1
|
Wang Y, Tang C, Wang K, Zhang X, Zhang L, Xiao X, Lin H, Xiong L. The role of ferroptosis in breast cancer: Tumor progression, immune microenvironment interactions and therapeutic interventions. Eur J Pharmacol 2025; 996:177561. [PMID: 40154567 DOI: 10.1016/j.ejphar.2025.177561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Ferroptosis represents a distinctive and distinct form of regulated cellular death, which is driven by the accumulation of lipid peroxidation. It is distinguished by altered redox lipid metabolism and is linked to a spectrum of cellular activities, including cancer. In breast cancer (BC), with triple negative breast cancer (TNBC) being an iron-and lipid-rich tumor, inducing ferroptosis was thought to be a novel approach to killing breast tumor cells. However, in the recent past, a novel conceptual framework has emerged which posits that in addition to the promotion of tumor cell death, ferritin deposition has a potent immunosuppressive effect on the tumor immune microenvironment (TIME) via the influence on both innate and adaptive immune responses. TIME of BC includes various cell populations from both the innate and adaptive immune systems. In this review, the internal association between iron homeostasis and the progression of ferroptosis, along with the common inducers and protectors of ferroptosis in BC, are discussed in detail. Furthermore, a comprehensive analysis is conducted on the dual role of ferroptosis in immune cells and proto-oncogenic functions, along with an evaluation of the potential applications of immunogenic cell death-targeted immunotherapy in TIME of BC. It is anticipated that our review will inform future research endeavors that seek to integrate ferroptosis and immunotherapy in the management of BC.
Collapse
Affiliation(s)
- Yi Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Chuanyun Tang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaoan Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lifang Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinghua Xiao
- Department of Pathology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang, 330066, China
| | - Hui Lin
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Zhang Z, Zhao Q, Xu Q, Deng Q, Hua A, Wang X, Yang X, Li Z. A mitochondria-interfering nanocomplex cooperates with photodynamic therapy to boost antitumor immunity. Biomaterials 2025; 317:123094. [PMID: 39799701 DOI: 10.1016/j.biomaterials.2025.123094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Immunotherapeutics against triple-negative breast cancer (TNBC) hold great promise. In this work, we provide a combination therapy for simultaneous increasing tumor immunogenicity and down-regulating programmed cell death ligand 1 (PD-L1) to boost antitumor immunity in TNBC. We prepare bis (diethyldithiocarbamate)-copper/indocyanine green nanoparticles (CuET/ICG NPs) simply in aqueous with one-pot method. CuET/ICG NPs interfere mitochondria, reduce oxygen consumption, and alleviate tumor hypoxia to potentiate photodynamic therapy (PDT) for amplifying immunogenic cell death (ICD). Meanwhile, mitochondria dysfunction leads to energy stress and activates AMPK pathway. As a result, CuET/ICG NPs downregulates membrane PD-L1 (mPD-L1) on both 4T1 cancer cells and cancer stem cells (CSCs) through AMP-activated protein kinase (AMPK)-mediated pathway in hypoxia. Cooperatively, the combinational therapy activates antitumor immunity and triggers long lasting immune memory response to resist tumor re-challenge. Our study represents an attempt that conquers tumor immunosuppressive microenvironment with simple biomedical materials and multimodality treatments.
Collapse
Affiliation(s)
- Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingfu Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingqing Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xing Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
3
|
Wu H, Liu J, Zhang XH, Jin S, Li P, Liu H, Zhao L, Wang J, Zhao S, Tian HD, Lai JR, Hao Y, Liu GR, Hou K, Yan M, Liu SL, Pang D. The combination of flaxseed lignans and PD-1/ PD-L1 inhibitor inhibits breast cancer growth via modulating gut microbiome and host immunity. Drug Resist Updat 2025; 80:101222. [PMID: 40048957 DOI: 10.1016/j.drup.2025.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Patients with breast cancer (BC) who benefit from the PD-1/PD-L1 inhibitor (PDi) is limited, necessitating novel strategies to improve immunotherapy efficacy of BC. Here we aimed to investigate the inhibitory effects of flaxseed lignans (FL) on the biological behaviors of BC and evaluate the roles of FL in enhancing the anticancer effects of PDi. METHODS HPLC was used to detect the content of enterolactone (ENL), the bacterial transformation product of FL. Transcript sequencing was performed and identified CD38 as a downstream target gene of ENL. CD38-overexpressing cells were constructed and cell proliferation, colony formation, wound healing and transwell assays were used to assess the function of ENL/CD38 axis on BC cells in vitro. Multiplexed immunohistochemistry (mIHC) and CyTOF were used to detect the changes of the tumor immune microenvironment (TIM). 16S rDNA sequencing was used to explore the changes of gut microbiota in mice. A series of in vivo experiments were conducted to investigate the anticancer effects and mechanisms of FL and PDi. RESULTS FL was converted to ENL by gut microbiota and FL administration inhibited the progression of BC. ENL inhibited the malignant behaviors of BC by downregulating CD38, a key gene associated with immunosuppression and PD-1/PD-L1 blockade resistance. The mIHC assay revealed that FL administration enhanced CD3+, CD4+ and CD8+ cells and reduced F4/80+ cells in TIM. CyTOF confirmed the regulatory effects of FL and FL in combination with PDi (FLcPDi) on TIM. In addition, 16S rDNA analysis demonstrated that FLcPDi treatment significantly elevated the abundance of Akkermansia and, importantly, Akkermansia administration enhanced the response to PDi in mice treated with antibiotics. CONCLUSIONS The FL/ENL/CD38 axis inhibited BC progression. FL enhanced the anticancer effects of PDi by modulating gut microbiota and host immunity.
Collapse
Affiliation(s)
- Hao Wu
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jiena Liu
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xing-Hua Zhang
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Shengye Jin
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Li
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Huidi Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Liuying Zhao
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianyu Wang
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shilu Zhao
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Da Tian
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Jin-Ru Lai
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Gui-Rong Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou, China; Longhu People's Hospital, Shantou, China.
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Shu-Lin Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Da Pang
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
4
|
Li T, Meng H, Huang X, Yu Q, Sheng S, Jiang Y, Ren F. Photodynamic Biomimetic Liposomes Targeted to the Endoplasmic Reticulum Enhance Combined Immunotherapy for Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40258178 DOI: 10.1021/acsami.5c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Cancer immunotherapies, such as immune checkpoint inhibitors, have advanced rapidly and achieved notable success, yet they face significant challenges due to poor response rates and immune-related adverse effects, particularly in cases of triple-negative breast cancer (TNBC). Photodynamic therapy (PDT) can initiate immunogenic cell death (ICD) by inducing endoplasmic reticulum (ER) stress, thereby enhancing the effectiveness of tumor immunotherapy. Herein, we develop potent PDT biomimetic liposomes (PB Lipo) locating the ER to realize a synergistic immuno-photodynamic treatment. The PB Lipo is prepared using the optimal ratios of the phospholipids in the ER membrane. It is then loaded with indocyanine green (ICG), a photosensitizer approved for clinical use. PB Lipo has the unique ability to accumulate in the ER via membrane fusion, leading to severe ER stress when exposed to near-infrared (NIR) laser light, thus intensifying ICD. In combination with the antiprogrammed death-ligand 1 (PD-L1) antibody (αPD-L1), PB Lipo significantly improves efficiency against tumors in xenograft TNBC models. As a result, our combined treatment enhances mature dendritic cells, activates CD4+ T and CD8+ T cells, and promotes the secretion of cytotoxic cytokines. Collectively, our findings reveal that PB Lipo-mediated PDT presents a viable approach for effectively targeting the ER and enhancing ICD, thereby boosting antitumor efficacy in TNBC.
Collapse
Affiliation(s)
- Tianyang Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haimei Meng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinfeng Huang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qin Yu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sizhe Sheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yufei Jiang
- First clinical medicine college, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fei Ren
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
5
|
Hu X, Dou Q, Jiang P, Zhang M, Wang J. Targeting matrix metalloproteinases activating and Indoleamine 2,3-dioxygenase suppression for triple-negative breast Cancer multimodal therapy. Int J Biol Macromol 2025:143289. [PMID: 40253020 DOI: 10.1016/j.ijbiomac.2025.143289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The dense extracellular matrix (ECM) and immunosuppressive tumor microenvironment represent two major challenges in the treatment of triple-negative breast cancer (TNBC). To address these obstacles, this study has developed a polymer micelle (NTP) for ECM remodeling and mitigation the immune microenvironment, based on activating endogenous matrix metalloproteinases (MMP) and suppression indoleamine 2,3-dioxygenase (IDO). Through self-assembly technology, this micelle effectively incorporates chemotherapy drugs (camptothecin (CPT) and cinnamaldehyde (CA)), reactive oxygen species (ROS) stimulants, nitric oxide (NO) donor and IDO inhibitor (NLG919), where CPT and CA have been reported to help generating ROS mainly in the mitochondrion. The guanidine group of poly-L-arginine (PArg), as an NO donor, can react with ROS to generate NO. The micelles aim to achieve significant therapeutic outcomes through robust drug penetration and anti-tumor immunity in multimodal therapy. They exhibit remarkable tumor tissue penetration ability, facilitating precise targeting of mitochondria and ROS production stimulation. Building upon this therapeutic foundation, the micellar system achieves in situ NO release, which effectively degrades the primary ECM through the activation of MMPs, while simultaneously promoting tumor cell apoptosis. Furthermore, the encapsulated NLG919 can be released and effectively mitigating the immunosuppressive milieu and triggering anti-tumor immune responses. Experimental results demonstrate that the micelles exhibit significant anti-tumor effects both in vitro and in vivo, accompanied by favorable biocompatibility. This study provides new insights into the application of subcellular targeting drug delivery systems in TNBC treatment, potentially heralding a new breakthrough in TNBC therapy.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China; Pharmaceutical Department, Baoding Second Hospital, Baoding 071052, China
| | - Qingqing Dou
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Peixiao Jiang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Mo Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China.
| | - Jing Wang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
6
|
Dai X, Cao B, Liu X, Meng W, Qiu Y, Sun Y, Zhang L, Li N, Liu Z, Li D, Xiao L, Li B, Zhang Q. Tumor vascular normalization by B7-H3 blockade augments T lymphocyte-mediated antitumor immunity. Eur J Pharmacol 2025; 993:177334. [PMID: 39892447 DOI: 10.1016/j.ejphar.2025.177334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Triple-negative breast cancer (TNBC), defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents unique clinical challenges and generally predicts a less favorable prognosis. Despite recent advancements in TNBC treatment, a subset of patients remains resistant to immunotherapy. B7-H3, a member of the B7 family of immune checkpoints, is correlated with poor outcomes in various cancers and is distinctively expressed in tumor vasculature, marking it as a potential biomarker for tumor-associated endothelial cells. We found high expression of B7-H3 in the endothelial cells of the postoperative tissue of TNBC patients. Elevated gene expression of CD276 (encoding B7-H3) and PECAM1 (encoding CD31) in TNBC is associated with poor prognosis. Anti-B7-H3 blockade reduces tumor burden and promotes lymphocyte infiltration in a TNBC mouse model. Additionally, anti-B7-H3 blockade promotes tumor vessel normalization and enhances programmed cell death ligand 1 (PD-L1) expression. Synergistic effects were observed when B7-H3 blockade was combined with programmed cell death protein 1 (PD-1) inhibition in the TNBC mouse model. Furthermore, anti-B7-H3 inhibits human umbilical vein endothelial cell (HUVEC) proliferation by suppression of the nuclear factor kappa-B (NF-κB) signaling pathway. Downregulation of B7-H3 expression in HUVECs promotes lymphocyte trans-endothelial migration. These findings suggest that B7-H3 represents a promising therapeutic target for TNBC, and the combination of anti-B7-H3 and anti-PD-1 therapies may have synergetic effects in treating TNBC.
Collapse
Affiliation(s)
- Xin Dai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China; Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boran Cao
- Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinnan Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Qiu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University School of Medicine, Shanghai, China
| | - Yidan Sun
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Li
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenyu Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lianbo Xiao
- Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Bin Li
- Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
7
|
Chi JJ, Xie P, Cheng MH, Zhu Y, Cui X, Watson J, Zeng L, Uddin A, Nguyen H, Li L, Moremen K, Reedy A, Wyatt M, Marcus A, Dai M, Paulos CM, Cristofanilli M, Gradishar WJ, Zhao S, Kalinsky K, Hung MC, Bahar I, Zhang B, Wan Y. MGAT1-Guided complex N-Glycans on CD73 regulate immune evasion in triple-negative breast cancer. Nat Commun 2025; 16:3552. [PMID: 40229283 PMCID: PMC11997035 DOI: 10.1038/s41467-025-58524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Despite the widespread application of immunotherapy, treating immune-cold tumors remains a significant challenge in cancer therapy. Using multiomic spatial analyses and experimental validation, we identify MGAT1, a glycosyltransferase, as a pivotal factor governing tumor immune response. Overexpression of MGAT1 leads to immune evasion due to aberrant elevation of CD73 membrane translocation, which suppresses CD8+ T cell function, especially in immune-cold triple-negative breast cancer (TNBC). Mechanistically, addition of N-acetylglucosamine to CD73 by MGAT1 enables the CD73 dimerization necessary for CD73 loading onto VAMP3, ensuring membrane fusion. We further show that THBS1 is an upstream etiological factor orchestrating the MGAT1-CD73-VAMP3-adenosine axis in suppressing CD8+ T cell antitumor activity. Spatial transcriptomic profiling reveals spatially resolved features of interacting malignant and immune cells pertaining to expression levels of MGAT1 and CD73. In preclinical models of TNBC, W-GTF01, an inhibitor specifically blocked the MGAT1-catalyzed CD73 glycosylation, sensitizing refractory tumors to anti-PD-L1 therapy via restoring capacity to elicit a CD8+ IFNγ-producing T cell response. Collectively, our findings uncover a strategy for targeting the immunosuppressive molecule CD73 by inhibiting MGAT1.
Collapse
Affiliation(s)
- Junlong Jack Chi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- DGP graduate program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Ping Xie
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern, University Feinberg School of Medicine, Chicago, IL, USA
| | - Mary Hongying Cheng
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xin Cui
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua Watson
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, USA
| | - Lidan Zeng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Amad Uddin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Hoang Nguyen
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, USA
| | - Kelley Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - April Reedy
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Megan Wyatt
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgery/Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Marcus
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mingji Dai
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Chrystal M Paulos
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgery/Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - William J Gradishar
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern, University Feinberg School of Medicine, Chicago, IL, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mine-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ivet Bahar
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Bin Zhang
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern, University Feinberg School of Medicine, Chicago, IL, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Khazaei-Poul Y, Firouzjaei AA, Paryan M, Tafti A, Mohammadi-Yeganeh S. Evaluation of the impact of miR-3143 on the PI3K/AKT signaling pathway and its subsequent influence on the metastatic phenotype of triple-negative breast cancer cells. Exp Cell Res 2025; 448:114552. [PMID: 40203985 DOI: 10.1016/j.yexcr.2025.114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
MicroRNAs (miRNAs) are recognized to have a pivotal role in the progression and metastatic dissemination encompassing diverse cancer varieties, such as triple-negative breast cancer (TNBC). Recent evidence has suggested that specific miRNA species can directly or indirectly influence the onset, progression, and relapse of TNBC. Previous studies have reported the frequent reduction of miR-3143 in TNBC, which appears to coincide with the activation of proliferative signaling pathways. However, the potential restorative effects of miR-3143 on TNBC cellular behavior remain unexplored. In the present study, we utilized exosome-mediated delivery to introduce miR-3143 into TNBC cells and investigated its impact on the PI3K/AKT pathway and the resulting effects on cellular proliferation, movement, and apoptosis. MDA-MB-231 TNBC cells underwent treatment with miR-3143-electroporated human umbilical cord mesenchymal stem cell (HUCMSC)-derived exosomes. RT-qPCR analysis was utilized to assess the influence of miR-3143 overexpression on the expression of its target genes, PIK3CA and AKT1, which was further validated through dual-luciferase reporter assays. Our results demonstrated that the overexpression of miR-3143 could effectively decline the level of AKT1 and PIK3CA by directly binding to their 3'-UTRs. Furthermore, the introduction of miR-3143 into TNBC cells resulted in a significant enhancement of apoptotic activities. Interestingly, the delivery of miR-3143 via HUCMSC-derived exosomes could inhibit the protumorigenic and prometastatic behaviors of TNBC cells, potentially limiting their malignant progression. Collectively, these findings enhance comprehension of the regulatory mechanisms by which miR-3143 can modulate the metastatic potential of TNBC cells. The insights gained from this study may facilitate the creation of innovative miRNA-targeting approaches to combat the aggressive nature of TNBC andstrengthen treatment effectiveness.
Collapse
Affiliation(s)
- Yalda Khazaei-Poul
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadizad Firouzjaei
- Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Tafti
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Chen P, Qiao D, Xiao L, Deng G, Yang Q, Tian R. Cost-effectiveness analysis of toripalimab combined with nab-paclitaxel as a first-line treatment for advanced TNBC in the US. PLoS One 2025; 20:e0320727. [PMID: 40168440 PMCID: PMC11960867 DOI: 10.1371/journal.pone.0320727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 04/03/2025] Open
Abstract
INTRODUCTION Initial immunotherapy outcomes with toripalimab suggest a potential paradigm shift in the treatment of advanced triple-negative breast cancer (TNBC), promising extended survival for patients. However, its cost-effectiveness in the treatment of TNBC within the US health care context remains to be determined. METHODS A 5-year Markov model was developed using data from the TORCHLIGHT study to evaluate the cost-effectiveness of toripalimab plus nab-paclitaxel as a first-line therapy for metastatic or recurrent TNBC in the US. The model incorporated efficacy and safety data, literature-derived costs and utilities, and calculated ICERs. Sensitivity analyses were conducted to assess the impact of variable uncertainties on the outcomes. RESULTS Toripalimab combined with nab-P chemotherapy for TNBC patients resulted in an additional 2.68 life years (LYs) and 1.72 quality-adjusted life years (QALYs), with an ICER of $593,750 per QALY. Sensitivity analyses indicated that the cost and survival utility of toripalimab significantly influence patient outcomes. At a $100,000/QALY WTP threshold, combination therapy was not cost-effective compared with nab-P alone. CONCLUSIONS Our analysis suggests that, from a US health care system perspective, toripalimab in combination with chemotherapy does not demonstrate a significant cost-effective advantage over nab-P chemotherapy as a first-line treatment for patients with TNBC at a WTP threshold of $100,000/QALY and has a limited impact on US health care policy and clinical practice.
Collapse
Affiliation(s)
- Ping Chen
- Department of Nursing, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China,
| | - Dan Qiao
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Xiao
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Guiya Deng
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Qing Yang
- Department of Nursing, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China,
| | - Rendi Tian
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Wang J, Wang J, Zhang J, Ye H, Wang D, Tao L, Yao Y, Chen Y, Shen X. Bimetallic chitosan/hyaluronic acid nanoparticles self-amplify ferroptosis/cuproptosis in triple-negative breast cancer. Int J Biol Macromol 2025; 308:142535. [PMID: 40174837 DOI: 10.1016/j.ijbiomac.2025.142535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
As a notoriously incurable tumor, triple-negative breast cancer (TNBC) exhibits significant sensitivity to ferroptosis and the glutathione (GSH) antioxidant defense system plays a crucial role in its progression. Herein, we report a bimetallic chitosan/hyaluronic acid nanoparticle (5FCN, with a Fe/Cu mass ratio of 5:5) that employs a self-amplified dual mechanism of ferroptosis and cuproptosis for TNBC therapy. Hyaluronic acid in 5FCN specifically binds to the overexpressed CD44 receptor on TNBC cells. This allows 5FCN to enter cells via receptor-mediated endocytosis, then release metal ions in acidic environments. Released Fe3+ and Cu2+ react with GSH in tumor cells, weakening the antioxidant system and producing Fe2+ and Cu+. These ions trigger Fenton/Fenton-like reactions with H2O2, generating toxic hydroxyl radicals (·OH) to boost ferroptosis. Meanwhile, high-valent Cu2+ and Fe3+ are produced, forming a cycle for GSH depletion and ·OH generation. As H2O2 depletes, the rising Cu+ level in cells causes lipoylated protein aggregation, amplifying cuproptosis. In vitro and in vivo studies demonstrated that 5FCN exhibited superior cell-killing efficacy against TNBC with few side effects. Collectively, 5FCN represents a potential drug to self-amplify ferroptosis/cuproptosis in TNBC.
Collapse
Affiliation(s)
- Juan Wang
- School of Pharmaceutical Sciences, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability) & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education) & State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Junyu Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability) & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education) & State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Jun Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability) & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education) & State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Haoran Ye
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability) & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education) & State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Dawei Wang
- School of Pharmaceutical Sciences, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, China
| | - Ling Tao
- School of Pharmaceutical Sciences, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability) & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education) & State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China.
| | - Yongchao Yao
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, Sichuan 610041, China.
| | - Ying Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability) & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education) & State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China.
| | - Xiangchun Shen
- School of Pharmaceutical Sciences, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability) & School of Pharmaceutical Sciences, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education) & State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, No. 6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China.
| |
Collapse
|
11
|
Malla R, Bhamidipati P, Samudrala AS, Nuthalapati Y, Padmaraju V, Malhotra A, Rolig AS, Malhotra SV. Exosome-Mediated Cellular Communication in the Tumor Microenvironment Imparts Drug Resistance in Breast Cancer. Cancers (Basel) 2025; 17:1167. [PMID: 40227747 PMCID: PMC11987792 DOI: 10.3390/cancers17071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Globally, breast cancer (BC) is the leading cause of cancer-related death for women. BC is characterized by heterogeneity, aggressive behavior, and high metastatic potential. Chemotherapy, administered as monotherapy or adjuvant therapy, remains a cornerstone of treatment; however, acquired drug resistance is a significant clinical challenge. Deciphering mechanisms of drug resistance will be central to developing more efficient treatment options and improving patient outcomes. The current review examines the multifaceted nature of exosomes in conferring drug resistance in BC through complex communication networks within the tumor microenvironment. We further explore recent advances in understanding how exosomes contribute to resistance against established chemotherapeutic agents such as tamoxifen, paclitaxel, doxorubicin, platinum-based drugs, trastuzumab, and newer immunotherapies, such as immune checkpoint inhibitors. Moreover, we discuss existing systematic approaches to investigating the exosome-drug resistance relationship in BC. Finally, we explore promising therapeutic approaches to overcome exosome-dependent drug resistance in BC, highlighting potential avenues for improved treatment efficacy. Investigating the distinct functions and cargo of exosomes offers potential for developing innovative approaches to overcoming treatment resistance.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Priyamvada Bhamidipati
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Anuveda Sree Samudrala
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Yerusha Nuthalapati
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Vasudevaraju Padmaraju
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Aditya Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Annah S. Rolig
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Sanjay V. Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
12
|
Carvalho E, Canberk S, Schmitt F, Vale N. Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies. Cancers (Basel) 2025; 17:1102. [PMID: 40227634 PMCID: PMC11987866 DOI: 10.3390/cancers17071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/15/2025] Open
Abstract
Breast cancer remains one of the most prevalent diseases worldwide, primarily affecting women. Its heterogeneous nature poses a significant challenge in the development of effective and targeted treatments. Molecular characterization has enabled breast cancer to be classified into four main subtypes: luminal A, luminal B, HER2-positive, and triple-negative breast cancer, based on hormone receptor expression and HER2 status. A deeper understanding of these molecular markers and their associated signaling pathways, such as MAPK and PI3K/AKT, is essential for improving prognosis and optimizing treatment strategies. Currently, several therapeutic agents are utilized in neoadjuvant and adjuvant therapies, often in combination with surgical interventions. However, emerging evidence highlights the growing challenge of drug resistance, which significantly limits the efficacy of existing treatments. Addressing this issue may require innovative approaches, including combination therapies and precision medicine strategies, tailored to the molecular profile of each patient. Therefore, a comprehensive understanding of the pathophysiologic mechanisms driving breast cancer progression and resistance is crucial for the development of advanced targeted therapies with greater precision and efficacy. This review aims to explore recent advancements in molecular research related to breast cancer subtypes and provide a critical analysis of current therapeutic approaches within the framework of precision medicine.
Collapse
Affiliation(s)
- Eduarda Carvalho
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (E.C.); (S.C.); (F.S.)
| | - Sule Canberk
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (E.C.); (S.C.); (F.S.)
- RISE-Health, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fernando Schmitt
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (E.C.); (S.C.); (F.S.)
- RISE-Health, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (E.C.); (S.C.); (F.S.)
- RISE-Health, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Jiang R, Yang L, Liu X, Xu Y, Han L, Chen Y, Gao G, Wang M, Su T, Li H, Fang L, Sun N, Du H, Zheng J, Wang G. Genetically engineered macrophages reverse the immunosuppressive tumor microenvironment and improve immunotherapeutic efficacy in TNBC. Mol Ther 2025:S1525-0016(25)00198-4. [PMID: 40119517 DOI: 10.1016/j.ymthe.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
The main challenges in current immunotherapy for triple-negative breast cancer (TNBC) lie in the immunosuppressive tumor microenvironment (TME). Considering tumor-associated macrophages (TAMs) are the most abundant immune cells in the TME, resetting TAMs is a promising strategy for ameliorating the immunosuppressive TME. Here, we developed genetically engineered macrophages (GEMs) with gene-carrying adenoviruses, to maintain the M1-like phenotype and directly deliver the immune regulators interleukin-12 and CXCL9 into local tumors, thereby reversing the immunosuppressive TME. In tumor-bearing mice, GEMs demonstrated targeted enrichment in tumors and successfully reprogramed TAMs to M1-like macrophages. Moreover, GEMs significantly enhanced the accumulation, proliferation, and activation of CD8+ T cells, mature dendritic cells, and natural killer cells within tumors, while diminishing M2-like macrophages, immunosuppressive myeloid-derived suppressor cells, and regulatory T cells. This treatment efficiently suppressed tumor growth. In addition, combination therapy with GEMs and anti-programmed cell death protein 1 further improved interferon-γ+CD8+ T cell percentages and tumor inhibition efficacy in an orthotopic murine TNBC model. Therefore, this study provides a novel strategy for reversing the immunosuppressive TME and improving immunotherapeutic efficacy through live macrophage-mediated gene delivery.
Collapse
Affiliation(s)
- Ranran Jiang
- Department of Oncology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Liechi Yang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Xin Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Department of Urology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Yujun Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yuxin Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ge Gao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Tong Su
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Hongwei Du
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Junnian Zheng
- Department of Oncology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
14
|
Qin Q. Advances in research and current challenges in the treatment of advanced HER2-low breast cancer. Front Cell Dev Biol 2025; 13:1451471. [PMID: 40177129 PMCID: PMC11962219 DOI: 10.3389/fcell.2025.1451471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-low breast cancer is defined as breast cancer with an immunohistochemistry (IHC) score of 1+ or 2+ and in situ hybridisation (ISH)-negative. The traditional HER2 classification (negative or positive) has limitations, with only 15%-20% of the breast cancer population being positive and suitable for HER2-targeted therapy. The new clinical study, DESTINY-Breast04, shows that trastuzumab deruxtecan (T-DXd) has a significant effect on advanced HER2-low breast cancers, a classification that accounts for approximately half of the advanced breast cancer population. However, the detection methods and evaluation criteria for HER2-low breast cancer have not yet been standardised, and the toxicity and resistance mechanisms associated with T-DXd therapy are still unclear. This article focuses on these issues and describes the progress and challenges of T-DXd-related therapy in the treatment of advanced breast cancer patients with low HER2 expression.
Collapse
Affiliation(s)
- Qiang Qin
- Breast and Thyroid Surgery Department, Nanning Maternal and Child Health Hospital, Nanning, China
| |
Collapse
|
15
|
Ma X, Shan H, Chen Z, Shao R, Han N. Programmed cell death-related prognostic genes mediate dysregulation of the immune microenvironment in triple-negative breast cancer. Front Immunol 2025; 16:1563630. [PMID: 40145099 PMCID: PMC11936919 DOI: 10.3389/fimmu.2025.1563630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background Programmed Cell death (PCD) encompasses a spectrum of genetically regulated cell death processes and plays a double-edged sword role in neoplastic progression and therapeutic resistance of Triple-Negative Breast Cancer(TNBC)through the tumor microenvironment (TME). However, the specific mechanisms by which PCD mediates microenvironmental dysregulation remain elusive. Methods Analyzing nine samples of TNBC through single-cell RNA sequencing (scRNA-seq), this study employed nonnegative matrix factorization (NMF) to assess genes associated with 13 PCD modes. Single-cell regulatory network inference and clustering (SCENIC), Monocle, CellChat, and scMetabolism were used for pseudotime analysis, intercellular communication mapping, determination of transcription factor activities (TFs), and immune infiltration of PCD-related cell clusters in TME. A robust prognostic model and drug resistance analysis were constructed using gene set enrichment analysis (GSEA), Kaplan-Meier survival analysis, and multivariable Cox regression. Finally, hub genes and critical PCD-related cell clusters were validated in the clinical breast cancer samples and the TNBC model mice. Results This investigation demonstrated that PCD significantly modulated the functional and phenotypic diversity of fibroblasts, macrophages, T cells, and B cells in the TME of TNBC. Furthermore, this study revealed that PCD-regulated CEBPB-positive cancer-associated fibroblast (CAF) populations are a key determinant of the TNBC immune Microenvironment heterogeneity and poor prognosis. Notably, CellChat analysis unveiled diverse and extensive interactions between PCD-related cell clusters and tumor immune cells, highlighting the CEBPB+ CAF subtype as a signaling ligand communicated with other immune cell clusters through the Midkine (MDK)-Nucleolin (NCL) signaling axis. Moreover, the TIDE analysis verified that CEBPB+ CAF is a predictor of poor prognosis in Immunotherapy. The ex vivo analyses of tumor specimens from both TNBC patients and syngeneic murine models were performed by quantitative reverse-transcription PCR (qRT-PCR), immunoblotting, immunohistochemical staining, and multiplexed immunofluorescence co-localization assays. They confirmed differential expression of the PCD-related prognostic genes and the presence of CEBPB+ CAFs. Conclusion In summary, our study provides a comprehensive molecular framework to understand the role of PCD-mediated TME dysregulation in TNBC pathogenesis. This study also offers new insights into the underlying mechanisms of immune therapy resistance in TNBC and identifies promising therapeutic targets for enhancing treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Xiaowen Ma
- Pharmacy Department, 960th Hospital of the Joint Logistic Support Force, Jinan, Shandong, China
| | - Hui Shan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China
| | - Zhao Chen
- Thoracic Surgery Department, 960th Hospital of the Joint Logistic Support Force, Jinan, Shandong, China
| | - Rongzi Shao
- Pharmacy Department, 960th Hospital of the Joint Logistic Support Force, Jinan, Shandong, China
| | - Ning Han
- Department of Clinical Laboratory, 960th Hospital of the Joint Logistic Support Force, Jinan, Shandong, China
| |
Collapse
|
16
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
17
|
Feng X, Zhang Y, Lin W, Li J, Wu F, Lu Q, Song H, Zhang H, Lan F, Lu J. A Self-Amplifying Photodynamic Biomedicine for Cascade Immune Activation Against Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410214. [PMID: 39846288 DOI: 10.1002/smll.202410214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/29/2024] [Indexed: 01/24/2025]
Abstract
The efficacy of immunotherapy in triple-negative breast cancer (TNBC) is significantly hindered by its low immunogenicity and immunosuppressive tumor microenvironment. Non-invasive photodynamic therapy (PDT) is increasingly recognized as a potential immunotherapeutic stimulant in the treatment of TNBC. However, photodynamic immunotherapy is constrained by tumor hypoxia and excessive inflammation suppression during the course of treatment. Herein, a simple and efficacious biomedicine is formulated to overcome adverse influences by amplifying photodynamic immunotherapy, thereby stimulating the systemic immune response. Specifically, the approach targeted tumor delivery by employing specific agents such as the photosensitizer (verteporfin), the hypoxic ameliorator (atovaquone), and the cyclooxygenase-2/prostaglandin E2 (COX-2/PGE2) signaling blocker (celecoxib). More importantly, the biomedicine effectively ameliorated hypoxia and inhibited COX-2/PGE2 signaling, thereby amplifying PDT-induced immunogenic cell death. This, in turn, enhanced the efficacy of photodynamic immunotherapy and triggered a robust immune response cascade. Notably, the self-amplifying photodynamic biomedicine significantly inhibited primary tumors, distal tumors, lung metastases, and post-operative recurrence while maintaining high biocompatibility. To sum up, the work provides a viable cascade stimulation approach and an efficient biomedical nanoplatform, offering a novel strategy for photodynamic immunotherapy of TNBC in the clinic.
Collapse
Affiliation(s)
- Xianquan Feng
- Fujian Provincial Key Laboratory of Transplant Biology, Laboratory of Basic Medicine, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, 350025, China
| | - Yan Zhang
- Department of Oncology, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, 350025, China
| | - Wanjing Lin
- Department of Pharmacy, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, 350025, China
| | - Jing Li
- Department of Pharmacy, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, 350025, China
| | - Fei Wu
- Department of Pharmacy, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, 350025, China
| | - Qingyu Lu
- Department of Pharmacy, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, 350025, China
| | - Hongtao Song
- Department of Pharmacy, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, 350025, China
| | - Hao Zhang
- Department of Pharmacy, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, 350025, China
| | - Fenghua Lan
- Fujian Provincial Key Laboratory of Transplant Biology, Laboratory of Basic Medicine, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, 350025, China
| | - Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Laboratory of Basic Medicine, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, 350025, China
| |
Collapse
|
18
|
Lu J, Ding F, Sun Y, Zhao Y, Ma W, Zhang H, Shi B. Unveiling the role of MDH1 in breast cancer drug resistance through single-cell sequencing and schottenol intervention. Cell Signal 2025; 127:111608. [PMID: 39818404 DOI: 10.1016/j.cellsig.2025.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC). The study also analyzed myeloid cells and tumor-infiltrating lymphocytes (TILs) within the breast cancer immune microenvironment, identifying 14 TIL subpopulations and assessing their proportion variations across different patients. The CellChat tool revealed a complex cellular communication network within the tumor microenvironment, showing notable differences in communication intensity and patterns between TNBC and NTNBC patients. Additionally, the key regulatory role of the senescence-associated gene MDH1 in breast cancer was confirmed, and its impact on drug sensitivity was explored. Finally, it was discovered that the phytosterol Schottenol inhibits breast cancer cell proliferation by downregulating MDH1 expression and enhances sensitivity to paclitaxel. These findings provide new insights into MDH1 as a therapeutic target and suggest Schottenol as a potential strategy to overcome breast cancer drug resistance.
Collapse
Affiliation(s)
- Jian Lu
- Cheeloo College of Medicine, Shandong University, Jinan 250000, Shandong, China.; Department of Breast Diseases (II), Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Feng Ding
- Department of Breast Diseases (II), Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Yongjie Sun
- Department of Breast Diseases (II), Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Yu Zhao
- Department of Stomatology, Shandong Second Provincial General Hospital, Jinan 250000, Shandong, China
| | - Wenbiao Ma
- Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China
| | - Huan Zhang
- Department of Anesthesiology, The Qinghai Provincial People's Hospital, Xining 810007, China
| | - Bo Shi
- Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China.
| |
Collapse
|
19
|
de Moraes FCA, Souza MEC, Sano VKT, Moraes RA, Melo AC. Association of tumor-infiltrating lymphocytes with clinical outcomes in patients with triple-negative breast cancer receiving neoadjuvant chemotherapy: a systematic review and meta-analysis. Clin Transl Oncol 2025; 27:974-987. [PMID: 39154313 DOI: 10.1007/s12094-024-03661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Triple-negative breast cancer (TNBC) presents a clinical challenge as an aggressive tumor, correlated with unfavorable prognosis. Tumor-infiltrating lymphocytes (TILs) have garnered interest as a potential prognostic biomarker. However, the disparity in outcomes between varying TILs rates remains inadequately explored. METHODS PubMed, Scopus, Web of Science, and Cochrane databases were searched for studies about the prognostic value of TILs in patients with TNBC receiving neoadjuvant chemotherapy. The hazard ratios (HRs) or odds ratios (ORs) were computed for binary endpoints, with 95% confidence intervals (CIs). RESULTS Twenty-nine studies were included, involving a population of six thousand one hundred sixty-one (80.41%) with TNBC. The cut-off TILs value ranged from 10 to 60%, with 50% being the most related value. Compared with the low-TIL expression group, the disease-free survival (DFS) (HR 0.71; 95% CI 0.61-0.82; p < 0.00001) and overall survival (OS) (HR 0.76; 95% CI 0.63-0.90; p = 0.002) rates showed significant improvement with higher TIL infiltrations. In the subgroup analyses of the lymphocyte subtypes CD4 + and CD8 + , there was statistical significance favoring higher TILs rates in both subtypes, each associated with improved DFS (HR 0.48; 95% CI 0.33-0.71; p = 0.0002) and OS (HR 0.53; 95% CI 0.36-0.78; p = 0.001), regardless of which cell subtype was predominantly infiltrated. The complete pathological response analysis showed better rates for the higher TIL group than the control for both the TIL (OR 1.29; 95% CI 1.13-1.48; p = 0.0003) and Ki-67 (OR 2.74; 95% CI 2.01-3.73; p < 0.00001) analyses. CONCLUSION Higher expressions of TILs in patients with TNBC were associated with improved significantly DFS, OS, and pCR outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Ana C Melo
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
20
|
Yang X, Huang K, Wu XN, Zhang C, Sun Y, Gao Y, Zhou J, Tao L, Zhang H, Wu Y, Luo HB, Wang H. Discovery of a Novel Selective and Cell-Active N 6-Methyladenosine RNA Demethylase ALKBH5 Inhibitor. J Med Chem 2025; 68:4133-4147. [PMID: 39925002 DOI: 10.1021/acs.jmedchem.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
N6-methyladenosine (m6A), the most abundant methylation on mRNA, plays pivotal roles in regulating mRNA biological functions, which affect cell functions. ALKBH5, an m6A demethylase, was found to be an oncogene in several cancer types, including triple-negative breast cancer (TNBC). Here, we report a novel and selective ALKBH5 covalent inhibitor, W23-1006, through virtual screening and structure optimization. It covalently bonds to the ALKBH5 C200 residue with an IC50 value of 3.848 μM, representing roughly 30- and 8-fold stronger inhibitory activity than that against FTO and ALKBH3, respectively. Cellular experiments demonstrated that W23-1006 could efficiently enhance the m6A level on fibronectin 1 (FN1) mRNA, leading to strong suppression of TNBC cell proliferation and migration in vitro as well as tumor growth and metastasis in vivo. Collectively, our study developed a novel, selective, and cell-active ALKBH5 covalent inhibitor, W23-1006, which could be a potential therapeutic option for cancer, such as TNBC treatment.
Collapse
Affiliation(s)
- Xianyuan Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kaitao Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xu-Nian Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lijun Tao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinuo Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Wang Q, Li D, Ma H, Li Z, Wu J, Qiao J, Liu J, Zhao J, Ma R, Tian L, Zhang L, Yang J, Wang J, Qin S, Su Z. Tumor cell-derived EMP1 is essential for cancer-associated fibroblast infiltration in tumor microenvironment of triple-negative breast cancer. Cell Death Dis 2025; 16:143. [PMID: 40016223 PMCID: PMC11868485 DOI: 10.1038/s41419-025-07464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
The role of epithelial membrane protein 1 (EMP1) in tumor microenvironment (TME) remodeling has not yet been elucidated. In addition, the biological function of EMP1 in triple-negative breast cancer (TNBC) is largely unclear. In this study, we examined the infiltration landscape of cell types in the TME of breast cancer, and found that EMP1 expression was positively correlated with stromal and microenvironmental scores. Infiltration analysis and immunohistochemical (IHC) staining of serial sections confirmed the critical role of EMP1 in cancer-associated fibroblast (CAF) infiltration. Cell co-culture assays, xenograft tumor experiments, loss-of-function, gain-of-function, RNA sequencing studies, and rescue assays were performed to confirm the role of EMP1 in CAF infiltration in vitro and in vivo. These findings revealed that EMP1 depletion in TNBC cells resulted in considerable inhibition of CAF infiltration in vivo and in vitro. Mechanistically, EMP1 knockdown induced a substantial decrease in IL6 secretion from TNBC through the NF-κB signaling pathway, hindering CAF proliferation and subsequently inhibiting TNBC progression and metastasis. These cumulative results indicate that EMP1 functions as an oncogene in TNBC by mediating the cell communication of TNBC and CAFs. Targeted inhibition of EMP1 by suppressing CAF infiltration is a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dandan Li
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Shiyan Key Laboratory of Comprehensive Prevention and Treatment of Oral Cancer, Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haixiu Ma
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Zengyan Li
- Experimental Animal Center & Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Wu
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Jinwan Qiao
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Jun Liu
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Jing Zhao
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Ronghua Ma
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Lin Tian
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Zhang
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jianye Yang
- Experimental Animal Center & Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jianing Wang
- Experimental Animal Center & Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Shanshan Qin
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Shiyan Key Laboratory of Comprehensive Prevention and Treatment of Oral Cancer, Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Zhanhai Su
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China.
| |
Collapse
|
22
|
Wang JF, Wang MC, Jiang LL, Lin NM. The neuroscience in breast cancer: Current insights and clinical opportunities. Heliyon 2025; 11:e42293. [PMID: 39975839 PMCID: PMC11835589 DOI: 10.1016/j.heliyon.2025.e42293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/21/2025] Open
Abstract
The involvement of nerves in the development of breast cancer has emerged as a significant factor. Interaction between the nervous system and breast cancer can influence tumor initiation, growth, invasion, metastasis, reverse resistance to drugs, promote inflammation in tumors, and impair the immune system's ability to combat cancer. This review examined the intricate relationship linking the nervous system with breast cancer, emphasizing both central and peripheral aspects of the nervous system. Moreover, we reviewed neural cell factors and their impact on breast cancer progression, alongside the interactions between nerves and immunology, microbiota in breast cancer. Furthermore, the study discussed the potential of nerves as biomarkers for diagnosing and prognosticating breast cancer, and evaluated prospects for improving chemotherapy and immunotherapy therapeutic outcomes in breast cancer treatment. We hope to provide a deeper understanding of the neurobiological underpinnings of breast cancer and pave the way for the discovery of innovative therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Jia-feng Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Meng-chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Lei-lei Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine,Hefei, 230031, China
| | - Neng-ming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| |
Collapse
|
23
|
Zhang X, Shi C, Liu Q, Zhong Y, Zhu L, Zhao Y. Combination of adenosine blockade and ferroptosis for photo-immunotherapy of triple negative breast cancer with aptamer-modified copper sulfide. J Mater Chem B 2025; 13:2504-2519. [PMID: 39834279 DOI: 10.1039/d4tb02125h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Combination of immunotherapy and photothermal therapy (PTT) provides a promising therapeutic performance for tumors. However, it still faces negative feedback from suppressive factors such as adenosine. Herein, we developed a new nanodrug that can combine adenosine blockade and ferroptosis to promote the photoimmunotherapy of triple negative breast cancer (TNBC). The nanodrug, named CuS-PEG@Apt, was constructed via the modification of copper sulfide (CuS) nanoparticles with adenosine aptamer and PEG. CuS-PEG@Apt could be effectively enriched in the tumor site and locally generate a strong photothermal effect, directly ablating tumors and inducing immunogenic death (ICD). On the other hand, the aptamers could block the adenosine pathway to inhibit the immune suppression by adenosine, which further promoted the anti-tumor immunity. Moreover, the CuS nanoparticles could consume GSH and inhibit GPX4 to cause the ferroptosis of tumor cells. Collectively, CuS-PEG@Apt achieved potent efficacy of tumor suppression via the combination of PTT, immune activation and ferroptosis, representing an appealing platform for TNBC treatment.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| | - Chengyu Shi
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| | - Qiao Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| | - Yuting Zhong
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| | - Lipeng Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| | - Yuetao Zhao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| |
Collapse
|
24
|
Yang M, Guo J, Li J, Wang S, Sun Y, Liu Y, Peng Y. Platycodon grandiflorum-derived extracellular vesicles suppress triple-negative breast cancer growth by reversing the immunosuppressive tumor microenvironment and modulating the gut microbiota. J Nanobiotechnology 2025; 23:92. [PMID: 39920791 PMCID: PMC11804104 DOI: 10.1186/s12951-025-03139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/19/2025] [Indexed: 02/09/2025] Open
Abstract
Despite the approval of several artificial nanotherapeutics for the treatment of triple-negative breast cancer (TNBC), significant challenges, including unsatisfactory therapeutic outcomes, severe side effects, and the high cost of large-scale production, still restrict their long-term application. In contrast, plant-derived extracellular vesicles (PEVs) exhibit promising potential in cancer therapy due to their negligible systemic toxicity, high bioavailability and cost- effectiveness. In this study, we developed an alternative strategy to inhibit TNBC via Platycodon grandiflorum (PG)-derived extracellular vesicles (PGEVs). The PGEVs were isolated by ultracentrifugation and sucrose gradient centrifugation method and contained adequate functional components such as proteins, lipids, RNAs and active molecules. PGEVs exhibited remarkable stability, tolerating acidic digestion and undergoing minimal changes in simulated gastrointestinal fluid. They were efficiently taken up by tumor cells and induced increased production of reactive oxygen species (ROS), leading to tumor cell proliferation inhibition and apoptosis, particularly in the TNBC cell line 4T1. Additionally, PGEVs facilitated the polarization of tumor-associated macrophages (TAMs) toward M1 phenotype and increased the secretion of pro-inflammatory cytokines. Further in vivo investigations revealed that PGEVs efficiently accumulated in 4T1 tumors and exerted significant therapeutic effects through boosting systemic anti-tumor immune responses and modulating the gut microbiota whether administered orally or intravenously (i.v.). In conclusion, these findings highlight PGEVs as a promising natural, biocompatible and efficient nanotherapeutic candidate for treating TNBC.
Collapse
Affiliation(s)
- Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jinxian Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Shuyue Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Yuan Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ying Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
25
|
Xu L, Xu P, Wang J, Ji H, Zhang L, Tang Z. Advancements in clinical research and emerging therapies for triple-negative breast cancer treatment. Eur J Pharmacol 2025; 988:177202. [PMID: 39675457 DOI: 10.1016/j.ejphar.2024.177202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Triple-negative breast cancer (TNBC), defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression, is acknowledged as the most aggressive form of breast cancer (BC), comprising 15%-20% of all primary cases. Despite the prevalence of TNBC, effective and well-tolerated targeted therapies remain limited, with chemotherapy continuing to be the mainstay of treatment. However, the horizon is brightened by recent advancements in immunotherapy and antibody-drug conjugates (ADCs), which have garnered the U.S. Food and Drug Administration (FDA) approval for various stages of TNBC. Poly (ADP-ribose) polymerase inhibitors (PARPi), particularly for TNBC with BRCA mutations, present a promising avenue, albeit with the challenge of resistance that must be addressed. The success of phosphoinositide-3 kinase (PI3K) pathway inhibitors in hormone receptor (HR)-positive BC suggests potential applicability in TNBC, spurring optimism within the research community. This review endeavors to offer a comprehensive synthesis of both established and cutting-edge targeted therapies for TNBC. We delve into the specifics of PARPi, androgen receptor (AR) inhibitors, Cancer stem cells (CSCs), PI3K/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR), the transforming growth factor-beta (TGF-β), Ntoch, Wnt/β-catenin, hedgehog (Hh) pathway inhibitors, Epigenetic target-mediated drug delivery, ADCs, immune checkpoint inhibitors (ICIs)and novel immunotherapeutic solutions, contextualizing TNBC within current treatment paradigms. By elucidating the mechanisms of these drugs and their prospective clinical applications, we aim to shed light on the challenges and underscore the beacon of hope that translational research and innovative therapies represent for the oncology field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Pengtao Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, China
| | - Hui Ji
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
26
|
Dai Y, Yu X, Zhao Y, Wei J, Lin D, Wang J, Zhang R, Yuan X, Li S, Huang S, Liu Q, Zhang Z. Targeted Modulation of the Meningeal Lymphatic Reverse Pathway for Immunotherapy of Breast Cancer Brain Metastases. ACS NANO 2025; 19:4830-4844. [PMID: 39818794 DOI: 10.1021/acsnano.4c15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Treatment of tumor brain metastases remains challenging due to the ineffectiveness of drugs in crossing the blood-brain barrier (BBB). Here, we proposed a potential strategy to target and modulate the meningeal lymphatic system for immunotherapy of breast cancer brain metastases (BCBM) through peripheral administration. CT/fluorescence dual-modality imaging demonstrated that the phospholipid nanoprobe (α-PLNPs) through intracisternal magna injection effectively labeled and long-range tracked the meningeal lymphatic pathway from meningeal lymphatic vessels (MLVs) to periphery drainage cervical lymph nodes (CLNs). Interestingly, the reverse pathway from CLNs to MLVs was also successfully labeled with α-PLNPs through cervical subcutaneous injection, facilitating the noninvasive delivery of immunomodulators to the meningeal lymphatics. Given this, we used melittin-carrying α-M-PLNPs to trigger the modulation of the meningeal lymphatic reverse pathway, which effectively prevents BCBM and prolongs the survival of mice through activating the antigen-presenting cells in the CLNs and promoting the migration of CD8+ T cells into the metastatic brain tumors. This study highlights the potential of the meningeal lymphatic reverse pathway for the immunotherapy of BCBM, which holds great promise for central nervous system disease therapy without the need for drug delivery via BBB.
Collapse
Affiliation(s)
- Yanfeng Dai
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572024, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Sanya 572024, China
| | - Xiang Yu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572024, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Sanya 572024, China
| | - Yifan Zhao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianshuang Wei
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dong Lin
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jialu Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ren Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuenan Yuan
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sanmu Li
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572024, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Sanya 572024, China
| | - Songlin Huang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China
| | - Qian Liu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572024, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Sanya 572024, China
| | - Zhihong Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572024, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Sanya 572024, China
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
27
|
Ferro C, Matos AI, Serpico L, Fontana F, Chiaro J, D'Amico C, Correia A, Koivula R, Kemell M, Gaspar MM, Acúrcio RC, Cerullo V, Santos HA, Florindo HF. Selenium Nanoparticles Synergize with a KRAS Nanovaccine against Breast Cancer. Adv Healthc Mater 2025; 14:e2401523. [PMID: 39205539 PMCID: PMC11834378 DOI: 10.1002/adhm.202401523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Selenium (Se) is an element crucial for human health, known for its anticancer properties. Although selenium nanoparticles (SeNPs) have shown lower toxicity and higher biocompatibility than other Se compounds, bare SeNPs are unstable in aqueous solutions. In this study, several materials, including bovine serum albumin (BSA), chitosan, polymethyl vinyl ether-alt-maleic anhydride, and tocopherol polyethylene glycol succinate, are explored to develop stable SeNPs and further evaluate their potential as candidates for cancer treatment. All optimized SeNP are spherical, <100 nm, and with a narrow size distribution. BSA-stabilized SeNPs produced under acidic conditions present the highest stability in medium, plasma, and at physiological pH, maintaining their size ≈50-60 nm for an extended period. SeNPs demonstrate enhanced toxicity in cancer cell lines while sparing primary human dermal fibroblasts, underscoring their potential as effective anticancer agents. Moreover, the combination of BSA-SeNPs with a nanovaccine results in a strong tumor growth reduction in an EO771 breast cancer mouse model, demonstrating a three-fold decrease in tumor size. This synergistic anticancer effect not only highlights the role of SeNPs as effective anticancer agents but also offers valuable insights for developing innovative combinatorial approaches using SeNPs to improve the outcomes of cancer immunotherapy.
Collapse
Affiliation(s)
- Cláudio Ferro
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Ana I. Matos
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Luigia Serpico
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Flavia Fontana
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Jacopo Chiaro
- Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Carmine D'Amico
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Alexandra Correia
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Risto Koivula
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Marianna Kemell
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Maria Manuela Gaspar
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Rita C. Acúrcio
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Vincenzo Cerullo
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
- Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Helena F. Florindo
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| |
Collapse
|
28
|
Arnone AA, Ansley K, Heeke AL, Howard-McNatt M, Cook KL. Gut microbiota interact with breast cancer therapeutics to modulate efficacy. EMBO Mol Med 2025; 17:219-234. [PMID: 39820166 PMCID: PMC11822015 DOI: 10.1038/s44321-024-00185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
The gut microbiome, or the community of microorganisms residing in the gastrointestinal tract, has emerged as an important factor in breast cancer etiology and treatment. Specifically, the impact of gut bacterial populations on breast cancer therapeutic outcomes is an emerging area of research. The microbiota's role in modifying the pharmacokinetics of chemotherapy and endocrine-targeting therapies can alter drug efficacy and toxicity profiles. In addition, the gut microbiome's capacity to regulate systemic inflammation and immune responses may influence the effectiveness of both conventional and immunotherapeutic strategies for the treatment of breast cancer. Overall, while the bidirectional interactions between the gut microbiome and breast cancer therapies are still being studied, its impact is increasingly recognized. Future research may provide more definitive insights and help develop personalized therapeutic strategies to harness the microbiome to improve breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Katherine Ansley
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Arielle L Heeke
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Marissa Howard-McNatt
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
29
|
Fujimoto A, Ikeda K, Kinowaki K, Ogura T, Takeiwa T, Kawabata H, Osaki A, Horie K, Inoue S. Combined use of immunoreactivities of Efp and ZCCHC3 for predicting prognosis of patients with triple-negative breast cancer. Pathol Int 2025; 75:92-99. [PMID: 39936817 DOI: 10.1111/pin.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
We previously reported that strong immunoreactivity (IR) of estrogen-responsive finger protein (Efp), also known as tripartite motif-containing 25 (TRIM25), predicts poor prognosis in patients with estrogen receptor-positive and -negative invasive breast cancers. In the present study, we investigated the clinicopathological role of Efp and ZCCHC3, the latter of which is an Efp interactor, in a triple-negative breast cancer (TNBC) cohort which was composed of 118 Japanese female breast cancer patients underwent surgical treatment. Efp and ZCCHC3 IRs were analyzed using specific antibodies for these proteins. We demonstrated that positive Efp IR was significantly associated with shorter distant disease-free survival (p = 0.0108) and that positive ZCCHC3 IR was also significantly associated with shorter distant disease-free survival (p = 0.0153). Notably, ZCCHC3 IR was positively associated with Efp IR (p = 0.003). When IRs of the two proteins were combined, double positivity was associated with shorter distant disease-free survival (p = 0.0007) and was an independent factor for poor prognosis. These results suggest that IR positivity of Efp and ZCCHC3 has clinical significance as a poor prognostic factor in patients with TNBC. Thus, we propose that the combined use of both IRs can be used as a prognostic marker for TNBC.
Collapse
Affiliation(s)
- Akihiro Fujimoto
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
- Department of Breast Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | | | - Takuya Ogura
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Japan
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Japan
| | - Akihiko Osaki
- Department of Breast Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
30
|
Ana G, Malebari AM, Noorani S, Fayne D, O’Boyle NM, Zisterer DM, Pimentel EF, Endringer DC, Meegan MJ. ( E)-1-(3-(3-Hydroxy-4-Methoxyphenyl)-1-(3,4,5-Trimethoxyphenyl)allyl)-1 H-1,2,4-Triazole and Related Compounds: Their Synthesis and Biological Evaluation as Novel Antimitotic Agents Targeting Breast Cancer. Pharmaceuticals (Basel) 2025; 18:118. [PMID: 39861179 PMCID: PMC11769294 DOI: 10.3390/ph18010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The synthesis of (E)-1-(1,3-diphenylallyl)-1H-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. Methods: A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition. Results: (E)-5-(3-(1H-1,2,4-triazol-1-yl)-3-(3,4,5-trimethoxyphenyl)prop-1-en-1-yl)-2-methoxyphenol 22b was identified as a potent antiproliferative compound with an IC50 value of 0.39 mM in MCF-7 breast cancer cells, 0.77 mM in triple-negative MDA-MB-231 breast cancer cells, and 0.37 mM in leukemia HL-60 cells. In addition, compound 22b demonstrated potent activity in the sub-micromolar range against the NCI 60 cancer cell line panel including prostate, melanoma, colon, leukemia, and non-small cell lung cancers. G2/M phase cell cycle arrest and the induction of apoptosis in MCF-7 cells together with inhibition of tubulin polymerization were demonstrated. Immunofluorescence studies confirmed that compound 22b targeted tubulin in MCF-7 cells, while computational docking studies predicted binding conformations for 22b in the colchicine binding site of tubulin. Compound 22b also selectively inhibited aromatase. Conclusions: Based on the results obtained, these novel compounds are suitable candidates for further investigation as antiproliferative microtubule-targeting agents for breast cancer.
Collapse
Affiliation(s)
- Gloria Ana
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sara Noorani
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Darren Fayne
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Daniela M. Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590 Dublin, Ireland
| | - Elisangela Flavia Pimentel
- Department of Pharmaceutical Sciences, University Vila Velha, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha CEP 29102-920, Brazil
| | - Denise Coutinho Endringer
- Department of Pharmaceutical Sciences, University Vila Velha, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha CEP 29102-920, Brazil
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
31
|
Ying H, Kong W, Xu X. Integrated Network Pharmacology, Machine Learning and Experimental Validation to Identify the Key Targets and Compounds of TiaoShenGongJian for the Treatment of Breast Cancer. Onco Targets Ther 2025; 18:49-71. [PMID: 39835272 PMCID: PMC11745062 DOI: 10.2147/ott.s486300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Background TiaoShenGongJian (TSGJ) decoction, a traditional Chinese medicine for breast cancer, has unknown active compounds, targets, and mechanisms. This study identifies TSGJ's key targets and compounds for breast cancer treatment through network pharmacology, machine learning, and experimental validation. Methods Bioactive components and targets of TSGJ were identified from the TCMSP database, and breast cancer-related targets from GeneCards, PharmGkb, and RNA-seq datasets. Intersection of these targets revealed therapeutic targets of TSGJ. PPI analysis was performed via STRING, and machine learning methods (SVM, RF, GLM, XGBoost) identified key targets, validated by GSE70905, GSE70947, GSE22820, and TCGA-BRCA datasets. Pathway analyses and molecular docking were performed. TSGJ and core compounds' effectiveness was confirmed by MTT and RT-qPCR assays. Results 160 common targets of TSGJ were identified, with 30 hub targets from PPI analysis. Five predictive targets (HIF1A, CASP8, FOS, EGFR, PPARG) were screened via SVM. Their diagnostic, biomarker, immune, and clinical values were validated. Quercetin, luteolin, and baicalein were identified as core components. Molecular docking confirmed their strong affinities with predicted targets. These compounds modulated key targets and induced cytotoxicity in breast cancer cell lines in a similar way as TSGJ. Conclusion This study reveals the main active components and targets of TSGJ against breast cancer, supporting its potential for breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Huiyan Ying
- Institute for Molecular Medicine Finland (FIMM), Hilife, University of Helsinki, Helsinki, Finland
| | - Weikaixin Kong
- Institute for Molecular Medicine Finland (FIMM), Hilife, University of Helsinki, Helsinki, Finland
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Xiangwei Xu
- Affiliated Yongkang First People’s Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
32
|
Yu Q, Zhong H, Zhu X, Liu C, Zhang X, Wang J, Li Z, Shi S, Zhao H, Zhou C, Zhao Q. Glycosylation profiling of triple-negative breast cancer: clinical and immune correlations and identification of LMAN1L as a biomarker and therapeutic target. Front Immunol 2025; 15:1521930. [PMID: 39867909 PMCID: PMC11759290 DOI: 10.3389/fimmu.2024.1521930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Breast cancer (BC) is the most prevalent malignant tumor in women, with triple-negative breast cancer (TNBC) showing the poorest prognosis among all subtypes. Glycosylation is increasingly recognized as a critical biomarker in the tumor microenvironment, particularly in BC. However, the glycosylation-related genes associated with TNBC have not yet been defined. Additionally, their characteristics and relationship with prognosis have not been deeply investigated. Methods Transcriptomic analyses were used to identify a glycosylation-related signature (GRS) associated with TNBC prognosis. A machine learning-based prediction model was constructed and validated across multiple independent datasets. The model's predictive capability was extended to evaluate the prognosis of TNBC individuals, tumor immune microenvironment and immunotherapy response. LMAN1L (Lectin, Mannose Binding 1 Like) was identified as a novel prognostic marker in TNBC, and its biological effects were validated through experimental assays. Results The GRS showed significant prognostic relevance for TNBC patients. The risk model effectively predicted molecular features, including immune cell infiltration and potential responses to immunotherapy. Experimental validation confirmed LMAN1L as a novel glycosylation-related prognostic gene, with low expression significantly inhibiting TNBC cell proliferation and migration. Discussion Our GRS risk model demonstrates robust predictive capability for TNBC prognosis and immunotherapy response. This model offers a promising strategy for personalized treatment and improved clinical outcomes in TNBC.
Collapse
Affiliation(s)
- Qianru Yu
- Key Lab of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyi Zhong
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhao Zhu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- Key Lab of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Zhang
- Key Lab of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Key Lab of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongyao Li
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songchang Shi
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Zhao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cixiang Zhou
- Key Lab of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhao
- Key Lab of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Feng D, Pu D, Ren J, Liu M, Sun X, Zhang Z, Li J. Mechanistic exploration of Traditional Chinese Medicine regulation on tumor immune microenvironment in the treatment of triple-negative breast cancer: based on CiteSpace and bioinformatics analysis. Front Immunol 2025; 15:1443648. [PMID: 39867914 PMCID: PMC11757242 DOI: 10.3389/fimmu.2024.1443648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis. Methods We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment. Results CiteSpace analysis highlighted key TCM formulations, including Sanhuang Decoction. Network pharmacology identified major bioactive components such as Mutatochrome, Physcion diglucoside, Procyanidin B-5,3'-O-gallate, gallic acid-3-O-(6'-O-galloyl)-glucoside, and isomucronulatol-7,2'-di-O-glucosiole, with core targets including Mitogen-Activated Protein Kinase 1 (MAPK1), Janus Kinase 2 (JAK2), and Lymphocyte-specific protein tyrosine kinase (LCK). These targets were found to be involved in immune regulation, particularly the modulation of CD8+ and CD4+ T cells. Additionally, core targets were associated with improved recurrence-free survival (RFS) and overall survival (OS) in TNBC patients. Conclusion The therapeutic effects of TCM in TNBC primarily involve immune modulation within the tumor microenvironment, particularly through the regulation of CD8+ and CD4+ T cells.
Collapse
Affiliation(s)
- Dandan Feng
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlu Ren
- Pharmaceutical college of Shandong Xiandai University, Jinan, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Sun
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Sui XY, Cao SW, Song XQ, Liu XY, Chen C, Yan Q, Wang ZQ, Zhang WJ, Ma LX, Jin X, Ma D, Xiao Y, Wu SY, Xu Y, Shao ZM, Fan L. MORF4L2 induces immunosuppressive microenvironment and immunotherapy resistance through GRHL2/MORF4L2/H4K12Ac/CSF1 axis in triple-negative breast cancer. Biomark Res 2025; 13:6. [PMID: 39780291 PMCID: PMC11715975 DOI: 10.1186/s40364-024-00719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Although immunotherapy has achieved great progress in advanced triple-negative breast cancer (TNBC), there are still numerous patients who do not benefit from immunotherapy. Therefore, identification of the key molecule that induces immune escape and clarification of its specific mechanism in TNBC are urgently needed. METHODS In this research, single cell sequencing and bulk sequencing were conducted for biomarker screening. Immunohistochemistry, multiplex immunofluorescence, and orthotopic TNBC tumor model were applied in identifying the key molecule driving immune escape. At the mechanical level, RNA sequencing, in vitro co-culturing system, flow cytometry, Western blotting, ELISA, and real-time qPCR were carried out. RESULTS Mortality factor 4 like 2 (MORF4L2) expression is significantly up-regulated among patients who developed anti-PD1 resistance. MORF4L2 enhances anti-PD1 resistance by inducing the chemotaxis of macrophage infiltration and promoting their polarization towards the alternative activation phenotype (M2), thus creating an immunosuppressive microenvironment. Mechanistically, MORF4L2 actes as part of NuA4 histone acetyltransferase (HAT) complex, contributes to to histone 4 lysine 12 acetylation (H4K12Ac) and activates the downstream transcription of macrophage colony-stimulating factor (CSF1). CSF1 is secreted by tumor cells and binds to the macrophage-surface CSF1 receptor (CSF1R), which chemotactically converted and polarized macrophages to the M2 phenotype. Furthermore, we revealed that grainyhead like transcription factor 2 (GRHL2) could promote MORF4L2 transcription by binding to the MORF4L2 enhancer region. Notably, BLZ549, an inhibitor of CSF1R, restored the anti-PD1 sensitivity by blocking the GRHL2/MORF4L2/H4K12Ac/CSF1 axis. CONCLUSIONS GRHL2/MORF4L2/H4K12Ac/CSF1 axis plays an important role in anti-PD1 resistance. CSF1R inhibitors can reverse GRHL2/MORF4L2-mediated anti-PD1 resistance.
Collapse
Affiliation(s)
- Xin-Yi Sui
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuo-Wen Cao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Qing Song
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingya Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhi-Qing Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Juan Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin-Xiaoxi Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lei Fan
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Lu Y, Zhen Y, Li Z, Luo B, Yin B, Zhang L. Discovery of a novel Fam20C inhibitor for treatment of triple-negative breast cancer. Int J Biol Macromol 2025; 286:138398. [PMID: 39647747 DOI: 10.1016/j.ijbiomac.2024.138398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Sequence similarity 20 family member C (Fam20C), a Golgi casein kinase, has a gradually elucidated mechanism in triple-negative breast cancer (TNBC) and is considered a possible target for therapeutic intervention. In this study, we combined virtual screening and chemical synthesis methods to obtain a new small-molecule Fam20C inhibitor, compound 5k, which possesses desirable kinase inhibitory activity against Fam20C and significant anti-proliferative activity against MDA-MB-231 and BT-549 cells. Subsequently, cellular thermal shift assay (CETSA), molecular docking, and molecular dynamics (MD) simulations revealed that compound 5k binds to Fam20C. Moreover, compound 5k showed favorable antitumor efficacy in TNBC cells and xenograft models by promoting apoptosis and inhibiting migration. Mechanistically, compound 5k can inhibit the proliferation, promote apoptosis, and inhibit migration of TNBC cells by targeting Fam20C, thereby inhibiting the deterioration of TNBC and preventing its progression. Taken together, these results suggest that compound 5k can be utilized as a novel Fam20C inhibitor, laying a foundation for the discovery of more small-molecule drugs for the treatment of TNBC in the future.
Collapse
Affiliation(s)
- Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yongqi Zhen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
36
|
Gong J, Cheng D, Liu C, Wu S, Sun N, Zhao L, Li J, Xing Y, Zhao J. Hybrid Cell Membrane-Coated Nanoparticles for Synergizing Sonodynamic Therapy and Immunotherapy against Triple-Negative Breast Cancer. Adv Healthc Mater 2025; 14:e2404184. [PMID: 39573837 DOI: 10.1002/adhm.202404184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/12/2024] [Indexed: 01/29/2025]
Abstract
Tumor immunotherapy represents a highly promising modality for the treatment of triple-negative breast cancer (TNBC). Nevertheless, its therapeutic efficacy has been profoundly impacted by challenges such as low drug uptake, hypoxia, and immunosuppression. To address these problems, the study develops a strategy combining sonodynamic therapy (SDT) and immunotherapy using biomimetic nanoparticles coated with hybrid membranes. The nanoparticles are loaded with semiconducting polymers (PFODBT), Atovaquone (ATO), and TMP195 to enhance biocompatibility, targeting ability, and drug uptake and retention at the tumor site. In in vitro experiments, the biomimetic nanoparticles alleviate hypoxia, induce immunogenic cell death (ICD), and prompt reprogramming of tumor-associated macrophages (TAMs) from M2 type to M1 type. In in vivo experiments, the synergistic effects of enhanced SDT-mediated ICD and TAMs repolarization significantly inhibit the proliferation of primary and distant tumor in the 4T1 subcutaneous tumor model, and effectively attenuated metastasis of lung and liver. Moreover, the in vivo immune responses are further activated by improving the maturation of dendritic cells, filtration of CD8+ T cells, and depletion of regulatory T cells. This study offers a novel strategy for TNBC therapy by converting the tumor microenvironment from the "cold" into "hot" tumor through multiple synergistic therapies.
Collapse
Affiliation(s)
- Jiali Gong
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Danling Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shan Wu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Na Sun
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 201620, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
37
|
Nganya C, Bryant S, Alnakhalah A, Allen-Boswell T, Cunningham S, Kanu S, Williams A, Philio D, Dang K, Butler E, Player A. Analyses of the MYBL1 Gene in Triple Negative Breast Cancer: Evidence of Regulation of the VCPIP1 Gene and Identification of a Specific Exon Overexpressed in Tumor Cell Lines. Int J Mol Sci 2024; 26:279. [PMID: 39796135 PMCID: PMC11719811 DOI: 10.3390/ijms26010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Previous data show that the knockdown of the MYBL1 gene in the MDA-MB-231 cell line leads to the downregulation of VCPIP1 gene expression. In addition, MYBL1 and VCPIP1 genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the VCPIP1 gene. We identify the MYBL1 transcription factor binding site upstream of the VCPIP1 start site and show that the MYBL1 protein can bind to the sequence identified in the VCPIP1 promoter region. Combined with the results from the knockdown study, these data support the ability of MYBL1 to regulate the VCPIP1 gene. The VCPIP1 gene functions as a deubiquitinating enzyme involved in DNA repair, protein positioning, and the assembly of the Golgi apparatus during mitotic signaling. The transcriptional regulation of VCPIP1 by the MYBL1 gene could implicate MYBL1 in these processes, which might contribute to tumor processes in TNBC. Although both genes are involved in cell cycle regulatory mechanisms, converging signaling mechanisms have not been identified. In a separate study, we performed sequence alignment of the MYBL1 transcript variants and identified an exon unique to the canonical variant. Probes that specifically target the unique MYBL1 exon show that the exon is overexpressed in tumor cell lines compared to non-tumor breast cells. We are classifying this unique MYBL1 exon as a tumor-associated exon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Audrey Player
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (C.N.); (S.B.); (A.A.); (T.A.-B.); (S.C.); (S.K.); (A.W.); (D.P.); (K.D.); (E.B.)
| |
Collapse
|
38
|
Guo Z, Zhu Z, Lin X, Wang S, Wen Y, Wang L, Zhi L, Zhou J. Tumor microenvironment and immunotherapy for triple-negative breast cancer. Biomark Res 2024; 12:166. [PMID: 39741315 DOI: 10.1186/s40364-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans. The tumor microenvironment (TME), comprising immune cells, stromal cells, and various cytokines, plays a crucial role in TNBC progression and response to immunotherapy. The high presence of tumor-infiltrating lymphocytes and immune checkpoint proteins in TNBC indicates the potential of immunotherapeutic strategies. However, the complexity of the TME, while offering therapeutic targets, requires further exploration of its multiple roles in immunotherapy. In this review, we discuss the interaction mechanism between TME and TNBC immunotherapy based on the characteristics and composition of TME, and elaborate on and analyze the effect of TME on immunotherapy, the potential of TME as an immune target, and the ability of TME as a biomarker. Understanding these dynamics will offer new insights for enhancing therapeutic approaches and investigating stratification and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Zijie Guo
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Ziyu Zhu
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Xixi Lin
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Shenkangle Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yihong Wen
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Lili Zhi
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
39
|
Zagardo V, Harikar M, Ferini G. Therapeutic strategies for fungating and ulcerating breast cancers: A systematic review and narrative synthesis. Breast 2024; 79:103870. [PMID: 39862672 PMCID: PMC11804823 DOI: 10.1016/j.breast.2024.103870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND To identify optimal therapeutic strategies for managing fungating, large or ulcerating breast tumors and highlight existing gaps in the literature. METHODS We conducted a systematic search of Medline, Embase, APA, PsycInfo, CAB abstracts, Scopus, and Web of Science from inception to June 30, 2024, including studies on patients with fungating, large, or ulcerating breast cancers. RESULTS The search identified 7917 studies, with 79 meeting the inclusion criteria: 62 case reports, 7 case series, and 10 cohort studies. Owing to high heterogeneity, a narrative synthesis was performed, categorizing treatment by year, molecular subtype, histology, and staging. We found that treatment modalities increased, from an average of two in luminal-B cancers to three in HER2-positive cases, with over half achieving complete response. Triple-negative breast cancers averaged two modalities, with around half showing only partial response. Cohort analysis revealed a significant positive correlation between metastasis rate and radiotherapy use (Spearman's rho = 0.828, p = 0.042) and between chemotherapy and hormonal therapy use (rho = 0.69, p = 0.04). Median survival was positively correlated with surgical treatment (rho = 0.82, p = 0.046). CONCLUSIONS Local treatment is crucial for symptomatic palliation in fungating or ulcerating breast tumors, and histology should guide therapeutic choices. While local treatments remain primary, emerging systemic therapies show promise and may soon become first-line options. As the first systematic review on this topic, our study faced considerable source heterogeneity, precluding a meta-analysis. Instead, we analyzed treatment trends by demographics and tumor characteristics, providing a comprehensive overview and encouraging further research in this area.
Collapse
Affiliation(s)
- Valentina Zagardo
- Radiation Oncology Unit, REM Radioterapia Srl, 95029, Viagrande, Italy
| | - Mandara Harikar
- Clinical Trials Programme, The University of Edinburgh, United Kingdom
| | - Gianluca Ferini
- Radiation Oncology Unit, REM Radioterapia Srl, 95029, Viagrande, Italy; Department of Medicine and Surgery, University of Enna Kore, Enna, Italy.
| |
Collapse
|
40
|
Liu X, Zhao K, Zhang Z, Liu M, Chu H, Zou X. Clinicopathological characteristics and long-term prognosis of triple-negative breast cancer patients with HER2-Low expression: a retrospective propensity score-matched cohort study. J Cancer Res Clin Oncol 2024; 151:24. [PMID: 39729247 PMCID: PMC11680652 DOI: 10.1007/s00432-024-06069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE The objective of the current research was to assess the clinicopathological characteristics and long-term prognosis of triple-negative breast cancer (TNBC) patients with human epidermal growth factor receptor 2 (HER2)-low status following breast surgery. METHODS A total of 202 TNBC patients treated at Qingdao Central Hospital from January 2010 to December 2019 were included, comprising 71 HER2-low and 131 HER2-zero patients. Propensity score matching (PSM) was applied to minimize differences between the cohorts. RESULTS HER2-low TNBC patients had lower histological grade, lower Ki-67 expression levels, and a higher prevalence of hypertension compared to HER2-zero TNBC patients. Before and after PSM, the HER2-low group consistently exhibited a lower recurrence rate and longer RFS compared to HER2-zero TNBC patients. HER2-low status was validated as an independent low-risk factor for RFS both pre-PSM (HR 0.354, 95% CI 0.178-0.706, p = 0.003) and post-PSM (HR 0.405, 95% CI 0.185-0.886, p = 0.024). No statistically significant differences in mortality rate and OS were observed, both before and after PSM. CONCLUSIONS HER2-low and HER2-zero TNBC patients show significant clinicopathological differences. Compared to HER2-zero, HER2-low status is linked to better long-term prognosis and serves as an independent low-risk factor for RFS in TNBC patients.
Collapse
Affiliation(s)
- Xin Liu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, Shandong, China
- Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, Shandong, China
| | - Kaihua Zhao
- Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, Shandong, China
| | - Ziyan Zhang
- Department of Breast Surgery, Women and Children's Hospital, Qingdao University, Qingdao, 266034, Shandong, China
| | - Meiyan Liu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, Shandong, China
| | - Hongwu Chu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Xiao Zou
- Department of Breast Surgery, Xiangdong Hospital Affiliated to Hunan Normal University, Liling, 412200, Hunan, China.
| |
Collapse
|
41
|
Singh DD, Haque S, Kim Y, Han I, Yadav DK. Remodeling of tumour microenvironment: strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer. Front Immunol 2024; 15:1455211. [PMID: 39720730 PMCID: PMC11666570 DOI: 10.3389/fimmu.2024.1455211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) stands as the most complex and daunting subtype of breast cancer affecting women globally. Regrettably, treatment options for TNBC remain limited due to its clinical complexity. However, immunotherapy has emerged as a promising avenue, showing success in developing effective therapies for advanced cases and improving patient outcomes. Improving TNBC treatments involves reducing side effects, minimizing systemic toxicity, and enhancing efficacy. Unlike traditional cancer immunotherapy, engineered nonmaterial's can precisely target TNBC, facilitating immune cell access, improving antigen presentation, and triggering lasting immune responses. Nanocarriers with enhanced sensitivity and specificity, specific cellular absorption, and low toxicity are gaining attention. Nanotechnology-driven immunoengineering strategies focus on targeted delivery systems using multifunctional molecules for precise tracking, diagnosis, and therapy in TNBC. This study delves into TNBC's tumour microenvironment (TME) remodeling, therapeutic resistance, and immunoengineering strategies using nanotechnology.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
42
|
Liu X, Zhang W, Wei S, Liang X, Luo B. Targeting cuproptosis with nano material: new way to enhancing the efficacy of immunotherapy in colorectal cancer. Front Pharmacol 2024; 15:1451067. [PMID: 39691393 PMCID: PMC11649426 DOI: 10.3389/fphar.2024.1451067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Colorectal cancer has emerged as one of the predominant malignant tumors globally. Immunotherapy, as a novel therapeutic methodology, has opened up new possibilities for colorectal cancer patients. However, its actual clinical efficacy requires further enhancement. Copper, as an exceptionally crucial trace element, can influence various signaling pathways, gene expression, and biological metabolic processes in cells, thus playing a critical role in the pathogenesis of colorectal cancer. Recent studies have revealed that cuproptosis, a novel mode of cell death, holds promise to become a potential target to overcome resistance to colorectal cancer immunotherapy. This shows substantial potential in the combination treatment of colorectal cancer. Conveying copper into tumor cells via a nano-drug delivery system to induce cuproptosis of colorectal cancer cells could offer a potential strategy for eliminating drug-resistant colorectal cancer cells and vastly improving the efficacy of immunotherapy while ultimately destroy colorectal tumors. Moreover, combining the cuproptosis induction strategy with other anti-tumor approaches such as photothermal therapy, photodynamic therapy, and chemodynamic therapy could further enhance its therapeutic effect. This review aims to illuminate the practical significance of cuproptosis and cuproptosis-inducing nano-drugs in colorectal cancer immunotherapy, and scrutinize the current challenges and limitations of this methodology, thereby providing innovative thoughts and references for the advancement of cuproptosis-based colorectal cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Xiangdong Liu
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| | - Wanqiu Zhang
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| | - Shaozhong Wei
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjun Liang
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
- Department of Abdominal Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Luo
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| |
Collapse
|
43
|
Hsiao CH, Huang HL, Liu HL, Huang CC, Su JC, Chen YH, Lin YH. Combining ultrasound technology with targeted fucoidan/arginine-gelatin nanoparticles loaded with doxorubicin to enhance therapeutic efficacy and modulate bioeffects in drug-resistant triple-negative breast cancer. Int J Biol Macromol 2024; 283:137764. [PMID: 39557262 DOI: 10.1016/j.ijbiomac.2024.137764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Triple-negative breast cancer (TNBC) presents formidable challenges due to its aggressive nature and high recurrence rates, compounded by the involvement of epithelial-mesenchymal transition (EMT) in its progression and metastasis. Standard chemotherapy, which typically employs doxorubicin (DOX), remains a primary treatment approach. However, multidrug resistance (MDR) mechanisms, which include ATP-binding cassette transporters and EMT, contribute to treatment failures. Ultrasound has emerged as a promising modality among the various strategies explored to address MDR in TNBC. It serves as a diagnostic tool and holds therapeutic potential by inducing various biological effects depending on the exposure level. Targeted nanoparticles offer a means to enhance drug delivery efficiency. Our study aims to advance ultrasound technology combined with biocompatible nanoparticles using simplified preparation methods to improve treatment outcomes for drug-resistant TNBC. In particular, employing DOX-loaded fucoidan/arginine-gelatin nanoparticles facilitated the targeted delivery of chemotherapy drugs to tumors by effectively interacting with P-selectin, resulting in tumor growth inhibition. Furthermore, these nanoparticles mitigated MDR and EMT, particularly when combined with ultrasound treatment. This integrated approach of nanoparticle delivery with ultrasonography opens up a promising and innovative avenue for clinical cancer research.
Collapse
Affiliation(s)
- Chi-Huang Hsiao
- Division of Medical Oncology and Hematology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei 220216, Taiwan
| | - Hau-Lun Huang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Hsuan Chen
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan.
| |
Collapse
|
44
|
Ge A, Xiang W, Li Y, Zhao D, Chen J, Daga P, Dai CC, Yang K, Yan Y, Hao M, Zhang B, Xiao W. Broadening horizons: the multifaceted role of ferroptosis in breast cancer. Front Immunol 2024; 15:1455741. [PMID: 39664391 PMCID: PMC11631881 DOI: 10.3389/fimmu.2024.1455741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024] Open
Abstract
Breast cancer poses a serious threat to women's health globally. Current radiotherapy and chemotherapy regimens can induce drug-resistance effects in cancer tissues, such as anti-apoptosis, anti-pyroptosis, and anti-necroptosis, leading to poor clinical outcomes in the treatment of breast cancer. Ferroptosis is a novel programmed cell death modality characterized by iron overload, excessive generation of reactive oxygen species, and membrane lipid peroxidation. The occurrence of ferroptosis results from the imbalance between intracellular peroxidation mechanisms (executive system) and antioxidant mechanisms (defensive system), specifically involving iron metabolism pathways, amino acid metabolism pathways, and lipid metabolism pathways. In recent years, it has been found that ferroptosis is associated with the progression of various diseases, including tumors, hypertension, diabetes, and Alzheimer's disease. Studies have confirmed that triggering ferroptosis in breast cancer cells can significantly inhibit cancer cell proliferation and invasion, and improve cancer cell sensitivity to radiotherapy and chemotherapy, making induction of ferroptosis a potential strategy for the treatment of breast cancer. This paper reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including signaling pathways such as GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, and GCH1-BH4) in breast cancer disease, the latest research progress, and summarizes the research on ferroptosis in breast cancer disease within the framework of metabolism, reactive oxygen biology, and iron biology. The key regulatory factors and mechanisms of ferroptosis in breast cancer disease, as well as important concepts and significant open questions in the field of ferroptosis and related natural compounds, are introduced. It is hoped that future research will make further breakthroughs in the regulatory mechanisms of ferroptosis and the use of ferroptosis in treating breast cancer cells. Meanwhile, natural compounds may also become a new direction for potential drug development targeting ferroptosis in breast cancer treatment. This provides a theoretical basis and opens up a new pathway for research and the development of drugs for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| | - Yan Li
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States
| | - Kailin Yang
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yexing Yan
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | | | - Wei Xiao
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| |
Collapse
|
45
|
Asadipour K, Banerjee N, Cuffee J, Perry K, Brown S, Banerjee A, Armstrong E, Beebe S, Banerjee H. Studying the Role of Novel Carbon Nano Tubes as a Therapeutic Agent to Treat Triple Negative Breast Cancer (TNBC) - an In Vitro and In Vivo Study. JOURNAL OF CANCER RESEARCH UPDATES 2024; 13:37-41. [PMID: 39554592 PMCID: PMC11568836 DOI: 10.30683/1929-2279.2024.13.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Triple Negative Breast Cancer (TNBC) is a malignant cancer with a very high mortality rate around the world. African American(AA) women are 28% more likely to die from triple-negative breast cancer (TNBC) than white women with the same diagnosis. AA patients are also more likely to be diagnosed at a later stage of the disease and have the lowest survival rates for any stage of diagnosis; There are very few existing anti TNBC drugs with therapeutic efficacy hence newer anti TNBC drug design and investigation is needed. Carbon Nano Tubes(CNT) in recent years have shown effective anti-cancer properties in various types of cancers as reported in peer reviewed journals. Henceforth, we did an investigation to study the anticancer properties of a novel CNT in both in vitro and in vivo models of TNBC. We tested the CNT drug in vitro cytotoxicity studies on TNBC model MDA-MB-231 VIM RFP cell lines and Spheroid forming assays on the same cancer cells; we also did an in vivo study on TNBC model mice to study the therapeutic efficacy of this CNT drug in reducing the tumor load. Our initial studies showed increased cell death and reduction in spheroid numbers in the CNT treated cancer cells in comparison to control and a significant reduction in the tumor volume in the TNBC model mice than in untreated animals. Thus our initial studies have shown significant therapeutic efficacy of the novel CNT as an anti TNBC agent. Additional mechanistic studies need to be done to find out the cell death mechanisms, core canonical pathways involved, pharmacokinetic studies before translational research for this novel nanoparticle as a therapeutic agent from bench to bedside.
Collapse
Affiliation(s)
- Kamal Asadipour
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA-23529, USA
| | - Narendra Banerjee
- Department of Natural Sciences, Pharmaceutical and Health Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth City, NC 27909, USA
| | - Jazmine Cuffee
- Department of Natural Sciences, Pharmaceutical and Health Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth City, NC 27909, USA
| | - Karrington Perry
- Department of Natural Sciences, Pharmaceutical and Health Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth City, NC 27909, USA
| | - Shennel Brown
- Department of Natural Sciences, Pharmaceutical and Health Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth City, NC 27909, USA
| | - Anasua Banerjee
- Department of Cell Biology, Harvard University, Boston, MA-02115, USA
| | - Erik Armstrong
- Department of Natural Sciences, Pharmaceutical and Health Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth City, NC 27909, USA
| | - Stephen Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA-23529, USA
| | - Hirendra Banerjee
- Department of Natural Sciences, Pharmaceutical and Health Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth City, NC 27909, USA
| |
Collapse
|
46
|
Yu C, Xing H, Fu X, Zhang Y, Yan X, Feng J, He Z, Ru L, Huang C, Liang J. Effect and mechanisms of shikonin on breast cancer cells in vitro and in vivo. BMC Complement Med Ther 2024; 24:389. [PMID: 39516823 PMCID: PMC11549804 DOI: 10.1186/s12906-024-04671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Breast cancer seriously affects physical and mental health of women. Despite advances in the clinical use of different treatments, breast cancer remains a major cause of mortality. Therefore, it is imperative to identify promising treatment options. In the present study, we investigated the effects of shikonin on 4T1 breast cancer cells and its potential mechanisms of action. METHODS BALB/c-derived mouse breast cancer 4T1 is very close to human breast cancer in growth characteristics and systemic response, so 4T1 cells were selected for further experiments. Cell viability, apoptosis, intracellular reactive oxygen species (ROS), mitochondrial activity, and cellular calreticulin (CRT) exposure were assessed to evaluate the antitumor effects and mechanisms of shikonin in vitro. Orthotopic tumor growth inhibition and splenic immune cell regulation by shikonin were evaluated in 4T1 breast cancer orthotopic mice in vivo. RESULTS In vitro, shikonin could inhibit cell proliferation, cause apoptosis, disrupt mitochondrial activity, and induce ROS production and CRT exposure. In vivo, shikonin inhibited tumor growth, increased the proportion of CD8+ T cells, and reduced the proportion of regulatory cells (CD25+ Foxp3+ T cells) in the spleen. CONCLUSIONS Shikonin inhibits the growth of 4T1 breast cancer cells by disrupting mitochondrial activity, promoting oxidative stress, and regulating immune function.
Collapse
Affiliation(s)
- Chuyi Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haoyu Xing
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaguo Fu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yingying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiufang Yan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianjia Feng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhouqin He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li Ru
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunlong Huang
- Guangdong Provincial People's Hospital Zhuhai Hospital, Zhuhai Golden Bay Center Hospital, Zhuhai, 519090, China.
| | - Jianming Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
47
|
Wu S, Ge A, Deng X, Liu L, Wang Y. Evolving immunotherapeutic solutions for triple-negative breast carcinoma. Cancer Treat Rev 2024; 130:102817. [PMID: 39154410 DOI: 10.1016/j.ctrv.2024.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Triple-negative breast carcinoma (TNBC) remains a formidable clinical hurdle owing to its high aggressiveness and scant therapeutic options. Nonetheless, the evolving landscape of immunotherapeutic strategies opens up promising avenues for tackling this hurdle. This review discusses the advancing immunotherapy for TNBC, accentuating personalized interventions due to tumor microenvironment (TME) diversity. Immune checkpoint inhibitors (ICIs) hold pivotal significance, both as single-agent therapies and when administered alongside cytotoxic agents. Moreover, the concurrent inhibition of multiple immune checkpoints represents a potent approach to augment the efficacy of cancer immunotherapy. Synergistic effects have been observed when ICIs are combined with targeted treatments like PARP inhibitors, anti-angiogenics, and ADCs (antibody-drug conjugates). Emerging tactics include tumor vaccines, cellular immunotherapy, and oncolytic viruses, leveraging the immune system's ability for selective malignant cell destruction. This review offers an in-depth examination of the diverse landscape of immunotherapy development for TNBC, furnishing meticulous insights into various advancements within this field. In addition, immunotherapeutic interventions offer hope for TNBC, needing further research for optimization.
Collapse
Affiliation(s)
- Shiting Wu
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Anqi Ge
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Xianguang Deng
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Lifang Liu
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Yue Wang
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China.
| |
Collapse
|
48
|
Papalexis P, Georgakopoulou VE, Drossos PV, Thymara E, Nonni A, Lazaris AC, Zografos GC, Spandidos DA, Kavantzas N, Thomopoulou GE. Precision medicine in breast cancer (Review). Mol Clin Oncol 2024; 21:78. [PMID: 39246849 PMCID: PMC11375768 DOI: 10.3892/mco.2024.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Precision medicine in breast cancer is a revolutionary approach that customizes diagnosis and treatment based on individual and tumor characteristics, departing from the traditional one-size-fits-all approach. Breast cancer is diverse, with various subtypes driven by distinct genetic mutations. Understanding this diversity is crucial for tailored treatment strategies that target specific vulnerabilities in each tumor. Genetic testing, particularly for mutations in breast cancer gene (BRCA) DNA repair-associated genes, helps assess hereditary risks and influences treatment decisions. Molecular subtyping guides personalized treatments, such as hormonal therapies for receptor-positive tumors and human epidermal growth factor receptor 2 (HER2)-targeted treatments. Targeted therapies, including those for HER2-positive and hormone receptor-positive breast cancers, offer more effective and precise interventions. Immunotherapy, especially checkpoint inhibitors, shows promise, particularly in certain subtypes such as triple-negative breast cancer, with ongoing research aiming to broaden its effectiveness. Integration of big data and artificial intelligence enhances personalized treatment strategies, while liquid biopsies provide real-time insights into tumor dynamics, aiding in treatment monitoring and modification. Challenges persist, including accessibility and tumor complexity, but emerging technologies and precision prevention offer hope for improved outcomes. Ultimately, precision medicine aims to optimize treatment efficacy, minimize adverse effects and enhance the quality of life for patients with breast cancer.
Collapse
Affiliation(s)
- Petros Papalexis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | | | - Panagiotis V Drossos
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Eirini Thymara
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aphrodite Nonni
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George C Zografos
- Department of Propedeutic Surgery, Hippokration Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Nikolaos Kavantzas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, 'Attikon' University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
49
|
Liu Y, Zou Y, Ye Y, Chen Y. Advances in the Understanding of the Pathogenesis of Triple-Negative Breast Cancer. Cancer Med 2024; 13:e70410. [PMID: 39558881 PMCID: PMC11574469 DOI: 10.1002/cam4.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by high aggressiveness, high malignancy, and poor prognosis compared to other breast cancer subtypes. OBJECTIVE This review aims to explore recent advances in understanding TNBC and to provide new insights and potential references for clinical treatment. METHODS We examined current literature on TNBC to analyze molecular subtypes, genetic mutations, signaling pathways, mechanisms of drug resistance, and emerging therapies. RESULTS Findings highlight key aspects of TNBC's molecular subtypes, relevant mutations, and pathways, alongside emerging treatments that target drug resistance mechanisms. CONCLUSION These insights into TNBC pathogenesis may help guide future therapeutic strategies and improve clinical outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Yuhan Liu
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yuhan Zou
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yangli Ye
- College of Life Sciences and TechnologyShandong Second Medical UniversityWeifangChina
| | - Yong Chen
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical SciencesShandong Second Medical UniversityWeifangChina
| |
Collapse
|
50
|
Rebaudi F, De Franco F, Goda R, Obino V, Vita G, Baronti C, Iannone E, Pitto F, Massa B, Fenoglio D, Jandus C, Poggio F, Fregatti P, Melaiu O, Bozzo M, Candiani S, Papaccio F, Greppi M, Pesce S, Marcenaro E. The landscape of combining immune checkpoint inhibitors with novel Therapies: Secret alliances against breast cancer. Cancer Treat Rev 2024; 130:102831. [PMID: 39342797 DOI: 10.1016/j.ctrv.2024.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
This review focuses on the immune checkpoint inhibitors (ICIs) in the context of breast cancer (BC) management. These innovative treatments, by targeting proteins expressed on both tumor and immune cells, aim to overcome tumor-induced immune suppression and reactivate the immune system. The potential of this approach is the subject of numerous clinical studies. Here, we explore the key studies and emerging therapies related to ICIs providing a detailed analysis of their specific and combined use in BC treatment.
Collapse
Affiliation(s)
- Federico Rebaudi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Fabiana De Franco
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Giorgio Vita
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Camilla Baronti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Eleonora Iannone
- Breast Surgery Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Pitto
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Massa
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Fenoglio
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland; Geneva Center for Inflammation Research, Geneva, Switzerland
| | - Francesca Poggio
- Department of Medical Oncology, Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Piero Fregatti
- Breast Surgery Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|