1
|
Zhao Z, Zhang Y, Li J, Huang S, Xing G, Zhang K, Ma X, Zhang X, Zhang Y. A remotely controlled nanotherapeutic with immunomodulatory property for MRSA-induced bone infection. Biomaterials 2025; 321:123298. [PMID: 40164042 DOI: 10.1016/j.biomaterials.2025.123298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Osteomyelitis is a deep bone tissue infection caused by pathogenic microorganisms, with the primary pathogen being methicillin-resistant Staphylococcus aureus (MRSA). Due to the tendency of the infection site to form biofilms that shield drugs and immune cells to kill bacteria, combined with the severe local inflammatory response causing bone tissue destruction, the treatment of osteomyelitis poses a significant challenge. Herein, we developed a remotely controlled nanotherapeutic (TLBA) with immunomodulatory to treat MRSA-induced osteomyelitis. TLBA, combined with baicalin and gold nanorods, is positively charged to actively target and penetrate biofilms. Near-infrared light (808 nm) triggers spatiotemporal, controllable drug release, while bacteria are eliminated through synergistic interaction of non-antibiotic drugs and photothermal therapy, enhancing bactericidal efficiency and minimizing drug resistance. TLBA eliminated nearly 100 % of planktonic bacteria and dispersed 90 % of biofilms under NIR light stimulation. In MRSA-induced osteomyelitis rat models, laser irradiation raised the infection site temperature to 50 °C, effectively eradicating bacteria, promoting M2 macrophage transformation, inhibiting bone inflammation, curbing bone destruction, and fostering bone tissue repair. In summary, TLBA proposes a more comprehensive treatment strategy for the two characteristic pathological changes of bacterial infection and bone tissue damage in osteomyelitis.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Orthopedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guosheng Xing
- Laboratory of Biochemistry and Molecular Biology, Institute of Orthopedics, Tianjin Hospital, Tianjin, 300050, China
| | - Kai Zhang
- Department of Transfusion, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China.
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yingze Zhang
- The School of Medicine, Nankai University, Tianjin, 300071, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| |
Collapse
|
2
|
Wen Z, Li S, Liu Y, Liu X, Qiu H, Che Y, Bian L, Zhou M. An engineered M2 macrophage-derived exosomes-loaded electrospun biomimetic periosteum promotes cell recruitment, immunoregulation, and angiogenesis in bone regeneration. Bioact Mater 2025; 50:95-115. [PMID: 40242509 PMCID: PMC12002949 DOI: 10.1016/j.bioactmat.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/04/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The periosteum, a fibrous tissue membrane covering bone surfaces, is critical to osteogenesis and angiogenesis in bone reconstruction. Artificial periostea have been widely developed for bone defect repair, but most of these are lacking of periosteal bioactivity. Herein, a biomimetic periosteum (termed PEC-Apt-NP-Exo) is prepared based on an electrospun membrane combined with engineered exosomes (Exos). The electrospun membrane is fabricated using poly(ε-caprolactone) (core)-periosteal decellularized extracellular matrix (shell) fibers via coaxial electrospinning, to mimic the fibrous structure, mechanical property, and tissue microenvironment of natural periosteum. The engineered Exos derived from M2 macrophages are functionalized by surface modification of bone marrow mesenchymal stem cell (BMSC)-specific aptamers to further enhance cell recruitment, immunoregulation, and angiogenesis in bone healing. The engineered Exos are covalently bonded to the electrospun membrane, to achieve rich loading and long-term effects of Exos. In vitro experiments demonstrate that the biomimetic periosteum promotes BMSC migration and osteogenic differentiation via Rap1/PI3K/AKT signaling pathway, and enhances vascular endothelial growth factor secretion from BMSCs to facilitate angiogenesis. In vivo studies reveal that the biomimetic periosteum promotes new bone formation in large bone defect repair by inducing M2 macrophage polarization, endogenous BMSC recruitment, osteogenic differentiation, and vascularization. This research provides valuable insights into the development of a multifunctional biomimetic periosteum for bone regeneration.
Collapse
Affiliation(s)
- Zhuohao Wen
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shuyi Li
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yi Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xueyan Liu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Huiguo Qiu
- Zhuhai Stomatological Hospital, Zhuhai, 519000, China
| | - Yuejuan Che
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Miao Zhou
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
3
|
Ma T, Liu Q, Zhang Z, Nan J, Liu G, Yang Y, Hu Y, Xie J. Fused exosomal targeted therapy in periprosthetic osteolysis through regulation of bone metabolic homeostasis. Bioact Mater 2025; 50:171-188. [PMID: 40248188 PMCID: PMC12005309 DOI: 10.1016/j.bioactmat.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/18/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
The onset of periprosthetic osteolysis is mediated by wear particles following artificial arthroplasty. This manifests as a disturbed bone metabolism microenvironment, characterized by insufficient osteogenesis and angiogenesis, and enhanced osteoclastic activity. To target and remodel the homeostatic environment of bone metabolism in the sterile region around the prosthesis, we successfully pioneered the proposal and construction of a fused exosome (f-exo) system with M2 macrophage-derived exosomes (M2-exo) and urine-derived stem cell exosomes (USC-exo). The results demonstrate that f-exo effectively combines the osteolysis region-targeting capabilities of M2-exo with the bone metabolic homeostasis modulation effects of two exosomes (M2-exo and USC-exo), thereby achieving a significantly enhanced bone metabolic homeostasis targeting effect in the periprosthetic osteolysis region. The proteomic analysis of M2-exo, USC-exo, and f-exo revealed the potential mechanism of f-exo in targeting-regulation of bone metabolic homeostasis. Our study employs an innovative approach utilizing the fused exosome system for exosome targeted delivery, which offers a novel intervention strategy for the clinical management of periprosthetic osteolysis. Furthermore, it provides a novel conceptual framework for the development of exosome-based drug-targeting delivery systems.
Collapse
Affiliation(s)
| | | | - Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Jiangyu Nan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
4
|
Zhou M, Guan B, Liu Y, Gu Q, Chen W, Xie B, Zhou M, Xiang J, Zhao S, Zhao Q, Yan D. Fibrinogen-like 2 in tumor-associated macrophage-derived extracellular vesicles shapes an immunosuppressive microenvironment in colorectal liver metastases by promoting tumor stemness and neutrophil extracellular traps formation. Cancer Lett 2025; 618:217642. [PMID: 40097065 DOI: 10.1016/j.canlet.2025.217642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Investigating the mechanisms underlying the development of an immunosuppressive microenvironment within colorectal liver metastases (CRLM) is important for identifying synergistic targets for immunotherapy. The regulatory role of tumor-associated macrophage-derived extracellular vesicles (TAM-EVs) in the immune microenvironment of CRLM has not yet been fully explored. Here, we found that TAM-EVs shaped the immunosuppressive microenvironment at the invasive front in murine CRLM models, thus dampening anti-PD-1 immunotherapy. This environment is characterized by an increased tumor stemness potential and abundant neutrophil extracellular traps (NETs) formation. Mechanistically, TAM-EVs-derived fibrinogen-like 2 (FGL2) interacts with the FCGR2B receptor in tumor cells, which further activates a p-STAT3/IL-1β positive feedback loop to increase the stemness potential of cancer cells, whereas IL-1β mediates the communication between cancer cells and neutrophils. The use of an anti-IL-1β monoclonal antibody can reduce NETs production and synergize with anti-PD-1 immunotherapy, which offers clinical translational significance for CRLM therapy. The FGL2/p-STAT3/IL-1β loop correlates with an immunosuppressive microenvironment and poor prognosis in human patients with CRLM. Our results revealed the potential of enhancing the efficacy of immunotherapy via the targeted clearance of NETs using anti-IL-1β monoclonal antibodies, which have significant clinical translational value in the treatment of CRLM.
Collapse
Affiliation(s)
- Menghua Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingjie Guan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youdong Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Xie
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mantang Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Xiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senlin Zhao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongwang Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Huang ZJ, Ye MN, Peng XH, Gui P, Cheng F, Wang GH. Thiolated chitosan hydrogel combining nitric oxide and silver nanoparticles for the effective treatment of diabetic wound healing. Int J Biol Macromol 2025:143730. [PMID: 40316112 DOI: 10.1016/j.ijbiomac.2025.143730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/06/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Nitric oxide (NO) has shown significant potential in chronic wound healing due to its ability of promoting blood circulation. However, excessive NO can trigger local inflammatory response, potentially hindering wound healing. Therefore, controlled and sustained NO release to minimize pro-inflammation effects during treatment is in great demand for diabetic wounds. Herein, an injectable thiolated chitosan hydrogel loaded with NO donors (GNO) and silver nanoparticles (AgNPs) is presented for effective diabetic wound treatment, from which NO was released stably and sustainably responsive to reactive oxygen species (ROS) at the wound site. The combination of NO and AgNPs demonstrated robust antibacterial activity and biofilm dissipation. During diabetic wound treatments, the sustained release of NO promoted blood vessel regeneration while inhibiting inflammatory factors, thereby accelerating wound healing. This combined approach achieves efficient antibacterial action, biofilm prevention, inflammation suppression, vascular repair, improved local blood circulation, ultimately facilitating the reconstruction of epithelial structures at the wound site, thereby providing a promising solution for the diabetic chronic wound healing.
Collapse
Affiliation(s)
- Zeng-Jin Huang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Meng-Nan Ye
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xin-Hui Peng
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Ping Gui
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Fan Cheng
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Guan-Hai Wang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
6
|
Yao Y, Yin Y, Shuai F, Lam W, Zhou T, Xie Y, He X, Han X. M2 Macrophage-Derived Extracellular Vesicles Reprogram Immature Neutrophils into Anxa1 hi Neutrophils to Enhance Inflamed Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416159. [PMID: 40277454 DOI: 10.1002/advs.202416159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/22/2025] [Indexed: 04/26/2025]
Abstract
Periodontitis is a microbiome-related inflammation that can lead to irreversible bone reduction and even tooth loss. This study reveals that macrophage polarization states significantly influence periodontal homeostasis, with M2 macrophage-derived extracellular vesicles (M2-EVs) playing a pivotal role in mitigating periodontitis-induced bone loss. Single-cell RNA sequencing of periodontal tissues treated with M2-EVs uncovered a unique Anxa1hi neutrophil subpopulation exhibiting pro-reparative properties. This subpopulation is characterized by immaturity and demonstrated osteogenic and angiogenic capabilities in vivo, partially mediated through the secretion of oncostatin M (OSM) signals. The findings suggest that this functional heterogeneity arises from M2-EVs disrupting the neutrophil maturation trajectory, with pivotal reprogramming genes, such as Acvrl1 and Fpr2, driving the differentiation of the Anxa1hi reparative subpopulation. This work underscores the potential of targeting M2 macrophage-neutrophil interactions to promote the regeneration of inflamed bone tissues.
Collapse
Affiliation(s)
- Yufei Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fangyuan Shuai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Waishan Lam
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaxin Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuesong He
- The ADA Forsyth Institute, 100 Chestnut Street, Somerville, MA, 02143, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
7
|
Liu C, Huang X, Li S, Ji W, Luo T, Liang J, Lv Y. M2 macrophage-derived exosomes reverse TGF-β1-induced epithelial mesenchymal transformation in BEAS-2B cells via the TGF-βRI/Smad2/3 signaling pathway. Eur J Med Res 2025; 30:271. [PMID: 40211426 PMCID: PMC11987241 DOI: 10.1186/s40001-025-02516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/26/2025] [Indexed: 04/13/2025] Open
Abstract
INTRODUCTION Airway remodeling in bronchial asthma can be inhibited by disrupting the epithelial mesenchymal transition (EMT) of activated airway epithelial cells. Exosomes, as key mediators of intercellular communication, have been implicated in the pathophysiology of asthma-related airway inflammation, remodeling, and hyperresponsiveness. This study aimed to investigate the role of M2 macrophage-derived exosomes (M2φ-exos) in modulating TGF-β1-induced EMT in airway epithelial (BEAS-2B) cells and elucidate the underlying molecular mechanism, if any. METHODS THP-1 cells were induced to differentiate into M2 macrophages via phorbol 12-myristate 13-acetate (PMA) and IL-4. Exosomes were subsequently isolated and purified via ultracentrifugation. M2φ-exos expression was characterized by protein marker levels, transmission electron microscopy imaging, and nanoparticle tracking analysis. TGF-β1-induced BEAS-2B cells were exposed to M2φ-exos to determine the latter's effects. RESULTS THP-1 cells were successfully differentiated into M2 macrophages, as confirmed by in vitro flow cytometry. The isolated exosomes presented typical cup-shaped structures and expressed CD81 and TSG101. TGF-β1 induction altered the morphological characteristics of BEAS-2B cells and activated the TGF-βRI/Smad2/3 signaling pathway, leading to increased expression of Snail, Vimentin and Collagen 1 and decreased expression of E-cadherin. After exosome or SB431542 induction, TGF-β1-induced EMT was reversed. GW4869, an exosome release inhibitor, exhibited the ability to block the beneficial effects of exosomes. CONCLUSION M2Φ-exos inhibited EMT in BEAS-2B cells through the TGF-βRI/Smad2/3 signaling pathway. This novel insight into the role of M2Φ-exos in modulating EMT may have important implications for the beneficial effects of asthma, particularly in addressing airway remodeling.
Collapse
Affiliation(s)
- Chao Liu
- Department of Respiratory and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Xiaolin Huang
- Dental Implant and Restoration Centre, Zhongshan Stomatological Hospital, Zhongshan, Guangdong, China
| | - Siqi Li
- Department of Respiratory and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Wentao Ji
- Department of Respiratory and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Tian Luo
- Department of Respiratory and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Jianping Liang
- Department of Respiratory and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China.
| | - Yanhua Lv
- Department of Respiratory and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People'S Hospital of Shunde), Foshan, Guangdong, China.
| |
Collapse
|
8
|
Wang K, Zhang Y, Shu R, Yuan L, Tu H, Wang S, Ni B, Zhang Y, Jiang C, Luo Y, Yin Y. GPR37 Activation Alleviates Bone Cancer Pain via the Inhibition of Osteoclastogenesis and Neuronal Hyperexcitability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417367. [PMID: 39965073 PMCID: PMC11984854 DOI: 10.1002/advs.202417367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Osteolytic bone cancer pain is a primary concern for cancer patients with bone metastasis, and current therapies offer inadequate pain relief. The present study demonstrates that activation of the G protein-coupled receptor 37 (GPR37) by neuroprotectin D1 (NPD1) or artesunate (ARU) alleviates both acute and persistent pain in multiple mouse models of bone cancer. GPR37 agonists also protect against cancer-induced bone destruction. Mechanistically, NPD1 or ARU binding to GPR37 in macrophages promotes the release of IL-10, which further inhibits cancer-induced osteoclastogenesis. Moreover, direct activation of GPR37 in dorsal root ganglion (DRG) neurons and the spinal dorsal horn reduces action potential firing and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), thereby suppressing cancer-induced neuronal hyperexcitability. Importantly, the analgesic and protective effects of NPD1 and ARU are abolished in Gpr37-/- mice, and β-arrestin 2 is identified as a key mediator in IL-10 release and neuronal inhibition. In patients with bone metastases, plasma levels of endogenous NPD1 are negatively correlated with both pain intensity and the bone resorption marker CTX-I. Collectively, these findings highlight GPR37 activation as a potential therapeutic strategy for alleviating bone cancer pain through direct and synergistic inhibition of osteoclastogenesis and neuronal hyperexcitability.
Collapse
Affiliation(s)
- Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yongfang Zhang
- Shenzhen University Medical SchoolShenzhenGuangdong518060China
| | - Ruichen Shu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| | - Limei Yuan
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| | - Huifang Tu
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Shengran Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| | - Bo Ni
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| | - Yi‐Fan Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain MedicineThe 6th Affiliated Hospital of Shenzhen University Health Science CenterShenzhenGuangdong518052China
| | - Yuhui Luo
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain MedicineThe 6th Affiliated Hospital of Shenzhen University Health Science CenterShenzhenGuangdong518052China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| |
Collapse
|
9
|
Li Z, Wang Y, Yuan X, Xu M, Wang X, Liu C, Zhu C, Pei W, Bai J, Shang X. Peptide-modified mesoporous silica nanoparticles for the coordinated regulation of macrophage polarization and pyroptosis in the treatment of implant-related infections. Mater Today Bio 2025; 31:101629. [PMID: 40124338 PMCID: PMC11930442 DOI: 10.1016/j.mtbio.2025.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Implant-related infections (IRIs) present a significant challenge in clinical treatment because of the formation of biofilms. The complex architecture of biofilms not only impedes antibiotic penetration, fostering the evolution of multidrug resistance in bacteria under minimal selective pressure but also suppresses the antimicrobial activity of macrophages and induces their pyroptosis in large quantities. This excessive pyroptosis impairs the collective immune function of macrophages, enabling pathogens to evade immune system clearance and rendering infection difficult to eradicate. Existing treatment strategies often necessitate extensive surgical debridement, which not only causes significant harm to patients' physiological health and quality of life but also results in limited therapeutic outcomes. To address these challenges, this study developed a mesoporous silica nanoparticle system (MRL) modified with the RGD (Arginine-Glycine-Aspartic acid) tripeptide and loaded with the antimicrobial peptide LL-37. The LL-37 released from MRL can not only directly disrupt bacterial cell membranes, preventing bacteria from developing resistance through conventional mutation mechanisms, but also enhance antimicrobial activity by modulating macrophage polarization toward the M1 phenotype. However, LL-37 may induce and exacerbate macrophage pyroptosis within biofilms. Therefore, we modified the nanoparticles with RGD to increase macrophage viability and reduce their number of deaths, thereby alleviating the immunosuppression caused by excessive macrophage pyroptosis. In vitro and in vivo experiments demonstrated that MRL, while preserving the antimicrobial activity and immunomodulatory function of LL-37, significantly reduced macrophage pyroptosis and protected the collective immune activity of macrophages. Thus, the fine-tuned regulation of immune response was achieved, providing new insights and strategies for the treatment of IRIs.
Collapse
Affiliation(s)
- Zhi Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuhang Wang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xingshi Yuan
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mingyou Xu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaofang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chang Liu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wei Pei
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xifu Shang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
10
|
Guo ZY, Yin NN, Li XF, Wang MM, Sui XN, Jiang CD, Xu MH, Jia XE, Fu CJ, Chen TL, Liu X. Exosomes secreted from M2-polarized macrophages inhibit osteoclast differentiation via CYLD. Tissue Cell 2025; 93:102645. [PMID: 39671756 DOI: 10.1016/j.tice.2024.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE Bone resorption mediated by osteoclast differentiation induces the occurrence of bone-related diseases. Macrophages, an origin of osteoclasts, whose M2 type can reduce inflammation-induced bone damage. We aimed to investigate the effect of M2 macrophage-derived exosomes on osteoclast formation and elucidate its underlying mechanism. MATERIALS AND METHODS Exosomes were isolated from M2 macrophages (M2-exo) and were used to treat osteoclast-like cells. Osteoclast formation was evaluated using tartrate-resistant acid phosphatase, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. The molecular mechanism of M2-exo function was analyzed by qRT-PCR, phosphor-kinase array analysis, and Western blotting. RESULTS M2-exo was internalized by osteoclasts and inhibited osteoclast differentiation in vitro. Moreover, CYLD was highly expressed in M2 macrophages and M2-exo-treated osteoclasts, and knockdown of it abrogated the inhibition of osteoclast differentiation caused by M2-exo. Additionally, CYLD suppressed the phosphorylation of STAT3, and STAT3 activator colivelin reversed the inhibition of osteoclast differentiation induced by CYLD overexpression. CONCLUSION M2-exo inhibits osteoclast differentiation via delivering CYLD, which inactivates STAT3 signaling. These findings may provide a novel therapeutic option for bone diseases including periodontitis.
Collapse
Affiliation(s)
- Zi-Yan Guo
- Department of Stomatology, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Nan-Nan Yin
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China
| | - Xiao-Fei Li
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China
| | - Meng-Meng Wang
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China
| | - Xiao-Na Sui
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China
| | - Cai-di Jiang
- Department of Stomatology, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Ming-Hua Xu
- Department of Stomatology, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xiao-E Jia
- Department of Stomatology, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chong-Jian Fu
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China.
| | - Tie-Lou Chen
- Department of Periodontal, Military Dental Center, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.
| | - Xin Liu
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, China.
| |
Collapse
|
11
|
Holliday LS, Neubert JK, Yang X. Gas-powered extracellular vesicles promote bone regeneration. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:158-165. [PMID: 40206801 PMCID: PMC11977345 DOI: 10.20517/evcna.2024.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
The signaling gas hydrogen sulfide (H2S) has recently been implicated in the regulation of bone remodeling and the maintenance of periodontal health. Exploring the underlying mechanisms for this regulation holds promise for the development of new treatment strategies to block bone resorption and stimulate bone regeneration. A recent study by Zhou et al. (Bioactive Materials, 2024) showed that treatment with H2S stimulated changes in the extracellular vesicles (EVs) released by M2 macrophages, enhancing their capacity to promote the osteogenic differentiation of mesenchymal stem cells in vitro. The H2S-stimulated EVs, given together with mesenchymal stem cells (MSCs), also promoted bone regeneration in vivo in a mouse calvarial critical-size defect model. This activity was linked to augmented expression of moesin, a membrane-cytoskeletal linkage protein, which was found at increased levels in EVs from cells stimulated by H2S. The study identifies a new strategy for generating EVs that are pro-osteogenic. It also uncovers a surprising role for moesin in stimulating osteogenesis in MSCs.
Collapse
Affiliation(s)
- Lexie Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
12
|
Jing L, Wang HY, Zhang N, Zhang WJ, Chen Y, Deng DK, Li X, Chen FM, He XT. Critical roles of extracellular vesicles in periodontal disease and regeneration. Stem Cells Transl Med 2025; 14:szae092. [PMID: 39703170 PMCID: PMC11954511 DOI: 10.1093/stcltm/szae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Extracellular vesicles (EVs) are evolutionarily conserved communication mediators that play key roles in the development of periodontal disease as well as in regeneration processes. This concise review first outlines the pathogenic mechanisms through which EVs derived from bacteria lead to the progression of periodontitis, with a focus on the enrichment of virulence factors, the amplification of immune responses, and the induction of bone destruction as key aspects influenced by bacterial EVs. This review aims to elucidate the positive effects of EVs derived from mesenchymal stem cells (MSC-EVs) on periodontal tissue regeneration. In particular, the anti-inflammatory properties of MSC-EVs and their impact on the intricate interplay between MSCs and various immune cells, including macrophages, dendritic cells, and T cells, are described. Moreover, recent advancements regarding the repair-promoting functions of MSC-EVs are detailed, highlighting the mechanisms underlying their ability to promote osteogenesis, cementogenesis, angiogenesis, and the homing of stem cells, thus contributing significantly to periodontal tissue regeneration. Furthermore, this review provides insights into the therapeutic efficacy of MSC-EVs in treating periodontitis within a clinical context. By summarizing the current knowledge, this review aims to provide a comprehensive understanding of how MSC-EVs can be harnessed for the treatment of periodontal diseases. Finally, a discussion is presented on the challenges that lie ahead and the potential practical implications for translating EV-based therapies into clinical practices for the treatment of periodontitis.
Collapse
Affiliation(s)
- Lin Jing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Hong-Yu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Ning Zhang
- Cadet Regiment, School of Basic Medical Sciences, Air Force Medical University, Xi’an 710032, People’s Republic of China
| | - Wen-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Yuzhe Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Dao-Kun Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Xuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Fa-Ming Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Xiao-Tao He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| |
Collapse
|
13
|
Li K, Gu X, Zhu Y, Guan N, Wang J, Wang L. Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomes Attenuates Experimental Periodontitis in Mice Partly by Delivering miRNAs. Int J Nanomedicine 2025; 20:2879-2899. [PMID: 40078652 PMCID: PMC11900796 DOI: 10.2147/ijn.s502192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Periodontitis is the most common non-communicable disease in humans. The main challenge in the treatment of periodontitis is to effectively control periodontal inflammation and promote tissue repair. Human umbilical cord mesenchymal stem cells-derived exosomes (hucMSCs-exo) have been reported to modulate inflammatory responses and promote tissue repairment mainly through miRNAs in several diseases. However, the effect of hucMSCs-exo on periodontitis remains unknown. In this study, we hypothesized that hucMSCs-exo could inhibit bone destruction in periodontitis mice. Methods In this study, we constructed and characterized the exo@H drug delivery platform. Lipopolysaccharide was used to construct an inflammatory microenvironment in vitro to detect MC3T3-E1 cells proliferation and bone regeneration capacity. Ligation induced to construct an experimental periodontitis mouse model. The distance of the cement-enamel junction (CEJ) to the alveolar bone crest (ABC) was measured for bone resorption evaluation. Hematoxylin-eosin (H&E) staining and Tartrate resistant acid phosphatase (TRAP) staining were used to observe periodontal tissue changes. MicroRNA (miRNA) sequencing was used to detect differential genes and for bioinformatics analysis. Real-time quantitative polymerase chain reaction (qRT-PCR). WB assay and dual luciferase assay were used to further validate the screened differentially expressed miRNAs and the targeted binding relationship with the corresponding target genes. Results We found that lyophilized hucMSCs-exo promoted the proliferation and osteogenic differentiation of MC3T3-E1 cells, and showed more significant proliferative and osteogenic differentiation abilities in combination with the hydrogel (P < 0.05). Using periodontitis mice, bone resorption evaluation revealed a significant reduction in alveolar bone resorption in the exo@H group compared to the hydrogel group (P < 0.01), and exo@H was able to reduce the inflammatory response of periodontal tissues and the number of osteoclasts on the surface of the alveolar bone compared to the hydrogel group. Moreover, 59 miRNAs were upregulated, such as let-7f-5p and miR-203-3p, which positively targeted IL-13 and Nit2, respectively. Discussion These results suggest that exo@H provides protection against periodontitis partly by delivering miRNAs to periodontal tissue. Our results confirm the feasibility of the exo@H delivery platform we constructed and the effectiveness of its use for periodontitis treatment, and this study provides a promising approach for the treatment of periodontitis via miRNA.
Collapse
Affiliation(s)
- Ke Li
- Department of Periodontics and Mucosa, The second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, People’s Republic of China
| | - Xiaoli Gu
- Department of Periodontics and Mucosa, The second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, People’s Republic of China
| | - Yanan Zhu
- Department of Periodontics and Mucosa, The second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, People’s Republic of China
| | - Ning Guan
- Key Laboratory of Brain and Spinal Cord Injury Research, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, People’s Republic of China
| | - Jinlei Wang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, 121000, People’s Republic of China
| | - Linyuan Wang
- Department of Periodontics and Mucosa, The second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, People’s Republic of China
| |
Collapse
|
14
|
Zhao Y, Hang R, Li H, Sun Y, Yao R, Huang X, Zhang X, Yao X, Wang H, Xiao Y, Huang D, Han Y, Wang X, Hang R. Biomaterial Surface-Mediated Macrophages Exert Immunomodulatory Roles by Exosomal CCL2-Induced Membrane Integrin β1 Trafficking in Recipient Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409809. [PMID: 39836488 PMCID: PMC11905086 DOI: 10.1002/advs.202409809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/29/2024] [Indexed: 01/23/2025]
Abstract
The interaction between biomaterials and immune system is a critical area of research, especially in tissue engineering and regenerative medicine. A fascinating and less explored aspect involves the immunomodulatory behaviors of macrophage (MΦ)-derived exosomes induced by biomaterial surfaces. Herein, untreated surface, nanostructured surface, and type I collagen (Col-I)-decorated nanostructured surface of titanium implants are chosen to culture MΦs, followed by extraction of MΦ-derived exosomes and investigation of their immunomodulatory functions and mechanisms. The results show that the exosomes in the untreated group carried plenty of inflammatory cytokines, predominantly C─C motif chemokine ligand 2 (CCL2). After targeting recipient cells, the CCL2 on the exosomes can specifically bind to its receptor C─C motif chemokine receptor 2, triggering downstream signaling pathways to induce internalization of membrane integrin β1 and targeted lysosomal degradation, consequently suppressing the functions of recipient cells. In contrast, the exosomes in the nanostructured group, especially Col-I-decorated nanostructured group carried few CCL2, moderating their inhibition on the functions of recipient cells. These findings not only clearly show that CCL2 is a key constituent of exosomes involved in the interaction between biomaterials and host immune system, but also potentially a key target for designing advanced biomaterials to promote tissue repair and regeneration.
Collapse
Affiliation(s)
- Yuyu Zhao
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Huifei Li
- School and Hospital of StomatologyShanxi Medical UniversityTaiyuan030001China
| | - Yonghua Sun
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Runhua Yao
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiaobo Huang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiangyu Zhang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Huaiyu Wang
- Center for Human Tissues and Organs DegenerationShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yin Xiao
- School of Medicine and DentistryGriffith UniversityGold CoastQLD4222Australia
| | - Di Huang
- Research Center for Nano‐Biomaterials & Regenerative MedicineDepartment of Biomedical EngineeringCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Yong Han
- State‐Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xing Wang
- School and Hospital of StomatologyShanxi Medical UniversityTaiyuan030001China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
- State‐Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
15
|
Luo S, Cai J, Yin F, Lu L, Liu Z, Wang Y, Fu X, Ding S, Kojima N, Ma M. M3-DPPE Liposomal Nanoparticles Encapsulating CLEC12A Enhance CD206-Mediated Endocytosis and Efficacy in the Collagen-Induced Arthritis Model. ACS APPLIED BIO MATERIALS 2025; 8:1002-1016. [PMID: 39794898 DOI: 10.1021/acsabm.4c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
OBJECTIVE This study aimed to investigate the efficacy of M3-DPPE liposomal nanoparticles encapsulated with mRNA encoding cytokines (M3-mRNAs) in targeting macrophages for the treatment of inflammation-induced joint injury. METHODS in vitro, M3-mRNAs were administered to peritoneal exudate macrophages (PEMs), and the uptake was assessed using flow cytometry. The mechanism of uptake was investigated by blocking the CLEC12A pathway with M3-SiCLEC12A and observing CD206-mediated endocytosis. In vivo, the distribution of Dir-labeled M3-drugs was monitored using IVIS imaging, and its accumulation in inflammatory and noninflammatory areas was evaluated. The therapeutic potential was evaluated in collagen-induced arthritis (CIA) model mice by assessing macrophage polarization, joint pathology, and cytokine expression. RESULTS in vitro studies demonstrated that M3-mRNAs were taken up significantly by PEMs via CD206-mediated endocytosis. In vivo imaging showed that Dir-labeled M3-drugs accumulated predominantly in inflammatory areas and subsequently in bone injury joints. Treatment with M3-drugs in collagen-induced arthritis model mice increased the population of F4/80+ and F4/80+/CD206+ M2 macrophages in inflamed joints, leading to reduced joint fibrosis and modulation of cytokine levels, including decreased pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and INF-γ) and increased anti-inflammatory cytokines (IL-10 and TGF-β). CONCLUSIONS M3-SiCLEC12A enhanced CD206-mediated endocytosis of M3-mRNAs and M3-drugs in macrophages, promoting the production of corresponding proteins and modulating the immune microenvironment. This treatment approach shows promise in repairing inflammation-induced bone and joint injury by balancing pro-inflammatory and anti-inflammatory cytokines. However, further research is required to address drug tolerance and safety concerns and minimize potential side effects before clinical application in autoimmune diseases caused by inflammation.
Collapse
Affiliation(s)
- Shulin Luo
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Junfeng Cai
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Laiya Lu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Zheng Liu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yunxia Wang
- Shanghai Novopathway Biotechnology Co. Ltd, Building No5, East Huaxia Road No.333, Pudong New Area, Shanghai 201203, China
| | - Xiaocong Fu
- Shanghai Novopathway Biotechnology Co. Ltd, Building No5, East Huaxia Road No.333, Pudong New Area, Shanghai 201203, China
| | - Shuangfeng Ding
- Shanghai Novopathway Biotechnology Co. Ltd, Building No5, East Huaxia Road No.333, Pudong New Area, Shanghai 201203, China
| | - Naoya Kojima
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Min Ma
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
16
|
Zhou J, Li H, Li S, Wang Y, Wang H, Li J, Hu Y, Song J, Yang J, Luo Y. Convertible Hydrogel Injection Sequentially Regulates Diabetic Periodontitis. ACS Biomater Sci Eng 2025; 11:916-929. [PMID: 39792458 DOI: 10.1021/acsbiomaterials.4c01784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Diabetes exacerbates periodontitis by overexpressing reactive oxygen species (ROS), which leads to periodontal bone resorption. Consequently, it is imperative to relieve inflammation and promote alveolar bone regeneration comprehensively for the development of diabetic periodontal treatment strategies. Furthermore, an orderly treatment to avoid interference between these two processes can achieve the optimal therapeutic effect. Thus, we constructed a sequential sustained release system based on the zeolitic imidazolate framework-8 (ZIF-8)-modified chitosan thermosensitive hydrogel (TOOTH) for diabetic periodontal therapy in this work. Chemically modified tetracycline-3 (CMT-3) and platelet-derived growth factor-BB (PDGF-BB) were loaded in the hydrogel and ZIF-8 for sequential release, respectively, with the aim of reducing inflammation and facilitating tissue regeneration. During the therapy, CMT-3 first escaped from the hydrogel due to degradation and diffusion for ROS elimination. Subsequently, ZIF-8 was dissociated under an acid microenvironment, and PDGF-BB was sustainably released to promote osteogenesis. The release intervals between CMT-3 and PDGF-BB could be regulated by the sizes of ZIF-8. The biocompatible TOOTH exhibited a favorable therapeutic effect for diabetic periodontitis in vitro and in vivo. The sequentially controlled release of CMT-3 and PDGF-BB facilitated by TOOTH holds promise for promoting periodontal tissue regeneration and offers potential for clinical translation.
Collapse
Affiliation(s)
- Jinmin Zhou
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Houxuan Li
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Shuhong Li
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Yuhan Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, China
| | - He Wang
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Jie Li
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Yiyao Hu
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Jinlin Song
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yang Luo
- Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan 650050, China
| |
Collapse
|
17
|
Ricci R, de Moura Pereira B, Alvarado JDA, de Oliveira Sales-Junior R, da Silva Machado NE, Dos Santos DC, Pederro FHM, Magnani M, Lima MDS, Ervolino E, Cintra LTÂ, Kishen A, Gomes-Filho JE. Impact of Wine Polyphenols on the Inflammatory Profile of Induced Apical Periodontitis in Rats. J Endod 2025:S0099-2399(25)00065-2. [PMID: 39929437 DOI: 10.1016/j.joen.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION This study evaluated the impact of dealcoholized red wine polyphenols on the inflammation and lesion volume associated with apical periodontitis (AP) in rats. METHODS Thirty-two Wistar rats receiving AP induction were arranged as follows: Control Group, Dealcoholized Red Wine Group (DRW), Red Wine Group, and Alcohol Group (ALC). Solutions were administered daily in a volume of 4.28 mL/kg via gavage for 45 days. Mandibles and maxillae were removed for histologic, immunohistochemical (IL-1β, IL-10, tumor necrosis factor-alpha, receptor activator of nuclear factor κB ligand, osteoprotegerin [OPG], and tartrate-resistant acid phosphatase), and micro-computed tomography analyses of the AP site. A statistical analysis was performed with a significance level of 5%. RESULTS Inflammation and TRAP-positive cell count were similar for DRW and Red Wine Group, but lower when compared to Control Group and ALC (P < .001). The immunohistochemical expression of OPG was higher for DRW than for ALC (P < .05). A larger lesion volume was observed in ALC compared to other groups (P < .001). CONCLUSIONS Prophylactic administration of dealcoholized red wine significantly reduced inflammation, decreased the number of TRAP-positive cells, enhanced OPG expression, and reduced lesion volume compared to water and alcohol solutions.
Collapse
Affiliation(s)
- Rafaela Ricci
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo, Brazil
| | - Bharbara de Moura Pereira
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo, Brazil
| | - Julissa Denisse Arguello Alvarado
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo, Brazil
| | - Romulo de Oliveira Sales-Junior
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo, Brazil
| | - Nathália Evelyn da Silva Machado
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo, Brazil
| | - Doany Cevada Dos Santos
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo, Brazil
| | - Felipe Haddad Martim Pederro
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo, Brazil
| | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernanbucano, Petrolina, Pernanbuco, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo, Brazil
| | - Luciano Tavares Ângelo Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo, Brazil
| | - Anil Kishen
- Department of Dentistry, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - João Eduardo Gomes-Filho
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo, Brazil.
| |
Collapse
|
18
|
Wang Q, Sun J, Jiang H, Yu M. Emerging roles of extracellular vesicles in oral and maxillofacial areas. Int J Oral Sci 2025; 17:11. [PMID: 39900916 PMCID: PMC11791077 DOI: 10.1038/s41368-024-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
The oral and maxillofacial region is a highly complex area composed of multiple tissue types and bears various critical functions of the human body. Diseases in this region pose significant diagnostic and management challenges; therefore, exploring new strategies for early diagnosis, targeted treatment, and tissue reconstruction is key to improving patient prognosis and quality of life. Extracellular vesicles are a group of heterogeneous lipid-bilayer membrane structures secreted by most cell types, including exosomes, microvesicles, and apoptotic bodies. Present in various body fluids and tissues, they act as messengers via the transfer of nucleic acids, proteins, and metabolites to recipient cells. To date, studies have revealed the different roles of extracellular vesicles in physiological or pathological processes, as well as applications in disease diagnosis, prognosis, and treatment. The importance and tissue specificity of the dental and maxillofacial tissues indicate that extracellular vesicles derived from this region are promising for further research. This paper reviews the published data on extracellular vesicles derived from cells, body fluids, and tissues in oral and maxillofacial regions, summarizes the latest advances in extracellular vesicles from extensive sources, and concludes with a focus on the current research progress and application prospects of engineered exosomes in oral science.
Collapse
Affiliation(s)
- Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jiayu Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Haci Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Dong Y, Hu Y, Hu X, Wang L, Shen X, Tian H, Li M, Luo Z, Cai C. Synthetic nanointerfacial bioengineering of Ti implants: on-demand regulation of implant-bone interactions for enhancing osseointegration. MATERIALS HORIZONS 2025; 12:694-718. [PMID: 39480512 DOI: 10.1039/d4mh01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium and its alloys are the most commonly used biometals for developing orthopedic implants to treat various forms of bone fractures and defects, but their clinical performance is still challenged by the unfavorable mechanical and biological interactions at the implant-tissue interface, which substantially impede bone healing at the defects and reduce the quality of regenerated bones. Moreover, the impaired osteogenesis capacity of patients under certain pathological conditions such as diabetes and osteoporosis may further impair the osseointegration of Ti-based implants and increase the risk of treatment failure. To address these issues, various modification strategies have been developed to regulate the implant-bone interactions for improving bone growth and remodeling in situ. In this review, we provide a comprehensive analysis on the state-of-the-art synthetic nanointerfacial bioengineering strategies for designing Ti-based biofunctional orthopedic implants, with special emphasis on the contributions to (1) promotion of new bone formation and binding at the implant-bone interface, (2) bacterial elimination for preventing peri-implant infection and (3) overcoming osseointegration resistance induced by degenerative bone diseases. Furthermore, a perspective is included to discuss the challenges and potential opportunities for the interfacial engineering of Ti implants in a translational perspective. Overall, it is envisioned that the insights in this review may guide future research in the area of biometallic orthopedic implants for improving bone repair with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lingshuang Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Hao Tian
- Kairui Stomatological Hospital, Chengdu 610211, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Chunyuan Cai
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| |
Collapse
|
20
|
Cheng Y, Dong X, Shi J, Wu G, Tao P, Ren N, Zhao Y, Li F, Wang Z. Immunomodulation with M2 macrophage-derived extracellular vesicles for enhanced titanium implant osseointegration under diabetic conditions. Mater Today Bio 2025; 30:101385. [PMID: 39742145 PMCID: PMC11683253 DOI: 10.1016/j.mtbio.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
M2 macrophage-derived extracellular vesicles (M2-EVs) demonstrate the capacity to reduce pro-inflammatory M1 macrophage formation, thereby restoring the M1-M2 macrophage balance and promoting immunoregulation. However, the efficacy of M2-EVs in regulating macrophage polarization and subsequently enhancing osseointegration around titanium (Ti) implants in patients with diabetes mellitus (DM) remains to be elucidated. In this study, Ti implants were coated with polydopamine to facilitate M2-EVs adherence. In vitro experiment results demonstrated that M2-EVs could carry miR-23a-3p, inhibiting NOD-like receptor protein3(NLRP3) inflammasome activation in M1 macrophage and reducing the levels of inflammatory cytokines such as IL-1β by targeting NEK7. This improved the M1-M2 macrophage balance and enhanced mineralization on the Ti implant surfaces. The in vivo experiment results demonstrated that in diabetic conditions, the nanocoated M2-EVs significantly promoted high-quality bone deposition around the Ti implants. The current results provide a novel perspective for simple and effective decoration of M2-EVs on Ti implants; clinically, the method may afford osteoimmunomodulatory effects enhancing implant osseointegration in patients with DM.
Collapse
Affiliation(s)
- Yuzhao Cheng
- The Stomatology Department of Shanxi Provincial People Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| | - Xin Dong
- Department of Orthopedic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Jing Shi
- The Stomatology Department of Shanxi Provincial People Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guangsheng Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
- Department of Stomatology, Qingdao Special Servicemen Recuperation Center of PLA Navy, No.18 Yueyang Road, Qingdao, 266071, China
| | - Pei Tao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
- College of Chemistry and Bio-engineering, Yichun University, Yichun, Jiangxi, 336000, China
| | - Nan Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| | - Yimin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| | - Fenglan Li
- The Stomatology Department of Shanxi Provincial People Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zhongshan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| |
Collapse
|
21
|
Yu B, Qiao Y, Sun X, Yin Y. KAT3B-mediated succinylation of DERL3 suppresses osteogenic differentiation by promoting M1/M2 macrophage polarization. Biochem Pharmacol 2025; 232:116724. [PMID: 39716643 DOI: 10.1016/j.bcp.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Periodontitis is a chronic inflammatory disease influenced by macrophage polarization. Additionally, succinylation-enriched Porphyromonas gingivalis is a pathogenic factor of periodontitis. However, the role of succinylation in the pathogenesis of periodontitis remains unclear. This study aimed to investigate the effects of a succinyltransferase KAT3B on macrophage polarization, osteogenic differentiation, and the molecular mechanism. Macrophages RAW264.7 were cocultured with MC3T3-E1-differentiated osteoblasts, and macrophage polarization and osteogenic differentiation were evaluated. iTRAQ-based proteomic analysis identified that DERL3 was highly expressed in lipopolysaccharide (LPS)-treated MC3T3-E1 cells. The TLR4/MyD88 pathway is closely related to inflammatory response. Thus, the succinylation of DERL3 and the TLR4/MyD88 pathway were assessed using immunoblotting. The results showed that KAT3B-mediated succinylation was increased in LPS-treated MC3T3-E1 cells and patients with periodontitis. Knockdown of KAT3B inhibited macrophage M1-like polarization and promoted M2-like polarization, thereby promoting osteogenic differentiation in LPS-treated osteoblasts. Mechanically, overexpression of KAT3B promoted the succinylation of DERL3 and stabilized this protein, thereby upregulating DERL3 expression. Rescue experiments showed that DERL3 reversed the promotion of osteogenic differentiation and M2/M1 macrophage polarization caused by KAT3B knockdown. Moreover, DERL3 activated the TLR4/MyD88 pathway, and inhibition of this pathway reversed macrophage polarization and osteogenesis mediated by DERL3. In vivo experiments showed that KAT3B knockdown attenuated experimental periodontitis in rats. In conclusion, silencing of KAT3B promotes osteogenic differentiation by inducing M2/M1 macrophage polarization through the succinylation DERL3, which regulates the TLR4/MyD88 pathway, thereby attenuating periodontitis. These findings suggest that KAT3B may be a promising therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Bohan Yu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| | - Yanan Qiao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Xi Sun
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Yue Yin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| |
Collapse
|
22
|
Sun Y, Zhang W, Luo Z, Zhu C, Zhang Y, Shu Z, Shen C, Yao X, Wang Y, Wang X. ZnO‐CuS/F127 Hydrogels with Multienzyme Properties for Implant‐Related Infection Therapy by Inhibiting Bacterial Arginine Biosynthesis and Promoting Tissue Repair. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202415778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Indexed: 02/08/2025]
Abstract
AbstractImplant‐related infections are characterized by the formation of bacterial biofilms. Current treatments have various drawbacks. Nanozymes with enzyme‐like activity can produce highly toxic substances to kill bacteria and remove biofilms without inducing drug resistance. However, it is difficult for current monometallic nanozymes to function well in complex biofilm environments. Therefore, the development of multimetallic nanozymes with efficient multienzyme activities is crucial. In the present study, bimetallic nanozyme, ZnO‐CuS nanoflowers with peroxidase (POD), glutathione oxidase (GSH‐Px), and catalase (CAT) activity are successfully synthesized via calcination and loaded into F127 hydrogels for the treatment of implant‐related infections. The ability of ZnO‐CuS nanoflowers to bind bacteria is key for efficient antimicrobial activity. In addition, ZnO‐CuS nanoflowers with H2O2 disrupt the metabolism of MRSA, including arginine synthesis, nucleotide excision repair, energy metabolism, and protein synthesis. ZnO‐CuS/F127 hydrogel in combination with H2O2 has been demonstrated to be effective in clearing biofilm infection and facilitating the switch of M1 macrophages to M2‐repairative phenotype macrophages for the treatment of implant infections in mice. Furthermore, ZnO‐CuS/F127 hydrogels have favorable biosafety, and their toxicity is negligible. ZnO‐CuS/F127 hydrogel has provided a promising biomedical strategy for the healing of implant‐related infections, highlighting the potential of bimetallic nanozymes for clinical applications.
Collapse
Affiliation(s)
- Yiwei Sun
- College and Hospital of Stomatology Key Lab. of Oral Diseases Research of Anhui Province Anhui Medical University Hefei 230032 P. R. China
- Department of Orthopedics The First Affiliated Hospital of Anhui Medical University Anhui Medical University Hefei 230022 P. R. China
| | - Wei Zhang
- School of Biomedical Engineering Research and Engineering Center of Biomedical Materials Anhui Medical University Hefei 230032 China
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 P. R. China
| | - Can Zhu
- School of Biomedical Engineering Research and Engineering Center of Biomedical Materials Anhui Medical University Hefei 230032 China
| | - Yiqun Zhang
- Department of Orthopedics The First Affiliated Hospital of Anhui Medical University Anhui Medical University Hefei 230022 P. R. China
| | - Zheng Shu
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Taipa Macau 999078 China
| | - Cailiang Shen
- Department of Orthopedics The First Affiliated Hospital of Anhui Medical University Anhui Medical University Hefei 230022 P. R. China
| | - Xiaxi Yao
- School of Chemistry and Materials Engineering Suzhou Key Laboratory of Functional Ceramic Materials Changshu Institute of Technology Changshu 215500 P. R. China
| | - Yuanyin Wang
- College and Hospital of Stomatology Key Lab. of Oral Diseases Research of Anhui Province Anhui Medical University Hefei 230032 P. R. China
- Department of Orthopedics The First Affiliated Hospital of Anhui Medical University Anhui Medical University Hefei 230022 P. R. China
| | - Xianwen Wang
- College and Hospital of Stomatology Key Lab. of Oral Diseases Research of Anhui Province Anhui Medical University Hefei 230032 P. R. China
- School of Biomedical Engineering Research and Engineering Center of Biomedical Materials Anhui Medical University Hefei 230032 China
| |
Collapse
|
23
|
Li R, Li W, Teng Y, Li R, Kong S, Chen X, Luo H, Chen D, Guo Y, Qing Y, Leong HC, Guo B, Chen M, Pan Z, Zheng S, Deng Y, Cao Y, Zhou C, Zou X, Wang W. Ameliorating macrophage pyroptosis via ANXA1/NLRP3/Caspase-1/GSDMD pathway: Ac2-26/OGP-loaded intelligent hydrogel enhances bone healing in diabetic periodontitis. Biofabrication 2025; 17:025001. [PMID: 39773706 DOI: 10.1088/1758-5090/ada737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Craniofacial bone defect healing in periodontitis patients with diabetes background has long been difficult due to increased blood glucose levels which cause overproduction of reactive oxygen species (ROS) and a low pH environment. These conditions negatively affect the function of macrophages, worsen inflammation and oxidative stress, and ultimately, hinder osteoblasts' bone repair potential. In this study, we for the first time found that annexin A1 (ANXA1) expression in macrophages was reduced in a diabetic periodontitis (DP) environment, with the activation of the NLRP3/Caspase-1/GSDMD signaling pathway, and, eventually, increased macrophage pyroptosis. Next, we have developed a new GPPG intelligent hydrogel system which was ROS and pH responsive, and loaded with Ac2-26, an ANXA1 bioactive peptide, and osteogenic peptide OGP as well. We found that Ac2-26/OGP/GPPG can effectively reduce ROS, mitigates macrophage pyroptosis via the ANXA1/NLRP3/Caspase-1/GSDMD pathway and enhanced osteogenic differentiation. The effect of Ac2-26/OGP/GPPG in regulation of pyroptosis and bone defect repair was also further validated by animal experiments on periodontitis-induced tooth loss model in diabetic rats. To conclude, our study unveils the effect of ANXA1 on macrophage pyroptosis in periodontitis patients with diabetes, based on which we introduced a promising innovative hydrogel system for improvement of bone defects repair in DP patients via targeting macrophage pyroptosis and enhancing osteogenic potential.
Collapse
Affiliation(s)
- Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenfeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yungshan Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Siyi Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xin Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuqing Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yangqiao Qing
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hio Cheng Leong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bingyan Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meihan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zixin Pan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shushuo Zheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yihong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Lin F, Luo H, Wang J, Li Q, Zha L. Macrophage-derived extracellular vesicles as new players in chronic non-communicable diseases. Front Immunol 2025; 15:1479330. [PMID: 39896803 PMCID: PMC11782043 DOI: 10.3389/fimmu.2024.1479330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Macrophages are innate immune cells present in all tissues and play an important role in almost all aspects of the biology of living organisms. Extracellular vesicles (EVs) are released by cells and transport their contents (micro RNAs, mRNA, proteins, and long noncoding RNAs) to nearby or distant cells for cell-to-cell communication. Numerous studies have shown that macrophage-derived extracellular vesicles (M-EVs) and their contents play an important role in a variety of diseases and show great potential as biomarkers, therapeutics, and drug delivery vehicles for diseases. This article reviews the biological functions and mechanisms of M-EVs and their contents in chronic non-communicable diseases such as cardiovascular diseases, metabolic diseases, cancer, inflammatory diseases and bone-related diseases. In addition, the potential application of M-EVs as drug delivery systems for various diseases have been summarized.
Collapse
Affiliation(s)
- Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Zhou X, Chen S, Pich A, He C. Advanced Bioresponsive Drug Delivery Systems for Promoting Diabetic Vascularized Bone Regeneration. ACS Biomater Sci Eng 2025; 11:182-207. [PMID: 39666445 DOI: 10.1021/acsbiomaterials.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The treatment of bone defects in diabetes mellitus (DM) patients remains a major challenge since the diabetic microenvironments significantly impede bone regeneration. Many abnormal factors including hyperglycemia, elevated oxidative stress, increased inflammation, imbalanced osteoimmune, and impaired vascular system in the diabetic microenvironment will result in a high rate of impaired, delayed, or even nonhealing events of bone tissue. Stimuli-responsive biomaterials that can respond to endogenous biochemical signals have emerged as effective therapeutic systems to treat diabetic bone defects via the combination of microenvironmental regulation and enhanced osteogenic capacity. Following the natural bone healing processes, coupling of angiogenesis and osteogenesis by advanced bioresponsive drug delivery systems has proved to be of significant approach for promoting bone repair in DM. In this Review, we have systematically summarized the mechanisms and therapeutic strategies of DM-induced impaired bone healing, outlined the bioresponsive design for drug delivery systems, and highlighted the vascularization strategies for promoting bone regeneration. Accordingly, we then overview the recent advances in developing bioresponsive drug delivery systems to facilitate diabetic vascularized bone regeneration by remodeling the microenvironment and modulating multiple regenerative cues. Furthermore, we discuss the development of adaptable drug delivery systems with unique features for guiding DM-associated bone regeneration in the future.
Collapse
Affiliation(s)
- Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Institute for Technical and Macromolecular Chemistry, Functional and Interactive Polymers, RWTH Aachen University, Aachen 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Andrij Pich
- Institute for Technical and Macromolecular Chemistry, Functional and Interactive Polymers, RWTH Aachen University, Aachen 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
26
|
Chen J, Wang Z, Yi M, Yang Y, Tian M, Liu Y, Wang G, Shen H. Regenerative properties of bone marrow mesenchymal stem cell derived exosomes in rotator cuff tears. J Transl Med 2025; 23:47. [PMID: 39800717 PMCID: PMC11727793 DOI: 10.1186/s12967-024-06029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
ABSTRCT Rotator cuff injury (RCI), characterized by shoulder pain and restricted mobility, represents a subset of tendon-bone insertion injuries (TBI). In the majority of cases, surgical reconstruction of the affected tendons or ligaments is required to address the damage. However, numerous clinical failures have underscored the suboptimal outcomes associated with such procedures. Further investigations have revealed that these failures are largely attributable to delayed healing at the tendon-bone interface, excessive formation of vascularized scar tissue, and inadequate integration of tendon grafts within bone tunnels. As a result, the healing process of rotator cuff injuries faces significant challenges.Bone marrow-derived mesenchymal stem cell exosomes (BMSC-exos) have emerged as a prominent focus of research within the field of bioengineering, owing to their remarkable potential to regulate cellular proliferation and differentiation, modulate immune responses, and facilitate tissue repair and regeneration following cellular damage. In this review, we explore the anti-inflammatory, angiogenic, anti-scarring, and bone metabolism-modulating effects of BMSC-exos in the context of rotator cuff injury. Additionally, we address the limitations and ongoing challenges within current research, offering insights that could guide the clinical application of BMSC-exos in the treatment of rotator cuff injuries in the future.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zihe Wang
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yi
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Yang
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mengzhao Tian
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yinqi Liu
- School of Materials and Energy, Southwest University, Southwest University Hospital, Chongqing, China.
| | - Guoyou Wang
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| | - Huarui Shen
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
27
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
28
|
Chen S, Liu J, Zhu L. M2-like macrophage-derived exosomes inhibit osteoclastogenesis via releasing miR-1227-5p. Immunobiology 2025; 230:152861. [PMID: 39700638 DOI: 10.1016/j.imbio.2024.152861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Macrophages play a pivotal role in regulating inflammatory response in periodontitis, a condition characterized by excessive osteoclast differentiation. This study aimed to investigate whether exosomes derived from M2 macrophages regulate osteoclast differentiation and to identify the underlying molecular mechanisms. Exosomes were isolated from M2 macrophages and used to treat osteoclasts. Osteoclastogenesis was assessed using tartrate-resistant acid phosphatase staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The molecular mechanism was evaluated using microarray analysis, RT-qPCR, dual-luciferase reporter analysis, and RNA pull-down assay. The results showed that exosomes from M2 macrophages inhibited receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclast differentiation. Additionally, miR-1227-5p expression in osteoclasts was increased after treatment with exosomes, and inhibition of miR-1227-5p counteracted the suppressive effects of exosomes on osteoclastogenesis. Moreover, OSCAR is a target of miR-1227-5p. In conclusion, exosomal miR-1227-5p suppresses osteoclast differentiation, potentially via targeting OSCAR. These findings provide new insights into the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Shan Chen
- Department of Periodontology, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410004, China
| | - Jian Liu
- Department of Periodontology, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410004, China
| | - Lilei Zhu
- Department of Periodontology, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410004, China.
| |
Collapse
|
29
|
Tessier S, Halgand B, Aubeux D, Véziers J, Galvani A, Jamoneau J, Pérez F, Geoffroy V, Gaudin A. Small Extracellular Vesicles Derived from Lipopolysaccharide-Treated Stem Cells from the Apical Papilla Modulate Macrophage Phenotypes and Inflammatory Interactions in Pulpal and Periodontal Tissues. Int J Mol Sci 2024; 26:297. [PMID: 39796155 PMCID: PMC11719611 DOI: 10.3390/ijms26010297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing. LPS-SCAP-sEVs exhibited characteristic exosome morphology (~100 nm diameter) and expressed vesicular markers (CD9, CD63, CD81, and HSP70). Functional analysis revealed that LPS-SCAP-sEVs promoted M1 macrophage polarization, as evidenced by the increased pro-inflammatory cytokines (IL-6 and IL-1β) and the reduced anti-inflammatory markers (IL-10 and CD206), while impairing the M2 phenotype. Additionally, LPS-SCAP-sEVs had a minimal impact on SCAP metabolic activity or osteogenic gene expression but significantly reduced mineralization capacity in osteogenic conditions. These findings suggest that sEVs mediate the inflammatory interplay between SCAP and macrophages, skewing macrophage polarization toward a pro-inflammatory state and hindering osteoblast differentiation. Understanding this sEV-driven communication axis provides novel insights into the cellular mechanisms underlying inflammation in oral tissues and highlights potential therapeutic targets for modulating extracellular vesicle activity during acute inflammatory episodes.
Collapse
Affiliation(s)
- Solène Tessier
- Nantes Université, Oniris, Univ Angers, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (S.T.); (D.A.); (A.G.); (J.J.); (V.G.)
| | - Boris Halgand
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (B.H.); (J.V.); (F.P.)
| | - Davy Aubeux
- Nantes Université, Oniris, Univ Angers, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (S.T.); (D.A.); (A.G.); (J.J.); (V.G.)
| | - Joëlle Véziers
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (B.H.); (J.V.); (F.P.)
| | - Angélique Galvani
- Nantes Université, Oniris, Univ Angers, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (S.T.); (D.A.); (A.G.); (J.J.); (V.G.)
| | - Juliette Jamoneau
- Nantes Université, Oniris, Univ Angers, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (S.T.); (D.A.); (A.G.); (J.J.); (V.G.)
| | - Fabienne Pérez
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (B.H.); (J.V.); (F.P.)
| | - Valérie Geoffroy
- Nantes Université, Oniris, Univ Angers, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (S.T.); (D.A.); (A.G.); (J.J.); (V.G.)
| | - Alexis Gaudin
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France; (B.H.); (J.V.); (F.P.)
| |
Collapse
|
30
|
Jeon HH, Huang X, Rojas Cortez L, Sripinun P, Lee JM, Hong JJ, Graves DT. Inflammation and mechanical force-induced bone remodeling. Periodontol 2000 2024. [PMID: 39740162 DOI: 10.1111/prd.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 01/02/2025]
Abstract
Periodontitis arises from imbalanced host-microbe interactions, leading to dysbiosis and destructive inflammation. The host's innate and adaptive immune responses produce pro-inflammatory mediators that stimulate destructive events, which cause loss of alveolar bone and connective tissue attachment. There is no consensus on the factors that lead to a conversion from gingivitis to periodontitis, but one possibility is the proximity of the inflammation to the bone, which promotes bone resorption and inhibits subsequent bone formation during coupled bone formation. Conversely, orthodontic tooth movement is triggered by the mechanical force applied to the tooth, resulting in bone resorption on the compression side and new bone formation on the tension side. However, the environment around orthodontic brackets readily retains dental plaque and may contribute to inflammation and bone remodeling. The immune, epithelial, stromal, endothelial and bone cells of the host play an important role in setting the stage for bone remodeling that occurs in both periodontitis and orthodontic tooth movement. Recent advancements in single-cell RNA sequencing have provided new insights into the roles and interactions of different cell types in response to challenges. In this review, we meticulously examine the functions of key cell types such as keratinocytes, leukocytes, stromal cells, osteocytes, osteoblasts, and osteoclasts involved in inflammation- and mechanical force-driven bone remodeling. Moreover, we explore the combined effects of these two conditions: mechanical force-induced bone remodeling combined with periodontal disease (chronic inflammation) and periodontally accelerated osteogenic orthodontics (acute transient inflammation). This comprehensive review enhances our understanding of inflammation- and mechanical force-induced bone remodeling.
Collapse
Affiliation(s)
- Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leticia Rojas Cortez
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Puttipong Sripinun
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Jung-Me Lee
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Julie J Hong
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Wang W, Wang Q, Li W, Xu H, Liang X, Wang W, Li N, Yang H, Xu Y, Bai J, Yang S, Geng D. Targeting APJ drives BNIP3-PINK1-PARKIN induced mitophagy and improves systemic inflammatory bone loss. J Adv Res 2024:S2090-1232(24)00611-8. [PMID: 39725007 DOI: 10.1016/j.jare.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Inflammatory diseases, such as diabetes mellitus, rheumatoid arthritis, and inflammatory bowel disease, lead to systemic immune microenvironment disturbances, contributing to bone loss, yet the mechanisms by which specific receptors regulate this process in inflammatory bone loss remain poorly understood. As a G-protein-coupled receptor, the Apelin receptor plays a crucial role in the regulation of inflammation and immune microenvironment. However, the precise mechanisms governing its role in inflammatory bone loss remain incompletely understood. OBJECTIVE This study aims to investigate how APJ regulates macrophage polarization to mitigate inflammatory bone loss. METHODS Lipopolysaccharide induced systemic inflammatory bone loss model in mice was used to explore the relationship between bone loss and osteoclast activation, macrophage polarization and APJ. In vitro studies, Bone marrow derived macrophages and siRNA were used to elucidate the regulatory influence of APJ on the immune microenvironment and osteoclast differentiation, while high-throughput sequencing is leveraged to uncover the underlying mechanisms through which APJ modulates macrophage polarization. RESULTS Our study established a link between APJ and macrophage M1 polarization in systemic inflammatory bone loss mice. The activation of APJ effectively mitigated M1 polarization in macrophages, suppressed excessive osteoclast activation, and alleviated systemic inflammatory bone loss. In vitro high-throughput sequencing analysis revealed that APJ modulates macrophage polarization, linking to mitochondrial autophagy and the NOD-like receptor signaling pathway and the involvement of the AMPK and MAPK signaling pathways in signal transduction after APJ activation was also suggested. Subsequent experiments substantiated that APJ predominantly enhances mitophagy and diminishes the accumulation of reactive oxygen species by regulating the AMPK/BNIP3/PINK1/PARKIN axis, thereby suppressing the activation of macrophage M1 polarization and osteoclastogenesis. CONCLUSION This study elucidated the underlying mechanism by which APJ modulates macrophage polarization, thereby proposing a new therapeutic target for addressing inflammatory bone loss.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Qing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Hao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Xiaolong Liang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Wei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Shuli Yang
- College of Clinical Medicine, Suzhou Vocational Health College, 215009, No.28 Kehua Road, Suzhou city, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
32
|
Wang J, Liu C, Cutler J, Ivanovski S, Lee RSB, Han P. Microbial- and host immune cell-derived extracellular vesicles in the pathogenesis and therapy of periodontitis: A narrative review. J Periodontal Res 2024; 59:1115-1129. [PMID: 38758729 PMCID: PMC11626692 DOI: 10.1111/jre.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
Periodontitis is a chronic inflammatory disease caused by dysbiotic biofilms and destructive host immune responses. Extracellular vesicles (EVs) are circulating nanoparticles released by microbes and host cells involved in cell-to-cell communication, found in body biofluids, such as saliva and gingival crevicular fluid (GCF). EVs are mainly involved in cell-to-cell communication, and may hold promise for diagnostic and therapeutic purposes. Periodontal research has examined the potential involvement of bacterial- and host-cell-derived EVs in disease pathogenesis, diagnosis, and therapy, but data remains scarce on immune cell- or microbial-derived EVs. In this narrative review, we first provide an overview of the role of microbial and host-derived EVs on disease pathogenesis. Recent studies reveal that Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans-derived outer membrane vesicles (OMVs) can activate inflammatory cytokine release in host cells, while M1 macrophage EVs may contribute to bone loss. Additionally, we summarised current in vitro and pre-clinical research on the utilisation of immune cell and microbial-derived EVs as potential therapeutic tools in the context of periodontal treatment. Studies indicate that EVs from M2 macrophages and dendritic cells promote bone regeneration in animal models. While bacterial EVs remain underexplored for periodontal therapy, preliminary research suggests that P. gingivalis OMVs hold promise as vaccine candidates. Finally, we acknowledge the current limitations present in the field of translating immune cell derived EVs and microbial derived EVs in periodontology. It is concluded that microbial and host immune cell-derived EVs have a role in periodontitis pathogenesis and hence may be useful for studying disease pathophysiology, and as diagnostic and treatment monitoring biomarkers.
Collapse
Affiliation(s)
- Jenny Wang
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
| | - Chun Liu
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Jason Cutler
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sašo Ivanovski
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ryan SB Lee
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Pingping Han
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
33
|
Zhao Y, Chen J, Kong L, Zhang Q, Zhu Q. The Immune Regulatory Mechanism of Adrenomedullin on Promoting the Proliferation and Differentiation of Dental Pulp Stem Cells. Int Dent J 2024; 74:1386-1396. [PMID: 38806333 PMCID: PMC11551551 DOI: 10.1016/j.identj.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE This research seeks to analyse the immunomodulatory impacts of adrenomedullin (ADM) on macrophages induced by bacterial lipopolysaccharide and to investigate the influence of macrophage-conditioned media from various stimulating factors on the biological activity of dental pulp stem cells (DPSCs) in vitro. METHODS The polarisation effect of ADM on macrophages was analysed through cell immunofluorescence staining and flow cytometry. Potential mechanisms were explored through transcriptomics and metabolomics. The impact of different macrophage-conditioned media on the biological activity of DPSCs was evaluated through western blotting, Realtime fluorescence quantitative, alkaline phosphatase activity assay, and eosin red staining. Each experiment was performed with 3 biological and 3 technical duplicate measurements. Statistical analysis was performed with t test and one-way ANOVA, and mathematical significance defined as P < .05. RESULTS ADM can reverse polarisation of macrophages towards M2 phenotype by Lipopolysaccharide and the conditioned media of ADM-induced M2 polarised macrophages significantly enhances the proliferation and differentiation of DPSCs. The mechanism may involve the metabolic reprogramming of macrophages by ADM, specifically promoting the metabolic shift from glycolysis to mitochondrial oxidative phosphorylation in Lipopolysaccharide-induced macrophages. CONCLUSION These results indicate that ADM is involved in suppressing inflammation and enhancing the proliferation and differentiation of DPSCs by reprogramming macrophage metabolism.
Collapse
Affiliation(s)
- Yangpeng Zhao
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Jianan Chen
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Qian Zhang
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Qiang Zhu
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China.
| |
Collapse
|
34
|
Xin Z, Xu R, Dong Y, Jin S, Ge X, Shen X, Guo S, Fu Y, Zhang P, Jiang H. Impaired autophagy-mediated macrophage polarization contributes to age-related hyposalivation. Cell Prolif 2024; 57:e13714. [PMID: 39004782 PMCID: PMC11628751 DOI: 10.1111/cpr.13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Age-related dysfunction of salivary glands (SGs) leading to xerostomia or dry mouth is typically associated with increased dental caries and difficulties in mastication, deglutition or speech. Inflammaging-induced hyposalivation plays a significant role in aged SGs; however, the mechanisms by which ageing shapes the inflammatory microenvironment of SGs remain unclear. Here, we show that reduced salivary secretion flow rate in aged human and mice SGs is associated with impaired autophagy and increased M1 polarization of macrophages. Our study reveals the crucial roles of SIRT6 in regulating macrophage autophagy and polarization through the PI3K/AKT/mTOR pathway, as demonstrated by generating two conditional knock out mice. Furthermore, triptolide (TP) effectively rejuvenates macrophage autophagy and polarization via targeting this pathway. We also design a local delivery of TP-loaded apoptotic extracellular vesicles (ApoEVs) to improve age-related SGs dysfunction therapeutically. Collectively, our findings uncover a previously unknown link between SIRT6-regulated autophagy and macrophage polarization in age-mediated hyposalivation, while our locally therapeutic strategy exhibits potential preventive effects for age-related hyposalivation.
Collapse
Affiliation(s)
- Zhili Xin
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Yangjiele Dong
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Shenghao Jin
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Xiao Ge
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Xin Shen
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Songsong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Yu Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
35
|
Liu Q, Ma T, Zhang Z, Nan J, Liu G, Yang Y, Hu Y, Xie J. Fused extracellular vesicles from M 2 macrophages and human umbilical cord mesenchymal stem cells for the targeted regulation of macrophage pyroptosis in periprosthetic osteolysis. J Extracell Vesicles 2024; 13:e70028. [PMID: 39711510 DOI: 10.1002/jev2.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/24/2024] Open
Abstract
The development of strategies for the prevention and treatment of aseptic loosening of prostheses stands as a critical area of global research interest. The pyroptosis of local macrophages triggered by wear particles plays a pivotal role in the onset of periprosthetic osteolysis and subsequent loosening. Extracellular vesicles, carrying the surface components and regulatory molecules of their parent cells, embody the cellular characteristics and biological functions of these progenitors. In a pioneering approach to precisely inhibit the pyroptosis of local macrophages induced by wear particles, we have engineered fused extracellular vesicles (fEV) from M2 macrophages and human umbilical cord mesenchymal stem cells. These fEV boast the distinctive capability for targeted transport and immune evasion, collectively enhancing the anti-pyroptosis effect of the therapeutic extracellular vesicles. Our research demonstrates the targeted, significant preventive and therapeutic potential of fEVs against periprosthetic osteolysis prompted by wear particles, highlighting its crucial clinical significance and application prospects. These findings suggest that extracellular vesicle fusion technology heralds a novel paradigm in the design and development of targeted extracellular vesicle-based drug delivery systems.
Collapse
Affiliation(s)
- Qimeng Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianliang Ma
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangyu Nan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Wang Y, Chen Y, Zhou T, Li J, Zhang N, Liu N, Zhou P, Mao Y. A novel multifunctional nanocomposite hydrogel orchestrates the macrophage reprogramming-osteogenesis crosstalk to boost bone defect repair. J Nanobiotechnology 2024; 22:702. [PMID: 39533396 PMCID: PMC11558876 DOI: 10.1186/s12951-024-02996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Repairing bone defects is a complex cascade reaction process, as immune system regulation, vascular growth, and osteogenic differentiation are essential. Thus, developing a tissue-engineered biomaterial that caters to the complex healing process of bone regeneration remains a major clinical challenge. In the study, Ca2+-TA-rGO (CTAG)/GelMA hydrogels were synthesized by binding Ca2+ using metal chelation to graphene oxide (GO) nanosheets reduced by tannic acid (TA-rGO) and doping them into gelatin methacrylate (GelMA) hydrogels. TA and rGO exhibited biocompatibility and immunomodulatory properties in this composite, while Ca2+ promoted bone formation and angiogenesis. This novel nanocomposite hydrogel demonstrated good mechanical properties, degradability, and conductivity, and it could achieve slow Ca2+ release during bone regeneration. Both in vitro and in vivo experiments revealed that CTAG/GelMA hydrogel modulated macrophage reprogramming and induced a shift from macrophages to healing-promoting M2 macrophages during the inflammatory phase, promoted vascular neovascularization, and facilitated osteoblast differentiation during bone formation. Moreover, CTAG/GelMA hydrogel could downregulate the NF-κB signaling pathway, offering new insights into regulating macrophage reprogramming-osteogenic crosstalk. Conclusively, this novel multifunctional nanocomposite hydrogel provides a multistage treatment for bone and orchestrates macrophage reprogramming-osteogenic crosstalk to boost bone repair.
Collapse
Affiliation(s)
- Ying Wang
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Yedan Chen
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Tao Zhou
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Jingze Li
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Na Zhang
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Na Liu
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Pinghui Zhou
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China.
| | - Yingji Mao
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China.
- Anhui Nerve Regeneration Technology and Medical New Materials Engineering Research Center, Bengbu Medical University, Bengbu, 233030, China.
| |
Collapse
|
37
|
Wang T, Guo S, Zhang Y. Effect of nHA/CS/PLGA delivering adipose stem cell-derived exosomes and bone marrow stem cells on bone healing-in vitro and in vivo studies. Sci Rep 2024; 14:27502. [PMID: 39528545 PMCID: PMC11555374 DOI: 10.1038/s41598-024-76672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Adipose stem cell-derived exosomes (ADSC-EXO) have been demonstrated to promote osteogenic differentiation of bone marrow stem cells (BMSCs) and facilitate bone regeneration. The present study aims to investigate the effect of ADSC-EXO-loaded nano-hydroxyapatite/chitosan/poly-lactide-co-glycolide (nHA/CS/PLGA) scaffolds on maxillofacial bone regeneration using tissue engineering. ADSC-EXO was isolated and co-cultured with BMSCs, and the osteogenic differentiation of BMSCs was assessed through the detection of mineralized nodule formation, alkaline phosphatase (ALP) activity, and mRNA expression of COL1A1 and runt-related transcription factor 2 (RUNX2). The nHA/CS/PLGA scaffolds were fabricated and loaded with ADSC-EXO and BMSCs, and these tissue engineering complexes were applied to the maxillofacial bone defect region of rabbits to elucidate their bone regeneration effect. The osteogenic differentiation of BMSCs was markedly enhanced when they were co-cultured with ADSC-EXO. This was evidenced by an increase in the formation of mineralized nodule formation, ALP activity, and mRNA expression of COL1A1 and runt-related transcription factor 2 (RUNX2). In vivo experiments demonstrated that the application of ADSC-EXO and BMSCs loaded nHA/CS/PLGA scaffolds effectively repaired maxillofacial bone defects in rabbits. ADSC-EXO has been demonstrated to promote the osteogenic differentiation of BMSCs. The ADSC-EXO and BMSCs loaded nHA/CS/PLGA scaffolds have been shown to facilitate the regeneration of maxillofacial bone defects. This may serve as a potential therapeutic strategy for large-scale bone defects.
Collapse
Affiliation(s)
- Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China.
| | - Ye Zhang
- Department of General Surgery, The Forth Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110001, PR China
| |
Collapse
|
38
|
Deng L, Liu Y, Wu Q, Lai S, Yang Q, Mu Y, Dong M. Exosomes to exosome-functionalized scaffolds: a novel approach to stimulate bone regeneration. Stem Cell Res Ther 2024; 15:407. [PMID: 39521993 PMCID: PMC11550564 DOI: 10.1186/s13287-024-04024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bone regeneration is a complex biological process that relies on the orchestrated interplay of various cellular and molecular events. Bone tissue engineering is currently the most promising method for treating bone regeneration. However, the immunogenicity, stable and cell quantity of seed cells limited their application. Recently, exosomes, which are small extracellular vesicles released by cells, have been found to effectively address these problems and better induce bone regeneration. Meanwhile, a growing line of research has shown the cargos of exosomes may provide effective therapeutic and biomarker tools for bone repair, including miRNA, lncRNA, and proteins. Moreover, engineered scaffolds loaded with exosomes can offer a cell-free bone repair strategy, addressing immunogenicity concerns and providing a more stable functional performance. Herein, we provide a comprehensive summary of the role played by scaffolds loaded with exosomes in bone regeneration, drawing on a systematic analysis of relevant literature available on PubMed, Scopus, and Google Scholar database.
Collapse
Affiliation(s)
- Li Deng
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yang Liu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Qian Wu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China.
| |
Collapse
|
39
|
Chen H, Sun H, Yang Y, Wang P, Chen X, Yin J, Li A, Zhang L, Cai J, Huang J, Zhang S, Zhang Z, Feng X, Yin J, Wang Y, Xiong W, Wan B. Engineered melatonin-pretreated plasma exosomes repair traumatic spinal cord injury by regulating miR-138-5p/SOX4 axis mediated microglia polarization. J Orthop Translat 2024; 49:230-245. [PMID: 39512441 PMCID: PMC11541837 DOI: 10.1016/j.jot.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
Background Neuroinflammation plays a crucial role in the repair of spinal cord injury (SCI), with microglia, pivotal in neuroinflammation, driving either degeneration or recovery in this pathological process. Recently, plasma-derived exosomes (denoted Exos) have presented a high capacity for promoting functional recovery of SCI through the anti-inflammatory effects, and pretreated exosomes are associated with better outcomes. Thus, we aimed to explore whether melatonin-pretreated plasma-derived exosomes (denoted MExo) could exert superior effects on SCI, and attempted to elucidate the potential mechanisms. Methods Electron microscopy, nanoparticle tracking analysis, and western blot were applied to delineate the distinctions between Exos and MExos. To assess their therapeutic potentials, we established a contusion SCI rat model, complemented by a battery of in vitro experiments comparing both groups. Subsequently, a miRNA microarray analysis was conducted, followed by a series of rescue experiments to elucidate the specific role of miRNAs in MExos. To further delve into the molecular mechanisms involved, we employed western blot analysis and the luciferase reporter gene assay. Results Melatonin promoted the release of exosome from plasma, concurrently amplifying their anti-inflammatory properties. Furthermore, it was discerned that MExos facilitated a transition in microglia polarization from M1 to M2 phenotype, a phenomenon more pronounced than that observed with Exos. In an endeavor to elucidate this variance, we scrutinized miRNAs exhibiting elevated expression levels in MExos, pinpointing miR-138-5p as a pivotal element in this dynamic. Following this, an in-depth investigation into the role of miR-138-5p was undertaken, which uncovered its efficacy in driving phenotypic alterations within microglia. The analysis of downstream genes targeted by miR-138-5p revealed that it exerted a negative regulatory influence on SOX4, which was found to obstruct the generation of M2-type microglia and the secretion of anti-inflammatory cytokines, thereby partially elucidating the mechanism behind miR-138-5p's regulation of microglia polarization. Conclusions We innovatively observed that melatonin enhanced the anti-inflammatory function of Exos, which further decreased the expression of SOX4 by delivering miR-138-5p. This inhibition promoted the conversion of M1 microglia to M2 microglia, thus offering a viable option for the treatment of SCI. The translational potential of this article This study highlights that melatonin enhances the anti-inflammatory function of Exos through delivery of miR-138-5p. Activation of miR-138-5p/SOX4 axis by engineered melatonin-pretreated plasma exosomes may be a potential target for SCI treatment.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huihui Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yaqing Yang
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Pingchuan Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xizhao Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Junxiang Yin
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Aoying Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Liang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jun Cai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jijun Huang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Shengfei Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhiqiang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xinmin Feng
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Orthopedics, the Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- Department of Orthopedics, Northern Jiangsu People's Hospital, Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Wu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bowen Wan
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Xia EJ, Zou S, Zhao X, Liu W, Zhang Y, Zhao IS. Extracellular vesicles as therapeutic tools in regenerative dentistry. Stem Cell Res Ther 2024; 15:365. [PMID: 39402576 PMCID: PMC11476107 DOI: 10.1186/s13287-024-03936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dental and maxillofacial diseases are always accompanied by complicated hard and soft tissue defects, involving bone, teeth, blood vessels and nerves, which are difficult to repair and severely affect the life quality of patients. Recently, extracellular vesicles (EVs) secreted by all types of cells and extracted from body fluids have gained more attention as potential solutions for tissue regeneration due to their special physiological characteristics and intrinsic signaling molecules. Compared to stem cells, EVs present lower immunogenicity and tumorigenicity, cause fewer ethical problems, and have higher stability. Thus, EV therapy may have a broad clinical application in regenerative dentistry. Herein, we reviewed the currently available literature regarding the functional roles of EVs in oral and maxillofacial tissue regeneration, including in maxilla and mandible bone, periodontal tissues, temporomandibular joint cartilage, dental hard tissues, peripheral nerves and soft tissues. We also summarized the underlying mechanisms of actions of EVs and their delivery strategies for dental tissue regeneration. This review would provide helpful guidelines and valuable insights into the emerging potential of EVs in future research and clinical applications in regenerative dentistry.
Collapse
Affiliation(s)
- Evelyn Jingwen Xia
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China
| | - Shasha Zou
- Longgang Center for Chronic Disease Control, Shenzhen, 518172, China
| | - Xiu Zhao
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Wei Liu
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518015, China.
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
| |
Collapse
|
41
|
Daneshvar A, Nemati P, Azadi A, Amid R, Kadkhodazadeh M. M2 macrophage-derived exosomes for bone regeneration: A systematic review. Arch Oral Biol 2024; 166:106034. [PMID: 38943857 DOI: 10.1016/j.archoralbio.2024.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE This systematic review aims to evaluate existing evidence to investigate the therapeutic efficacy of M2 macrophage-derived exosomes in bone regeneration. DESIGN A comprehensive search between 2020 and 2024 across PubMed, Web of Science, and Scopus was conducted using a defined search strategy to identify relevant studies regarding the following question: "What is the impact of M2 macrophage-derived exosomes on bone regeneration?". Controlled in vitro and in vivo studies were included in this study. The SYRCLE tool was used to evaluate the risk of bias in the included animal studies. RESULTS This review included 20 studies published. Seven studies were selected for only in vitro analysis, whereas 13 studies underwent both in vitro and in vivo analyses. The in vivo studies employed animal models, including 163 C57BL6 mice and 73 Sprague-Dawley rats. Exosomes derived from M2 macrophages were discovered to be efficacious in promoting bone regeneration and vascularization in animal models of bone defects. These effects were primarily confirmed through morphological and histological assessments. This remarkable outcome is attributed to the regulation of multiple signaling pathways, as evidenced by the findings of 11 studies investigating the involvement of miRNAs in this intricate process. In addition, in vitro studies observed positive effects on cell proliferation, migration, osteogenesis, and angiogenesis. Heterogeneity in study methods hinders direct comparison of results across studies. CONCLUSION M2 macrophage-derived exosomes demonstrate remarkable potential for promoting bone regeneration. Further research optimizing their application and elucidating the underlying mechanisms can pave the way for clinical translation.
Collapse
Affiliation(s)
- Alireza Daneshvar
- Student Research Committee, Faculty of Dentistry, Islamic Azad University, Tehran, Iran
| | - Parisa Nemati
- Student Research Committee, Faculty of Dentistry, Islamic Azad University, Tehran, Iran
| | - Ali Azadi
- Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Cai Z, Shu L, Wang C, Xie X, Liu X. M2 Macrophage-Derived Exosomes Promote Tendon-to-Bone Healing by Alleviating Cellular Senescence in Aged Rats. Arthroscopy 2024:S0749-8063(24)00737-0. [PMID: 39326562 DOI: 10.1016/j.arthro.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE To explore the potential of M2 macrophage-derived exosomes (M2-Exos) in enhancing tendon-to-bone healing in aged rats by mitigating cellular senescence of bone marrow-derived stem cells (BMSCs). METHODS In vitro, the effects of M2-Exos on alleviating cellular senescence and improving chondrogenic potential of senescent BMSCs were evaluated. Rats (24 young and 48 aged) with chronic rotator cuff tear (RCT) were repaired and assigned into 3 groups: young group (young rats injected with fibrin at the enthesis), aged group (aged rats injected with fibrin at the enthesis), and aged + M2-Exos group (aged rats injected with fibrin containing M2-Exos at the enthesis). At 6 and 12 weeks after repair, enthesis regeneration was evaluated. Proteomic analysis was conducted to explore the mechanism through which M2-Exos mitigated cellular senescence. RESULTS In senescent BMSCs treated with M2-Exos, there was a reduction in senescence biomarkers including senescence-associated β-galactosidase, p53, p21, and senescence-associated secretory phenotype (P < .001). M2-Exos also enhanced chondrogenic potential of senescent BMSCs, reflected in greater Bern score (P < .001) and increased expression of Sox9 (P = .013), Col2a1 (P < .001), and Acan (P < .001). Histologically, aged rats treated with M2-Exos demonstrated significantly greater histologic scores (P < .001 at both 6 and 12 weeks) and increased fibrocartilage regeneration at the enthesis. Biomechanically, these rats exhibited greater failure load, stiffness, and stress (all P < .001) at 12 weeks. Mechanistically, proteomic analysis suggested that M2-Exos might alleviate cellular senescence by potentially regulating DNA replication and repair. CONCLUSIONS M2-Exos can significantly alleviate BMSC senescence and thereby enhance tendon-to-bone healing in an aged rat RCT model. CLINICAL RELEVANCE This study suggests the potential utility of M2-Exos as a therapy for RCT in the older population.
Collapse
Affiliation(s)
- Zhuochang Cai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longqiang Shu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chongyang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuetao Xie
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Gao J, Wu Z. M2 macrophage-derived exosomes enable osteogenic differentiation and inhibit inflammation in human periodontal ligament stem cells through promotion of CXCL12 expression. BMC Oral Health 2024; 24:1070. [PMID: 39261847 PMCID: PMC11391719 DOI: 10.1186/s12903-024-04831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Periodontitis is a dental disease characterized by inflammation of periodontal tissues and loss of the periodontal ligaments and alveolar bone. Exosomes are a class of extracellular vesicles that are involved in a variety of diseases by releasing active substances. In this study, we aimed to investigate the effect and mechanism of exosomes from M2 polarized macrophages (M2-exos) on osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs). METHODS M2-exos were isolated from IL-4-induced RAW264.7 cells (M2 macrophages) and then treated on hPDLSCs. Osteogenic differentiation was assessed by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, measurement of osteogenic differentiation-related genes and proteins, and inflammation was evaluated by measuring the levels of inflammatory factors. The mechanism of M2-exo was confirmed through qPCR, western blot, ALP and ARS staining. RESULTS Results suggested that M2-exo improved osteogenic differentiation and inhibited inflammation in LPS-induced hPDLSCs. CXCL12 expression was elevated in M2 macrophages, but decreased in LPS-induced hPDLSCs. Moreover, the effect of M2-exo on osteogenic differentiation and inflammation in LPS-induced hPDLSCs was reversed by CXCL12 knockdown. CONCLUSION We demonstrated that M2-exo facilitated osteogenic differentiation and suppressed inflammation in LPS-induced hPDLSCs through promotion of CXCL12 expression. These results suggested the potential of M2-exo in the treatment of periodontitis, which may provide a new theoretical basis for M2-exo treatment of periodontitis.
Collapse
Affiliation(s)
- Jie Gao
- Department of Stomatology, Fuyang Cancer Hospital, Fuyang, Anhui, China
| | - Zhigang Wu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, No.287, Changhuai Road, Bengbu, Anhui, 233000, China.
| |
Collapse
|
44
|
Zhang M, Yan S, Wang J, Zhong Y, Wang C, Zhang T, Xing D, Shao Y. Rational design of multifunctional hydrogels targeting the microenvironment of diabetic periodontitis. Int Immunopharmacol 2024; 138:112595. [PMID: 38950455 DOI: 10.1016/j.intimp.2024.112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Periodontitis is a chronic inflammatory disease and is the primary contributor to adult tooth loss. Diabetes exacerbates periodontitis, accelerates periodontal bone resorption. Thus, effectively managing periodontitis in individuals with diabetes is a long-standing challenge. This review introduces the etiology and pathogenesis of periodontitis, and analyzes the bidirectional relationship between diabetes and periodontitis. In this review, we comprehensively summarize the four pathological microenvironments influenced by diabetic periodontitis: high glucose microenvironment, bacterial infection microenvironment, inflammatory microenvironment, and bone loss microenvironment. The hydrogel design strategies and latest research development tailored to the four microenvironments of diabetic periodontitis are mainly focused on. Finally, the challenges and potential solutions in the treatment of diabetic periodontitis are discussed. We believe this review will be helpful for researchers seeking novel avenues in the treatment of diabetic periodontitis.
Collapse
Affiliation(s)
- Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
45
|
Lv C, Li R, Yang D, Song S, Cheng X, Chen T, Chen L, Xiong Y. Broad-spectrum antiviral effect of MoringaA-loaded exosomes against IAV by mediating the GCN5-TFEB-autolysosome pathway. J Med Virol 2024; 96:e29906. [PMID: 39262090 DOI: 10.1002/jmv.29906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Influenza virus-induced viral pneumonia is a major threat to human health, and specific therapeutic agents for viral pneumonia are still lacking. MoringaA (MA) is an anti-influenza virus active compound isolated from Moringa seeds, which can inhibit influenza virus by activating the TFEB-autophagic lysosomal pathway in host cells. In this study, we obtained exosomes from M2-type macrophages and encapsulated and delivered MA (MA-Exos), and we investigated the efficacy of MA-Exos in antiviral and viral pneumonia in vivo and in vitro, respectively. In addition, we provided insights into the mechanism by which MA-Exos regulates TFEB-lysosomal autophagy by RNA sequencing. The MA-Exos showed broad-spectrum inhibition of IAV, and significant promotion of the autophagic lysosomal pathway. Meanwhile, we found that GCN5 gene and protein were significantly down-regulated in IAV-infected cells after MA-Exos intervention, indicating its blocking the acetylation of TFEB by GCN5. In addition, MA-Exos also significantly promoted autophagy in lung tissue cells of mice with viral pneumonia. MA-Exos can inhibit and clear influenza virus by mediating the TFEB-autophagy lysosomal pathway by a mechanism related to the down-regulation of histone acetyltransferase GCN5. Our study provides a strategy for targeting MA-Exos for the treatment of viral pneumonia from both antiviral and virus-induced inflammation inhibition pathways.
Collapse
Affiliation(s)
- Chunmei Lv
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ruidong Li
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dandan Yang
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shunqiang Song
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xu Cheng
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tingting Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lei Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongai Xiong
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
46
|
Cheng X, Han X, Si J, Dong C, Ji Z, Zhao S, Wu X, Li H, Jin X. Cationic Curcumin Nanocrystals Liposomes for Improved Oral Bioavailability: Formulation Development, Optimization, In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:1155. [PMID: 39339192 PMCID: PMC11434666 DOI: 10.3390/pharmaceutics16091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Curcumin, a naturally occurring poorly water-soluble polyphenol with a broad spectrum, is a typical BCS IV drug. The objective of this study was to develop curcumin nanocrystals liposomes with the aim of improving bioavailability. In this study, we prepared cationic curcumin nanocrystals with a particle size of only 29.42 nm; such a phenomenal range of particle sizes is very rare. Moreover, we summarized and evaluated the parameters of the nanocrystal preparation process, including methods, formulations, etc., and the rules we concluded can be generalized to other nanocrystal preparation processes. To counteract the instability of the nanocrystals in the digestive tract, cationic curcumin nanocrystals were loaded into negatively charged liposomes through gravitational force between different charges. Unexpectedly, chitosan oligosaccharide was found to promote the self-assembly process of curcumin nanocrystal liposomes. In vitro and in vivo experiments demonstrated that chitosan-modified curcumin nanocrystal liposomes exhibited enhanced resistance to enzyme barriers, mucus barriers, and cellular barriers, resulting in a 5.4-fold increase in bioavailability compared to crude powder formulations. It can be concluded that cationic nanocrystals liposomes represent an appropriate novel strategy for improving the dissolution rate and bioavailability of poorly soluble natural products such as curcumin.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Xiaoran Han
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Jia Si
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Cong Dong
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Zhongjuan Ji
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Shicong Zhao
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Xiangting Wu
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Haiyan Li
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiangqun Jin
- Department of Pharmacy, Jilin University, Changchun 130021, China
| |
Collapse
|
47
|
Neurath N, Kesting M. Cytokines in gingivitis and periodontitis: from pathogenesis to therapeutic targets. Front Immunol 2024; 15:1435054. [PMID: 39253090 PMCID: PMC11381234 DOI: 10.3389/fimmu.2024.1435054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic inflammatory processes in the oral mucosa and periodontitis are common disorders caused by microflora and microbial biofilms. These factors activate both the innate and adaptive immune systems, leading to the production of pro-inflammatory cytokines. Cytokines are known to play a crucial role in the pathogenesis of gingivitis and periodontitis and have been proposed as biomarkers for diagnosis and follow-up of these diseases. They can activate immune and stromal cells, leading to local inflammation and tissue damage. This damage can include destruction of the periodontal ligaments, gingiva, and alveolar bone. Studies have reported increased local levels of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta), tumor necrosis factor (TNF), IL-6, IL-17, and IL-23, in patients with periodontitis. In experimental models of periodontitis, TNF and the IL-23/IL-17 axis play a pivotal role in disease pathogenesis. Inactivation of these pro-inflammatory pathways through neutralizing antibodies, genetic engineering or IL-10 function has been demonstrated to reduce disease activity. This review discusses the role of cytokines in gingivitis and periodontitis, with particular emphasis on their role in mediating inflammation and tissue destruction. It also explores new therapeutic interventions that offer potential for research and clinical therapy in these chronic inflammatory diseases.
Collapse
Affiliation(s)
- Nicole Neurath
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Uniklinikum Erlangen, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Uniklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
48
|
Trentini M, D’Amora U, Ronca A, Lovatti L, Calvo-Guirado JL, Licastro D, Monego SD, Delogu LG, Wieckowski MR, Barak S, Dolkart O, Zavan B. Bone Regeneration Revolution: Pulsed Electromagnetic Field Modulates Macrophage-Derived Exosomes to Attenuate Osteoclastogenesis. Int J Nanomedicine 2024; 19:8695-8707. [PMID: 39205866 PMCID: PMC11352519 DOI: 10.2147/ijn.s470901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction In the process of bone regeneration, a prominent role is played by macrophages involved in both the initial inflammation and the regeneration/vascularization phases, due to their M2 anti-inflammatory phenotype. Together with osteoclasts, they participate in the degradation of the bone matrix if the inflammatory process does not end. In this complex scenario, recently, much attention has been paid to extracellular communication mediated by nanometer-sized vesicles, with high information content, called exosomes (EVs). Considering these considerations, the purpose of the present work is to demonstrate how the presence of a pulsed electromagnetic field (PEMF) can positively affect communication through EVs. Methods To this aim, macrophages and osteoclasts were treated in vitro with PEMF and analyzed through molecular biology analysis and by electron microscopy. Moreover, EVs produced by macrophages were characterized and used to verify their activity onto osteoclasts. Results The results confirmed that PEMF not only reduces the inflammatory activity of macrophages and the degradative activity of osteoclasts but that the EVS produced by macrophages, obtained from PEMF treatment, positively affect osteoclasts by reducing their activity. Discussion The co-treatment of PEMF with M2 macrophage-derived EVs (M2-EVs) decreased osteoclastogenesis to a greater degree than separate treatments.
Collapse
Affiliation(s)
- Martina Trentini
- Translational Medicine Department, University of Ferrara, Ferrara, 44121, Italy
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - Luca Lovatti
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - José Luis Calvo-Guirado
- Faculty of Health Sciences, Universidad Autonoma de Chile, Santiago de Chile, 7500912, Chile
| | | | | | | | - Mariusz R Wieckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
49
|
Cheng S, Chen W, Guo Z, Ding C, Zuo R, Liao Q, Liu G. Paeonol alleviates ulcerative colitis by modulating PPAR-γ and nuclear factor-κB activation. Sci Rep 2024; 14:18390. [PMID: 39117680 PMCID: PMC11310503 DOI: 10.1038/s41598-024-68992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the gastrointestinal tract. Although paeonol has been used for treating UC due to its anti-inflammatory and antioxidant effects, the underlying mechanisms remain unclear. In this study, we investigated the mechanisms of paeonol's action on UC by conducting in-vitro and in-vivo studies using NCM460 cells and RAW264.7 cells, and the DSS-induced mice colitis model. The in vitro studies demonstrate that paeonol exerts inhibitory effects on the activation of the NF-κB signaling pathway through upregulating PPARγ expression, thereby attenuating pro-inflammatory cytokine production, reducing reactive oxygen species levels, and promoting M2 macrophage polarization. These effects are significantly abrogated upon addition of the PPARγ inhibitor GW9662. Moreover, UC mice treated with paeonol showed increased PPARγ expression, which reduced inflammation and apoptosis to maintain intestinal epithelial barrier integrity. In conclusion, our findings suggest that paeonol inhibits the NF-κB signaling pathway by activating PPARγ, reducing inflammation and oxidative stress and improving Dss-induced colitis. This study provides a new insight into the mechanism of treating UC by paeonol.
Collapse
Affiliation(s)
- Shuyu Cheng
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wujin Chen
- The Third People's Hospital of Fujian Province, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Chenchun Ding
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Renjie Zuo
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Quan Liao
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guoyan Liu
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China.
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 350108, China.
| |
Collapse
|
50
|
Sędzik M, Rakoczy K, Sleziak J, Kisiel M, Kraska K, Rubin J, Łuniewska W, Choromańska A. Comparative Analysis of Exosomes and Extracellular Microvesicles in Healing Pathways: Insights for Advancing Regenerative Therapies. Molecules 2024; 29:3681. [PMID: 39125084 PMCID: PMC11314465 DOI: 10.3390/molecules29153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes and microvesicles bear great potential to broaden therapeutic options in the clinical context. They differ in genesis, size, cargo, and composition despite their similarities. They were identified as participating in various processes such as angiogenesis, cell migration, and intracellular communication. Additionally, they are characterized by their natural biocompatibility. Therefore, researchers concluded that they could serve as a novel curative method capable of achieving unprecedented results. Indeed, in experiments, they proved remarkably efficient in enhancing wound regeneration and mitigating inflammation. Despite immense advancements in research on exosomes and microvesicles, the time for their large-scale application is yet to come. This article aims to gather and analyze current knowledge on those promising particles, their characteristics, and their potential clinical implementations.
Collapse
Affiliation(s)
- Mikołaj Sędzik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Michał Kisiel
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Karolina Kraska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Wiktoria Łuniewska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|