germany
| |
Collapse
|
36
|
Guo D, Xiao J, Liang J, Fan J, Hou P, Li X, Zhang H, Li K, Bu L, Li P, He M, Zhong Y, Guo L, Jia P, Xiao Q, Wu J, Peng H, Li C, Xing F. CDK4/6 inhibition enhances oncolytic virus efficacy by potentiating tumor-selective cell killing and T cell activation in refractory glioblastoma. Cancer Res 2022; 82:3359-3374. [DOI: 10.1158/0008-5472.can-21-3656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Glioblastoma multiforme (GBM) is among the most aggressive human cancers. Although oncolytic virus (OV) therapy has been proposed as a potential approach to treat GBM, it frequently fails because GBM cells are usually nonpermissive to OV. Here, we describe a dual-step drug screen for identifying chemical enhancers of oncolytic virus in GBM. From a high-throughput screen of 1416 FDA-approved drugs, an inhibitor of CDK4/6 was identified as the top enhancer, selectively increasing potency of two OV strains, VSVΔ51 and Zika virus. Mechanistically, CDK4/6 inhibition promoted autophagic degradation of MAVS, resulting in impaired antiviral responses and enhanced tumor-selective replication of VSVΔ51 in vitro and in vivo. CDK4/6 inhibition cooperated with VSVΔ51 to induce severe DNA damage stress and amplify oncolysis. In GBM xenograft models, combined treatment with CDK4/6 inhibitor and VSVΔ51 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice. Further investigation revealed that CDK4/6 inhibitor and VSVΔ51 synergistically induced immunogenic cell death and boosted anti-tumor immunity. Together, this study features a promising approach of treating aggressive GBM through the combination of CDK4/6 inhibitor with OV.
Collapse
Affiliation(s)
- Deyin Guo
- Sun Yat-sen University, Guangzhou, China
| | | | | | - Junjie Fan
- Sun Yat-sen University, Guangzhou, China
| | - Panpan Hou
- Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Li
- Guangzhou Medical University, Guangzhou, United States
| | | | - Kai Li
- Sun Yat-sen University, China
| | - Lang Bu
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Ping Li
- Sun Yat-sen University, Guangzhou, China
| | - Miao He
- Sun Yat-sen University, Guangzhou, China
| | | | - Liping Guo
- Sun Yat-sen University, Guangzhou, China
| | | | | | - Junyu Wu
- Sun Yat-sen University, Guangzhou, China
| | - Hong Peng
- Sun Yat-sen University, Guangzhou, China
| | - Chunmei Li
- Sun Yat-sen University, Guangzhou, China
| | - Fan Xing
- Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Du YN, Wei Q, Zhao LJ, Fan CQ, Guo LR, Ye JF, Li Y. Hydrogel-based co-delivery of CIK cells and oncolytic adenovirus armed with IL12 and IL15 for cancer immunotherapy. Biomed Pharmacother 2022; 151:113110. [PMID: 35605298 DOI: 10.1016/j.biopha.2022.113110] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Intratumoral injection of various effector cells combined with oncolytic adenovirus expressing antitumor cytokines exert an effective antitumor immune effect by oncolysis and altering the tumor microenvironment. However, this combination therapy had certain limitations. When used in high concentrations, effector cells and oncolytic viruses can spread rapidly to surrounding non-target tissues. And because both therapies used in combination are immunogenic and exhibit shorter biological activity, multiple injections were required to attain an adequate therapeutic index. To overcome these drawbacks, we encapsulated gelatin-based hydrogel capable of co-deliver oncolytic adenovirus armed with IL12 and IL15 (CRAd-IL12-IL15) and CIK cells for enhancing and prolonging the antitumor effects of both therapies after a single intratumoral injection. The injectable and biodegradable hydrogel reduced the dispersion of high-dose oncolytic adenovirus and CIK cells from the injection site to the liver and other non-target tissues. In this study, a novel oncolytic adenoviral vector CRAd-IL12-IL15 was constructed to verify the cytokine expression and oncolytic ability, which can upregulate the expression levels of Bcl-2, Cish and Gzmb in tumor cells. The CRAd-IL12-IL15 + CIKs/gelatin treatment maintained sustained release of CRAd-IL12-IL15 and active CIK cells over a longer period of time, attenuating the antiviral immune response against adenovirus. In conclusion, the results suggested that hydrogel-mediated co-delivery of CRAd-IL12-IL15 and CIK cells might be a an approach to overcome limitations. Both treatments could be effectively retained in tumor tissue and sustained to induce potent anti-tumor immune responses with a single administration.
Collapse
Affiliation(s)
- Ya-Nan Du
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, PR China
| | - Qian Wei
- The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130118, PR China
| | - Li-Jing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, PR China
| | - Chang-Qing Fan
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital, Jilin University, Changchun 130021, PR China
| | - Li-Rong Guo
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, PR China
| | - Jun-Feng Ye
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital, Jilin University, Changchun 130021, PR China
| | - Yang Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
38
|
He T, Hao Z, Lin M, Xin Z, Chen Y, Ouyang W, Yang Q, Chen X, Zhou H, Zhang W, Wu P, Xu F. Oncolytic adenovirus promotes vascular normalization and nonclassical tertiary lymphoid structure formation through STING-mediated DC activation. Oncoimmunology 2022; 11:2093054. [PMID: 35800155 PMCID: PMC9255224 DOI: 10.1080/2162402x.2022.2093054] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Inducing a full antitumor immune response in the tumor microenvironment (TME) is essential for successful cancer immunotherapy. Here, we report that an oncolytic adenovirus carrying mIL-15 (Ad-IL15) can effectively induce antitumor immune response and inhibit tumor growth in a mouse model of cancer. We found that Ad-IL15 facilitated the activation and infiltration of immune cells, including dendritic cells (DCs), T cells and natural killer (NK) cells, in the TME. Unexpectedly, we observed that Ad-IL15 also induced vascular normalization and tertiary lymphoid structure formation in the TME. Moreover, we demonstrated these Ad-IL15-induced changes in the TME were depended on the Ad-IL15-induced activation of the STING-TBK1-IRF3 pathway in DCs. Taken together, our findings suggest that Ad-IL15 is a candidate for cancer immunotherapy that promotes immune cell activation and infiltration, tumor vascular normalization and tertiary lymphoid structure formation in the TME.
Collapse
Affiliation(s)
- Teng He
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhixing Hao
- Department of Thoracic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingjie Lin
- Department of Thoracic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongyuan Chen
- Department of Thoracic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Ouyang
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Yang
- Department of Emergency, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoke Chen
- Department of Thoracic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanying Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pin Wu
- Department of Thoracic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Xu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Nisar M, Paracha RZ, Adil S, Qureshi SN, Janjua HA. An Extensive Review on Preclinical and Clinical Trials of Oncolytic Viruses Therapy for Pancreatic Cancer. Front Oncol 2022; 12:875188. [PMID: 35686109 PMCID: PMC9171400 DOI: 10.3389/fonc.2022.875188] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance and peculiar tumor microenvironment, which diminish or mitigate the effects of therapies, make pancreatic cancer one of the deadliest malignancies to manage and treat. Advanced immunotherapies are under consideration intending to ameliorate the overall patient survival rate in pancreatic cancer. Oncolytic viruses therapy is a new type of immunotherapy in which a virus after infecting and lysis the cancer cell induces/activates patients’ immune response by releasing tumor antigen in the blood. The current review covers the pathways and molecular ablation that take place in pancreatic cancer cells. It also unfolds the extensive preclinical and clinical trial studies of oncolytic viruses performed and/or undergoing to design an efficacious therapy against pancreatic cancer.
Collapse
Affiliation(s)
- Maryum Nisar
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Adil
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
40
|
Jazowiecka-Rakus J, Sochanik A, Hadryś A, Fidyk W, Chmielik E, Rahman MM, McFadden G. Combination of LIGHT (TNFSF14)-Armed Myxoma Virus Pre-Loaded into ADSCs and Gemcitabine in the Treatment of Experimental Orthotopic Murine Pancreatic Adenocarcinoma. Cancers (Basel) 2022; 14:2022. [PMID: 35454928 PMCID: PMC9027757 DOI: 10.3390/cancers14082022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly neoplasm. Oncolytic viruses have tumorolytic and immune response-boosting effects and present great potential for PDAC management. We used LIGHT-armed myxoma virus (vMyx-LIGHT) loaded ex vivo into human adipose-derived mesenchymal stem cells (ADSCs) to evaluate murine PDAC treatment in conjunction with gemcitabine (GEM). The cytotoxicity of this treatment was confirmed in vitro using human and murine pancreatic cancer cell cultures, which were more sensitive to the combined approach and largely destroyed. Unlike cancer cells, ADSCs sustain significant viability after infection. The in vivo administration of vMyx-LIGHT-loaded ADSCs and gemcitabine was evaluated using immunocompetent mice with induced orthotopic PDAC lesions. The expression of virus-encoded LIGHT increased the influx of T cells to the tumor site. Shielded virus followed by gemcitabine improved tumor regression and survival. The addition of gemcitabine slightly compromised the adaptive immune response boost obtained with the shielded virus alone, conferring no survival benefit. ADSCs pre-loaded with vMyx-LIGHT allowed the effective transport of the oncolytic construct to PDAC lesions and yielded significant immune response; additional GEM administration failed to improve survival. In view of our results, the delivery of targeted/shielded virus in combination with TGF-β ablation and/or checkpoint inhibitors is a promising option to improve the therapeutic effects of vMyx-LIGHT/ADSCs against PDAC in vivo.
Collapse
Affiliation(s)
- Joanna Jazowiecka-Rakus
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland; (A.S.); (A.H.)
| | - Aleksander Sochanik
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland; (A.S.); (A.H.)
| | - Agata Hadryś
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland; (A.S.); (A.H.)
| | - Wojciech Fidyk
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland;
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland;
| | - Masmudur M. Rahman
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.M.R.); (G.M.)
| | - Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.M.R.); (G.M.)
| |
Collapse
|
41
|
Luo D, Wang H, Wang Q, Liang W, Liu B, Xue D, Yang Y, Ma B. Senecavirus A as an Oncolytic Virus: Prospects, Challenges and Development Directions. Front Oncol 2022; 12:839536. [PMID: 35371972 PMCID: PMC8968071 DOI: 10.3389/fonc.2022.839536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have the capacity to selectively kill infected tumor cells and trigger protective immunity. As such, oncolytic virotherapy has become a promising immunotherapy strategy against cancer. A variety of viruses from different families have been proven to have oncolytic potential. Senecavirus A (SVA) was the first picornavirus to be tested in humans for its oncolytic potential and was shown to penetrate solid tumors through the vascular system. SVA displays several properties that make it a suitable model, such as its inability to integrate into human genome DNA and the absence of any viral-encoded oncogenes. In addition, genetic engineering of SVA based on the manipulation of infectious clones facilitates the development of recombinant viruses with improved therapeutic indexes to satisfy the criteria of safety and efficacy regulations. This review summarizes the current knowledge and strategies of genetic engineering for SVA, and addresses the current challenges and future directions of SVA as an oncolytic agent.
Collapse
Affiliation(s)
- Dankun Luo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiang Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenping Liang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Yang
- Departments of Biochemistry and Molecular Biology and Oncology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
42
|
Mahasa KJ, Ouifki R, Eladdadi A, Pillis LD. A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4429-4457. [PMID: 35430822 DOI: 10.3934/mbe.2022205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Combining chimeric antigen receptor T (CAR-T) cells with oncolytic viruses (OVs) has recently emerged as a promising treatment approach in preclinical studies that aim to alleviate some of the barriers faced by CAR-T cell therapy. In this study, we address by means of mathematical modeling the main question of whether a single dose or multiple sequential doses of CAR-T cells during the OVs therapy can have a synergetic effect on tumor reduction. To that end, we propose an ordinary differential equations-based model with virus-induced synergism to investigate potential effects of different regimes that could result in efficacious combination therapy against tumor cell populations. Model simulations show that, while the treatment with a single dose of CAR-T cells is inadequate to eliminate all tumor cells, combining the same dose with a single dose of OVs can successfully eliminate the tumor in the absence of virus-induced synergism. However, in the presence of virus-induced synergism, the same combination therapy fails to eliminate the tumor. Furthermore, it is shown that if the intensity of virus-induced synergy and/or virus oncolytic potency is high, then the induced CAR-T cell response can inhibit virus oncolysis. Additionally, the simulations show a more robust synergistic effect on tumor cell reduction when OVs and CAR-T cells are administered simultaneously compared to the combination treatment where CAR-T cells are administered first or after OV injection. Our findings suggest that the combination therapy of CAR-T cells and OVs seems unlikely to be effective if the virus-induced synergistic effects are included when genetically engineering oncolytic viral vectors.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma 180, Maseru, Lesotho
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, North-West University, Mafikeng campus, Private Bag X2046, Mmabatho 2735, South Africa
| | | | | |
Collapse
|
43
|
Ma J, Zhang C, Shi G, Yue D, Shu Y, Hu S, Qi Z, Chen Y, Zhang B, Zhang Y, Huang A, Su C, Zhang Y, Deng H, Cheng P. High-dose VitC plus oncolytic adenoviruses enhance immunogenic tumor cell death and reprogram tumor immune microenvironment. Mol Ther 2022; 30:644-661. [PMID: 34547462 PMCID: PMC8821933 DOI: 10.1016/j.ymthe.2021.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Preclinical and clinical studies have validated the antitumor effects of several oncolytic viruses (OVs). However, the efficacy of OVs is limited when they are administered as monotherapies. Combination therapy is a promising direction for oncolytic virotherapy in the future. A high dose of vitamin C (VitC) exerts anticancer effects by triggering the accretion of substantial amounts of reactive oxygen species (ROS). OVs can induce immunogenic tumor cell death and elicit an antitumor immune response. ROS play an important role in immunogenic cell death (ICD). This study aimed to explore whether high-dose VitC in combination with oncolytic adenoviruses (oAds) exhibited a synergistic antitumor effect. High-dose VitC synergized with oAds against tumor by enhancing immunogenic tumor cell death. Combination therapy with high-dose VitC and oAds significantly increased the number of T cells in the tumor microenvironment (TME) and promoted the activation of T cells. Furthermore, the antitumor effect of the combination therapy was CD8+ T cell dependent. In addition, combination therapy with high-dose VitC and oAds reprogramed the immunosuppressive TME. Our study provides a new strategy for combination therapy of OVs.
Collapse
Affiliation(s)
- Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Chunxue Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Dan Yue
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Yong Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Anliang Huang
- Department of Pathology, Chengdu Fifth People’s Hospital, Chengdu, PR China
| | - Chao Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Yan Zhang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China,Corresponding author: Prof. Ping Cheng, State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People’s South Road, Chengdu 610041, PR China.
| |
Collapse
|
44
|
Kim Y, Konda P, Murphy JP, Paulo JA, Gygi SP, Gujar S. Immune Checkpoint Blockade Augments Changes Within Oncolytic Virus-induced Cancer MHC-I Peptidome, Creating Novel Antitumor CD8 T Cell Reactivities. Mol Cell Proteomics 2022; 21:100182. [PMID: 34922008 PMCID: PMC8864471 DOI: 10.1016/j.mcpro.2021.100182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/14/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023] Open
Abstract
The combination cancer immunotherapies with oncolytic virus (OV) and immune checkpoint blockade (ICB) reinstate otherwise dysfunctional antitumor CD8 T cell responses. One major mechanism that aids such reinstatement of antitumor CD8 T cells involves the availability of new class I major histocompatibility complex (MHC-I)-bound tumor epitopes following therapeutic intervention. Thus, therapy-induced changes within the MHC-I peptidome hold the key to understanding the clinical implications for therapy-reinstated CD8 T cell responses. Here, using mass spectrometry-based immuno-affinity methods and tumor-bearing animals treated with OV and ICB (alone or in combination), we captured the therapy-induced alterations within the tumor MHC-I peptidome, which were then tested for their CD8 T cell response-stimulating activity. We found that the oncolytic reovirus monotherapy drives up- as well as downexpression of tumor MHC-I peptides in a cancer type and oncolysis susceptibility dependent manner. Interestingly, the combination of reovirus + ICB results in higher numbers of differentially expressed MHC-I-associated peptides (DEMHCPs) relative to either monotherapies. Most importantly, OV+ICB-driven DEMHCPs contain biologically active epitopes that stimulate interferon-gamma responses in cognate CD8 T cells, which may mediate clinically desired antitumor attack and cancer immunoediting. These findings highlight that the therapy-induced changes to the MHC-I peptidome contribute toward the reinstated antitumor CD8 T cell attack established following OV + ICB combination cancer immunotherapy.
Collapse
Affiliation(s)
- Youra Kim
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - J Patrick Murphy
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
45
|
Roulleaux Dugage M, Nassif EF, Italiano A, Bahleda R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front Immunol 2021; 12:775761. [PMID: 34925348 PMCID: PMC8678134 DOI: 10.3389/fimmu.2021.775761] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Anti-PD-(L)1 therapies yield a disappointing response rate of 15% across soft-tissue sarcomas, even if some subtypes benefit more than others. The proportions of TAMs and TILs in their tumor microenvironment are variable, and this heterogeneity correlates to histotype. Tumors with a richer CD8+ T cell, M1 macrophage, and CD20+ cells infiltrate have a better prognosis than those infiltrated by M0/M2 macrophages and a high immune checkpoint protein expression. PD-L1 and CD8+ infiltrate seem correlated to response to immune checkpoint inhibitors (ICI), but tertiary lymphoid structures have the best predictive value and have been validated prospectively. Trials for combination therapies are ongoing and focus on the association of ICI with chemotherapy, achieving encouraging results especially with pembrolizumab and doxorubicin at an early stage, or ICI with antiangiogenics. A synergy with oncolytic viruses is seen and intratumoral talimogene laherpavec yields an impressive 35% ORR when associated to pembrolizumab. Adoptive cellular therapies are also of great interest in tumors with a high expression of cancer-testis antigens (CTA), such as synovial sarcomas or myxoid round cell liposarcomas with an ORR ranging from 20 to 50%. It seems crucial to adapt the design of clinical trials to histology. Leiomyosarcomas are characterized by complex genomics but are poorly infiltrated by immune cells and do not benefit from ICI. They should be tested with PIK3CA/AKT inhibition, IDO blockade, or treatments aiming at increasing antigenicity (radiotherapy, PARP inhibitors). DDLPS are more infiltrated and have higher PD-L1 expression, but responses to ICI remain variable across clinical studies. Combinations with MDM2 antagonists or CDK4/6 inhibitors may improve responses for DDLPS. UPS harbor the highest copy number alterations (CNA) and mutation rates, with a rich immune infiltrate containing TLS. They have a promising 15-40% ORR to ICI. Trials for ICB should focus on immune-high UPS. Association of ICI with FGFR inhibitors warrants further exploration in the immune-low group of UPS. Finally translocation-related sarcomas are heterogeneous, and although synovial sarcomas a poorly infiltrated and have a poor response rate to ICI, ASPS largely benefit from ICB monotherapy or its association with antiangiogenics agents. Targeting specific neoantigens through vaccine or adoptive cellular therapies is probably the most promising approach in synovial sarcomas.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Elise F. Nassif
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Italiano
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- Département d’Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - Rastislav Bahleda
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
46
|
Oncolytic adenovirus inhibits malignant ascites of advanced ovarian cancer by reprogramming the ascitic immune microenvironment. Mol Ther Oncolytics 2021; 23:488-500. [PMID: 34901391 PMCID: PMC8637216 DOI: 10.1016/j.omto.2021.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022] Open
|
47
|
Yue B, Gao R, Wang Z, Dou W. Microbiota-Host-Irinotecan Axis: A New Insight Toward Irinotecan Chemotherapy. Front Cell Infect Microbiol 2021; 11:710945. [PMID: 34722328 PMCID: PMC8553258 DOI: 10.3389/fcimb.2021.710945] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Irinotecan (CPT11) and its active metabolite ethyl-10-hydroxy-camptothecin (SN38) are broad-spectrum cytotoxic anticancer agents. Both cause cell death in rapidly dividing cells (e.g., cancer cells, epithelial cells, hematopoietic cells) and commensal bacteria. Therefore, CPT11 can induce a series of toxic side-effects, of which the most conspicuous is gastrointestinal toxicity (nausea, vomiting, diarrhea). Studies have shown that the gut microbiota modulates the host response to chemotherapeutic drugs. Targeting the gut microbiota influences the efficacy and toxicity of CPT11 chemotherapy through three key mechanisms: microbial ecocline, catalysis of microbial enzymes, and immunoregulation. This review summarizes and explores how the gut microbiota participates in CPT11 metabolism and mediates host immune dynamics to affect the toxicity and efficacy of CPT11 chemotherapy, thus introducing a new concept that is called "microbiota-host-irinotecan axis". Also, we emphasize the utilization of bacterial β-glucuronidase-specific inhibitor, dietary interventions, probiotics and strain-engineered interventions as emergent microbiota-targeting strategies for the purpose of improving CPT11 chemotherapy efficiency and alleviating toxicity.
Collapse
Affiliation(s)
- Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Ruiyang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
48
|
Rahman MM, McFadden G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5452. [PMID: 34771615 PMCID: PMC8582515 DOI: 10.3390/cancers13215452] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer remains a leading cause of death worldwide. Despite many signs of progress, currently available cancer treatments often do not provide desired outcomes for too many cancers. Therefore, newer and more effective therapeutic approaches are needed. Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively targets and kills cancer cells while sparing normal ones. In the past several decades, many different OV candidates have been developed and tested in both laboratory settings as well as in cancer patient clinical trials. Many approaches have been taken to overcome the limitations of OVs, including engineering OVs to selectively activate anti-tumor immune responses. However, newer approaches like the combination of OVs with current immunotherapies to convert "immune-cold" tumors to "immune-hot" will almost certainly improve the potency of OVs. Here, we discuss strategies that are explored to further improve oncolytic virotherapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | | |
Collapse
|
49
|
Ma J, Huang L, Hu D, Zeng S, Han Y, Shen H. The role of the tumor microbe microenvironment in the tumor immune microenvironment: bystander, activator, or inhibitor? J Exp Clin Cancer Res 2021; 40:327. [PMID: 34656142 PMCID: PMC8520212 DOI: 10.1186/s13046-021-02128-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
The efficacy of cancer immunotherapy largely depends on the tumor microenvironment, especially the tumor immune microenvironment. Emerging studies have claimed that microbes reside within tumor cells and immune cells, suggesting that these microbes can impact the state of the tumor immune microenvironment. For the first time, this review delineates the landscape of intra-tumoral microbes and their products, herein defined as the tumor microbe microenvironment. The role of the tumor microbe microenvironment in the tumor immune microenvironment is multifaceted: either as an immune activator, inhibitor, or bystander. The underlying mechanisms include: (I) the presentation of microbial antigens by cancer cells and immune cells, (II) microbial antigens mimicry shared with tumor antigens, (III) microbe-induced immunogenic cell death, (IV) microbial adjuvanticity mediated by pattern recognition receptors, (V) microbe-derived metabolites, and (VI) microbial stimulation of inhibitory checkpoints. The review further suggests the use of potential modulation strategies of the tumor microbe microenvironment to enhance the efficacy and reduce the adverse effects of checkpoint inhibitors. Lastly, the review highlights some critical questions awaiting to be answered in this field and provides possible solutions. Overall, the tumor microbe microenvironment modulates the tumor immune microenvironment, making it a potential target for improving immunotherapy. It is a novel field facing major challenges and deserves further exploration.
Collapse
Affiliation(s)
- Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lingjuan Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Die Hu
- Xiangya Medical College, Central South University, Changsha, 410013, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
50
|
Wang J, Huang B, Wang L, Jiang G, Cheng J, Xiong Y, Wang J, Liao X. The synthesis and evaluation of the antitumor and antibacterial activity of two novel oxovanadium complexes. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211045894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two novel oxovanadium(IV) complexes ([VO(hntdtsc)(BPIP)] and [VO(hntdtsc)(MOPIP)] (hntdtsc = 2-hydroxy-1-naphthaldehydethiosemicarbazone, BPIP = 2-(4-bromophenyl)-imidazo[4,5- f]-1,10-phenanthroline, MOPIP = 2-(4-methoxyphenyl)-imidazo[4,5- f]1,10-phenanthroline), are synthesized and characterized. Subsequently, the Methyl Thiazolyl Tetrazolium (MTT) assay is used to investigate the antitumor activity of the ligand and two complexes in vitro.The results indicate that both complexes could significantly inhibit selected tumor cells (SH-SY5Y, MCF-7, and SK-N-SH). In addition, the antibacterial activity of VO(hntdtsc)(BPIP) against Staphylococcus aureus is further investigated. Interestingly, VO(hntdtsc)(BPIP) can efficiently attenuate S. aureus growth and abrogate α-hemolysin secretion and biofilm formation. The plasmid DNA cleavage activity of both complexes is also investigated. The results suggest that supercoiled plasmid DNA is efficiently cleaved after treatment with each complex, which might contribute to the biological activity of these oxovanadium(IV) complexes.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Bin Huang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, P.R. China
| | - Liqiang Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Guijjuan Jiang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Jianxin Cheng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Yanshi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Jintao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Xiangwen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| |
Collapse
|