1
|
Ghanbarlou S, Kahforoushan D, Abdollahi H, Zarrintaj P, Alomar A, Villanueva C, Davachi SM. Advances in quantum dot-based fluorescence sensors for environmental and biomedical detection. Talanta 2025; 294:128176. [PMID: 40262347 DOI: 10.1016/j.talanta.2025.128176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
This review explores the evolution and application of fluorescence sensors based on quantum dots (QDs) for detecting environmental and biological analytes across diverse real-world scenarios and complex sample matrices and also categorizes different types of quantum dots, such as carbon dots (C-dots), graphene quantum dots (GQDs), and metal-doped QDs and examines their properties, including tunable fluorescence, low toxicity, and photostability, which make them ideal for a variety of applications. Key sensing mechanisms, including Förster Resonance Energy Transfer (FRET) and fluorescence quenching, are discussed alongside innovations like paper-based, ratiometric, and turn-on/turn-off sensors. Additionally, case studies are provided to showcase the application of these sensors in environmental and biomedical fields, where they provide rapid, sensitive, and cost-effective solutions. This review presents the potential of quantum dot-based fluorescence sensors to transform analytical detection technologies, offering new opportunities in environmental monitoring, bioimaging, and public health safety.
Collapse
Affiliation(s)
- Samaneh Ghanbarlou
- Chemical Engineering Department, Sahand University of Technology, Tabriz, Iran
| | - Davood Kahforoushan
- Chemical Engineering Department, Sahand University of Technology, Tabriz, Iran
| | | | - Payam Zarrintaj
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, 78041, United States
| | - Adam Alomar
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, 78041, United States
| | - Carlos Villanueva
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, 78041, United States
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, 78041, United States.
| |
Collapse
|
2
|
Mondal TK, Bangaru AVB, Williams SJ. A Review on AC-Dielectrophoresis of Nanoparticles. MICROMACHINES 2025; 16:453. [PMID: 40283328 PMCID: PMC12029287 DOI: 10.3390/mi16040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
Dielectrophoresis at the nanoscale has gained significant attention in recent years as a low-cost, rapid, efficient, and label-free technique. This method holds great promise for various interdisciplinary applications related to micro- and nanoscience, including biosensors, microfluidics, and nanomachines. The innovation and development of such devices and platforms could promote wider applications in the field of nanotechnology. This review aims to provide an overview of recent developments and applications of nanoparticle dielectrophoresis, where at least one dimension of the geometry or the particles being manipulated is equal to or less than 100 nm. By offering a theoretical foundation to understand the processes and challenges that occur at the nanoscale-such as the need for high field gradients-this article presents a comprehensive overview of the advancements and applications of nanoparticle dielectrophoresis platforms over the past 15 years. This period has been characterized by significant progress, as well as persistent challenges in the manipulation and separation of nanoscale objects. As a foundation for future research, this review will help researchers explore new avenues and potential applications across various fields.
Collapse
Affiliation(s)
| | | | - Stuart J. Williams
- Department of Mechanical Engineering, University of Louisville, Louisville, KY 40208, USA; (T.K.M.); (A.V.B.B.)
| |
Collapse
|
3
|
Sushma, Sharma S, Ghosh KS. Applications of Functionalized Carbon-Based Quantum Dots in Fluorescence Sensing of Iron(III). J Fluoresc 2025; 35:1255-1272. [PMID: 38411860 DOI: 10.1007/s10895-024-03611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Iron, an essential trace element exhibits detrimental effects on human health when present at higher or lower concentration than the required. Therefore, there is a pressing demand for sensitive and selective detection of Fe3+ in water, food etc. Unfortunately, in several instances, the traditional approaches suffer from a number of shortcomings like complicated procedures, limited sensitivity, poor selectivity and more expensive and time consuming. The scope of optical tuning and excellent photophysical properties of carbon- based nanomaterials like carbon dots (C-dots) and graphene dots (g-dots) have made them promising optical sensors of metal ions. Moreover, high surface area, superior stability of such materials contributes towards the fruitful development of sensors. The present review offered critical information on the fabrication and fluorimetric applications of these functional nanomaterials for sensitive and selective detection of Fe3+. An in-depth discussion on fluorescent C-dots made from naturally occurring materials and chemical techniques were presented. Effect of doping in C-dots was also highlighted in terms of improved fluorescence response and selectivity. In a similar approach g-dots were also discussed. Many of these sensors exhibited great selectivity, superior sensitivity, high quantum yield, robust chemical and photochemical stability and real-time applicability. Further improvement in these factors can be targeted to develop new sensors.
Collapse
Affiliation(s)
- Sushma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, H.P. 177005, India
| | - Shivani Sharma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, H.P. 177005, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, H.P. 177005, India.
| |
Collapse
|
4
|
Önder A, Ng ZK, Tsang SH, Alagappan P, Teo EHT, Yildiz ÜH. Radially Aligned Carbon Nanotube Glass Fiber Composites as Ion-Selective Microelectrodes. ACS OMEGA 2025; 10:6578-6585. [PMID: 40028049 PMCID: PMC11866012 DOI: 10.1021/acsomega.4c07239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Detection of ions is challenging due to their small size, rapid diffusion, and high mobility, especially for assaying in samples of low volumes. Among the traditional analytical methods, potentiometric ion-selective electrodes (ISE) have become a popular choice for detecting ions as they are cost-effective, user-friendly and can be miniaturized, making them useful for on-site analysis. In this context, radially aligned carbon nanotubes (RACNT) directly grown on glass fibers (GF) via the chemical vapor deposition method is investigated as a solid contact material for the fabrication of ion-selective microelectrodes (μISE) upon incorporating specific ionophores within a polymeric encapsulation membrane. As an illustration, sensitive detection of ammonium ions is accomplished by the fabricated μISE (plasticized PVC membrane containing nonactin ionophores), which yielded a LOD and a linear response range between 7.5 × 10-6 and 1.0 × 10-5 to 1.0 × 10-1 M, respectively. The μISE fabricated with RACNT-GF as an interface material exhibited improvements in LOD and enhanced the detection selectivity as compared to a conventional ISE fabricated using planar solid contact materials such as graphite. We hypothesize that the fabricated μISE with a high surface area and mechanical durability maximize the accommodation of ionophores in the barrier membrane for yielding improved potentiometric responses. Experimental results illustrate that the μISE possesses the potential to be utilized for the fabrication of selective and sensitive ISE upon incorporation of specific ionophores with RACNT-GF composites.
Collapse
Affiliation(s)
- Ahmet Önder
- Department
of Chemistry, Izmir Institute of Technology, Urla, Izmir 35430, Türkiye
| | - Zhi Kai Ng
- Temasek
Laboratories, Research Techno Plaza, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Siu Hon Tsang
- Temasek
Laboratories, Research Techno Plaza, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Palaniappan Alagappan
- School of
Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Edwin Hang Tong Teo
- School of
Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- School of
Electrical and Electronic Engineering, Nanyang
Technological University, Singapore 639798, Singapore
| | - Ümit Hakan Yildiz
- Department
of Chemistry, Izmir Institute of Technology, Urla, Izmir 35430, Türkiye
| |
Collapse
|
5
|
Feleni U, Morare R, Masunga GS, Magwaza N, Saasa V, Madito MJ, Managa M. Recent developments in waterborne pathogen detection technologies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:233. [PMID: 39903332 PMCID: PMC11794368 DOI: 10.1007/s10661-025-13644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Waterborne pathogens find their way into water bodies through contamination of fecal discharge, stormwater run-offs, agriculture and industrial activities, and poor water infrastructure. These organisms are responsible for causing diarrheal, gastroenteritis, cholera, and typhoid diseases which raise an alarming sense on public human health due to the high mortality rate, especially in children. Several studies have indicated that these waterborne diseases can be managed by monitoring pathogens in water using traditional culture-based and molecular techniques. However, these methods have shown several setbacks such as the longer duration for detection and the inability to detect pathogens at low concentrations. Effective management of these diseases requires rapid, sensitive, highly selective, fast, and efficient economic methods to monitor pathogens in water. Since the creation of biosensors, these tools have been applied and shown the ability to detect pathogens at low concentrations. The highlights of biosensor systems are that they are fast, portable, easy to use, highly sensitive, and specific. The capabilities of biosensors have given these tools exposure to be widely applied in detecting pharmaceutical pollutants, pesticides, toxins, residues of detergents, and cosmetics from household activities in soil and water. With such difficulties faced for detecting waterborne pathogens, this review evaluates the effectiveness of technologies for waterborne pathogens detection and their drawbacks. It further highlights biosensors as the current reliable method available for detecting pathogens in water and its future capabilities in sustaining safe potable water.
Collapse
Affiliation(s)
- Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa.
| | - Rebotiloe Morare
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Ginny S Masunga
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Nontokozo Magwaza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Valentine Saasa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Moshawe J Madito
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| |
Collapse
|
6
|
Bashir K, Shikha S, Rattu G, Jan K, Krishna PM, Pattanayek SK. Pesticide residues and their detection techniques in foods using sensors- a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:221-239. [PMID: 39868385 PMCID: PMC11757846 DOI: 10.1007/s13197-024-06116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 01/28/2025]
Abstract
The use of pesticides in agricultural produce is continuously increasing and it raises the question of whether the food is safe or not. Only 0.1% of the sprayed pesticide reaches its target and the rest acts as a contaminant in soil and the environment, thus contaminating the future foods as well. The pesticide residue management is gaining attention as pesticide poisoning account for more than 3.5% of total deaths. The use of pesticides needs to be checked and applied in a controlled manner. Easy and rapid methods for the quantification of pesticides in foods need to be developed. In the present review, details about pesticides have been described in the first part. Secondly, the techniques and recent developments for the detection of pesticides have been summarized and finally, the emerging challenges and future perspectives for pesticide handling has been discussed with special emphasis on the use of Nano-sensors for pesticide detection. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06116-8.
Collapse
Affiliation(s)
- Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, 110062 India
| | - Shalini Shikha
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, 110062 India
| | - Gurdeep Rattu
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka 560064 India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi, 110062 India
| | - P. Murali Krishna
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana 131028 India
| | - Sudip K. Pattanayek
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, 110062 India
| |
Collapse
|
7
|
Li Y, Huang Y, Zhao P, Fei J, Xie Y. A review on Pd-M bimetallic electrochemical sensors: Techniques, performance, and applications. Talanta 2025; 282:126989. [PMID: 39383725 DOI: 10.1016/j.talanta.2024.126989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Environmental pollution, food safety, and medical diagnostics pose severe threats to human health, making the development of effective detection technologies crucial. Electrochemical sensors, as an efficient detection method, are extensively employed in detecting environmental pollutants, food additives, and biomolecules. Pd-M bimetallic materials, known for their excellent electrocatalytic performance, are extensively utilized as electrode modification materials. Although earlier reviews have covered the sensing applications of bimetallic materials, they have not targeted discussed Pd-based bimetallic materials. This paper systematically summarizes the preparation methods of Pd-M bimetallic materials, explores their structural and morphological regulation, and elaborates on their recent applications in pesticide detection, environmental pollutant detection, food additive detection, drug detection, and biosensing. It enumerates the detection performance of various Pd-M bimetallic material-modified electrochemical sensors for the aforementioned analytes in detail, including specific modification materials, linear range, detection limits, and sensitivity parameters.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, People's Republic of China.
| |
Collapse
|
8
|
Kayani KF, Shatery OBA, Mohammed SJ, Ahmed HR, Hamarawf RF, Mustafa MS. Synthesis and applications of luminescent metal organic frameworks (MOFs) for sensing dipicolinic acid in biological and water samples: a review. NANOSCALE ADVANCES 2024; 7:13-41. [PMID: 39583129 PMCID: PMC11579904 DOI: 10.1039/d4na00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early disease diagnosis and routine health monitoring. Metal-organic frameworks (MOFs), recognized for their diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest molecules, and emissive metal ions. Luminescent MOFs have shown significant promise as platforms for sensor design. This review highlights the application of luminescent MOFs in the detection of DPA in biological and aqueous environments. It provides a comprehensive discussion of the various detection strategies employed in luminescent MOF-based DPA sensors. Additionally, it explores the origins of L in MOFs, their synthesis, and the mechanisms underlying their sensing capabilities. The article also addresses key challenges and limitations in this field, offering practical insights for the development of efficient luminescent MOFs for DPA detection.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani Qlyasan Street, Kurdistan Regional Government Sulaymaniyah 46001 Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
9
|
Varvarovska L, Sopko B, Gaskova D, Bartl T, Amler E, Jarosikova T. Surface-functionalized PAN fiber membranes for the sensitive detection of airborne specific markers. PeerJ 2024; 12:e18077. [PMID: 39465161 PMCID: PMC11512550 DOI: 10.7717/peerj.18077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/20/2024] [Indexed: 10/29/2024] Open
Abstract
PAN fibers are characterized by having a large surface-to-volume ratio and small pores, which are beneficial for applications in filtration and specific molecular detection systems. Naturally, larger items are filtered, and a lower ratio between specific and nonspecific binding is expected since small pores do not allow larger elements to penetrate through membranes; thus, nonspecific binding is enhanced. We prepared and tested fiber membranes (diameter cca 700 nm) functionalized with a specific antibody to prove that even microscopic systems such as bacteria could be specifically identified. In addition, we established a methodology that enabled the effective binding of bacteria in not only an aqueous environment but also air. Our data clearly prove that even large systems such as bacteria could be specifically identified by fiber membranes surface-functionalized with a specific antibody. This research opens the door to the construction of biosensors for the fast, inexpensive, and sensitive identification of airborne bacterial contaminants and other airborne pollutants.
Collapse
Affiliation(s)
- Leontyna Varvarovska
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Bruno Sopko
- Department of Medical Chemistry and Biomedical Biochemistry, Second Faculty of Medicine and Faculty Hospital Motol, Charles University Prague, Prague, Czech Republic
- Laboratory of Advanced Biomaterials, University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Bustehrad, Czech Republic
| | - Dana Gaskova
- Institute of Physics of Charles University, Faculty of Mathematics and Physics, Charles University Prague, Prague, Czech Republic
| | - Tomas Bartl
- Institute of Physics of Charles University, Faculty of Mathematics and Physics, Charles University Prague, Prague, Czech Republic
| | - Evzen Amler
- Department of Biophysics, Second Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Tatana Jarosikova
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| |
Collapse
|
10
|
Vercelli B. Functional Nanomaterials for Sensing Devices: Synthesis, Characterization and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1652. [PMID: 39452988 PMCID: PMC11510707 DOI: 10.3390/nano14201652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
The growing field of nanotechnology impacts many research areas, such as engineering, electronics, energy, environment, biology, and medicine [...].
Collapse
Affiliation(s)
- Barbara Vercelli
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, CNR-ICMATE, Via Cozzi, 53, 20125 Milano, Italy
| |
Collapse
|
11
|
Bindu A, Bhadra S, Nayak S, Khan R, Prabhu AA, Sevda S. Bioelectrochemical biosensors for water quality assessment and wastewater monitoring. Open Life Sci 2024; 19:20220933. [PMID: 39220594 PMCID: PMC11365470 DOI: 10.1515/biol-2022-0933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Bioelectrochemical biosensors offer a promising approach for real-time monitoring of industrial bioprocesses. Many bioelectrochemical biosensors do not require additional labelling reagents for target molecules. This simplifies the monitoring process, reduces costs, and minimizes potential contamination risks. Advancements in materials science and microfabrication technologies are paving the way for smaller, more portable bioelectrochemical biosensors. This opens doors for integration into existing bioprocessing equipment and facilitates on-site, real-time monitoring capabilities. Biosensors can be designed to detect specific heavy metals such as lead, mercury, or chromium in wastewater. Early detection allows for the implementation of appropriate removal techniques before they reach the environment. Despite these challenges, bioelectrochemical biosensors offer a significant leap forward in wastewater monitoring. As research continues to improve their robustness, selectivity, and cost-effectiveness, they have the potential to become a cornerstone of efficient and sustainable wastewater treatment practices.
Collapse
Affiliation(s)
- Anagha Bindu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Soubhagya Nayak
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Rizwan Khan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Ashish A. Prabhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| |
Collapse
|
12
|
Cheng C, Chen H, Chen X, Lu M. A Simultaneous Calibration and Detection Strategy for Electrochemical Sensing with High Accuracy in Complex Water. ACS Sens 2024; 9:3986-3993. [PMID: 39078137 DOI: 10.1021/acssensors.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The electrochemical sensors loaded with nanomaterials have exhibited a great sensitivity. Nonetheless, the field detection for complex waterbodies can be affected by cross-sensitivity, environmental conditions such as temperature and pH value, as well as the relatively low reproducibility and stability of nanomaterials. In this paper, a simultaneous calibration and detection (SCD) strategy is proposed to introduce a simultaneous and precise calibration during field electrochemical detection, which is composed of a linear regression algorithm and a compact electrochemical sensor containing a series of identical sensing cells. This design can significantly mitigate cross-sensitivity in complex water and the inconsistency of sensing materials. Applied in the NO2- detection for practical waterbodies, the SCD strategy has exhibited a relative error of no more than 9.6% for the measurement compared to the results obtained by the standard Griess method and higher accuracy than the normal electrochemical method. The SCD strategy is independent of sensing materials, indicating that it can be widely applied to various detections by just switching the corresponding sensing material.
Collapse
Affiliation(s)
- Chu Cheng
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| | - Hongyu Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| | - Xinyi Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| | - Miao Lu
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Sengupta J, Hussain CM. Sensitive and selective detection of heavy metal ions and organic pollutants with graphene-integrated sensing platforms. NANOSCALE 2024; 16:14195-14212. [PMID: 39016018 DOI: 10.1039/d4nr00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Graphene-based sensors have emerged as promising tools for environmental monitoring due to their exceptional properties such as high surface area, excellent electrical conductivity, and sensitivity to various analytes. This paper presents a review of recent advancements in the development and application of graphene-based sensors for the detection of heavy metal ions and organic pollutants. These sensors employ either graphene or its derivatives, often in combination with graphene hybrid nanocomposites, as the primary sensing material. The synthesis methods of graphene and sensing mechanisms of graphene-based sensors are discussed. Furthermore, performance metrics including the determination range and detection limits of these sensors are itemized. The potential challenges and future directions in the field of graphene-based sensors for environmental monitoring are also highlighted. Overall, this review provides valuable insights into the current state-of-the-art technologies and paves the way for the development of highly efficient and reliable sensors for environmental monitoring purposes.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata - 700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, New Jersey, USA.
| |
Collapse
|
14
|
Darwish MA, Abd-Elaziem W, Elsheikh A, Zayed AA. Advancements in nanomaterials for nanosensors: a comprehensive review. NANOSCALE ADVANCES 2024; 6:4015-4046. [PMID: 39114135 PMCID: PMC11304082 DOI: 10.1039/d4na00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Nanomaterials (NMs) exhibit unique properties that render them highly suitable for developing sensitive and selective nanosensors across various domains. This review aims to provide a comprehensive overview of nanomaterial-based nanosensors, highlighting their applications and the classification of frequently employed NMs to enhance sensitivity and selectivity. The review introduces various classifications of NMs commonly used in nanosensors, such as carbon-based NMs, metal-based NMs, and others, elucidating their exceptional properties, including high thermal and electrical conductivity, large surface area-to-volume ratio and good biocompatibility. A thorough examination of literature sources was conducted to gather information on NMs-based nanosensors' characteristics, properties, and fabrication methods and their application in diverse sectors such as healthcare, environmental monitoring, industrial processes, and security. Additionally, advanced applications incorporating machine learning techniques were analyzed to enhance the sensor's performance. This review advances the understanding and development of nanosensor technologies by providing insights into fabrication techniques, characterization methods, applications, and future outlook. Key challenges such as robustness, biocompatibility, and scalable manufacturing are also discussed, offering avenues for future research and development in this field.
Collapse
Affiliation(s)
- Moustafa A Darwish
- Physics Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Walaa Abd-Elaziem
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University P.O. Box 44519 Egypt
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Ammar Elsheikh
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
- Department of Industrial and Mechanical Engineering, Lebanese American University P.O. Box 36 / S-12 Byblos Lebanon
| | - Abdelhameed A Zayed
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
| |
Collapse
|
15
|
Ly NH, Aminabhavi TM, Vasseghian Y, Joo SW. Advanced protein nanobiosensors to in-situ detect hazardous material in the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121727. [PMID: 39008923 DOI: 10.1016/j.jenvman.2024.121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Determining hazardous substances in the environment is vital to maintaining the safety and health of all components of society, including the ecosystem and humans. Recently, protein-based nanobiosensors have emerged as effective tools for monitoring potentially hazardous substances in situ. Nanobiosensor detection mode is a combination of particular plasmonic nanomaterials (e.g., nanoparticles, nanotubes, quantum dots, etc.), and specific bioreceptors (e.g., aptamers, antibodies, DNA, etc.), which has the benefits of high selectivity, sensitivity, and compatibility with biological systems. The role of these nanobiosensors in identifying dangerous substances (e.g., heavy metals, organic pollutants, pathogens, toxins, etc.) is discussed along with different detection mechanisms and various transduction methods (e.g., electrical, optical, mechanical, electrochemical, etc.). In addition, topics discussed include the design and construction of these sensors, the selection of proteins, the integration of nanoparticles, and their development processes. A discussion of the challenges and prospects of this technology is also included. As a result, protein nanobiosensors are introduced as a powerful tool for monitoring and improving environmental quality and community safety.
Collapse
Affiliation(s)
- Nguyen Hoang Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul, South Korea; School of Engineering, University of Petroleum and Energy Studies (UPES) Uttarakhand, Dehradun, 248 007, India.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
16
|
Sahu M, Ganguly M, Sharma P. Recent applications of coinage metal nanoparticles passivated with salicylaldehyde and salicylaldehyde-based Schiff bases. NANOSCALE ADVANCES 2024:d4na00427b. [PMID: 39148500 PMCID: PMC11322903 DOI: 10.1039/d4na00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Salicylaldehyde (SD) and its derivatives are effective precursors for generating coinage metal (gold, silver, and copper) nanoparticles (NPs). These NPs have a variety of potential environmental applications, such as in water purification and sensing, and those arising from their antibacterial activity. The use of SD and its derivatives for synthesizing coinage NPs is attractive due to several factors. First, SD is a relatively inexpensive and readily available starting material. Second, the synthetic procedures are typically simple and can be carried out under mild conditions. Finally, the resulting NPs can be tailored to have specific properties, such as size, shape, and surface functionality, by varying the reaction conditions. In an alkaline solution, the phenolate form of SD was converted to its quinone form, while ionic coinage metal salts were converted to zero-valent nanoparticles. The capping in situ produced quinone of coinage metal nanoparticles generated metal-enhanced fluorescence under suitable experimental conditions. The formation of iminic bonds during the formation of Schiff bases altered the properties (especially metal-enhanced fluorescence) and applications.
Collapse
Affiliation(s)
- Mamta Sahu
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Mainak Ganguly
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Priyanka Sharma
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| |
Collapse
|
17
|
Sharma P, Ganguly M, Doi A. Analytical developments in the synergism of copper particles and cysteine: a review. NANOSCALE ADVANCES 2024; 6:3476-3493. [PMID: 38989510 PMCID: PMC11232554 DOI: 10.1039/d4na00321g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Cysteine, a sulfur-containing amino acid, is a vital candidate for physiology. Coinage metal particles (both clusters and nanoparticles) are highly interesting for their spectacular plasmonic properties. In this case, copper is the most important candidate for its cost-effectiveness and abundance. However, rapid oxidation destroys the stability of copper particles, warranting the necessity of suitable capping agents and experimental conditions. Cysteine can efficiently carry out such a role. On the contrary, cysteine sensing is a vital step for biomedical science. This review article is based on a comparative account of copper particles with cysteine passivation and copper particles for cysteine sensing. For the deep understanding of readers, we discuss nanoparticles and nanoclusters, properties of cysteine, and importance of capping agents, along with various synthetic protocols and applications (sensing and bioimaging) of cysteine-capped copper particles (cysteine-capped copper nanoparticles and cysteine-capped copper nanoclusters). We also include copper nanoparticles and copper nanoclusters for cysteine sensing. As copper is a plasmonic material, fluorometric and colorimetric methods are mostly used for sensing. Real sample analysis for both copper particles with cysteine and copper particles for cysteine sensing are also incorporated in this review to demonstrate their practical applications. Both cysteine-capped copper particles and copper particles for cysteine sensing are the main essence of this review. The aspect of the synergism of copper and cysteine (unlike other amino acids) is quite promising for future researchers.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Ankita Doi
- Department of Biosciences, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| |
Collapse
|
18
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
19
|
Sharma P, Ganguly M, Sahu M. Role of transition metals in coinage metal nanoclusters for the remediation of toxic dyes in aqueous systems. RSC Adv 2024; 14:11411-11428. [PMID: 38595712 PMCID: PMC11002567 DOI: 10.1039/d4ra00931b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
A difficult issue in chemistry and materials science is to create metal compounds with well-defined components. Metal nanoclusters, particularly those of coinage groups (Cu, Ag, and Au), have received considerable research interest in recent years owing to the availability of atomic-level precision via joint experimental and theoretical methods, thus revealing the mechanisms in diverse nano-catalysts and functional materials. The textile sector significantly contributes to wastewater containing pollutants such as dyes and chemical substances. Textile and fabric manufacturing account for about 7 × 105 tons of wastewater annually. Approximately one thousand tons of dyes used in textile processing and finishing has been recorded as being discharged into natural streams and water bodies. Owing to the widespread environmental concerns, research has been conducted to develop absorbents that are capable of removing contaminants and heavy metals from water bodies using low-cost technology. Considering this idea, we reviewed coinage metal nanoclusters for azo and cationic dye degradation. Fluorometric and colorimetric techniques are used for dye degradation using coinage metal nanoclusters. Few reports are available on dye degradation using silver nanoclusters; and some of them are discussed in detailed herein to demonstrate the synergistic effect of gold and silver in dye degradation. Mostly, the Rhodamine B dye is degraded using coinage metals. Silver nanoclusters take less time for degradation than gold and copper nanoclusters. Mostly, H2O2 is used for degradation in gold nanoclusters. Still, all coinage metal nanoclusters have been used for the degradation due to suitable HOMO-LUMO gap, and the adsorption of a dye onto the surface of the catalyst results in the exchange of electrons and holes, which leads to the oxidation and reduction of the adsorbed dye molecule. Compared to other coinage metal nanoclusters, Ag/g-C3N4 nanoclusters displayed an excellent degradation rate constant with the dye Rhodamine B (0.0332 min-1). The behavior of doping transition metals in coinage metal nanoclusters is also reviewed herein. In addition, we discuss the mechanistic grounds for degradation, the fate of metal nanoclusters, anti-bacterial activity of nanoclusters, toxicity of dyes, and sensing of dyes.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Mamta Sahu
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| |
Collapse
|
20
|
Chen J, Meng H, Fang Z, Lukman I, Gao J, Liao J, Deng Q, Sun L, Gooneratne R. An "off-on" fluorescent nanosensor for the detection of cadmium ions based on APDC-etched CdTe/CdS/SiO 2 quantum dots. Heliyon 2024; 10:e26980. [PMID: 38463779 PMCID: PMC10920365 DOI: 10.1016/j.heliyon.2024.e26980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
In this study, we have developed a novel fluorescent "OFF-ON" quantum dots (QDs) sensor based on CdTe/CdS/SiO2 cores. Ammonium pyrrolidine dithiocarbamate (APDC), ethylenediamine tetraacetic acid (EDTA), and 1,10-phenanthroline (Phen) served as potential chemical etchants. Among these three etchants, APDC exhibited the most pronounced quenching effect (94.06%). The APDC-etched CdTe/CdS/SiO2 QDs demonstrated excellent optical properties: the fluorescence of the APDC-etched CdTe/CdS/SiO2 QDs system (excitation wavelength: 365 nm and emission wavelength: 622 nm) was significantly and selectively restored upon the addition of cadmium ions (Cd2+) (89.22%), compared to 15 other metal ions. The linear response of the APDC-etched CdTe/CdS/SiO2 QDs was observed within the cadmium ion (Cd2+) concentration ranges of 0-20 μmol L-1 and 20-160 μmol L-1 under optimized conditions (APDC: 300 μmol L-1, pH: 7.0, reaction time: 10 min). The detection limit (LOD) of the APDC-etched CdTe/CdS/SiO2 QDs for Cd2+ was 0.3451 μmol L-1 in the range of 0-20 μmol L-1. The LOD achieved by the QDs in this study surpasses that of the majority of previously reported nanomaterials. The feasibility of using APDC-etched CdTe/CdS/SiO2 QDs for Cd2+ detection in seawater, freshwater, and milk samples was verified, with average recoveries of 95.27%-110.68%, 92%-106.47%, and 90.73%-111.60%, respectively, demonstrating satisfactory analytical precision (RSD ≤ 8.26).
Collapse
Affiliation(s)
- Jiaqian Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haimei Meng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Iddrisu Lukman
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jianmeng Liao
- Zhanjiang Institute for Food and Drug Control, Zhanjiang, 524022, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
21
|
Ateia M, Wei H, Andreescu S. Sensors for Emerging Water Contaminants: Overcoming Roadblocks to Innovation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2636-2651. [PMID: 38302436 DOI: 10.1021/acs.est.3c09889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ensuring water quality and safety requires the effective detection of emerging contaminants, which present significant risks to both human health and the environment. Field deployable low-cost sensors provide solutions to detect contaminants at their source and enable large-scale water quality monitoring and management. Unfortunately, the availability and utilization of such sensors remain limited. This Perspective examines current sensing technologies for detecting emerging contaminants and analyzes critical barriers, such as high costs, lack of reliability, difficulties in implementation in real-world settings, and lack of stakeholder involvement in sensor design. These technical and nontechnical barriers severely hinder progression from proof-of-concepts and negatively impact user experience factors such as ease-of-use and actionability using sensing data, ultimately affecting successful translation and widespread adoption of these technologies. We provide examples of specific sensing systems and explore key strategies to address the remaining scientific challenges that must be overcome to translate these technologies into the field such as improving sensitivity, selectivity, robustness, and performance in real-world water environments. Other critical aspects such as tailoring research to meet end-users' requirements, integrating cost considerations and consumer needs into the early prototype design, establishing standardized evaluation and validation protocols, fostering academia-industry collaborations, maximizing data value by establishing data sharing initiatives, and promoting workforce development are also discussed. The Perspective describes a set of guidelines for the development, translation, and implementation of water quality sensors to swiftly and accurately detect, analyze, track, and manage contamination.
Collapse
Affiliation(s)
- Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1827, United States
| | - Haoran Wei
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676-5810, United States
| |
Collapse
|
22
|
Zhang W, Chen Y. Self-assembled Janus base nanotubes: chemistry and applications. Front Chem 2024; 11:1346014. [PMID: 38374885 PMCID: PMC10876059 DOI: 10.3389/fchem.2023.1346014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Janus base nanotubes are novel, self-assembled nanomaterials. Their original designs were inspired by DNA base pairs, and today a variety of chemistries has developed, distinguishing them as a new family of materials separate from DNA origami, carbon nanotubes, polymers, and lipids. This review article covers the principal examples of self-assembled Janus base nanotubes, which are driven by hydrogen-bond and π-π stacking interactions in aqueous environments. Specifically, self-complementary hydrogen bonds organize molecules into ordered arrays, forming macrocycles, while π-π interactions stack these structures to create tubular forms. This review elucidates the molecular interactions that govern the assembly of nanotubes and advances our understanding of nanoscale self-assembly in water.
Collapse
Affiliation(s)
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
23
|
Sonowal K, Kalita SJ, Purkayastha SK, Goswami J, Basyach P, Das R, Borborah A, Guha AK, Saikia L. Highly Luminescent Eu 3+-Incorporated Zr-MOFs as Fluorescence Sensors for Detection of Hazardous Organic Compounds in Water and Fruit Samples. ACS OMEGA 2024; 9:2504-2518. [PMID: 38250388 PMCID: PMC10795037 DOI: 10.1021/acsomega.3c07158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 01/23/2024]
Abstract
Considering the risk of toxic organic compounds to both human health and the environment, highly luminescent Eu3+-incorporated amino-functionalized zirconium metal-organic frameworks, namely, Eu/MOF and Eu@MOF were synthesized via the solvothermal method. The synthesized luminescent europium-incorporated MOFs act as outstanding sensor materials for diphenylamine and dinitrobenzene detection in water and fruit samples. The synergistic effect of Eu3+ metal ions and amino-functionalized MOFs enhances the luminescent properties of the MOFs improving the fluorescence sensing ability toward the analytes. The enhancement in the detection capacity of the Eu3+-incorporated sensors than the sole MOF toward toxic organic compounds was confirmed using the Stern-Volmer equation of limit of detection (LOD) measurements along with fluorescence lifetime measurements. The sensors exhibited turn-on fluorometric detection toward their respective analytes due to the inner filter effect. The plausible fluorescence sensing mechanism has been studied. The DFT calculations have been integrated to study the structure, stability, and charge transfer processes.
Collapse
Affiliation(s)
- Karanika Sonowal
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanmilan Jyoti Kalita
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Juri Goswami
- Jorhat
Institute of Science and Technology, Jorhat, Assam 785010, India
| | - Purashri Basyach
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Riya Das
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam 785006, India
| | - Abhishek Borborah
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam 785006, India
| | - Ankur K. Guha
- Advanced
Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam 781001, India
| | - Lakshi Saikia
- Advanced
Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam 785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Asghar N, Hussain A, Nguyen DA, Ali S, Hussain I, Junejo A, Ali A. Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. J Nanobiotechnology 2024; 22:26. [PMID: 38200605 PMCID: PMC10777661 DOI: 10.1186/s12951-023-02151-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 01/12/2024] Open
Abstract
Environmental pollution is a major issue that requires effective solutions. Nanomaterials (NMs) have emerged as promising candidates for pollution remediation due to their unique properties. This review paper provides a systematic analysis of the potential of NMs for environmental pollution remediation compared to conventional techniques. It elaborates on several aspects, including conventional and advanced techniques for removing pollutants, classification of NMs (organic, inorganic, and composite base). The efficiency of NMs in remediation of pollutants depends on their dispersion and retention, with each type of NM having different advantages and disadvantages. Various synthesis pathways for NMs, including traditional synthesis (chemical and physical) and biological synthesis pathways, mechanisms of reaction for pollutants removal using NMs, such as adsorption, filtration, disinfection, photocatalysis, and oxidation, also are evaluated. Additionally, this review presents suggestions for future investigation strategies to improve the efficacy of NMs in environmental remediation. The research so far provides strong evidence that NMs could effectively remove contaminants and may be valuable assets for various industrial purposes. However, further research and development are necessary to fully realize this potential, such as exploring new synthesis pathways and improving the dispersion and retention of NMs in the environment. Furthermore, there is a need to compare the efficacy of different types of NMs for remediating specific pollutants. Overall, this review highlights the immense potential of NMs for mitigating environmental pollutants and calls for more research in this direction.
Collapse
Affiliation(s)
- Nosheen Asghar
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Alamdar Hussain
- Department of Botany, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
| | - Duc Anh Nguyen
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Salar Ali
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
| | - Ishtiaque Hussain
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
- Department of Environmental Science, Quaid-i-Azam University of Islamabad, Islamabad, 15320, Pakistan
| | - Aurangzeb Junejo
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Attarad Ali
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan.
- Directorate of Quality Enhancement Cell, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan.
| |
Collapse
|
25
|
Cetinkaya YN, Bulut O, Oktem HA, Yilmaz MD. Fluorescent silica nanoparticles as nano-chemosensors for the sequential detection of Pb 2+ ions and bacterial-spore biomarker dipicolinic acid (DPA) in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123222. [PMID: 37542871 DOI: 10.1016/j.saa.2023.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Herein, we report fluorescein-labelled silica nanoparticles (FSNP) which serve as fluorescent nano-chemosensors for sequential detection of Pb2+ (which is a toxic heavy metal) and dipicolinic acid (DPA) (which is a distinctive indicator biomarker of bacterial spores) with high sensitivity and selectivity. The fluorescence of FSNP is quenched because of the complex formation between Pb2+ ions and surface amide groups, however, the fluorescence is recovered in contact with DPA, resulting from the association of DPA with surface bound Pb2+ ions. FSNP-Pb2+ complexes show high sensitivity towards DPA with a low detection limit of 850 nM which is approximately seventy times lower than the infectious dosage of bacterial spores (60 μM). Lateral flow test platform was further developed to show the applicability and practicability of our system.
Collapse
Affiliation(s)
- Yagmur Nur Cetinkaya
- Department of Materials Science and Nanotechnology, Graduate School of Natural and Applied Sciences, Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Onur Bulut
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Huseyin Avni Oktem
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey; Nanobiz Technology Inc., Gallium Block No: 27 / 218, METU Technopolis, Ankara, Turkey
| | - M Deniz Yilmaz
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, 42140 Konya, Turkey; BITAM-Science and Technology Research and Application Center, Necmettin Erbakan University, 42140 Konya, Turkey.
| |
Collapse
|
26
|
Avila-Quezada GD, Rai M. Novel nanotechnological approaches for managing Phytophthora diseases of plants. TRENDS IN PLANT SCIENCE 2023; 28:1070-1080. [PMID: 37085411 DOI: 10.1016/j.tplants.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Members of the Phytophthora genus are soil-dwelling pathogens responsible for diseases of several important plants. Among these, Phytophthora infestans causes late blight of potatoes, which was responsible for the Irish potato famine during the mid-19th century. Various strategies have been applied to control Phytophthora, including integrated management programs (IMPs) and quarantine, but without successful full management of the disease. Thus, there is a need to search for alternative tools. Here, we discuss the emerging role of nanomaterials in the detection and treatment of Phytophthora species, including slow delivery of agrochemicals (microbicides and pesticides). We propose integrating these tools into an IMP, which could lead to a reduction in pesticide use and provide more effective and sustainable control of Phytophthora pathogens.
Collapse
Affiliation(s)
- Graciela Dolores Avila-Quezada
- Universidad Autonoma de Chihuahua, Facultad de Ciencias Agrotecnologicas, Escorza 900, Chihuahua, Chihuahua 31000, Mexico.
| | - Mahendra Rai
- Sant Gadge Baba Amravati University, Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra 444602, India; Nicolaus Copernicus University, Department of Microbiology, 87-100 Toruń, Poland.
| |
Collapse
|
27
|
Rather MA, Bhuyan S, Chowdhury R, Sarma R, Roy S, Neog PR. Nanoremediation strategies to address environmental problems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163998. [PMID: 37172832 DOI: 10.1016/j.scitotenv.2023.163998] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
A rapid rise in population, extensive anthropogenic activities including agricultural practices, up-scaled industrialization, massive deforestation, etc. are the leading causes of environmental degradation. Such uncontrolled and unabated practices have affected the quality of environment (water, soil, and air) synergistically by accumulating huge quantities of organic and inorganic pollutants in it. Environmental contamination is posing a threat to the existing life on the Earth, therefore, demands the development of sustainable environmental remediation approaches. The conventional physiochemical remediation approaches are laborious, expensive, and time-consuming. In this regard, nanoremediation has emerged as an innovative, rapid, economical, sustainable, and reliable approach to remediate various environmental pollutants and minimize or attenuate the risks associated with them. Owing to their unique properties such as high surface area to volume ratio, enhanced reactivity, tunable physical parameters, versatility, etc. nanoscale objects have gained attention in environmental clean-up practices. The current review highlights the role of nanoscale objects in the remediation of environmental contaminants to minimize their impact on human, plant, and animal health; and air, water, and soil quality. The aim of the review is to provide information about the applications of nanoscale objects in dye degradation, wastewater management, heavy metal and crude oil remediation, and mitigation of gaseous pollutants including greenhouse gases.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Ratan Chowdhury
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Rahul Sarma
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Subham Roy
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
28
|
Pal N, Chakraborty D, Cho EB, Seo JG. Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2184. [PMID: 37570502 PMCID: PMC10420944 DOI: 10.3390/nano13152184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Nanoscopic materials have demonstrated a versatile role in almost every emerging field of research. Nanomaterials have come to be one of the most important fields of advanced research today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms and morphologies, high surface area, and involvement of transition and non-transition metals. With the introduction of porosity, nanomaterials have become a more promising candidate than their bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to compile a self-contained set of papers related to new synthesis methods and versatile applications of porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for catalysis and sensor area. Especially, we cover various surface functionalization strategies by improving accessibility and mass transfer limitation of catalytic applications for wide variety of materials, including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs) and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Debabrata Chakraborty
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Jeong Gil Seo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
29
|
Rahman MM, Ahmed L, Anika F, Riya AA, Kali SK, Rauf A, Sharma R. Bioinorganic Nanoparticles for the Remediation of Environmental Pollution: Critical Appraisal and Potential Avenues. Bioinorg Chem Appl 2023; 2023:2409642. [PMID: 37077203 PMCID: PMC10110382 DOI: 10.1155/2023/2409642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Nowadays, environmental pollution has become a critical issue for both developed and developing countries. Because of excessive industrialization, burning of fossil fuels, mining and exploration, extensive agricultural activities, and plastics, the environment is being contaminated rapidly through soil, air, and water. There are a variety of approaches for treating environmental toxins, but each has its own set of restrictions. As a result, various therapies are accessible, and approaches that are effective, long-lasting, less harmful, and have a superior outcome are extensively demanded. Modern research advances focus more on polymer-based nanoparticles, which are frequently used in drug design, drug delivery systems, environmental remediation, power storage, transformations, and other fields. Bioinorganic nanomaterials could be a better candidate to control contaminants in the environment. In this article, we focused on their synthesis, characterization, photocatalytic process, and contributions to environmental remediation against numerous ecological hazards. In this review article, we also tried to explore their recent advancements and futuristic contributions to control and prevent various pollutants in the environment.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Anha Akter Riya
- Department of Pharmacy, East-West University, Aftabnagar, Dhaka 1212, Bangladesh
| | - Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
30
|
Cho G, Grinenval E, Gabriel JCP, Lebental B. Intense pH Sensitivity Modulation in Carbon Nanotube-Based Field-Effect Transistor by Non-Covalent Polyfluorene Functionalization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1157. [PMID: 37049251 PMCID: PMC10096590 DOI: 10.3390/nano13071157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
We compare the pH sensing performance of non-functionalized carbon nanotubes (CNT) field-effect transistors (p-CNTFET) and CNTFET functionalized with a conjugated polyfluorene polymer (labeled FF-UR) bearing urea-based moieties (f-CNTFET). The devices are electrolyte-gated, PMMA-passivated, 5 µm-channel FETs with unsorted, inkjet-printed single-walled CNT. In phosphate (PBS) and borate (BBS) buffer solutions, the p-CNTFETs exhibit a p-type operation while f-CNTFETs exhibit p-type behavior in BBS and ambipolarity in PBS. The sensitivity to pH is evaluated by measuring the drain current at a gate and drain voltage of -0.8 V. In PBS, p-CNTFETs show a linear, reversible pH response between pH 3 and pH 9 with a sensitivity of 26 ± 2.2%/pH unit; while f-CNTFETs have a much stronger, reversible pH response (373%/pH unit), but only over the range of pH 7 to pH 9. In BBS, both p-CNTFET and f-CNTFET show a linear pH response between pH 5 and 9, with sensitivities of 56%/pH and 96%/pH, respectively. Analysis of the I-V curves as a function of pH suggests that the increased pH sensitivity of f-CNTFET is consistent with interactions of FF-UR with phosphate ions in PBS and boric acid in BBS, with the ratio and charge of the complexed species depending on pH. The complexation affects the efficiency of electrolyte gating and the surface charge around the CNT, both of which modify the I-V response of the CNTFET, leading to the observed current sensitivity as a function of pH. The performances of p-CNTFET in PBS are comparable to the best results in the literature, while the performances of the f-CNTFET far exceed the current state-of-the-art by a factor of four in BBS and more than 10 over a limited range of pH in BBS. This is the first time that a functionalization other than carboxylate moieties has significantly improved the state-of-the-art of pH sensing with CNTFET or CNT chemistors. On the other hand, this study also highlights the challenge of transferring this performance to a real water matrix, where many different species may compete for interactions with FF-UR.
Collapse
Affiliation(s)
- Gookbin Cho
- Laboratoire de Physique des Interfaces et des Couches Minces, LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique Paris, 91128 Palaiseau, France
| | - Eva Grinenval
- Laboratoire de Physique des Interfaces et des Couches Minces, LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique Paris, 91128 Palaiseau, France
| | | | - Bérengère Lebental
- IMSE, COSYS, Université Gustave Eiffel, Marne-la-Vallée Campus, 77447 Marne-La-Vallée, France
| |
Collapse
|
31
|
Moreno-Chaparro D, Moreno N, Usabiaga FB, Ellero M. Computational modeling of passive transport of functionalized nanoparticles. J Chem Phys 2023; 158:104108. [PMID: 36922140 DOI: 10.1063/5.0136833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Functionalized nanoparticles (NPs) are complex objects present in a variety of systems ranging from synthetic grafted nanoparticles to viruses. The morphology and number of the decorating groups can vary widely between systems. Thus, the modeling of functionalized NPs typically considers simplified spherical objects as a first-order approximation. At the nanoscale label, complex hydrodynamic interactions are expected to emerge as the morphological features of the particles change, and they can be further amplified when the NPs are confined or near walls. Direct estimation of these variations can be inferred via diffusion coefficients of the NPs. However, the evaluation of the coefficients requires an improved representation of the NPs morphology to reproduce important features hidden by simplified spherical models. Here, we characterize the passive transport of free and confined functionalized nanoparticles using the Rigid Multi-Blob (RMB) method. The main advantage of RMB is its versatility to approximate the mobility of complex structures at the nanoscale with significant accuracy and reduced computational cost. In particular, we investigate the effect of functional groups' distribution, size, and morphology over nanoparticle translational and rotational diffusion. We identify that the presence of functional groups significantly affects the rotational diffusion of the nanoparticles; moreover, the morphology of the groups and number induce characteristic mobility reduction compared to non-functionalized nanoparticles. Confined NPs also evidenced important alterations in their diffusivity, with distinctive signatures in the off-diagonal contributions of the rotational diffusion. These results can be exploited in various applications, including biomedical, polymer nanocomposite fabrication, drug delivery, and imaging.
Collapse
Affiliation(s)
| | - Nicolas Moreno
- Basque Center for Applied Mathematics, BCAM, Alameda de Mazarredo 14, Bilbao 48400, Spain
| | | | - Marco Ellero
- Basque Center for Applied Mathematics, BCAM, Alameda de Mazarredo 14, Bilbao 48400, Spain
| |
Collapse
|
32
|
Liu M, Kong L, Su W, Djoulde A, Cheng K, Chen J, Rao J, Wang Z. Pick-up strategies for and electrical characterization of ZnO nanowires with a SEM-based nanomanipulator. NANOTECHNOLOGY AND PRECISION ENGINEERING 2023. [DOI: 10.1063/10.0016877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Because of their unique mechanical and electrical properties, zinc oxide (ZnO) nanowires are used widely in microscopic and nanoscopic devices and structures, but characterizing them remains challenging. In this paper, two pick-up strategies are proposed for characterizing the electrical properties of ZnO nanowires using SEM equipped with a nanomanipulator. To pick up nanowires efficiently, direct sampling is compared with electrification fusing, and experiments show that direct sampling is more stable while electrification fusing is more efficient. ZnO nanowires have cut-off properties, and good Schottky contact with the tungsten probes was established. In piezoelectric experiments, the maximum piezoelectric voltage generated by an individual ZnO nanowire was 0.07 V, and its impedance decreased with increasing input signal frequency until it became stable. This work offers a technical reference for the pick-up and construction of nanomaterials and nanogeneration technology.
Collapse
Affiliation(s)
- Mei Liu
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Guangdong Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lingdi Kong
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Weilin Su
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Aristide Djoulde
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Kai Cheng
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Jinbo Chen
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Jinjun Rao
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Zhiming Wang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
33
|
Swierczewski M, Cousin F, Banach E, Rosspeintner A, Lawson Daku LM, Ziarati A, Kazan R, Jeschke G, Azoulay R, Lee LT, Bürgi T. Exceptionally Stable Dimers and Trimers of Au 25 Clusters Linked with a Bidentate Dithiol: Synthesis, Structure and Chirality Study. Angew Chem Int Ed Engl 2023; 62:e202215746. [PMID: 36728623 DOI: 10.1002/anie.202215746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023]
Abstract
A bidentate chiral dithiol (diBINAS) is utilised to bridge Au25 nanoclusters to form oligomers. Separation by size allows the isolation of fractions that are stable thanks to the bidentate nature of the linker. The structure of the products is elucidated by small-angle X-ray scattering and calculated using density functional theory. Additional structural details are studied by diffusion-ordered nuclear magnetic resonance spectroscopy, transmission electron microscopy and matrix-assisted laser desorption/ionization time of flight mass spectrometry. Significant changes in the optical properties are analysed by UV/Vis and fluorescence spectroscopies, with the latter demonstrating a strong emission enhancement. Furthermore, the emergent chiral characteristics are studied by circular dichroism. Due to the geometry constraints of the nanocluster assemblies, diBINAS can be regarded as a templating molecule, taking a step towards the directed self-assembly of metal clusters.
Collapse
Affiliation(s)
- Michal Swierczewski
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-Saclay, 91191, Gif-sur-Yvette Cedex, France
| | - Ewa Banach
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Latevi Max Lawson Daku
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Rania Kazan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Raymond Azoulay
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Lay-Theng Lee
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-Saclay, 91191, Gif-sur-Yvette Cedex, France
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| |
Collapse
|
34
|
Masanabo N, Orimolade B, Idris AO, Nkambule TTI, Mamba BB, Feleni U. Advances in polymer-based detection of environmental ibuprofen in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14062-14090. [PMID: 36567393 DOI: 10.1007/s11356-022-24858-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Globally, ibuprofen is the third most consumed drug and its presence in the environment is a concern because little is known about its adverse effects on humans and aquatic life. Environmentalists have made monitoring and the detection of ibuprofen in biological and environmental matrices a priority. For the detection and monitoring of ibuprofen, sensors and biosensors have provided rapid analysis time, sensitivity, high-throughput screening, and real-time analysis. Researchers are increasingly seeking eco-friendly technology, and this has led to an interest in developing biodegradable, bioavailable, and non-toxic sensors, or biosensors. The integration of polymers into sensor systems has proven to significantly improve sensitivity, selectivity, and stability and minimize sample preparation using bioavailable and biodegradable polymers. This review provides a general overview of perspectives and trends of polymer-based sensors and biosensors for the detection of ibuprofen compared to non-polymer-based sensors.
Collapse
Affiliation(s)
- Ntombenhle Masanabo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Benjamin Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Azeez O Idris
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa.
| |
Collapse
|
35
|
Sol-Gel Synthesis of ZnO Nanoparticles Using Different Chitosan Sources: Effects on Antibacterial Activity and Photocatalytic Degradation of AZO Dye. Catalysts 2022. [DOI: 10.3390/catal12121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chitosan was used in the sol-gel synthesis of zinc oxide nanoparticles (ZnO NPs) as a capping agent in order to control the size, morphology, optical bandgap, photocatalytic efficiency, and antimicrobial activity. Different chitosan sources were used for the sol-gel synthesis of ZnO NPs, namely chitosan of shrimp shells, crab shells, and Streptomyces griseus bacteria. The photocatalytic efficiency was studied by using the methylene blue (MB) photodegradation test, and the antibacterial activity of the different types of ZnO NPs was investigated by the agar well diffusion technique. The particle size of ZnO NPs varied between 20 and 80 nm, and the band gap energy ranged between 2.7 and 3.2 eV. Due to the different chitosan sources, the ZnO NPs showed different antibacterial activity against Listeria innocua, Bacillus Subtiliis, Staphylococcus Aureus, Salmonella Typhimurium and Pseudomonas Aeruginosa. The ZnO NPs with lower band gap values showed better antibacterial results compared to ZnO NPs with higher band gap values. The MB dye removal of ZnO (shrimp shells), ZnO (crab shells), and ZnO (Streptomyces griseus) reached 60%, 56%, and 44%, respectively, at a contact time of 60 min, a low initial MB dye concentration of 6 × 10−5 M, a solution temperature of 25 °C, and a pH = 7.
Collapse
|
36
|
Lin X, Luo J, Liao M, Su Y, Lv M, Li Q, Xiao S, Xiang J. Wearable Sensor-Based Monitoring of Environmental Exposures and the Associated Health Effects: A Review. BIOSENSORS 2022; 12:1131. [PMID: 36551098 PMCID: PMC9775571 DOI: 10.3390/bios12121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Recent advances in sensor technology have facilitated the development and use of personalized sensors in monitoring environmental factors and the associated health effects. No studies have reviewed the research advancement in examining population-based health responses to environmental exposure via portable sensors/instruments. This study aims to review studies that use portable sensors to measure environmental factors and health responses while exploring the environmental effects on health. With a thorough literature review using two major English databases (Web of Science and PubMed), 24 eligible studies were included and analyzed out of 16,751 total records. The 24 studies include 5 on physical factors, 19 on chemical factors, and none on biological factors. The results show that particles were the most considered environmental factor among all of the physical, chemical, and biological factors, followed by total volatile organic compounds and carbon monoxide. Heart rate and heart rate variability were the most considered health indicators among all cardiopulmonary outcomes, followed by respiratory function. The studies mostly had a sample size of fewer than 100 participants and a study period of less than a week due to the challenges in accessing low-cost, small, and light wearable sensors. This review guides future sensor-based environmental health studies on project design and sensor selection.
Collapse
Affiliation(s)
- Xueer Lin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaying Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Minyan Liao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yalan Su
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mo Lv
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qing Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China
| | - Shenglan Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jianbang Xiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
37
|
El-Kady MM, Ansari I, Arora C, Rai N, Soni S, Kumar Verma D, Singh P, El Din Mahmoud A. Nanomaterials: A Comprehensive Review of Applications, Toxicity, Impact, and Fate to Environment. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Tsogas GZ, Vlessidis AG, Giokas DL. Analyte-mediated formation and growth of nanoparticles for the development of chemical sensors and biosensors. Mikrochim Acta 2022; 189:434. [PMID: 36307660 DOI: 10.1007/s00604-022-05536-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
Abstract
The cornerstone of nanomaterial-based sensing systems is the synthesis of nanoparticles with appropriate surface functionalization that ensures their stability and determines their reactivity with organic or inorganic analytes. To accomplish these requirements, various compounds are used as additives or growth factors to regulate the properties of the synthesized nanoparticles and their reactivity with the target analytes. A different rationale is to use the target analytes as additives or growth agents to control the formation and properties of nanoparticles. The main difference is that the analyte recognition event occurs before or during the formation of nanoparticles and it is based on the reactivity of the analytes with the precursor materials of the nanoparticles (e.g., metal ions, reducing agents, and coatings). The transition from the ionic (or molecular) state of the precursor materials to ordered nanostructured assemblies is used for sensing and signal transduction for the qualitative detection and the quantitative determination of the target analytes, respectively. This review focuses on assays that are based on analyte-mediated regulation of nanoparticles' formation and differentiate them from standard nanoparticle-based assays which rely on pre-synthesized nanoparticles. Firstly, the principles of analyte-mediated nanomaterial sensors are described and then they are discussed with emphasis on the sensing strategies, the signal transduction mechanisms, and their applications. Finally, the main advantages, as well as the limitations of this approach, are discussed and compared with assays that rely on pre-synthesized nanoparticles in order to highlight the major advances accomplished with this type of nano-sensors and elucidate challenges and opportunities for further evolving new nano-sensing strategies.
Collapse
Affiliation(s)
- George Z Tsogas
- Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athanasios G Vlessidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Dimosthenis L Giokas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
39
|
Green gold@chitosan nanocomposite via solid-state synthesis; a separable catalyst for reduction of Cr(IV). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Halicka K, Meloni F, Czok M, Spychalska K, Baluta S, Malecha K, Pilo MI, Cabaj J. New Trends in Fluorescent Nanomaterials-Based Bio/Chemical Sensors for Neurohormones Detection-A Review. ACS OMEGA 2022; 7:33749-33768. [PMID: 36188279 PMCID: PMC9520559 DOI: 10.1021/acsomega.2c04134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The study of neurotransmitters and stress hormones allows the determination of indicators of the current stress load in the body. These species also create a proper strategy of stress protection. Nowadays, stress is a general factor that affects the population, and it may cause a wide range of serious disorders. Abnormalities in the level of neurohormones, caused by chronic psychological stress, can occur in, for instance, corporate employees, health care workers, shift workers, policemen, or firefighters. Here we present a new nanomaterials-based sensors technology development for the determination of neurohormones. We focus on fluorescent sensors/biosensors that utilize nanomaterials, such as quantum dots or carbon nanomaterials. Nanomaterials, owing to their diversity in size and shape, have been attracting increasing attention in sensing or bioimaging. They possess unique properties, such as fluorescent, electronic, or photoluminescent features. In this Review, we summarize new trends in adopting nanomaterials for applications in fluorescent sensors for neurohormone monitoring.
Collapse
Affiliation(s)
- Kinga Halicka
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Francesca Meloni
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Mateusz Czok
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Kamila Spychalska
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sylwia Baluta
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Karol Malecha
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Maria I. Pilo
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Joanna Cabaj
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
41
|
Mohamad N, Azizan NI, Mokhtar NFK, Mustafa S, Mohd Desa MN, Hashim AM. Future perspectives on aptamer for application in food authentication. Anal Biochem 2022; 656:114861. [PMID: 35985482 DOI: 10.1016/j.ab.2022.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Food fraudulence and food contamination are major concerns, particularly among consumers with specific dietary, cultural, lifestyle, and religious requirements. Current food authentication methods have several drawbacks and limitations, necessitating the development of a simpler, more sensitive, and rapid detection approach for food screening analysis, such as an aptamer-based biosensor system. Although the use of aptamer is growing in various fields, aptamer applications for food authentication are still lacking. In this review, we discuss the limitations of existing food authentication technologies and describe the applications of aptamer in food analyses. We also project several potential targets or marker molecules to be targeted in the SELEX process. Finally, this review highlights the drawbacks of current aptamer technologies and outlines the potential route of aptamer selection and applications for successful food authentication. This review provides an overview of the use of aptamer in food research and its potential application as a molecular reporter for rapid detection in food authentication process. Developing databases to store all biochemical profiles of food and applying machine learning algorithms against the biochemical profiles are urged to accelerate the identification of more reliable biomarker molecules as aptamer targets for food authentication.
Collapse
Affiliation(s)
- Nornazliya Mohamad
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Inani Azizan
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Fadhilah Khairil Mokhtar
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Nasir Mohd Desa
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
42
|
Li D, Zhou Z, Sun J, Mei X. Prospects of NIR fluorescent nanosensors for green detection of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 362:131764. [PMID: 35370362 PMCID: PMC8964475 DOI: 10.1016/j.snb.2022.131764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 05/02/2023]
Abstract
The pandemic of the novel coronavirus disease 2019 (COVID-19) is continuously causing hazards for the world. Effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can relieve the impact, but various toxic chemicals are also released into the environment. Fluorescence sensors offer a facile analytical strategy. During fluorescence sensing, biological samples such as tissues and body fluids have autofluorescence, giving false-positive/negative results because of the interferences. Fluorescence near-infrared (NIR) nanosensors can be designed from low-toxic materials with insignificant background signals. Although this research is still in its infancy, further developments in this field have the potential for sustainable detection of SARS-CoV-2. Herein, we summarize the reported NIR fluorescent nanosensors with the potential to detect SARS-CoV-2. The green synthesis of NIR fluorescent nanomaterials, environmentally compatible sensing strategies, and possible methods to reduce the testing frequencies are discussed. Further optimization strategies for developing NIR fluorescent nanosensors to facilitate greener diagnostics of SARS-CoV-2 for pandemic control are proposed.
Collapse
Key Words
- 5 G, the fifth generation technology standard for broadband cellular networks
- ACE2, Angiotensin-converting enzyme 2
- AIE, aggregation-induced emission
- AIE810NP, an aggregation-induced emission (AIE) nanoparticle (λem = 810 nm)
- AIEgens, AIE luminogens
- ASOs, antisense oligonucleotides
- AuNP, Gold nanoparticle
- CF647, a cyanine-based far-red fluorescent dye
- COVID-19, The pandemic of the novel coronavirus disease 2019
- CP-MNB, capture probe-conjugated magnetic bead particle
- CdS, core/shell lead sulfide/cadmium sulfide
- CoPhMoRe, corona phase molecular recognition
- Cy7Cl, a cationic cyanine dye
- DCNPs, Down-conversion nanoparticles
- DPV, Differential pulse voltammetry
- DSNP, down shifting nanoparticles
- DSNP@MY-1057-GPC-3, active targeting antibody glypican-3 (GPC-3) was conjugated with DSNP@MY-1057
- E, envelope
- EB-NS, prepared by the layered pigment CaCuSi4O10 (Egyptian Blue, EB) via ball milling and facile tip sonication into NIR fluorescent nanosheets
- ENMs, electrospun nanofibrous membranes
- Environmental-friendly
- FLU, an infectious disease caused by influenza viruses
- FRET, fluorescence resonance energy transfer
- Green synthesis
- HA1, hemagglutinin subunit.
- HA1., hemagglutinin subunit
- HAS, serum albumin
- HCC, hepatocellular carcinoma
- IONPs, iron oxide nanoparticles.
- IONPs., iron oxide nanoparticles
- IgG A, IgG aggregation
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LED, light emitting diode
- LICOR, IRDye-800CW
- Low-toxic
- M, membrane
- MCU, microcontroller unit
- MERS, Middle East respiratory syndrome coronavirus
- N protein, nucleocapsid protein
- N, nucleocapsid
- NIR
- NIR, Near-Infrared
- NIR775, an H2S-inert fluorophore
- Nanosensor
- P, FITC-labelled GzmB substrate peptides
- PBS, Phosphate-buffered saline
- PCR, Polymerase Chain Reaction
- PEG, branched by Polyethylene glycol
- PEG1000 PE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)− 1000]
- PEG2000 PE, (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)− 2000);
- POC, point-of-care
- PS, polystyrene
- Pb-Ag2S ODs, lead doped Ag2S quantum dots
- QDs, quantum dots
- QY, quantum yield
- R, R represents a common recognition element for the target
- RCA, rolling circle amplification
- RNA, ribonucleic acid
- S RBD, SARS-CoV-2 spike receptor-binding domain
- S protein, spike protein
- S, spike
- SAM, self-assembled monolayer
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus
- SPNs, semiconducting polymer nanoparticles.
- SPNs., semiconducting polymer nanoparticles
- SWCNTs, single-walled carbon nanotubes
- Si-RP, silica-reporter probe
- VIS, visible
- VTM, viral transport medium
- pGOLD, plasmonic gold
Collapse
Affiliation(s)
- Dan Li
- Department of Basic Science, Jinzhou Medical University, 40 Songpo Road, Jinzhou 121001, China
| | - Zipeng Zhou
- Department of Key Laboratory of Medical Tissue Engineering of Liaoning, Jinzhou Medical University, 40 Songpo Road, Jinzhou 121001, China
| | - Jiachen Sun
- Department of Key Laboratory of Medical Tissue Engineering of Liaoning, Jinzhou Medical University, 40 Songpo Road, Jinzhou 121001, China
| | - Xifan Mei
- Department of Key Laboratory of Medical Tissue Engineering of Liaoning, Jinzhou Medical University, 40 Songpo Road, Jinzhou 121001, China
| |
Collapse
|
43
|
Srivastava P, Tavernaro I, Genger C, Welker P, Hübner O, Resch-Genger U. Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies. Anal Chem 2022; 94:9656-9664. [PMID: 35731967 DOI: 10.1021/acs.analchem.2c00944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A first tricolor fluorescent pH nanosensor is presented, which was rationally designed from biocompatible carboxylated polystyrene nanoparticles and two analyte-responsive molecular fluorophores. Its fabrication involved particle staining with a blue-red-emissive dyad, consisting of a rhodamine moiety responsive to acidic pH values and a pH-inert quinoline fluorophore, followed by the covalent attachment of a fluorescein dye to the particle surface that signals neutral and basic pH values with a green fluorescence. These sensor particles change their fluorescence from blue to red and green, depending on the pH and excitation wavelength, and enable ratiometric pH measurements in the pH range of 3.0-9.0. The localization of the different sensor dyes in the particle core and at the particle surface was confirmed with fluorescence microscopy utilizing analogously prepared polystyrene microparticles. To show the application potential of these polystyrene-based multicolor sensor particles, fluorescence microscopy studies with a human A549 cell line were performed, which revealed the cellular uptake of the pH nanosensor and the differently colored emissions in different cell organelles, that is, compartments of the endosomal-lysosomal pathway. Our results demonstrate the underexplored potential of biocompatible polystyrene particles for multicolor and multianalyte sensing and bioimaging utilizing hydrophobic and/or hydrophilic stimuli-responsive luminophores.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Isabella Tavernaro
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Claudia Genger
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, Luisencarée, 10115 Berlin, Germany
| | - Pia Welker
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, Luisencarée, 10115 Berlin, Germany
| | - Oskar Hübner
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
44
|
El-Sharkawy RM, Swelim MA, Hamdy GB. Aspergillus tamarii mediated green synthesis of magnetic chitosan beads for sustainable remediation of wastewater contaminants. Sci Rep 2022; 12:9742. [PMID: 35697833 PMCID: PMC9192714 DOI: 10.1038/s41598-022-13534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
The release of different hazardous substances into the water bodies during the industrial and textile processing stages is a serious problem in recent decades. This study focuses on the potentiality of Fe3O4-NPs-based polymer in sustainable bioremediation of toxic substances from contaminated water. The biosynthesis of Fe3O4-NPs by A. tamarii was performed for the first time. The effect of different independent variables on the Fe3O4-NPs production were optimized using Plackett-Burman design and central composite design (CCD) of Response Surface Methodology. The optimum Fe3O4-NPs production was determined using incubation period (24 h), temperature (30 °C), pH (12), stirring speed (100 rpm) and stirring time (1 h). The incorporation of Fe3O4-NPs into chitosan beads was successfully performed using sol-gel method. The modified nanocomposite exhibited remarkable removal capability with improved stability and regeneration, compared to control beads. The optimal decolorization was 94.7% at 1.5 g/l after 90 min of treatment process. The reusability of biosorbent beads displayed 75.35% decolorization after the 7th cycle. The results showed a highly significant reduction of physico-chemical parameters (pH, TDS, TSS, COD, EC, and PO4) of contaminated wastewater. The sorption trials marked Fe3O4-NPs-based biopolymer as efficient and sustainable biosorbent for the elimination of hazardous toxic pollutants of wastewater in a high-speed rate.
Collapse
Affiliation(s)
- Reyad M El-Sharkawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt.
| | - Mahmoud A Swelim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Ghada B Hamdy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| |
Collapse
|
45
|
Ghosh S, AlKafaas SS, Bornman C, Apollon W, Hussien AM, Badawy AE, Amer MH, Kamel MB, Mekawy EA, Bedair H. The application of rapid test paper technology for pesticide detection in horticulture crops: a comprehensive review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00248-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
The ever increasing pests and diseases occurring during vegetable crop production is a challenge for agronomists and farmers. One of the practices to avoid or control the attack of the causal agents is the use of pesticides, including herbicides, insecticides nematicides, and molluscicides. However, the use of these products can result in the presence of harmful residues in horticultural crops, which cause several human diseases such as weakened immunity, splenomegaly, renal failure, hepatitis, respiratory diseases, and cancer. Therefore, it was necessary to find safe and effective techniques to detect these residues in horticultural crops and to monitor food security.
Main body
The review discusses the use of conventional methods to detect pesticide residues on horticultural crops, explain the sensitivity of nanoparticle markers to detect a variety of pesticides, discuss the different methods of rapid test paper technology and highlight recent research on rapid test paper detection of pesticides.
Conclusions
The methodologies discussed in the current review can be used in a certain situation, and the variety of methods enable detection of different types of pesticides in the environment. Notably, the highly sensitive immunoassay, which offers the advantages of being low cost, highly specific and sensitive, allows it to be integrated into many detection fields to accurately detect pesticides.
Collapse
|
46
|
Banerjee AN. Green syntheses of graphene and its applications in internet of things (IoT)-a status review. NANOTECHNOLOGY 2022; 33:322003. [PMID: 35395654 DOI: 10.1088/1361-6528/ac6599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Internet of Things (IoT) is a trending technological field that converts any physical object into a communicable smarter one by converging the physical world with the digital world. This innovative technology connects the device to the internet and provides a platform to collect real-time data, cloud storage, and analyze the collected data to trigger smart actions from a remote location via remote notifications, etc. Because of its wide-ranging applications, this technology can be integrated into almost all the industries. Another trending field with tremendous opportunities is Nanotechnology, which provides many benefits in several areas of life, and helps to improve many technological and industrial sectors. So, integration of IoT and Nanotechnology can bring about the very important field of Internet of Nanothings (IoNT), which can re-shape the communication industry. For that, data (collected from trillions of nanosensors, connected to billions of devices) would be the 'ultimate truth', which could be generated from highly efficient nanosensors, fabricated from various novel nanomaterials, one of which is graphene, the so-called 'wonder material' of the 21st century. Therefore, graphene-assisted IoT/IoNT platforms may revolutionize the communication technologies around the globe. In this article, a status review of the smart applications of graphene in the IoT sector is presented. Firstly, various green synthesis of graphene for sustainable development is elucidated, followed by its applications in various nanosensors, detectors, actuators, memory, and nano-communication devices. Also, the future market prospects are discussed to converge various emerging concepts like machine learning, fog/edge computing, artificial intelligence, big data, and blockchain, with the graphene-assisted IoT field to bring about the concept of 'all-round connectivity in every sphere possible'.
Collapse
|
47
|
Chatterjee N, Kumar P, Kumar K, Misra SK. What makes carbon nanoparticle a potent material for biological application? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1782. [PMID: 35194963 DOI: 10.1002/wnan.1782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022]
Abstract
Carbon materials are generally utilized in the form of carbon allotropes and their characteristics are exploited as such or for improving the thermal, electrical, optical, and mechanical properties of other biomaterials. This has now found a broader share in conventional biomaterial space with the generation of nanodiamond, carbon dot, carbon nanoparticles (CNPs), and so forth. With properties of better biocompatibility, intrinsic optical emission, aqueous suspendability, and easier surface conjugation possibilities made CNPs as one of the fore most choice for biological applications especially for use in intracellular spaces. There are various reports available presenting methods of preparing, characterizing, and using CNPs for various biological applications but a collection of information on what makes CNP a suitable biomaterial to achieve those biological activities is yet to be provided in a significant way. Herein, a series of correlations among synthesis, characterization, and mode of utilization of CNP have been incorporated along with the variations in its use as agent for sensing, imaging, and therapy of different diseases or conditions. It is ensembled that how simplified and optimized methods of synthesis is correlated with specific characteristics of CNPs which were found to be suitable in the specific biological applications. These comparisons and correlations among various CNPs, will surely provide a platform to generate new edition of this nanomaterial with improvised applications and newer methods of evaluating structural, physical, and functional properties. This may ensure the eventual use of CNPs for human being for specific need in near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Niranjan Chatterjee
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Piyush Kumar
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Krishan Kumar
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering and The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
48
|
Rashtbari S, Dehghan G, Amini M, Khorram S, Khataee A. A sensitive colori/fluorimetric nanoprobe for detection of polyphenols using peroxidase-mimic plasma-modified MoO 3 nanoparticles. CHEMOSPHERE 2022; 295:133747. [PMID: 35120949 DOI: 10.1016/j.chemosphere.2022.133747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/09/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Herein, MoO3 nanoparticles were synthesized and modified using Argon cold plasma treatment (Ar-MoO3NPs) for the first time. Various characterization studies were performed using various methods, including SEM, XRD, and FTIR techniques. The catalytic activity of MoO3NPs before and after modification was investigated using fluorometric and colorimetric experiments. The results indicated that the enzyme-mimic activity of MoO3NPs increased after plasma-surface modification (1.5 fold). Also, a fluorometric method based on the oxidation of a non-fluorescent terephthalic acid by Ar-MoO3NPs in the presence of H2O2 and the production of a compound with a high emission was designed for polyphenols detection. Quercetin was used as a polyphenol standard for the optimization of the proposed system. Under the optimum conditions, the dynamic ranges of the calibration graphs and the detection limits were calculated for different polyphenols (μmol/L): quercetin (2-232, 12.22), resveratrol (2-270, 61.89), curcumin (39-400, 38.89), gallic acid (2-309, 21.5) and ellagic acid (39-309, 16.25). Also, the precision of the method, which was expressed as RSD%, was in the range of 0.286-1.19%. The proposed system could detect individual polyphenols and total polyphenols in three different fruit extracts (apple, orange, and grapes) with high sensitivity. The obtained total concentrations of polyphenols in real samples were comparable to those calculated by the spectrophotometric method. So, a novel and sensitive optical nanosensor for the detection of polyphenols was reported as an alternative to the routine Folin-Ciocalteu spectrophotometric technique.
Collapse
Affiliation(s)
- Samaneh Rashtbari
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sirous Khorram
- Faculty of Physics, University of Tabriz, Tabriz, 51666-16471, Iran; Plasma Research Group, Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz, 51666-16471, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
49
|
Javed R, Ain NU, Gul A, Arslan Ahmad M, Guo W, Ao Q, Tian S. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. IET Nanobiotechnol 2022; 16:171-189. [PMID: 35411585 PMCID: PMC9178655 DOI: 10.1049/nbt2.12085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are one of the topmost widely used metallic oxide nanoparticles. Whether present in naked form or doped with metals or polymers, TiO2 NPs perform immensely important functions. However, the alteration in size and shape by doping results in improving the physical, chemical, and biological behaviour of TiO2 NPs. Hence, the differential effects of various TiO2 nanostructures including nanoflakes, nanoflowers, and nanotubes in various domains of biotechnology have been elucidated by researchers. Recently, the exponential growth of research activities regarding TiO2 NPs has been observed owing to their chemical stability, low toxicity, and multifaceted properties. Because of their enormous abundance, plants, humans, and environment are inevitably exposed to TiO2 NPs. These NPs play a significant role in improving agricultural attributes, removing environmental pollution, and upgrading the domain of nanomedicine. Therefore, the currently ongoing studies about the employment of TiO2 NPs in enhancement of different aspects of agriculture, environment, and medicine have been extensively discussed in this review.
Collapse
Affiliation(s)
- Rabia Javed
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Noor Ul Ain
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Gul
- NANOCAT Research Center, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weihong Guo
- Fuwai Hospial, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Shen Tian
- Department of Neurology, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
50
|
Adsorptive colorimetric determination of chromium(VI) ions at ultratrace levels using amine functionalized mesoporous silica. Sci Rep 2022; 12:5673. [PMID: 35383234 PMCID: PMC8983689 DOI: 10.1038/s41598-022-09689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/15/2022] [Indexed: 11/08/2022] Open
Abstract
There is an urgent need for a rapid, affordable and sensitive analytical method for periodic monitoring of heavy metals in water bodies. Herein, we report for the first time a versatile method for ultratrace level metal detection based on colorimetric sensing. The method integrates preconcentration using a nanomaterial with a colorimetric assay performed directly on the metal-enriched nanomaterial surface. This method circumvents the need for tedious sample pre-processing steps and the complex development of colorimetric probes, thereby reducing the complexity of the analytical procedure. The efficacy of the proposed method was demonstrated for chromium(VI) ions detection in water samples. Amine functionalized mesoporous silica (AMS) obtained from a one-pot synthesis was utilized as a pre-concentration material. The structural and chemical analysis of AMS was conducted to confirm its physico-chemical properties. The pre-concentration conditions were optimized to maximise the colorimetric signal. AMS exhibited a discernible colour change from white to purple (visible to the naked eye) for trace Cr(VI) ions concentration as low as 0.5 μg L-1. This method shows high selectivity for Cr(VI) ions with no colorimetric signal from other metal ions. We believe our method of analysis has a high scope for de-centralized monitoring of organic/inorganic pollutants in resource-constrained settings.
Collapse
|