1
|
Pei D, Zhang D, Guo Y, Chang H, Cui H. Long Non-Coding RNAs in Malignant Human Brain Tumors: Driving Forces Behind Progression and Therapy. Int J Mol Sci 2025; 26:694. [PMID: 39859408 PMCID: PMC11766336 DOI: 10.3390/ijms26020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play a pivotal role in regulating gene expression and are critically involved in the progression of malignant brain tumors, including glioblastoma, medulloblastoma, and meningioma. These lncRNAs interact with microRNAs (miRNAs), proteins, and DNA, influencing key processes such as cell proliferation, migration, and invasion. This review highlights the multifaceted impact of lncRNA dysregulation on tumor progression and underscores their potential as therapeutic targets to enhance the efficacy of chemotherapy, radiotherapy, and immunotherapy. The insights provided offer new directions for advancing basic research and clinical applications in malignant brain tumors.
Collapse
Affiliation(s)
| | | | | | | | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; (D.P.); (D.Z.); (Y.G.); (H.C.)
| |
Collapse
|
2
|
Modaresi S, Pacelli S, Chakraborty A, Coyle A, Luo W, Singh I, Paul A. Engineering a Microfluidic Platform to Cryopreserve Stem Cells: A DMSO-Free Sustainable Approach. Adv Healthc Mater 2024; 13:e2401264. [PMID: 39152923 PMCID: PMC11582517 DOI: 10.1002/adhm.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Indexed: 08/19/2024]
Abstract
Human adipose-derived stem cells (hASCs) are cryopreserved traditionally using dimethyl sulfoxide (DMSO) as the cryoprotectant agent. DMSO penetrates cell membranes and prevents cellular damage during cryopreservation. However, DMSO is not inert to cells, inducing cytotoxic effects by causing mitochondrial dysfunction, reduced cell proliferation, and impaired hASCs transplantation. Additionally, large-scale production of DMSO and contamination can adversely impact the environment. A sustainable, green alternative to DMSO is trehalose, a natural disaccharide cryoprotectant agent that does not pose any risk of cytotoxicity. However, the cellular permeability of trehalose is less compared to DMSO. Here, a microfluidic chip is developed for the intracellular delivery of trehalose in hASCs. The chip is designed for mechanoporation, which creates transient pores in cell membranes by mechanical deformation. Mechanoporation allows the sparingly permeable trehalose to be internalized within the cell cytosol. The amount of trehalose delivered intracellularly is quantified and optimized based on cellular compatibility and functionality. Furthermore, whole-transcriptome sequencing confirms that less than 1% of all target genes display at least a twofold change in expression when cells are passed through the chip compared to untreated cells. Overall, the results confirm the feasibility and effectiveness of using this microfluidic chip for DMSO-free cryopreservation of hASCs.
Collapse
Affiliation(s)
- Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, The University of Kansas, Lawrence, KS, 66045, USA
| | - Settimio Pacelli
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Wei Luo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Irtisha Singh
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77840, USA
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
- Department of Chemistry, The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON, N6A 5B9, Canada
| |
Collapse
|
3
|
Chi ZC. Progress in research of ferroptosis in gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:699-715. [DOI: 10.11569/wcjd.v32.i10.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a non-apoptotic and oxidation-damaged regulated cell death caused by iron accumulation, lipid peroxidation, and subsequent plasma membrane rupture. Ferroptosis is the main cause of tissue damage caused by iron overload and lipid peroxidation. With the deepening of the research in recent years, the understanding of the occurrence and treatment of tumors has made a major breakthrough, which brings new strategies for anti-cancer treatment. This paper reviews the relationship between ferroptosis and gastrointestinal tumors, the research of ferroptosis in cancer prevention and treatment, and the role of ferroptosis in the prevention and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
4
|
Zhang Y, Zhang C, Wu N, Feng Y, Wang J, Ma L, Chen Y. The role of exosomes in liver cancer: comprehensive insights from biological function to therapeutic applications. Front Immunol 2024; 15:1473030. [PMID: 39497820 PMCID: PMC11532175 DOI: 10.3389/fimmu.2024.1473030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
In recent years, cancer, especially primary liver cancer (including hepatocellular carcinoma and intrahepatic cholangiocarcinoma), has posed a serious threat to human health. In the field of liver cancer, exosomes play an important role in liver cancer initiation, metastasis and interaction with the tumor microenvironment. Exosomes are a class of nanoscale extracellular vesicles (EVs)secreted by most cells and rich in bioactive molecules, including RNA, proteins and lipids, that mediate intercellular communication during physiological and pathological processes. This review reviews the multiple roles of exosomes in liver cancer, including the initiation, progression, and metastasis of liver cancer, as well as their effects on angiogenesis, epithelial-mesenchymal transformation (EMT), immune evasion, and drug resistance. Exosomes have great potential as biomarkers for liver cancer diagnosis and prognosis because they carry specific molecular markers that facilitate early detection and evaluation of treatment outcomes. In addition, exosomes, as a new type of drug delivery vector, have unique advantages in the targeted therapy of liver cancer and provide a new strategy for the treatment of liver cancer. The challenges and prospects of exosome-based immunotherapy in the treatment of liver cancer were also discussed. However, challenges such as the standardization of isolation techniques and the scalability of therapeutic applications remain significant hurdles.
Collapse
Affiliation(s)
- Yinghui Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Nan Wu
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuan Feng
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiayi Wang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yulong Chen
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Zhang F, Yang J, Cheng Y. Impact of RANGAP1 SUMOylation on Smad4 nuclear export by bioinformatic analysis and cell assays. BIOMOLECULES & BIOMEDICINE 2024; 24:1620-1636. [PMID: 38801243 PMCID: PMC11496865 DOI: 10.17305/bb.2024.10443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Small Ubiquitin-like Modifier (SUMOylation) regulates a variety of cellular activities, and its dysregulation has been associated with glioma etiology. The aim of this research was to clarify the function of SUMOylation-related genes in glioma and determine relevant prognostic markers. The Cancer Genome Atlas (TCGA) Glioma and GSE16011 datasets were analyzed through bioinformatics to identify Ran GTPase activating protein 1 (RANGAP1) as the hub gene for further study. Experimental validation consisted of quantitative real-time polymerase chain reaction (qRT-PCR), western blotting (WB), and immunoprecipitation (IP) to evaluate RANGAP1 expression, function, and interaction with SUMO1. To assess the role of RANGAP1 knockdown and SUMOylation in glioma cells, various assays were conducted, including cell proliferation, migration, invasion, and apoptosis. In addition, cell cycle analysis and immunofluorescence were performed. Through bioinformatics, RANGAP1 was identified as a crucial prognostic gene for glioma. Experimental studies confirmed the downregulation of RANGAP1 in glioma cells and verified that RANGAP1 repair impedes tumor growth. When it comes to RANGAP1 silencing, it enhanced cell proliferation, invasion and migration. Additionally, SUMO1 was identified as a specific SUMO molecule coupled to RANGAP1, affecting the location of Sma and Mad related protein 4 (Smad4) in the nucleocytoplasm and the transforming growth factor (TGF)-β/Smad signaling pathway. The functional impact of RANGAP1 SUMOylation on cell proliferation and migration was further confirmed through experiments using a SUMOylation-impairing mutation (K524R). Our findings suggest that RANGAP1 may be a potential prognostic marker in gliomas and could play a role in regulating cell proliferation, migration, and invasion. SUMOylation of RANGAP1 is responsible for regulating the TGF-β/Smad signaling pathway, which is crucial for the progression of tumors. Further investigations and experiments are necessary to confirm these results.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifei Cheng
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Attia AM, Rezaee-Zavareh MS, Hwang SY, Kim N, Adetyan H, Yalda T, Chen PJ, Koltsova EK, Yang JD. Novel Biomarkers for Early Detection of Hepatocellular Carcinoma. Diagnostics (Basel) 2024; 14:2278. [PMID: 39451600 PMCID: PMC11507329 DOI: 10.3390/diagnostics14202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality globally. Most patients present with late diagnosis, leading to poor prognosis. This narrative review explores novel biomarkers for early HCC detection. We conducted a comprehensive literature review analyzing protein, circulating nucleic acid, metabolite, and quantitative proteomics-based biomarkers, evaluating the advantages and limitations of each approach. While established markers like alpha-fetoprotein (AFP), des-gamma-carboxy prothrombin, and AFP-L3 remain relevant, promising candidates include circulating tumor DNA, microRNAs, long noncoding RNAs, extracellular vesicle, and metabolomic biomarkers. Multi-biomarker panels like the GALAD score, Oncoguard, and Helio liver test show promise for improved diagnostic accuracy. Non-invasive approaches like urine and gut microbiome analysis are also emerging possibilities. Integrating these novel biomarkers with current screening protocols holds significant potential for earlier HCC detection and improved patient outcomes. Future research should explore multi-biomarker panels, omics technologies, and artificial intelligence to further enhance early HCC diagnosis and management.
Collapse
Affiliation(s)
- Abdelrahman M. Attia
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | | | - Soo Young Hwang
- Department of Internal Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, MD 21201, USA;
| | - Naomy Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Hasmik Adetyan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Tamar Yalda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Pin-Jung Chen
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Di Santo R, Verdelli F, Niccolini B, Varca S, Gaudio AD, Di Giacinto F, De Spirito M, Pea M, Giovine E, Notargiacomo A, Ortolani M, Di Gaspare A, Baldi A, Pizzolante F, Ciasca G. Exploring novel circulating biomarkers for liver cancer through extracellular vesicle characterization with infrared spectroscopy and plasmonics. Anal Chim Acta 2024; 1319:342959. [PMID: 39122286 DOI: 10.1016/j.aca.2024.342959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with cirrhosis being a major risk factor. Traditional blood markers like alpha-fetoprotein (AFP) demonstrate limited efficacy in distinguishing between HCC and cirrhosis, underscoring the need for more effective diagnostic methodologies. In this context, extracellular vesicles (EVs) have emerged as promising candidates; however, their practical diagnostic application is restricted by the current lack of label-free methods to accurately profile their molecular content. To address this gap, our study explores the potential of mid-infrared (mid-IR) spectroscopy, both alone and in combination with plasmonic nanostructures, to detect and characterize circulating EVs. RESULTS EVs were extracted from HCC and cirrhotic patients. Mid-IR spectroscopy in the Attenuated Total Reflection (ATR) mode was utilized to identify potential signatures for patient classification, highlighting significant changes in the Amide I-II region (1475-1700 cm-1). This signature demonstrated diagnostic performance comparable to AFP and surpassed it when the two markers were combined. Further investigations utilized a plasmonic metasurface suitable for ultrasensitive spectroscopy within this spectral range. This device consists of two sets of parallel rod-shaped gold nanoantennas (NAs); the longer NAs produced an intense near-field amplification in the Amide I-II bands, while the shorter NAs were utilized to provide a sharp reflectivity edge at 1800-2200 cm-1 for EV mass-sensing. A clinically relevant subpopulation of EVs was targeted by conjugating NAs with an antibody specific to Epithelial Cell Adhesion Molecule (EpCAM). This methodology enabled the detection of variations in the quantity of EpCAM-presenting EVs and revealed changes in the Amide I-II lineshape. SIGNIFICANCE The presented results can positively impact the development of novel laboratory methods for the label-free characterization of EVs, based on the combination between mid-IR spectroscopy and plasmonics. Additionally, data obtained by using HCC and cirrhotic subjects as a model system, suggest that this approach could be adapted for monitoring these conditions.
Collapse
Affiliation(s)
- R Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy; Dipartimento di Scienze della Vita, della salute e delle Professioni sanitarie, Link Campus University, Rome, Italy
| | - F Verdelli
- Dutch Institute for Fundamental Energy Research (DIFFER), Eindhoven 5600 HH, The Netherlands
| | - B Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - S Varca
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Del Gaudio
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - M De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| | - M Pea
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - E Giovine
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - A Notargiacomo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - M Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - A Di Gaspare
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - A Baldi
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - F Pizzolante
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
8
|
Liu L, Liu D. Bioengineered mesenchymal stem cell-derived exosomes: emerging strategies for diabetic wound healing. BURNS & TRAUMA 2024; 12:tkae030. [PMID: 39015252 PMCID: PMC11250359 DOI: 10.1093/burnst/tkae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/10/2024] [Indexed: 07/18/2024]
Abstract
Diabetic wounds are among the most common complications of diabetes mellitus and their healing process can be delayed due to persistent inflammatory reactions, bacterial infections, damaged vascularization and impaired cell proliferation, which casts a blight on patients'health and quality of life. Therefore, new strategies to accelerate diabetic wound healing are being positively explored. Exosomes derived from mesenchymal stem cells (MSC-Exos) can inherit the therapeutic and reparative abilities of stem cells and play a crucial role in diabetic wound healing. However, poor targeting, low concentrations of therapeutic molecules, easy removal from wounds and limited yield of MSC-Exos are challenging for clinical applications. Bioengineering techniques have recently gained attention for their ability to enhance the efficacy and yield of MSC-Exos. In this review, we summarise the role of MSC-Exos in diabetic wound healing and focus on three bioengineering strategies, namely, parental MSC-Exos engineering, direct MSC-Exos engineering and MSC-Exos combined with biomaterials. Furthermore, the application of bioengineered MSC-Exos in diabetic wound healing is reviewed. Finally, we discuss the future prospects of bioengineered MSC-Exos, providing new insights into the exploration of therapeutic strategies.
Collapse
Affiliation(s)
- Lihua Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, P.R. China
- Huankui Academy, Nanchang University, Xuefu Road, Honggutan District, Nanchang, Jiangxi, 330006, P.R. China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
9
|
Sharaf SS, Jaganath Krishna KM, Lekshmi A, Sujathan. Subcellular expression of MTA1, HIF1A and p53 in primary tumor predicts aggressive triple negative breast cancers: a meta-analysis based study. J Mol Histol 2024; 55:303-315. [PMID: 38613589 DOI: 10.1007/s10735-024-10190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND The prevalence of TNBC in India is higher compared to western countries. There is a multitude of biomarkers associated with different clinical outcomes of TNBC with contradictory reports. Identification of a set of specific biomarkers from the very many number of proteins reported in the literature to predict prognosis of TNBC is an urgent clinical need. METHODOLOGY A systematic review of key molecular biomarkers in cohort studies that have been investigated for their role in breast cancer prognosis was conducted. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was followed. A meta-analysis was used to evaluate their pooled hazard ratio (HR) and the corresponding 95% confidence interval (95% CI) statistically. Immunohistochemical characterization of the meta-analyzed markers were performed in a cohort of 200 retrospective TNBC and 100 non TNBC patient tissues. Kaplan-Meier plot were used to evaluate disease free survival (DFS), and overall survival (OS). Cox regression models were used to evaluate predictors of DFS and OS. RESULTS Using a meta-analytical approach, we consolidated the biomarker signatures associated with survival outcomes in breast cancers. The promising markers that emerged for the prediction of DFS and OS included E-Cadherin, Survivin, p53, MTA1, HIF1A, CD133, Vimentin and CK5/6. Evaluation of these markers in tumor tissue revealed that subcellular localization of p53, MTA1 and HIF1A had a significant association in predicting TNBC prognosis. Kaplan Meier plot revealed that p53 (OS p = 0.007, DFS p = 0.004), HIF 1 A (OS p = 0.054, DFS p = 0.009) and MTA1 (OS p = 0.043, DFS = p = 0.001) expression in the primary tumor tissue were found to be significantly correlated with poor OS and DFS, whereas expression of Survivin (DFS p = 0.024) and E Cadherin (DFS p = 0.027) correlated with DFS alone in TNBC. Univariate analysis revealed that p53, HIF1A and MTA1 could be independent prognostic markers. CONCLUSION Our study suggests cytoplasmic over expression of HIF1A, nuclear over expression of MTA1 and mutated p53 in the primary tumor tissue of TNBC have significance as markers predicting survival of TNBC patients.
Collapse
Affiliation(s)
- Shanaz S Sharaf
- Laboratory of Molecular Cytopathology and Proteomics, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
- Manipal Academy of Higher Education, Karnataka, India
| | - K M Jaganath Krishna
- Epidemiology and Statistics Department, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Asha Lekshmi
- Laboratory of Molecular Cytopathology and Proteomics, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Sujathan
- Laboratory of Molecular Cytopathology and Proteomics, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
10
|
Sun C, Feng Y. EPDRNA: A Model for Identifying DNA-RNA Binding Sites in Disease-Related Proteins. Protein J 2024; 43:513-521. [PMID: 38491248 DOI: 10.1007/s10930-024-10183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/18/2024]
Abstract
Protein-DNA and protein-RNA interactions are involved in many biological processes and regulate many cellular functions. Moreover, they are related to many human diseases. To understand the molecular mechanism of protein-DNA binding and protein-RNA binding, it is important to identify which residues in the protein sequence bind to DNA and RNA. At present, there are few methods for specifically identifying the binding sites of disease-related protein-DNA and protein-RNA. In this study, so we combined four machine learning algorithms into an ensemble classifier (EPDRNA) to predict DNA and RNA binding sites in disease-related proteins. The dataset used in model was collated from UniProt and PDB database, and PSSM, physicochemical properties and amino acid type were used as features. The EPDRNA adopted soft voting and achieved the best AUC value of 0.73 at the DNA binding sites, and the best AUC value of 0.71 at the RNA binding sites in 10-fold cross validation in the training sets. In order to further verify the performance of the model, we assessed EPDRNA for the prediction of DNA-binding sites and the prediction of RNA-binding sites on the independent test dataset. The EPDRNA achieved 85% recall rate and 25% precision on the protein-DNA interaction independent test set, and achieved 82% recall rate and 27% precision on the protein-RNA interaction independent test set. The online EPDRNA webserver is freely available at http://www.s-bioinformatics.cn/epdrna .
Collapse
Affiliation(s)
- CanZhuang Sun
- College of Science, Inner Mongolia Agriculture University, Hohhot, 010018, People's Republic of China
| | - YongE Feng
- College of Science, Inner Mongolia Agriculture University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
11
|
Zakeri Z, Heiderzadeh M, Kocaarslan A, Metin E, Hosseini Karimi SN, Saghati S, Vural A, Akyoldaş G, Baysal K, Yağcı Y, Gürsoy-Özdemir Y, Taşoğlu S, Rahbarghazi R, Sokullu E. Exosomes encapsulated in hydrogels for effective central nervous system drug delivery. Biomater Sci 2024; 12:2561-2578. [PMID: 38602364 DOI: 10.1039/d3bm01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.
Collapse
Affiliation(s)
- Ziba Zakeri
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Morteza Heiderzadeh
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Azra Kocaarslan
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Ecem Metin
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atay Vural
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Göktuğ Akyoldaş
- Department of Neurosurgery, Koç University Hospital, Istanbul 34450, Turkey
| | - Kemal Baysal
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Biochemistry, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Yusuf Yağcı
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Savaş Taşoğlu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Mechanical Engineering Department, School of Engineering, Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| |
Collapse
|
12
|
Wu L, van Heugten MH, van den Bosch TPP, Duimel H, López-Iglesias C, Hesselink DA, Baan CC, Boer K. Polarized HLA Class I Expression on Renal Tubules Hinders the Detection of Donor-Specific Urinary Extracellular Vesicles. Int J Nanomedicine 2024; 19:3497-3511. [PMID: 38628433 PMCID: PMC11020244 DOI: 10.2147/ijn.s446525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Kidney transplantation is the optimal treatment for patients with end-stage kidney disease. Donor-specific urinary extracellular vesicles (uEVs) hold potential as biomarkers for assessing allograft status. We aimed to develop a method for identifying donor-specific uEVs based on human leukocyte antigen (HLA) mismatching with the kidney transplant recipients (KTRs). Patients and Methods Urine and plasma were obtained from HLA-A2+ donors and HLA-A2- KTRs pre-transplant. CD9 (tetraspanin, EV marker) and HLA-A2 double-positive (CD9+ HLA-A2+) EVs were quantified using isolation-free imaging flow cytometry (IFCM). Healthy individuals' urine was used to investigate CD9+ HLA-class-I+ uEV quantification using IFCM, time-resolved fluoroimmunoassay (TR-FIA), and immunogold staining cryo-electron microscopy (cryo-EM). Culture-derived CD9+ HLA-class-I+ EVs were spiked into the urine to investigate urine matrix effects on uEV HLA detection. Deceased donor kidneys and peritumoral kidney tissue were used for HLA class I detection with histochemistry. Results The concentrations of CD9+ HLA-A2+ EVs in both donor and recipient urine approached the negative (detergent-treated) control levels for IFCM and were significantly lower than those observed in donor plasma. In parallel, universal HLA class I+ uEVs were similarly undetectable in the urine and uEV isolates compared with plasma, as verified by IFCM, TR-FIA, and cryogenic electron microscopy. Culture supernatant containing HLA class I+ vesicles from B, T, and human proximal tubule cells were spiked into the urine, and these EVs remained stable at 37°C for 8 hours. Immunohistochemistry revealed that HLA class I was predominantly expressed on the basolateral side of renal tubules, with limited expression on their urine/apical side. Conclusion The detection of donor-specific uEVs is hindered by the limited release of HLA class I+ EVs from the kidney into the urine, primarily due to the polarized HLA class I expression on renal tubules. Identifying donor-specific uEVs requires further advancements in recognizing transplant-specific uEVs and urine-associated markers.
Collapse
Affiliation(s)
- Liang Wu
- Department of Nephrology, the First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, People’s Republic of China
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Martijn H van Heugten
- University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | | | - Hans Duimel
- The Microscopy CORE Laboratory at the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- The Microscopy CORE Laboratory at the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Carla C Baan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Karin Boer
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Su Y, Yu Z, Yang Y, Wong K, Li X. Distribution-Agnostic Deep Learning Enables Accurate Single-Cell Data Recovery and Transcriptional Regulation Interpretation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307280. [PMID: 38380499 PMCID: PMC11040354 DOI: 10.1002/advs.202307280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Indexed: 02/22/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a robust method for studying gene expression at the single-cell level, but accurately quantifying genetic material is often hindered by limited mRNA capture, resulting in many missing expression values. Existing imputation methods rely on strict data assumptions, limiting their broader application, and lack reliable supervision, leading to biased signal recovery. To address these challenges, authors developed Bis, a distribution-agnostic deep learning model for accurately recovering missing sing-cell gene expression from multiple platforms. Bis is an optimal transport-based autoencoder model that can capture the intricate distribution of scRNA-seq data while addressing the characteristic sparsity by regularizing the cellular embedding space. Additionally, they propose a module using bulk RNA-seq data to guide reconstruction and ensure expression consistency. Experimental results show Bis outperforms other models across simulated and real datasets, showcasing superiority in various downstream analyses including batch effect removal, clustering, differential expression analysis, and trajectory inference. Moreover, Bis successfully restores gene expression levels in rare cell subsets in a tumor-matched peripheral blood dataset, revealing developmental characteristics of cytokine-induced natural killer cells within a head and neck squamous cell carcinoma microenvironment.
Collapse
Affiliation(s)
- Yanchi Su
- School of Artificial IntelligenceJilin UniversityChangchun130012China
| | - Zhuohan Yu
- School of Artificial IntelligenceJilin UniversityChangchun130012China
| | - Yuning Yang
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONM5S 3E1Canada
| | - Ka‐Chun Wong
- Department of Computer ScienceCity University of Hong KongHong Kong SAR999077China
| | - Xiangtao Li
- School of Artificial IntelligenceJilin UniversityChangchun130012China
| |
Collapse
|
14
|
Jakob D, Orth V, Gödde D, Zirngibl H, Ambe PC. Microsatellite instability is highly prevalent in older patients with colorectal cancer. Front Surg 2024; 11:1288061. [PMID: 38601878 PMCID: PMC11004330 DOI: 10.3389/fsurg.2024.1288061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
Background Clinical guidelines suggest screening of colorectal cancer (CRC) for microsatellite instability (MSI). However, microsatellite instability-high (MSI-H) CRC is not rare in older patients. This study aimed to investigate the prevalence of MSI-H CRC in an unselected population in an age-based manner. Material and methods A retrospective analysis of data from patients undergoing radical surgery for CRC was performed. Only cases with results from MSI testing using immunochemistry (IHC) were analyzed. Age-based analyses were performed using two cut-off ages: 50 years. as stated in Amsterdam II guidelines, and 60 years. as outlined in the revised Bethesda criteria. Results The study population included 343 (146 female and 197 male) patients with a median age of 70 years (range 21-90 years). The prevalence of MSI-H tumors in the entire cohort was 18.7%. The prevalence of MSI-H CRC was 22.5% in the group ≤50 years vs. 18.2% in the group >50 years using the age limit in the Amsterdam II guidelines. MSI-H CRC was present in 12.6% of the group aged ≤60 years compared to 20.6% in the control group >60 years. Conclusion MSI screening of CRC based on age alone is associated with negative selection of a relevant number of cases. MSI-H CRC is also common in elderly patients, who may be negatively selected secondary to an age-based screening algorithm. Following the results of this study, screening based on clinical criteria should be omitted in favor of systematic screening as is already internationally practiced.
Collapse
Affiliation(s)
- Daniel Jakob
- Faculty of Medicine, Witten/Herdecke University, Witten, Germany
| | - Valerie Orth
- Chair of Surgery II, Witten/Herdecke University, Witten, Germany
| | - Daniel Gödde
- Department of Pathology and Molecular Pathology, Witten/Herdecke University, Witten, Germany
| | - Hubert Zirngibl
- Chair of Surgery II, Witten/Herdecke University, Witten, Germany
| | - Peter C. Ambe
- Chair of Surgery II, Witten/Herdecke University, Witten, Germany
- Department of General Surgery, Visceral surgery and Coloproctology, GFO Kliniken Rhein Berg, Vinzenz-Pallotti-Hospital Bensberg, Bergisch Gladbach, Germany
| |
Collapse
|
15
|
Zadi S, Javaid S, Atia-tul-Wahab, Zafar H, Awais M, Maslennikov I, Choudhary MI. Repurposing of US-FDA-approved drugs as negative modulators of ubiquitin specific protease-7 (USP7). Heliyon 2024; 10:e26345. [PMID: 38468948 PMCID: PMC10925992 DOI: 10.1016/j.heliyon.2024.e26345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Ubiquitin-specific protease7 (USP7) regulates the stability of the p53 tumor suppressor protein and several other proteins critical for tumor cell survival. Aberrant expression of USP7 facilitates human malignancies by altering the activity of proto-oncogenes/proteins, and tumor suppressor genes. Therefore, USP7 is a validated anti-cancer drug target. In this study, a drug repurposing approach was used to identify new hits against the USP7 enzyme. It is one of the most strategic approaches to find new uses for drugs in a cost- and time-effective way. Nuclear Magnetic Resonance-based screening of 172 drugs identified 11 compounds that bind to the catalytic domain of USP7 with dissociation constant (Kd) values in the range of 0.6-1.49 mM. These 11 compounds could thermally destabilize the USP7 enzyme by decreasing its melting temperature up to 9 °C. Molecular docking and simulation studies provided structural insights into the ligand-protein complexes, suggesting that these compounds bind to the putative substrate binding pocket of USP7, and interact with its catalytically important residues. Among the identified 11 hits, compound 6 (oxybutynin), 7 (ketotifen), 10 (pantoprazole sodium), and 11 (escitalopram) also showed anti-cancer activity with an effect on the expression of proto-oncogenes and tumor-suppressor gene at mRNA level in HCT116 cells. The compounds identified in this study can serve as potential leads for further studies.
Collapse
Affiliation(s)
- Seema Zadi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sumaira Javaid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Atia-tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Awais
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | | | - M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 22252, Saudi Arabia
| |
Collapse
|
16
|
Bhagwan Valjee R, Mackraj I, Moodley R, Ibrahim UH. Investigation of exosomal tetraspanin profile in sepsis patients as a promising diagnostic biomarker. Biomarkers 2024; 29:78-89. [PMID: 38354024 DOI: 10.1080/1354750x.2024.2319296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Sepsis, a leading cause of mortality globally, has a complex and multifaceted pathophysiology which still requires elucidation. Therefore, this study aimed to analyze and quantify the number of exosomes in sepsis patients from a South African cohort using the ExoView (NanoView Biosciences, Boston, MA) platform. METHODS Blood samples were collected from black South African patients attending the local Intensive Care Unit (ICU) hospital. Exosomes were isolated and characterize via TEM and CD63 ELISA kits. ExoView was used to determine particle count, particle size distribution and colocalization of different tetraspanin markers. RESULTS Exosomal levels in sepsis patients were significantly higher compared to the control group (p < 0.05). Sepsis exosomes showed a homogenous size distribution ranging from 55 to 70 nm. Tetraspanin colocalization analysis revealed that sepsis exosomes have significantly higher CD63/CD9, CD63/CD81 and CD63/CD9/CD81 colocalization percentages than the control group. CONCLUSION This unique tetraspanin colocalization pattern of sepsis exosomes could serve as a potential sepsis biomarker. Further investigations are required to identify sepsis exosomal cargo signatures for further understanding of sepsis pathophysiology in order to develop effective diagnostics and treatments.
Collapse
Affiliation(s)
- Roushka Bhagwan Valjee
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackraj
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Roshila Moodley
- Department of Chemistry, The University of Manchester, Manchester, UK
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Sadat Kalaki N, Ahmadzadeh M, Najafi M, Mobasheri M, Ajdarkosh H, Karbalaie Niya MH. Systems biology approach to identify biomarkers and therapeutic targets for colorectal cancer. Biochem Biophys Rep 2024; 37:101633. [PMID: 38283191 PMCID: PMC10821538 DOI: 10.1016/j.bbrep.2023.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Background Colorectal cancer (CRC), is the third most prevalent cancer across the globe, and is often detected at advanced stage. Late diagnosis of CRC, leave the chemotherapy and radiotherapy as the main options for the possible treatment of the disease which are associated with severe side effects. In the present study, we seek to explore CRC gene expression data using a systems biology framework to identify potential biomarkers and therapeutic targets for earlier diagnosis and treatment of the disease. Methods The expression data was retrieved from the gene expression omnibus (GEO). Differential gene expression analysis was conducted using R/Bioconductor package. The PPI network was reconstructed by the STRING. Cystoscope and Gephi software packages were used for visualization and centrality analysis of the PPI network. Clustering analysis of the PPI network was carried out using k-mean algorithm. Gene-set enrichment based on Gene Ontology (GO) and KEGG pathway databases was carried out to identify the biological functions and pathways associated with gene groups. Prognostic value of the selected identified hub genes was examined by survival analysis, using GEPIA. Results A total of 848 differentially expressed genes were identified. Centrality analysis of the PPI network resulted in identification of 99 hubs genes. Clustering analysis dissected the PPI network into seven interactive modules. While several DEGs and the central genes in each module have already reported to contribute to CRC progression, survival analysis confirmed high expression of central genes, CCNA2, CD44, and ACAN contribute to poor prognosis of CRC patients. In addition, high expression of TUBA8, AMPD3, TRPC1, ARHGAP6, JPH3, DYRK1A and ACTA1 was found to associate with decreased survival rate. Conclusion Our results identified several genes with high centrality in PPI network that contribute to progression of CRC. The fact that several of the identified genes have already been reported to be relevant to diagnosis and treatment of CRC, other highlighted genes with limited literature information may hold potential to be explored in the context of CRC biomarker and drug target discovery.
Collapse
Affiliation(s)
- Niloufar Sadat Kalaki
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- International Institute of New Sciences (IINS), Tehran, Iran
| | - Mozhgan Ahmadzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meysam Mobasheri
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran
- International Institute of New Sciences (IINS), Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Karbalaie Niya
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Yue Y, Tao J, An D, Shi L. A prognostic exosome-related long non-coding RNAs risk model related to the immune microenvironment and therapeutic responses for patients with liver hepatocellular carcinoma. Heliyon 2024; 10:e24462. [PMID: 38293480 PMCID: PMC10826312 DOI: 10.1016/j.heliyon.2024.e24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is the third largest cause of cancer mortality. Exosomes are vital regulators in the development of cancer. However, the mechanisms regarding the association of exosome-related long non-coding RNAs (lncRNAs) in LIHC are not clear. Methods LIHC RNA sequences and exosome-associated genes were collected according to The Cancer Genome Atlas (TCGA), Hepatocellular Carcinoma Cell DataBase (HCCDB) and ExoBCD databases, and exosome-related lncRNAs with prognostic differential expression were screened as candidate lncRNAs using Spearman's method and univariate Cox regression analysis. Candidate lncRNAs were then used to construct a prognostic model and mRNA-lncRNA co-expression network. Differentially expressed genes (DEGs) in low- and high-risk groups were identified and enrichment analysis was performed for up- and down-regulated DEGs, respectively. The expression of immune checkpoint-related genes, immune escape potential and microsatellite instability among different risk groups were further analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) and transwell assay were applied for detecting gene expression levels and invasion and migration ability. Results Based on 17 prognostical exosome-associated lncRNAs, four hub lncRNAs (BACE1_AS, DSTNP2, PLGLA, and SNHG3) were selected for constructing a prognostic model, which was demonstrated to be an independent prognostic variable for LIHC. High risk score was indicative of poorer overall survival, lower anti-tumor immune cells, higher genomic instability, higher immune escape potential, and less benefit for immunotherapy. The qRT-PCR test verified the expression level of the lncRNAs in LIHC cells, and the inhibitory effect of BACE1_AS on immune checkpoint genes levels. BACE1_AS silence also depressed the ability of migration and invasion of LIHC cells. Conclusion The Risk model constructed by exosome-associated lncRNAs could well predict immunotherapy response and prognostic outcomes for LIHC patients. We comprehensively reveal the clinical features of prognostical exosome-related lncRNAs and their potential ability to predict immunotherapeutic response of patients with LIHC and their prognosis.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Dan An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Lei Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| |
Collapse
|
19
|
Li T, Bao Y, Xia Y, Meng H, Zhou C, Huang L, Wang X, Lai EY, Jiang P, Mao J. Loss of MTX2 causes mitochondrial dysfunction, podocyte injury, nephrotic proteinuria and glomerulopathy in mice and patients. Int J Biol Sci 2024; 20:937-952. [PMID: 38250156 PMCID: PMC10797693 DOI: 10.7150/ijbs.89916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Proteinuria is a common and important clinical manifestation of chronic kidney disease (CKD) and an independent risk factor for the progression of kidney disease. As a component of the glomerular filtration barrier (GFB), podocyte plays a key role in the pathogenesis of glomerular diseases and proteinuria. However, the pathophysiology of glomerular diseases associated with mitochondrial function is incompletely understood. Here, we identified three novel mutations in MTX2, encoding a membrane protein in mitochondria, associated with multisystem manifestations including nephrotic proteinuria and kidney injury in two Chinese patients. Conditional podocyte-specific Mtx2 knockout (Pod-Mtx2-KO) mice present a series of podocyte and glomerular abnormalities from 8 weeks to old age, including microalbuminuria, glomerular mesangial hyperplasia, fusion and effacement of foot process. MTX2 deficiency impaired podocyte functions in vitro, manifested by reductions of adhesion, migration and endocytosis, which were further restored by overexpression of MTX2. Moreover, MTX2 defects led to abnormal mitochondrial structure and dysfunction, evidenced with defects of complex I and III, increased production of reactive oxygen species (ROS), and decreased protein levels of Sam50-CHCHD3-Mitofilin axis in the mitochondrial intermembrane space bridging (MIB) complex which is responsible for maintaining mitochondrial cristae morphology. Collectively, these findings reveal that the normal expression of MTX2 in glomerulus plays an important role in the adhesion, migration, endocytosis, proliferation and other physiological functions of podocytes, which may be realized by maintaining the morphological structure and function of mitochondria. Abnormal expression of MTX2 can lead to mitochondrial dysfunction and structural abnormalities by Sam50-CHCHD3-Mitofilin axis in podocyte, which further induces podocyte injury, glomerular lesions and proteinuria.
Collapse
Affiliation(s)
- Ting Li
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ying Bao
- Department of Pediatric Nephrology, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Xia
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Hanyan Meng
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Chao Zhou
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Limin Huang
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xiaowen Wang
- Department of Pediatric Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - En Yin Lai
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Pingping Jiang
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
20
|
Hsu CY, Tsai CC, Lin HY, Chen HL, Ou YC, Chiang PH, Suen JL, Tsai EM. Gene Expression Profile Analysis of the Molecular Mechanism of HOXD10 Regulation of Epithelial Ovarian Cancer Cells. J Cancer 2024; 15:1213-1224. [PMID: 38356716 PMCID: PMC10861814 DOI: 10.7150/jca.90970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer. Although studies have reported that downregulation of HOXD10 expression may contribute to the migration and invasion abilities in EOC, much about its regulation remains to be fully elucidated. The present study aimed to identify different gene expression profiles associated with HOXD10 overexpression in EOC cells. The present study confirmed that HOXD10 overexpression effectively inhibited the proliferation and motility of the TOV21G and TOV112D cells. Further, we overexpress HOXD10 in TOV112D cells, the different gene expression (DEGs) profiles induce by HOXD10 was analyze by the Human OneArray microarray. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), ingenuity pathway analysis (IPA) was used to perform the pathway enrichment analysis for the DEGs. Integrated bioinformatics analysis showed that the DEGs were enriched for terms related to oxidative phosphorylation and mitochondrial function pathways. Dysfunction oxidative phosphorylation metabolic pathway occurs frequently in many tumors. We validated the expression of NDUFA7, UQCRB and CCL2 using qPCR, involving in metabolism-related pathway, were significantly changed by HOXD10 overexpression in EOC. The detailed regulatory mechanism that links HOXD10 and the oxidative phosphorylation genes is not yet fully understood, our findings provide novel insight into HOXD10-mediated pathways and their effects on cancer metabolism, carcinogenesis, and the progression of EOC. Thus, the data suggest that strategies to interfere with metabolism-related pathways associated with cancer drug resistance could be considered for the treatment of ovarian tumors.
Collapse
Affiliation(s)
- Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Hsiao-Yun Lin
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Hsiang-Ling Chen
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Chia-Yi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ping-Hsuan Chiang
- Department of Internal Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| |
Collapse
|
21
|
Tong K, Wang P, Li Y, Tong Y, Li X, Yan S, Hu P. Resveratrol Inhibits Hepatocellular Carcinoma Progression through Regulating Exosome Secretion. Curr Med Chem 2024; 31:2107-2118. [PMID: 37711128 PMCID: PMC11071656 DOI: 10.2174/0929867331666230914090053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Resveratrol is a promising drug for tumor therapy, but its anti-tumor mechanism remains unclarified. The present study aimed to explore the effect of resveratrol on the secretion of exosomes and the role of resveratrol-induced exosomes in the progression of hepatocellular carcinoma. METHODS The number and contents of exosomes induced by resveratrol were determined by nanoparticle tracking analysis and high-throughput sequencing in Huh7 cells, respectively. Expression of Rab27a was assessed by western blotting and immunofluorescence. Cell proliferation, migration and epithelial-mesenchymal transition were examined with the stimuli of resveratrol and exosomes, the activity of autophagy and wnt/β-catenin signaling induced by resveratrol-induced exosomes and knockdown of lncRNA SNHG29 were monitored by western blotting and immunofluorescence. RESULTS It was found that resveratrol might inhibit the exosome secretion by down-regulating the expression of Rab27a, thereby suppressing the proliferation, migration and epithelial-mesenchymal transition of Huh7 cells. Moreover, resveratrol-induced exosomes could also inhibit the malignant phenotype of Huh7 cells via inhibiting the nuclear translocation of β-catenin and the activation of autophagy, which lncRNA SNHG29 might mediate. CONCLUSION Resveratrol inhibits hepatocellular carcinoma progression by regulating exosome secretion and contents.
Collapse
Affiliation(s)
- Kun Tong
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Laboratory Medicine, Huang Gang Central Hospital, Huanggang, China
| | - Pingfeng Wang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ying Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yaoyao Tong
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of HCC, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Laboratory Medicine, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Xuejie Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shirong Yan
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Pei Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
22
|
Lee SM, Cho J, Choi S, Kim DH, Ryu JW, Kim I, Woo DC, Sung YH, Jeong JY, Baek IJ, Pack CG, Rho JK, Lee SW, Ha CH. HDAC5-mediated exosomal Maspin and miR-151a-3p as biomarkers for enhancing radiation treatment sensitivity in hepatocellular carcinoma. Biomater Res 2023; 27:134. [PMID: 38102691 PMCID: PMC10725039 DOI: 10.1186/s40824-023-00467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Tumor-derived exosomes are critical elements of the cell-cell communication response to various stimuli. This study aims to reveal that the histone deacetylase 5 (HDAC5) and p53 interaction upon radiation in hepatocellular carcinoma intricately regulates the secretion and composition of exosomes. METHODS We observed that HDAC5 and p53 expression were significantly increased by 2 Gy and 4 Gy radiation exposure in HCC. Normal- and radiation-derived exosomes released by HepG2 were purified to investigate the exosomal components. RESULTS We found that in the radiation-derived exosome, exosomal Maspin was notably increased. Maspin is known as an anti-angiogenic gene. The expression of Maspin was regulated at the cellular level by HDAC5, and it was elaborately regulated and released in the exosome. Radiation-derived exosome treatment caused significant inhibition of angiogenesis in HUVECs and mouse aortic tissues. Meanwhile, we confirmed that miR-151a-3p was significantly reduced in the radiation-derived exosome through exosomal miRNA sequencing, and three HCC-specific exosomal miRNAs were also decreased. In particular, miR-151a-3p induced an anti-apoptotic response by inhibiting p53, and it was shown to induce EMT and promote tumor growth by regulating p53-related tumor progression genes. In the HCC xenograft model, radiation-induced exosome injection significantly reduced angiogenesis and tumor size. CONCLUSIONS Our present findings demonstrated HDAC5 is a vital gene of the p53-mediated release of exosomes resulting in tumor suppression through anti-cancer exosomal components in response to radiation. Finally, we highlight the important role of exosomal Maspin and mi-151a-3p as a biomarker in enhancing radiation treatment sensitivity. Therapeutic potential of HDAC5 through p53-mediated exosome modulation in radiation treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Biochemistry and Molecular Biology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jeongin Cho
- Department of Biochemistry and Molecular Biology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Sujin Choi
- Department of Biochemistry and Molecular Biology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Dong Ha Kim
- Department of Biochemistry and Molecular Biology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Je-Won Ryu
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Inki Kim
- Department of Pharmacology, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- Department of Biomedical Engineering, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Sung
- Department of Cell and Genetic Engineering, Asan Medical Center, Asan Institute for Life Sciences University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Yong Jeong
- Department of Microbiology, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Department of Cell and Genetic Engineering, Asan Medical Center, Asan Institute for Life Sciences University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Biomedical Engineering, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Kyung Rho
- Department of Biochemistry and Molecular Biology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| | - Chang Hoon Ha
- Department of Biochemistry and Molecular Biology and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
23
|
Gupta S, Silveira DA, Mombach JCM, Hashimoto RF. The lncRNA DLX6-AS1/miR-16-5p axis regulates autophagy and apoptosis in non-small cell lung cancer: A Boolean model of cell death. Noncoding RNA Res 2023; 8:605-614. [PMID: 37767112 PMCID: PMC10520667 DOI: 10.1016/j.ncrna.2023.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 09/29/2023] Open
Abstract
Long non-coding RNA (lncRNA) distal-less homeobox 6 antisense RNA 1 (DLX6-AS1) is elevated in a variety of cancers, including non-small cell lung cancer (NSCLC) and cervical cancer. Although it was found that the microRNA-16-5p (miR-16), which is known to regulate autophagy and apoptosis, had been downregulated in similar cancers. Recent research has shown that in tumors with similar characteristics, DLX6-AS1 acts as a sponge for miR-16 expression. However, the cell death-related molecular mechanism of the DLX6-AS1/miR-16 axis has yet to be investigated. Therefore, we propose a dynamic Boolean model to investigate gene regulation in cell death processes via the DLX6-AS1/miR-16 axis. We found the finest concordance when we compared our model to many experimental investigations including gain-of-function genes in NSCLC and cervical cancer. A unique positive circuit involving BMI1/ATM/miR-16 is also something we predict. Our results suggest that this circuit is essential for regulating autophagy and apoptosis under stress signals. Thus, our Boolean network enables an evident cell-death process coupled with NSCLC and cervical cancer. Therefore, our results suggest that DLX6-AS1 targeting may boost miR-16 activity and thereby restrict tumor growth in these cancers by triggering autophagy and apoptosis.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua Do Matão 1010, São Paulo, SP, 05508-090, Brazil
| | - Daner A. Silveira
- Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua Do Matão 1010, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
24
|
Li S, Dong R, Kang Z, Li H, Wu X, Li T. Exosomes: Another intercellular lipometabolic communication mediators in digestive system neoplasms? Cytokine Growth Factor Rev 2023; 73:93-100. [PMID: 37541791 DOI: 10.1016/j.cytogfr.2023.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 08/06/2023]
Abstract
Neoplasms are one of the most concerned public health problems worldwide. Digestive system neoplasms, with a high morbidity and mortality, is one of the most common malignant tumors in human being. It is found that exosomes act as an intercellular communication media to carry the metabolic and genetic information of parental cells to target cells. Likely, exosomes participate in lipid metabolism and regulates multiple processes in digestive system neoplasms, including the information transmission among cancer cells, the formation of neoplastic microenvironment, and the neoplastic biological behaviors like metastasis, invasion, and the chemotherapy resistance. In this review, we firstly introduce the main mechanisms whereas exosomes act as intercellular lipometabolic communication mediator in digestive system neoplasms. Thereafter we introduce the relationship between exosomes lipid metabolism and various type of digestive system neoplasms, including gastric cancer, hepatocellular carcinoma, pancreatic cancer, and colorectal cancer. Eventually, we summarized and prospected the development and implication of exosomes in digestive system neoplasms. The further research of exosomes as intercellular lipid metabolism mediator will contribute to accurate and efficient diagnosis and treatment of digestive system neoplasms.
Collapse
Affiliation(s)
- Shaodong Li
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China; Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Ruizhi Dong
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Zhenhua Kang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Hucheng Li
- Department of Hepato-Pancreato-Biliary Center, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China; Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
25
|
Correa-Arzate L, Portilla-Robertson J, Ramírez-Jarquín JO, Jacinto-Alemán LF, Mejía-Velázquez CP, Villanueva-Sánchez FG, Rodríguez-Vázquez M. LRP5, SLC6A3, and SOX10 Expression in Conventional Ameloblastoma. Genes (Basel) 2023; 14:1524. [PMID: 37628576 PMCID: PMC10453908 DOI: 10.3390/genes14081524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Cell proliferation and invasion are characteristic of many tumors, including ameloblastoma, and are important features to target in possible future therapeutic applications. OBJECTIVE The objective of this study was the identification of key genes and inhibitory drugs related to the cell proliferation and invasion of ameloblastoma using bioinformatic analysis. METHODS The H10KA_07_38 gene profile database was analyzed by Rstudio and ShinyGO Gene Ontology enrichment. String, Cytoscape-MCODE, and Kaplan-Meier plots were generated, which were subsequently validated by RT-qPCR relative expression and immunoexpression analyses. To propose specific inhibitory drugs, a bioinformatic search using Drug Gene Budger and DrugBank was performed. RESULTS A total of 204 significantly upregulated genes were identified. Gene ontology enrichment analysis identified four pathways related to cell proliferation and cell invasion. A total of 37 genes were involved in these pathways, and 11 genes showed an MCODE score of ≥0.4; however, only SLC6A3, SOX10, and LRP5 were negatively associated with overall survival (HR = 1.49 (p = 0.0072), HR = 1.55 (p = 0.0018), and HR = 1.38 (p = 0.025), respectively). The RT-qPCR results confirmed the significant differences in expression, with overexpression of >2 for SLC6A3 and SOX10. The immunoexpression analysis indicated positive LRP5 and SLC6A3 expression. The inhibitory drugs bioinformatically obtained for the above three genes were parthenolide and vorinostat. CONCLUSIONS We identify LRP5, SLC6A3, and SOX10 as potentially important genes related to cell proliferation and invasion in the pathogenesis of ameloblastomas, along with both parthenolide and vorinostat as inhibitory drugs that could be further investigated for the development of novel therapeutic approaches against ameloblastoma.
Collapse
Affiliation(s)
- Lorena Correa-Arzate
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | - Javier Portilla-Robertson
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | - Josué Orlando Ramírez-Jarquín
- Neurosciences Division, Cellular Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Luis Fernando Jacinto-Alemán
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | - Claudia Patricia Mejía-Velázquez
- Department of Oral Medicine and Pathology, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico (J.P.-R.); (C.P.M.-V.)
| | | | - Mariana Rodríguez-Vázquez
- Infectomic and Molecular Pathogenesis Department, CINVESTAV, National Polytechnic Institute, Mexico City 07738, Mexico;
| |
Collapse
|
26
|
Tiyuri A, Baghermanesh SS, Davatgaran-Taghipour Y, Eslami SS, Shaygan N, Parsaie H, Barati M, Jafari D. Diagnostic accuracy of serum derived exosomes for hepatocellular carcinoma: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:971-983. [PMID: 37715364 DOI: 10.1080/14737159.2023.2260306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Early and non-invasive detection of hepatocellular carcinoma (HCC), which is usually asymptomatic, can improve overall survival outcomes. The objective of this systematic review and meta-analysis was to evaluate the diagnostic accuracy of serum-derived exosomes for diagnosing HCC. METHODS PubMed, Web of Science, and Scopus databases were searched for relevant studies up to April 2023. The quality of included studies was assessed using the QUADAS-2 checklist, and data were extracted. Statistical analysis was performed on 18 studies from 3,993 records, and a diagnostic meta-analysis was conducted. Biomarkers were categorized into four groups based on their type (exosomal miRNAs, exosomal RNAs, alpha-fetoprotein (AFP), and exosomal RNAs+AFP panel), and a meta-analysis was conducted for each category separately. RESULTS The highest pooled sensitivity was 0.86 for exosomal miRNAs, and exosomal RNAs+AFP had the highest pooled specificity; (0.89). Furthermore, exosomal RNAs+AFP had the highest pooled positive likelihood ratio; (7.55), the highest pooled diagnostic odds ratio (35.96) and the highest pooled area under the curve (0.93). Exosomal miRNAs had the lowest pooled negative likelihood ratio; (0.17). CONCLUSIONS The diagnostic accuracy of exosomal biomarkers is superior to that of AFP, and combining the two in a panel yields the better results.
Collapse
Affiliation(s)
- Amir Tiyuri
- Department of Epidemiology and Biostatistics, School of Health, Birjand University of Medical Sciences, Birjand, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Shayeste Sadat Baghermanesh
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yasamin Davatgaran-Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Sadegh Eslami
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, Canada
| | - Nasibeh Shaygan
- Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Houman Parsaie
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Jafari
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Li T, Jiao J, Ke H, Ouyang W, Wang L, Pan J, Li X. Role of exosomes in the development of the immune microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1200201. [PMID: 37457718 PMCID: PMC10339802 DOI: 10.3389/fimmu.2023.1200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Despite numerous improved treatment methods used in recent years, hepatocellular carcinoma (HCC) is still a disease with a high mortality rate. Many recent studies have shown that immunotherapy has great potential for cancer treatment. Exosomes play a significant role in negatively regulating the immune system in HCC. Understanding how these exosomes play a role in innate and adaptive immunity in HCC can significantly improve the immunotherapeutic effects on HCC. Further, engineered exosomes can deliver different drugs and RNA molecules to regulate the immune microenvironment of HCC by regulating the aforementioned immune pathway, thereby significantly improving the mortality rate of HCC. This study aimed to declare the role of exosomes in the development of the immune microenvironment in HCC and list engineered exosomes that could be used for clinical transformation therapy. These findings might be beneficial for clinical patients.
Collapse
Affiliation(s)
- Tanghua Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiapeng Jiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenshan Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Luobin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Pan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, Hongkong, Hongkong SAR, China
| | - Xin Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Agrawal N, Skelton AA, Parisini E. A coarse-grained molecular dynamics investigation on spontaneous binding of Aβ 1-40 fibrils with cholesterol-mixed DPPC bilayers. Comput Struct Biotechnol J 2023; 21:2688-2695. [PMID: 37143763 PMCID: PMC10151222 DOI: 10.1016/j.csbj.2023.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia. Its aetiology is characterized by the misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet-rich Aβ oligomers/fibrils. Although multiple experimental studies have suggested that Aβ oligomers/fibrils interact with the cell membranes and perturb their structures and dynamics, the molecular mechanism of this interaction is still not fully understood. In the present work, we have performed a total of 120 μs-long simulations to investigate the interaction between trimeric or hexameric Aβ1-40 fibrils with either a 100% DPPC bilayer, a 70% DPPC-30% cholesterol bilayer or a 50% DPPC-50% cholesterol bilayer. Our simulation data capture the spontaneous binding of the aqueous Aβ1-40 fibrils with the membranes and show that the central hydrophobic amino acid cluster, the lysine residue adjacent to it and the C-terminal hydrophobic residues are all involved in the process. Moreover, our data show that while the Aβ1-40 fibril does not bind to the 100% DPPC bilayer, its binding affinity for the membrane increases with the amount of cholesterol. Overall, our data suggest that two clusters of hydrophobic residues and one lysine help Aβ1-40 fibrils establish stable interactions with a cholesterol-rich DPPC bilayer. These residues are likely to represent potential target regions for the design of inhibitors, thus opening new avenues in structure-based drug design against Aβ oligomer/fibril-membrane interaction.
Collapse
Affiliation(s)
- Nikhil Agrawal
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adam A. Skelton
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
29
|
Guo J, Zhou X, Cheng L, Gao X. Construction of a miRNA-mRNA network related to exosomes in metastatic hepatocellular carcinoma. Heliyon 2023; 9:e15428. [PMID: 37101627 PMCID: PMC10123261 DOI: 10.1016/j.heliyon.2023.e15428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
Aims This study aimed to construct a miRNA-mRNA network to elucidate the molecular mechanism of exosome function in metastatic HCC. Methods We explored the Gene Expression Omnibus (GEO) database and then analyzed the RNAs of 50 samples to obtain differentially expressed miRNAs (DEMs) and mRNAs (DEGs) involved in the progression of metastatic HCC. Next, a miRNA-mRNA network related to exosomes in metastatic HCC was constructed on the basis of the identified DEMs and DEGs. Finally, the function of the miRNA-mRNA network was explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Immunohistochemistry was performed to validate expression of NUCKS1 in HCC specimens. Based on the immunohistochemistry, the score of the NUCKS1 expression was calculated, and the patients were divided into high- and low-expression patients, and the differences in survival between the two groups were compared. Results Through our analysis, 149 DEMs and 60 DEGs were identified. In addition, a miRNA-mRNA network, including 23 miRNAs and 14 mRNAs, was constructed. Low expression of NUCKS1 was validated in the majority of HCCs compared with their matched adjacent cirrhosis specimens (P < 0.001), which was consistent with our result of differential expression analyses. HCC patients with low expression of NUCKS1 had shorter overall survival than those with high NUCKS1 expression (P = 0.0441). Conclusions The novel miRNA-mRNA network will provide new insights into the underlying molecular mechanisms of exosomes in metastatic HCC. NUCKS1 might serve a potential therapeutic target to restrain the development of HCC.
Collapse
Affiliation(s)
- Jiang Guo
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Long Cheng
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xuesong Gao
- Department of General Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Corresponding author. No. 8 Jingshun East Street, Chaoyang District, Beijing, China.
| |
Collapse
|
30
|
Quiroz Reyes AG, Lozano Sepulveda SA, Martinez-Acuña N, Islas JF, Gonzalez PD, Heredia Torres TG, Perez JR, Garza Treviño EN. Cancer Stem Cell and Hepatic Stellate Cells in Hepatocellular Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231163677. [PMID: 36938618 PMCID: PMC10028642 DOI: 10.1177/15330338231163677] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer. It is highly lethal and has high recurrence. Death among HCC patients occur mainly due to tumor progression, recurrence, metastasis, and chemoresistance. Cancer stem cells (CSCs) are cell subpopulations within the tumor that promote invasion, recurrence, metastasis, and drug resistance. Hepatic stellate cells (HSCs) are important components of the tumor microenvironment (TME) responsible for primary secretory ECM proteins during liver injury and inflammation. These cells promote fibrogenesis, infiltrate the tumor stroma, and contribute to HCC development. Interactions between HSC and CSC and their microenvironment help promote carcinogenesis through different mechanisms. This review summarizes the roles of CSCs and HSCs in establishing the TME in primary liver tumors and describes their involvement in HCC chemoresistance.
Collapse
Affiliation(s)
- Adriana G Quiroz Reyes
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Sonia A Lozano Sepulveda
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Natalia Martinez-Acuña
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Jose F Islas
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Paulina Delgado Gonzalez
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Tania Guadalupe Heredia Torres
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Jorge Roacho Perez
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Elsa N Garza Treviño
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
31
|
Hosseinikhah SM, Gheybi F, Moosavian SA, Shahbazi MA, Jaafari MR, Sillanpää M, Kesharwani P, Alavizadeh SH, Sahebkar A. Role of exosomes in tumour growth, chemoresistance and immunity: state-of-the-art. J Drug Target 2023; 31:32-50. [PMID: 35971773 DOI: 10.1080/1061186x.2022.2114000] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most lethal diseases, and limited available treatment options contribute to its high mortality rate. Exosomes are considered membrane-bound nanovesicles that include different molecules such as lipids, proteins, and nucleic acids. Virtually most cells could release exosomes via exocytosis in physiological and pathological conditions. Tumour-derived exosomes (TDEs) play essential roles in tumorigenesis, proliferation, progression, metastasis, immune escape, and chemoresistance by transferring functional biological cargos, triggering different autocrine, and paracrine signalling cascades. Due to their antigen-presenting properties, exosomes are widely used as biomarkers and drug carriers and have a prominent role in cancer immunotherapy. They offer various advantages in carrier systems (e.g. in chemotherapy, siRNA, and miRNA), delivery of diagnostic agents owing to their stability, loading of hydrophobic and hydrophilic agents, and drug targeting. Novel exosomes-based carriers can be generated as intelligent systems using various sources and crosslinking chemistry extracellular vesicles (EVs). Exosomes studded with targeting ligands, including peptides, can impart in targeted delivery of cargos to tumour cells. In this review, we comprehensively summarised the important role of tumour-derived exosomes in dictating cancer pathogenesis and resistance to therapy. We have therefore, investigated in further detail the pivotal role of tumour-derived exosomes in targeting various cancer cells and their applications, and prospects in cancer therapy and diagnosis. Additionally, we have implicated the potential utility and significance of tumour exosomes-based nanoparticles as an efficient and novel therapeutic carrier and their applications in treating advanced cancers.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Tan XP, Zhou K, Zeng QL, Yuan YF, Chen W. Influence of AFP on surgical outcomes in non-B non-C patients with curative resection for hepatocellular carcinoma. Clin Exp Med 2023; 23:107-115. [PMID: 35293607 PMCID: PMC9939498 DOI: 10.1007/s10238-022-00813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
To study the clinical and prognostic features of non-B non-C alpha-fetoprotein (AFP)(-)-hepatocellular carcinoma (HCC) (NBNC-AFP(-)-HCC) and the relationship between the prognostic features of HCC and hepatitis B virus surface antigen (HBsAg) status and AFP. We enrolled 227 patients who underwent hepatic resection for HCC between January 1998 and December 2007 at Sun Yat-sen University Cancer Center, all of whom were diagnosed with HCC by pathology. All patients were stratified into one of four groups (B-AFP(+)-HCC, B-AFP(-)-HCC, NBNC-AFP(+)-HCC, and NBNC-AFP(-)-HCC) according to AFP levels and HBsAg status. The clinicopathologic and survival characteristics of NBNC-AFP(-)-HCC patients were compared with those of all other three groups. Out of the 105 NBNC-HCC patients, 43 patients (40.9%) had AFP-negative HCC. There were some differences in factors between the B-AFP(+) and NBNC-AFP(-) patients, such as age, body mass index (BMI), diabetes, and ALT (P < 0.05). On univariate analysis, tumour size, secondary tumour, and portal invasion were prognostic factors for overall survival (OS) and disease-free survival (DFS) (P < 0.05). Cox multivariate regression analysis suggested that tumour size and tumour number (P < 0.05) were independent predictors. In addition, compared with the B-AFP(+)-HCC, B-AFP(-)-HCC, and NBNC-AFP(+)-HCC groups, the NBNC-AFP(-)-HCC patients had the best DFS (P < 0.05). Compared with the B-AFP(+)-HCC and NBNC-AFP(+)-HCC groups, the NBNC-AFP(-)-HCC patients had better OS (P < 0.05), and survival rates were similar to those of B-AFP(-)-HCC patients. NBNC-AFP(-)-HCC patients had a relatively favourable prognosis. It can serve as a useful marker in predicting the risk of tumour recurrence in the early stages.
Collapse
Affiliation(s)
- Xiao-Ping Tan
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Kai Zhou
- Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
| | - Qing-Li Zeng
- The 334 Hospital Affiliated to Nanchang University, Nanchang, 330024, Jiangxi, China
| | - Yun-Fei Yuan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510655, China.
| | - Wei Chen
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
33
|
Exosomes in HBV infection. Clin Chim Acta 2023; 538:65-69. [PMID: 36375524 DOI: 10.1016/j.cca.2022.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Exosomes have been identified as important mediators of intercellular communication in several physiological and pathological processes. Hepatitis B is caused by infection with the hepatitis B virus (HBV), which impairs hepatocytes, with chronic infection resulting in cirrhosis or liver cancer. We studied the roles and functions of exosomes in HBV infection and found that exosomes could promote HBV spread and development of HBV-related diseases. Exosomes could be used as potential biomarkers for HBV diagnosis. Furthermore, exosomes have potential applications in treatment for HBV infection via inhibition of HBV replication and transcription.
Collapse
|
34
|
Liu C, Ren C, Guo L, Yang C, Yu Q. Exosome-mediated circTTLL5 transfer promotes hepatocellular carcinoma malignant progression through miR-136-5p/KIAA1522 axis. Pathol Res Pract 2023; 241:154276. [PMID: 36528986 DOI: 10.1016/j.prp.2022.154276] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Exosomes have been recognized as messengers for intercellular communication in tumor microenvironment. Exosomal circRNAs are reported to be important in tumors. Here, this study identified the potential function of exosomal circular RNA tubulin tyrosine ligase like 5 (circTTLL5) in hepatocellular carcinoma (HCC) progression. METHODS The expression of circTTLL5, microRNA (miR)- 136-5p and KIAA1522 was detected using qRT-PCR and Western blot assays. Exosomes were isolated by ultracentrifugation, and qualified by transmission electron microscopy (TEM) and Western blot. Cell proliferation, apoptosis and metastasis were investigated using cell counting kit-8, colony formation, flow cytometry, would healing, transwell and Western blot assays, respectively. The interaction between miR-136-5p and circTTLL5 or KIAA1522 was confirmed by dual-luciferase reporter and pull-down assays. In vivo experiment was performed using Xenograft models. RESULTS CircTTLL5 was incorporated into exosomes and highly expressed in HCC tissues and cells. CircTTLL5 knockdown suppressed HCC cell proliferation and metastasis in vitro and impeded tumor growth in mice. CircTTLL5 could be delivered to recipient cells via exosomes, and treatment of circTTLL5-elevated exosomes could attenuate the anticancer effects of circTTLL5 knockdown on HCC in vitro and in vivo. Mechanically, circTTLL5 could sponge miR-136-5p, which controlled its down-stream target KIAA1522. MiR-136-5p inhibition reversed the effects of circTTLL5 knockdown on HCC cells. Besides that, miR-136-5p re-expression inhibited HCC cell growth and metastasis, which was abated by KIAA1522 overexpression. CONCLUSION Exosomal circTTLL5 promoted HCC progression through miR-136-5p/KIAA1522 axis, suggesting that blockage of the exosome-mediated transfer of circTTLL5 might be a therapeutic target for HCC.
Collapse
Affiliation(s)
- Chanjuan Liu
- Clinical Laboratory, the Second Affiliated Hospital of Mudanjiang Medical College, China
| | - Chunna Ren
- Clinical Laboratory, the Second Affiliated Hospital of Mudanjiang Medical College, China
| | - Ling Guo
- Personnel Section, the Second Affiliated Hospital of Mudanjiang Medical College, China
| | - Cuizhen Yang
- Clinical Laboratory, the Second Affiliated Hospital of Mudanjiang Medical College, China
| | - Qi Yu
- Clinical Laboratory, the Second Affiliated Hospital of Mudanjiang Medical College, China.
| |
Collapse
|
35
|
Abstract
C-Myc overexpression is a common finding in pancreatic cancer and predicts the aggressive behavior of cancer cells. It binds to the promoter of different genes, thereby regulating their transcription. C-Myc is downstream of KRAS and interacts with several oncogenic and proliferative pathways in pancreatic cancer. C-Myc enhances aerobic glycolysis in cancer cells and regulates glutamate biosynthesis from glutamine. It provides enough energy for cancer cells' metabolism and sufficient substrate for the synthesis of organic molecules. C-Myc overexpression is associated with chemoresistance, intra-tumor angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis in pancreatic cancer. Despite its title, c-Myc is not "undruggable" and recent studies unveiled that it can be targeted, directly or indirectly. Small molecules that accelerate c-Myc ubiquitination and degradation have been effective in preclinical studies. Small molecules that hinder c-Myc-MAX heterodimerization or c-Myc/MAX/DNA complex formation can functionally inhibit c-Myc. In addition, c-Myc can be targeted through transcriptional, post-transcriptional, and translational modifications.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
36
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
37
|
Li L, Wang X, Xu H, Liu X, Xu K. Perspectives and mechanisms for targeting ferroptosis in the treatment of hepatocellular carcinoma. Front Mol Biosci 2022; 9:947208. [PMID: 36052168 PMCID: PMC9424770 DOI: 10.3389/fmolb.2022.947208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a novel process of regulated cell death discovered in recent years, mainly caused by intracellular lipid peroxidation. It is morphologically manifested as shrinking of mitochondria, swelling of cytoplasm and organelles, rupture of plasma membrane, and formation of double-membrane vesicles. Work done in the past 5 years indicates that induction of ferroptosis is a promising strategy in the treatment of hepatocellular carcinoma (HCC). System xc-/GSH/GPX4, iron metabolism, p53 and lipid peroxidation pathways are the main focus areas in ferroptosis research. In this paper, we analyze the ferroptosis-inducing drugs and experimental agents that have been used in the last 5 years in the treatment of HCC. We summarize four different key molecular mechanisms that induce ferroptosis, i.e., system xc-/GSH/GPX4, iron metabolism, p53 and lipid peroxidation. Finally, we outline the prognostic analysis associated with ferroptosis in HCC. The findings summarized suggest that ferroptosis induction can serve as a promising new therapeutic approach for HCC and can provide a basis for clinical diagnosis and prevention of this disease.
Collapse
Affiliation(s)
- Lanqing Li
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoqiang Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaoqiang Wang, ; Kang Xu,
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Xiaoqiang Wang, ; Kang Xu,
| |
Collapse
|
38
|
Li X, Wang W, Chen J, Xie B, Luo S, Chen D, Cai C, Li C, Li W. The potential role of exosomal miRNAs and membrane proteins in acute HIV-infected people. Front Immunol 2022; 13:939504. [PMID: 36032099 PMCID: PMC9411714 DOI: 10.3389/fimmu.2022.939504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes play an important role during human immunodeficiency virus (HIV) acute infection. Yet, information regarding its cargo and its association with HIV rapid progressors (RPs) and typical progressors (TPs) remain largely unknown. In this study, exosomal miRNAs sequencing and mass cytometry were used to identify differential exosomal miRNAs and membrane proteins that participate in the pathogenesis of TPs and RPs. We discovered that miR-144-5p, miR-1180-3p, miR-451a, miR-362-5p, and miR-625-5p are associated with the TPs and miR-362-5p with the RPs. Decreased autophagy, amino acid metabolism, immune response, and IL-6 are closely related to RPs. In addition, SP1 was selected as the most significant transcription factor (TF) associated with disease progression. CD49D, CD5, CCR5, CD40, CD14, and CD86 were selected as the differential exosomal membrane proteins between TPs and RPs. This study provides valuable information for clarifying the mechanism in people with acute HIV infection.
Collapse
Affiliation(s)
- Xin Li
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- General Surgery Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jing Chen
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weihua Li, ; Chao Cai, ; Chuanyun Li,
| | - Chuanyun Li
- General Surgery Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weihua Li, ; Chao Cai, ; Chuanyun Li,
| | - Weihua Li
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weihua Li, ; Chao Cai, ; Chuanyun Li,
| |
Collapse
|
39
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Di Vito Nolfi M, Zazzeroni F, Alesse E, Tessitore A. Role of exosomal microRNAs in cancer therapy and drug resistance mechanisms: focus on hepatocellular carcinoma. Front Oncol 2022; 12:940056. [PMID: 35912267 PMCID: PMC9334682 DOI: 10.3389/fonc.2022.940056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), defined as intercellular messengers that carry their cargos between cells, are involved in several physiological and pathological processes. These small membranous vesicles are released by most cells and contain biological molecules, including nucleic acids, proteins and lipids, which can modulate signaling pathways of nearby or distant recipient cells. Exosomes, one the most characterized classes of EVs, include, among others, microRNAs (miRNAs), small non-coding RNAs able to regulate the expression of several genes at post-transcriptional level. In cancer, exosomal miRNAs have been shown to influence tumor behavior and reshape tumor microenvironment. Furthermore, their possible involvement in drug resistance mechanisms has become evident in recent years. Hepatocellular carcinoma (HCC) is the major type of liver cancer, accounting for 75-85% of all liver tumors. Although the improvement in HCC treatment approaches, low therapeutic efficacy in patients with intermediate-advanced HCC is mainly related to the development of tumor metastases, high risk of recurrence and drug resistance. Exosomes have been shown to be involved in pathogenesis and progression of HCC, as well as in drug resistance, by regulating processes such as cell proliferation, epithelial-mesenchymal transition and immune response. Herein, we summarize the current knowledge about the involvement of exosomal miRNAs in HCC therapy, highlighting their role as modulators of therapeutic response, particularly chemotherapy and immunotherapy, as well as possible therapeutic tools.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Alessandra Tessitore,
| |
Collapse
|
40
|
Mamashli M, Nasseri S, Mohammadi Y, Ayati S, Zarban A. Anti-inflammatory effects of N-Acetylcysteine and Elaeagnus angustifolia extract on acute lung injury induced by λ-carrageenan in rat. Inflammopharmacology 2022; 30:1759-1768. [PMID: 35723848 PMCID: PMC9207887 DOI: 10.1007/s10787-022-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
N-Acetylcysteine (NAC) is a chemical compound with anti-inflammatory and antioxidant activity and acts as a free radical scavenger. Elaeagnus angustifolia (EA) is a plant native to the western part of Iran, with antioxidant and anti-inflammatory properties. The present study been taken evaluated the protective effect afforded by EA and NAC extracts on carrageenan-induced acute lung injury in Wistar rats. In this study, 42 rats were randomly assigned into seven groups. NAC and EA extracts were orally administered once/day for 21 continuous days. Pulmonary damage was induced by intratracheal injection of 100 μl of 2% λ-Carrageenan on day 21. Twenty-four hours post-surgery, the rats were euthanized and the samples were collected. Pretreatment with NAC and EA extracts reduced the total and differential cell accumulation as well as IL-6, and TNF-α cytokines. Antioxidant indicators demonstrate that in the groups receiving NAC and EA extract, MDA decreased while thiol and antioxidant capacity elevated. Treatment with NAC and EA significantly reduced Carrageenan-induced pathological pulmonary tissue injury. NAC and EA extract has protective effects on acute carrageenan-induced lung injury.
Collapse
Affiliation(s)
- Morteza Mamashli
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Ghafari Street, Birjand, 9717853577, South Khorasan, Iran
| | - Saeed Nasseri
- Cellular and Molecular Research Center, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Yaser Mohammadi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Sahar Ayati
- Department of Pathology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Ghafari Street, Birjand, 9717853577, South Khorasan, Iran.
| |
Collapse
|
41
|
Wang J, Wang X, Zhang X, Shao T, Luo Y, Wang W, Han Y. Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Front Oncol 2022; 12:884369. [PMID: 35692794 PMCID: PMC9175035 DOI: 10.3389/fonc.2022.884369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs. Although EVs show great potential for the treatment of HCC and their role in HCC progression has been extensively studied, there are still many challenges such as time-consuming extraction, difficult storage, easy contamination, and low drug loading rate. We focus on the biogenesis, morphological characteristics, isolation and extraction of EVs and their significance in the progression of HCC, tumor invasion, immune escape and cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of HCC and new targets for tumor-targeted therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoya Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xintong Zhang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Tingting Shao
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yanmei Luo
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
42
|
Di Santo R, Vaccaro M, Romanò S, Di Giacinto F, Papi M, Rapaccini GL, De Spirito M, Miele L, Basile U, Ciasca G. Machine Learning-Assisted FTIR Analysis of Circulating Extracellular Vesicles for Cancer Liquid Biopsy. J Pers Med 2022; 12:jpm12060949. [PMID: 35743734 PMCID: PMC9224706 DOI: 10.3390/jpm12060949] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are abundantly released into the systemic circulation, where they show remarkable stability and harbor molecular constituents that provide biochemical information about their cells of origin. Due to this characteristic, EVs are attracting increasing attention as a source of circulating biomarkers for cancer liquid biopsy and personalized medicine. Despite this potential, none of the discovered biomarkers has entered the clinical practice so far, and novel approaches for the label-free characterization of EVs are highly demanded. In this regard, Fourier Transform Infrared Spectroscopy (FTIR) has great potential as it provides a quick, reproducible, and informative biomolecular fingerprint of EVs. In this pilot study, we investigated, for the first time in the literature, the capability of FTIR spectroscopy to distinguish between EVs extracted from sera of cancer patients and controls based on their mid-IR spectral response. For this purpose, EV-enriched suspensions were obtained from the serum of patients diagnosed with Hepatocellular Carcinoma (HCC) of nonviral origin and noncancer subjects. Our data point out the presence of statistically significant differences in the integrated intensities of major mid-IR absorption bands, including the carbohydrate and nucleic acids band, the protein amide I and II bands, and the lipid CH stretching band. Additionally, we used Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) for the automated classification of spectral data according to the shape of specific mid-IR spectral signatures. The diagnostic performances of the proposed spectral biomarkers, alone and combined, were evaluated using multivariate logistic regression followed by a Receiving Operator Curve analysis, obtaining large Areas Under the Curve (AUC = 0.91, 95% CI 0.81–1.0). Very interestingly, our analyses suggest that the discussed spectral biomarkers can outperform the classification ability of two widely used circulating HCC markers measured on the same groups of subjects, namely alpha-fetoprotein (AFP), and protein induced by the absence of vitamin K or antagonist-II (PIVKA-II).
Collapse
Affiliation(s)
- Riccardo Di Santo
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Correspondence:
| | - Maria Vaccaro
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Massimiliano Papi
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Gian Ludovico Rapaccini
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Sezione di Medicina Interna, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Marco De Spirito
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Luca Miele
- Sezione di Medicina Interna, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Umberto Basile
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (M.V.); (F.D.G.); (M.P.); (G.L.R.); (M.D.S.); (G.C.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
43
|
Darnat P, Burg A, Sallé J, Lacoste J, Louvet-Vallée S, Gho M, Audibert A. Cortical Cyclin A controls spindle orientation during asymmetric cell divisions in Drosophila. Nat Commun 2022; 13:2723. [PMID: 35581185 PMCID: PMC9114397 DOI: 10.1038/s41467-022-30182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
The coordination between cell proliferation and cell polarity is crucial to orient the asymmetric cell divisions to generate cell diversity in epithelia. In many instances, the Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is spatially and temporally coordinated with cell cycle progression has remained elusive. Using Drosophila sensory organ precursor cells as a model system, we show that Cyclin A, the main Cyclin driving the transition to M-phase of the cell cycle, is recruited to the apical-posterior cortex in prophase by the Frizzled/Dishevelled complex. This cortically localized Cyclin A then regulates the orientation of the division by recruiting Mud, a homologue of NuMA, the well-known spindle-associated protein. The observed non-canonical subcellular localization of Cyclin A reveals this mitotic factor as a direct link between cell proliferation, cell polarity and spindle orientation. The Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is coordinated with the cell cycle is unclear. Here, the authors show with Drosophila sensory organ precursor cells that Cyclin A is recruited in prophase by Frizzled/Dishevelled, regulating division orientation.
Collapse
Affiliation(s)
- Pénélope Darnat
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Angélique Burg
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Jérémy Sallé
- Institut Jacques Monod, Université Paris Diderot/CNRS, Cellular Spatial Organization Team, F-75005, Paris, France
| | - Jérôme Lacoste
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Sophie Louvet-Vallée
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Michel Gho
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France.
| | - Agnès Audibert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France.
| |
Collapse
|
44
|
Insights into the Critical Role of Exosomes in the Brain; from Neuronal Activity to Therapeutic Effects. Mol Neurobiol 2022; 59:4453-4465. [DOI: 10.1007/s12035-022-02853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
45
|
Yamaguchi F, Hayakawa S, Kawashima S, Asakura T, Oishi Y. Antitumor effect of memantine is related to the formation of the splicing isoform of GLG1, a decoy FGF‑binding protein. Int J Oncol 2022; 61:80. [PMID: 35543162 DOI: 10.3892/ijo.2022.5370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022] Open
Abstract
Drug repositioning is a strategy for repurposing the approved or investigational drugs that are outside the scope of the original medical indication. Memantine is used as a non‑competitive N‑methyl‑D‑aspartate receptor antagonist to prevent glutamate‑mediated excitotoxicity in Alzheimer's disease, and is one of the promising agents which is utilized for the purpose of cancer therapy. However, the association between memantine and Golgi glycoprotein 1 (GLG1), an intracellular fibroblast growth factor receptor, in cancers has not yet been clarified. The present study analyzed the expression and location of GLG1 in tumor cells treated with memantine. Memantine was found to suppress the growth of malignant glioma and breast cancer cells in a concentration‑dependent manner. The mRNA expression of GLG1 was upregulated in a concentration‑dependent manner, and the splicing variant profiles were altered in all cell lines examined. The results of western blot analysis revealed an increase in the full‑length and truncated forms of GLG1. Moreover, GLG1 spread in the cytosol of memantine‑treated cells, whereas it localized in the Golgi apparatus in control cells. Since GLG1 functions as a decoy FGF receptor, the modulation of GLG1 may prove to be one of the mechanisms underlying the cancer‑suppressive effects of memantine.
Collapse
Affiliation(s)
- Fumio Yamaguchi
- Department of Neurosurgery for Community Health, Nippon Medical School, Tokyo 1138603, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 1138603, Japan
| | - Shota Kawashima
- Faculty of Medicine, Nippon Medical School, Tokyo 1138603, Japan
| | - Takayuki Asakura
- Department of Neurosurgery for Community Health, Nippon Medical School, Tokyo 1138603, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 1138603, Japan
| |
Collapse
|
46
|
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Pietraszek-Gremplewicz K, Majkowski M, Kot M, Ziętek M, Matkowski R, Nowak D. Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal 2022; 20:63. [PMID: 35538545 PMCID: PMC9092709 DOI: 10.1186/s12964-022-00871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background The tumor microenvironment consists of stromal cells, extracellular matrix, and physicochemical properties (e.g., oxygenation, acidification). An important element of the tumor niche are cancer-associated fibroblasts (CAFs). They may constitute up to 80% of the tumor mass and share some features with myofibroblasts involved in the process of wound healing. CAFs can facilitate cancer progression. However, their interaction with melanoma cells is still poorly understood.
Methods We obtained CAFs using conditioned media derived from primary and metastatic melanoma cells, and via co-culture with melanoma cells on Transwell inserts. Using 2D and 3D wound healing assays and Transwell invasion method we evaluated CAFs’ motile activities, while coverslips with FITC-labeled gelatin, gelatin zymography, and fluorescence-based activity assay were employed to determine the proteolytic activity of the examined cells. Western Blotting method was used for the identification of CAFs’ markers as well as estimation of the mediators of MMPs’ (matrix metalloproteinases) expression levels. Lastly, CAFs’ secretome was evaluated with cytokine and angiogenesis proteomic arrays, and lactate chemiluminescence-based assay. Results Acquired FAP-α/IL6-positive CAFs exhibited elevated motility expressed as increased migration and invasion ratio, as well as higher proteolytic activity (area of digestion, MMP2, MMP14). Furthermore, fibroblasts activated by melanoma cells showed upregulation of the MMPs’ expression mediators’ levels (pERK, p-p38, CD44, RUNX), enhanced secretion of lactate, several cytokines (IL8, IL6, CXCL1, CCL2, ICAM1), and proteins related to angiogenesis (GM-CSF, DPPIV, VEGFA, PIGF). Conclusions Observed changes in CAFs’ biology were mainly driven by highly aggressive melanoma cells (A375, WM9, Hs294T) compared to the less aggressive WM1341D cells and could promote melanoma invasion, as well as impact inflammation, angiogenesis, and acidification of the tumor niche. Interestingly, different approaches to CAFs acquisition seem to complement each other showing interactions between studied cells. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00871-x.
Collapse
Affiliation(s)
- Justyna Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | | | - Michał Majkowski
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wrocław, Poland.,Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413, Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wrocław, Poland.,Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413, Wrocław, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| |
Collapse
|
47
|
Hua Y, Han A, Yu T, Hou Y, Ding Y, Nie H. Small Extracellular Vesicles Containing miR-34c Derived from Bone Marrow Mesenchymal Stem Cells Regulates Epithelial Sodium Channel via Targeting MARCKS. Int J Mol Sci 2022; 23:ijms23095196. [PMID: 35563590 PMCID: PMC9101277 DOI: 10.3390/ijms23095196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022] Open
Abstract
Epithelial sodium channel (ENaC) is a pivotal regulator of alveolar fluid clearance in the airway epithelium and plays a key role in the treatment of acute lung injury (ALI), which is mainly composed of the three homologous subunits (α, β and γ). The mechanisms of microRNAs in small extracellular vesicles (sEVs) derived from mesenchymal stem cell (MSC-sEVs) on the regulation of lung ion transport are seldom reported. In this study, we aimed at investigating whether miR-34c had an effect on ENaC dysfunction induced by lipopolysaccharide and explored the underlying mechanism in this process. Primarily, the effect of miR-34c on lung edema and histopathology changes in an ALI mouse model was investigated. Then the uptake of PKH26-labeled sEVs was observed in recipient cells, and we observed that the overexpression of miR-34c in MSC-sEVs could upregulate the LPS-inhibited γ-ENaC expression. The dual luciferase reporter gene assay demonstrated that myristoylated alanine-rich C kinase substrate (MARCKS) was one of target genes of miR-34c, the protein expression of which was negatively correlated with miR-34c. Subsequently, either upregulating miR-34c or knocking down MARCKS could increase the protein expression of phospho-phosphatidylinositol 3-kinase (p-PI3K) and phospho-protein kinase B (p-AKT), implying a downstream regulation pathway was involved. All of the above suggest that miR-34c in MSC-sEVs can attenuate edematous lung injury via enhancing γ-ENaC expression, at least partially, through targeting MARCKS and activating the PI3K/AKT signaling pathway subsequently.
Collapse
|
48
|
Lee T, Rawding PA, Bu J, Hyun S, Rou W, Jeon H, Kim S, Lee B, Kubiatowicz LJ, Kim D, Hong S, Eun H. Machine-Learning-Based Clinical Biomarker Using Cell-Free DNA for Hepatocellular Carcinoma (HCC). Cancers (Basel) 2022; 14:2061. [PMID: 35565192 PMCID: PMC9103537 DOI: 10.3390/cancers14092061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
(1) Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Although various serum enzymes have been utilized for the diagnosis and prognosis of HCC, the currently available biomarkers lack the sensitivity needed to detect HCC at early stages and accurately predict treatment responses. (2) Methods: We utilized our highly sensitive cell-free DNA (cfDNA) detection system, in combination with a machine learning algorithm, to provide a platform for improved diagnosis and prognosis of HCC. (3) Results: cfDNA, specifically alpha-fetoprotein (AFP) expression in captured cfDNA, demonstrated the highest accuracy for diagnosing malignancies among the serum/plasma biomarkers used in this study, including AFP, aspartate aminotransferase, alanine aminotransferase, albumin, alkaline phosphatase, and bilirubin. The diagnostic/prognostic capability of cfDNA was further improved by establishing a cfDNA score (cfDHCC), which integrated the total plasma cfDNA levels and cfAFP-DNA expression into a single score using machine learning algorithms. (4) Conclusion: The cfDHCC score demonstrated significantly improved accuracy in determining the pathological features of HCC and predicting patients' survival outcomes compared to the other biomarkers. The results presented herein reveal that our cfDNA capture/analysis platform is a promising approach to effectively utilize cfDNA as a biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Taehee Lee
- Department of Biomedical Laboratory Science, Daegu Health College, Daegu 41453, Korea;
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu-si 11759, Korea;
| | - Piper A. Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, WI 53705, USA; (P.A.R.); (J.B.); (L.J.K.); (D.K.)
- Wisconsin Center for NanoBioSystems (WisCNano), University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, WI 53705, USA; (P.A.R.); (J.B.); (L.J.K.); (D.K.)
- Wisconsin Center for NanoBioSystems (WisCNano), University of Wisconsin—Madison, Madison, WI 53705, USA
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Korea
| | - Sunghee Hyun
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu-si 11759, Korea;
| | - Woosun Rou
- Department of Internal Medicine, Chungnam National University Sejong Hospital (CNUSH), Sejong 30099, Korea; (W.R.); (H.J.)
| | - Hongjae Jeon
- Department of Internal Medicine, Chungnam National University Sejong Hospital (CNUSH), Sejong 30099, Korea; (W.R.); (H.J.)
| | - Seokhyun Kim
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Korea; (S.K.); (B.L.)
| | - Byungseok Lee
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Korea; (S.K.); (B.L.)
| | - Luke J. Kubiatowicz
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, WI 53705, USA; (P.A.R.); (J.B.); (L.J.K.); (D.K.)
| | - Dawon Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, WI 53705, USA; (P.A.R.); (J.B.); (L.J.K.); (D.K.)
- Wisconsin Center for NanoBioSystems (WisCNano), University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, WI 53705, USA; (P.A.R.); (J.B.); (L.J.K.); (D.K.)
- Wisconsin Center for NanoBioSystems (WisCNano), University of Wisconsin—Madison, Madison, WI 53705, USA
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul 03722, Korea
| | - Hyuksoo Eun
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul 03722, Korea
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
49
|
Huang MB, Gao Z, Xia M, Zhao X, Fan X, Lin S, Zhang L, Huang L, Wei A, Zhou H, Wu JY, Roth WW, Bond VC, Leng J. Improved Aitongxiao prescription (I-ATXP) induces apoptosis, cell cycle arrest and blocks exosomes release in hepatocellular carcinoma (HCC) cells. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2022; 14:90-113. [PMID: 35619665 PMCID: PMC9123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second most common malignancy globally, after lung cancer, accounting for 85-90% of primary liver cancer. Hepatitis B virus (HBV) infection is considered the leading risk factor for HCC development in China. HCC is a highly malignant cancer whose metastasis is primarily influenced by the tumor microenvironment. The role of exosomes in cancer development has become the focus of much research due to the many newly described contents of exosomes, which may contribute to tumorigenesis. However, the possible role exosomes play in the interactions between HCC cells and their surrounding hepatic milieu is mainly unknown. We discovered an Improved Aitongxiao Prescription (I-ATXP): an 80% alcohol extract from a mix of 15 specific plant and animal compounds, which had been shown to have an anticancer effect through inducing apoptosis and cell cycle arrest and blocking exosomes release in HCC cells. However, the anticancer mechanism of I-ATXP on human liver carcinoma is still unclear. OBJECTIVE Due to its inhibitory effects on chemical carcinogenesis and inflammation, I-ATXP has been proposed as an effective agent for preventing or treating human liver carcinoma. In this study, we aimed to explore the effect of I-ATXP on proliferation, apoptosis, and cell cycles of different HCC cell lines. We investigated the impact of I-ATXP on exosomes' secretion derived from these HCC cells. METHODS The inhibitory effect of I-ATXP on proliferation and cytotoxicity of HepG2, SMMC7721, HKCL-C3 HCC cell lines, and MIHA immortalized hepatocyte cell line was assessed by CCK-8 assay. The cell cycle distribution and cell apoptosis were determined by flow cytometry using Annexin V-FITC/PI staining. The expression of Alix and CD63 of exosome marker proteins was detected by western blotting. The exosome protein concentration was measured by a fluorescent plate reader. The exosome-specific enzyme activity was measured by acetylcholinesterase (AchE) assay, and exosome morphological characteristics were identified by transmission electron microscopy (TEM). RESULTS I-ATXP inhibited the growth of HCC cells in a dose and time-dependent manner. Flow cytometry analysis showed that I-ATXP induced G0/G1 phase arrest and cell apoptosis. The I-ATX reduced HepG2, SMMC7721, and HKCI-C HCC cell lines exosomes release and low-dose I-ATXP significantly enhanced the growth inhibition induced by 5-Fu. Western blot analysis shows that after HCC cell lines were treated with various concentrations of I-ATXP (0.125-1 mg/ml) for 24 h, exosomes derived from three different HCC cells expressed exosome-specific proteins Alix and CD63. Compared with the untreated group, with the increment of the concentration of I-ATXP, the expression of exosome-specific proteins Alix and CD63 were reduced. These results suggest that I-ATXP can inhibit the release of exosomes with Alix and CD63 protein from HCC cells. CONCLUSIONS I-ATXP is a traditional Chinese medicine that acts as an effective agent for preventing or treating human liver carcinoma. (i) I-ATXP can effectively inhibit cell proliferation of different HCC cells in a time and dose-dependent manner. Compared with 5-Fu, I-ATXP exhibited more selective proliferation inhibition in HCC cells, displaying traditional Chinese medicine advantages on tumor therapy and providing the experimental basis for I-ATXP clinical application. (ii) I-ATXP can induce apoptosis and cell cycle arrest in HCC cells. The CCK-8 assay results indicated that I-ATXP could inhibit HCC cell proliferation mediated by apoptosis and cell cycle arrest. (iii) I-ATXP can inhibit both the exosome releases and expression of CD63, and Alix derived from HCC cells, but the exosomes derived from liver cancer cells affect liver cancer cells' biological properties such as proliferation, invasion, and migration. These suggest that I-ATXP may affect HCC cells via regulation of exosomes of HCC cells, further indicating the potential clinical values of I-ATXP for the prevention or treatment of human liver carcinoma.
Collapse
Affiliation(s)
- Ming-Bo Huang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of MedicineAtlanta, Georgia 30310, USA
| | - Zhao Gao
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese MedicineNanning 530200, Guangxi, China
| | - Meng Xia
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese MedicineNanning 530200, Guangxi, China
| | - Xiaoqing Zhao
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese MedicineNanning 530200, Guangxi, China
| | - Xiaoyuan Fan
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese MedicineNanning 530200, Guangxi, China
| | - Shijie Lin
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese MedicineNanning 530200, Guangxi, China
| | - Lifeng Zhang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese MedicineNanning 530200, Guangxi, China
| | - Li Huang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese MedicineNanning 530200, Guangxi, China
| | - Ailing Wei
- The First Affiliated Hospital of Guangxi University of Chinese MedicineNanning 530023, Guangxi, China
| | - Hu Zhou
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese MedicineNanning 530200, Guangxi, China
| | - Jennifer Y Wu
- Columbia College, Columbia UniversityNew York, NY 10027, USA
| | - William W Roth
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of MedicineAtlanta, Georgia 30310, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of MedicineAtlanta, Georgia 30310, USA
| | - Jing Leng
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese MedicineNanning 530200, Guangxi, China
| |
Collapse
|
50
|
Zhang W, Nie R, Cai Y, Xie W, Zou K. Progress in germline stem cell transplantation in mammals and the potential usage. Reprod Biol Endocrinol 2022; 20:59. [PMID: 35361229 PMCID: PMC8969385 DOI: 10.1186/s12958-022-00930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Germline stem cells (GSCs) are germ cells with the capacities of self-renewal and differentiation into functional gametes, and are able to migrate to their niche and reconstitute the fertility of recipients after transplantation. Therefore, GSCs transplantation is a promising technique for fertility recovery in the clinic, protection of rare animals and livestock breeding. Though this novel technique faces tremendous challenges, numerous achievements have been made after several decades' endeavor. This review summarizes the current knowledge of GSCs transplantation and its utilization in mammals, and discusses the application prospect in reproductive medicine and animal science.
Collapse
Affiliation(s)
- Wen Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruotian Nie
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihui Cai
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenhai Xie
- School of Life Sciences, Shandong University of Technology, NO. 266 Xincun Road, Zibo, 255000, Shandong, China.
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|