1
|
Bonizzi A, Signati L, Grimaldi M, Truffi M, Piccotti F, Gagliardi S, Dotti G, Mazzucchelli S, Albasini S, Cazzola R, Bhowmik D, Narayana C, Corsi F, Morasso C. Exploring breast cancer-related biochemical changes in circulating extracellular vesicles using Raman spectroscopy. Biosens Bioelectron 2025; 278:117287. [PMID: 40023908 DOI: 10.1016/j.bios.2025.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Extracellular vesicles (EVs) are a subgroup of the circulating particles, released by cells in both normal and diseased states, carrying active biomolecules. They have gained significant attention as potential cancer biomarkers, particularly in breast cancer (BC). Previous research showed variations in EVs content and quantity between BC patients and healthy controls (HC). However, studying the biochemical profile of EVs remains challenging due to their low abundance and complex composition. Additionally, EVs may interact with other plasma components, like lipoproteins (LPs), forming a so called "biomolecular corona" that further complicates their analysis. Here, Raman spectroscopy (RS) is proposed as a fast tool to obtain the biochemical profile of circulating EVs in the context of BC. RS was employed to differentiate various extracellular particles (EPs) in blood, including LPs and EVs. The study also evaluated RS's capability to quantify major classes of biomolecules and compared these results with those obtained by traditional biochemical assays. Finally, compositional differences in large EVs (lEVs) and small EVs (sEVs) were assessed between HC and BC patients. RS revealed the existence of distinct biochemical signatures associated with BC, highlighting increased levels of nucleic acids and lipids in the BC group.
Collapse
Affiliation(s)
- Arianna Bonizzi
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Lorena Signati
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Maria Grimaldi
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Francesca Piccotti
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Giulia Dotti
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy
| | - Sara Albasini
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy
| | - Debanjan Bhowmik
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Poojappura, Thiruvananthapuram, 695014, India
| | - Chandrabhas Narayana
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Poojappura, Thiruvananthapuram, 695014, India; Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157, Milano, Via Giovanni Battista Grassi, 74, 20157, Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy.
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, 27100, Italy.
| |
Collapse
|
2
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Joshi T, Chan YO, Qiao Z, Kheirandish-Gozal L, Gozal D, Khalyfa A. Circulating exosomes in pediatric obstructive sleep apnea with or without neurocognitive deficits and their effects on a 3D-blood-brain barrier spheroid model. Exp Neurol 2025; 387:115188. [PMID: 39986553 DOI: 10.1016/j.expneurol.2025.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Obstructive sleep apnea (OSA) in children is linked to cognitive impairments, potentially due to blood-brain barrier (BBB) dysfunction. Exosomes, small vesicles released by most cells, reflect cellular changes. This study examined the effects of exosomes from children with OSA, with or without cognitive deficits, on neurovascular unit (NVU) models. Twenty-six children were categorized into three groups: healthy controls (Cont, n = 6), OSA without cognitive deficits (OSA-NG, n = 10), and OSA with neurocognitive deficits (OSA-POS, n = 10). Plasma exosomes were characterized and applied to human 3D NVU spheroids for 24 h. Barrier integrity, permeability, and angiogenesis were assessed using trans-endothelial electrical resistance (TEER), tight junction integrity, and tube formation assays. Single-nucleus RNA sequencing (snRNA-seq) and bioinformatics, including CellChat analysis, identified intercellular signaling pathways. Results showed that exosomes from OSA-POS children disrupted TEER, increased permeability, and impaired ZO1 staining in spheroids, compared to the other groups. Both OSA-POS and OSA-NG exosomes increased permeability in NVU cells in monolayer and microfluidic BBB models. snRNA-seq analysis further revealed distinct cell clusters and pathways associated with the different groups. This 3D NVU spheroid model provides a robust platform to study BBB properties and the role of exosomes in OSA. These findings suggest that integrating snRNA-seq with exosome studies can uncover mechanisms underlying neurocognitive dysfunction in pediatric OSA, potentially leading to personalized therapeutic approaches.
Collapse
Affiliation(s)
- Trupti Joshi
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA; Christophers S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Yen On Chan
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA; Christophers S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Zhuanhong Qiao
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - David Gozal
- Department of Pediatrics, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America.
| |
Collapse
|
4
|
Hoang VT, Nguyen QT, Phan TTK, Pham TH, Dinh NTH, Anh LPH, Dao LTM, Bui VD, Dao H, Le DS, Ngo ATL, Le Q, Nguyen Thanh L. Tissue Engineering and Regenerative Medicine: Perspectives and Challenges. MedComm (Beijing) 2025; 6:e70192. [PMID: 40290901 PMCID: PMC12022429 DOI: 10.1002/mco2.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
From the pioneering days of cell therapy to the achievement of bioprinting organs, tissue engineering, and regenerative medicine have seen tremendous technological advancements, offering solutions for restoring damaged tissues and organs. However, only a few products and technologies have received United States Food and Drug Administration approval. This review highlights significant progress in cell therapy, extracellular vesicle-based therapy, and tissue engineering. Hematopoietic stem cell transplantation is a powerful tool for treating many diseases, especially hematological malignancies. Mesenchymal stem cells have been extensively studied. The discovery of induced pluripotent stem cells has revolutionized disease modeling and regenerative applications, paving the way for personalized medicine. Gene therapy represents an innovative approach to the treatment of genetic disorders. Additionally, extracellular vesicle-based therapies have emerged as rising stars, offering promising solutions in diagnostics, cell-free therapeutics, drug delivery, and targeted therapy. Advances in tissue engineering enable complex tissue constructs, further transforming the field. Despite these advancements, many technical, ethical, and regulatory challenges remain. This review addresses the current bottlenecks, emphasizing novel technologies and interdisciplinary research to overcome these hurdles. Standardizing practices and conducting clinical trials will balance innovation and regulation, improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang H. Pham
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Nhung Thi Hong Dinh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Le Phuong Hoang Anh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Lan Thi Mai Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Van Dat Bui
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Hong‐Nhung Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Anh Thi Lan Ngo
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quang‐Duong Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| |
Collapse
|
5
|
Yao Y, Yin Y, Shuai F, Lam W, Zhou T, Xie Y, He X, Han X. M2 Macrophage-Derived Extracellular Vesicles Reprogram Immature Neutrophils into Anxa1 hi Neutrophils to Enhance Inflamed Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416159. [PMID: 40277454 DOI: 10.1002/advs.202416159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/22/2025] [Indexed: 04/26/2025]
Abstract
Periodontitis is a microbiome-related inflammation that can lead to irreversible bone reduction and even tooth loss. This study reveals that macrophage polarization states significantly influence periodontal homeostasis, with M2 macrophage-derived extracellular vesicles (M2-EVs) playing a pivotal role in mitigating periodontitis-induced bone loss. Single-cell RNA sequencing of periodontal tissues treated with M2-EVs uncovered a unique Anxa1hi neutrophil subpopulation exhibiting pro-reparative properties. This subpopulation is characterized by immaturity and demonstrated osteogenic and angiogenic capabilities in vivo, partially mediated through the secretion of oncostatin M (OSM) signals. The findings suggest that this functional heterogeneity arises from M2-EVs disrupting the neutrophil maturation trajectory, with pivotal reprogramming genes, such as Acvrl1 and Fpr2, driving the differentiation of the Anxa1hi reparative subpopulation. This work underscores the potential of targeting M2 macrophage-neutrophil interactions to promote the regeneration of inflamed bone tissues.
Collapse
Affiliation(s)
- Yufei Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fangyuan Shuai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Waishan Lam
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaxin Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuesong He
- The ADA Forsyth Institute, 100 Chestnut Street, Somerville, MA, 02143, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
6
|
Karam M, Aqel S, Haider MZ, Fathima A, Charafedine A, Daher MA, Shaito A, El-Sabban M, Saliba J. Beyond the Injury: How Does Smoking Impair Stem Cell-Mediated Repair Mechanisms? A Dual Review of Smoking-Induced Stem Cell Damage and Stem Cell-Based Therapeutic Applications. Stem Cell Rev Rep 2025:10.1007/s12015-025-10886-9. [PMID: 40279029 DOI: 10.1007/s12015-025-10886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
While the literature on molecular and clinical effects of smoking on the lungs and other organs has been expansively reviewed, there is no comprehensive compilation of the effects of smoking on stem cell (SC) populations. Recent research has shown that tobacco exposure severely compromises the function of SC populations, particularly those involved in tissue regeneration: mesenchymal SCs (MSCs), neural progenitors, and hematopoietic SCs. SC-based therapies have emerged as a promising approach to counteract smoking-related damage. In particular, MSCs have been extensively studied for their immunomodulatory properties, demonstrating the ability to repair damaged tissues, reduce inflammation, and slow disease progression in conditions such as chronic obstructive pulmonary disease. Combination therapies, which integrate pharmaceuticals with SC treatments, have shown potential in enhancing regenerative outcomes. This review examines the impact of smoking on SC biology, describes the processes impairing SC-mediated repair mechanisms and highlights recent advancements in SC-based therapies in the treatment of smoking-induced diseases. This review has two prongs: (1) it attempts to explain potential smoking-related disease etiology, and (2) it addresses a gap in the literature on SC-mediated repair mechanisms in chronic smokers.
Collapse
Affiliation(s)
- Mario Karam
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Translational Cancer Medicine, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Helsinki, Finland
| | - Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Z Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Aseela Fathima
- Biomedical Research Center and Department of Biomedical Sciences at College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Adib Charafedine
- College Of Pharmacy, American University of Iraq-Baghdad, Baghdad, Iraq
| | - Mira Abou Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Sin El Fil, PO Box: 55251, Beirut, Lebanon
| | - Abdullah Shaito
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical Research Center and Department of Biomedical Sciences at College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jessica Saliba
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Sin El Fil, PO Box: 55251, Beirut, Lebanon.
- Department of Biology, Faculty of Science, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
7
|
Zhao M, Huang Z, Zheng J, Li W, Zhong Y, Ouyang T. MiR-340-5p alleviates AECOPD by targeting MAP3K2 via Qingjin Huatan decoction therapy. J Leukoc Biol 2025; 117:qiaf021. [PMID: 39973067 DOI: 10.1093/jleuko/qiaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/27/2024] [Accepted: 02/19/2025] [Indexed: 02/21/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) features persistent inflammation and restricted airflow, with acute exacerbations of COPD (AECOPD) significantly worsening patient outcomes. This study aims to explore the role of Qingjin Huatan Decoction (QJHTT) on AECOPD with the syndrome of phlegm-heat obstruction of the lung. AECOPD was induced in male Sprague-Dawley rats using lipopolysaccharide and cigarette smoke exposure. Rats were treated with varying doses of QJHTT. miR-340-5p expression was quantified using qPCR. Lung histopathology was assessed with hematoxylin and eosin staining, and interleukin-6, interleukin-1 beta, and tumor necrosis factor-alpha were measured by enzyme-linked immunosorbent assay (ELISA). The effects on cell viability and apoptosis in primary airway epithelial cells were evaluated using Cell Counting Kit-8 and flow cytometry assays, respectively. The dual-luciferase reporter assay validated the interaction between miR-340-5p and mitogen-activated protein kinase kinase kinase 2 (MAP3K2), and protein expression was analyzed by Western blot. QJHTT improved lung histopathology, reducing inflammatory cell infiltration, and alveolar damage. ELISA results showed reduced inflammatory cytokine levels in QJHTT-treated groups (P < 0.05). qPCR analysis demonstrated that QJHTT upregulated miR-340-5p expression (P < 0.05). miR-340-5p mimic enhanced cell viability and reduced apoptosis in primary airway epithelial cells (P < 0.05). Dual-luciferase reporter assay confirmed that miR-340-5p directly targets MAP3K2, leading to its downregulation (P < 0.05). QJHTT exerts therapeutic effects in phlegm-heat obstructing the lung type of AECOPD through upregulating miR-340-5p and inhibiting MAP3K2. This study highlights the QJHTT and miR-340-5p/MAP3K2 pathway for this disease treatment.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning 530022, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhijian Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning 530022, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jinghui Zheng
- Department of Integrated Chinese and Western Medicine Clinical Prevention and Treatment of Cardiovascular and Endocrine Diseases, Guangxi University of Chinese Medicine, No. 13, Wuhe Aveneue, Qingxiu District Nanning 530000, Guangxi Zhuang Autonomous Region, P. R. China
| | - Wanying Li
- Department of Integrated Chinese and Western Medicine Clinical Prevention and Treatment of Cardiovascular and Endocrine Diseases, Guangxi University of Chinese Medicine, No. 13, Wuhe Aveneue, Qingxiu District Nanning 530000, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yunqing Zhong
- Department of Pulmonary Disease, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, No. 8 Qiyue Road, Wuxiang New District, Nanning 530001, Guangxi Zhuang Autonomous Region, P. R. China
| | - Tun Ouyang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning 530022, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
8
|
Conlon T, Schaaf M, Mateos-Maroto A, Picciotto S, Morsbach S, Adamo G, Si S, Lieberwirth I, Rosenauer C, Landfester K, Bongiovanni A, Touzet N. Comparative effects of extracellular vesicles and liposomal nanocarriers on bleomycin-induced stress in A549 human adenocarcinoma cells. Biomed Pharmacother 2025; 187:118081. [PMID: 40273689 DOI: 10.1016/j.biopha.2025.118081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/27/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
Lung cancer and chronic respiratory diseases are among the leading causes of death worldwide. Key factors in their pathogenesis include reactive oxygen species (ROS), transforming growth factor-β1 (TGF-β1) and epithelial-mesenchymal transition (EMT). Exogenous antioxidants can mitigate the oxidative stress that drives TGF-β1-mediated respiratory pathologies. Given their role in cellular communication and natural biocompatibility, extracellular vesicles (EVs) are emerging as promising candidates for the delivery of therapeutic cargo to pathological cells. Notably, microalgal-derived EVs (i.e., nanoalgosomes) have been shown to exhibit antioxidant and anti-inflammatory activity. In this study, the bioactivity of EVs derived from Tetraselmis chuii (CCAP 66/21B) was investigated in a bleomycin-stressed (8 µg mL-1) human adenocarcinoma alveolar epithelial cell model (A549). Moreover, the effects of these EVs were compared to liposomes loaded with established therapeutics (pirfenidone and quercetin), synthesised using the lipid film hydration method. In vitro assessments included cell viability (MTS), intracellular ROS, morphological changes, cell migration, EMT-related mRNA expression (qPCR), and TGF-β1 release (ELISA). Both the EVs (nanoalgosomes) and pirfenidone- and quercetin-loaded liposomal nanocarriers (1-4 µg mL-1) effectively attenuated bleomycin-induced EMT, inhibited cell migration, suppressed profibrotic TGF-β1, lowered intracellular ROS and upregulated glutathione peroxidase 4 (GPX4). Importantly, the innate bioactive cargo of the naturally derived nanoalgosomes exhibited comparable effects to the liposome therapeutic formulations in mitigating bleomycin-induced stress in A549 cells.
Collapse
Affiliation(s)
- Thomas Conlon
- Centre for Environmental Research Innovation and Sustainability (CERIS), Atlantic Technological University Sligo, Sligo, Ireland.
| | - Maximilian Schaaf
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ana Mateos-Maroto
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Sabrina Picciotto
- Cell-Tech HUB at Institute of Biophysics (IBF) - National Research Council of Italy (CNR), Palermo 90146, Italy
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Giorgia Adamo
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo 90146, Italy
| | - Shutian Si
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Christine Rosenauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Antonella Bongiovanni
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo 90146, Italy
| | - Nicolas Touzet
- Centre for Environmental Research Innovation and Sustainability (CERIS), Atlantic Technological University Sligo, Sligo, Ireland
| |
Collapse
|
9
|
Vafadar A, AlaviManesh S, Maddahi ME, Alizadeh M, Movahedpour A, Savardashtaki A. Exosome biosensors for detection of prostate cancer. Clin Chim Acta 2025; 571:120243. [PMID: 40090566 DOI: 10.1016/j.cca.2025.120243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Prostate cancer (PCa) is a highly life-threatening disease in men, causing numerous deaths worldwide. As PCa is often diagnosed at a late stage, current diagnostic methods can be invasive and sometimes lead to unnecessary treatments. Therefore, new non-invasive approaches are needed to detect biomarkers for more rapid and accurate PCa diagnosis. Exosomes, extracellular vesicles, provide valuable insights into cellular health and disease progression. Recent studies have indicated the potential use of exosomes as biomarkers for diagnosing PCa. Developing fast, reliable, and sensitive methods for exosome detection is essential. Biosensors, powerful analytical tools for biological samples, have become increasingly crucial in exosome analysis. This review summarizes recent advancements in biosensor technology for exosome detection and provides insights into future perspectives. The goal is to encourage innovative biosensor-based approaches for exosome detection and contribute to the early diagnosis and clinical monitoring of various diseases.
Collapse
Affiliation(s)
- Asma Vafadar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad AlaviManesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Ehsan Maddahi
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Hansman DS, Lim K, Thomas D, Casson RJ, Peet DJ. Distinct metabolome and flux responses in the retinal pigment epithelium to cytokines associated with age-related macular degeneration: comparison of ARPE-19 cells and eyecups. Sci Rep 2025; 15:13012. [PMID: 40234500 PMCID: PMC12000464 DOI: 10.1038/s41598-025-93882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Age-related macular degeneration (AMD) is associated with chronic inflammation of the retinal pigment epithelium (RPE) and elevated cytokines including TNFα, TGF-β, IL-6, and IL-1β. As a metabolic intermediary supporting aerobic glycolysis in the adjacent photoreceptors, the RPE's metabolic responses to inflammation and the optimal methods to study cytokine-driven metabolic programming remain unclear. We performed a rigorous comparison of ARPE-19 cells and rat eyecup metabolomes, revealing key distinctions. Rat eyecups exhibit higher levels of lactate and palmitate but depleted glutathione and high-energy nucleotides. Conversely, ARPE-19 cells are enriched with high-energy currency metabolites and the membrane phospholipid precursors phosphocholine and inositol. Both models showed contrasting responses to individual cytokines: ARPE-19 cells were more sensitive to TNFα, while eyecups responded more strongly to TGF-β2. Notably, a combined cytokine cocktail elicited stronger metabolic effects on ARPE-19 cells, more potently impacting both metabolite abundance (41 vs. 29) and glucose carbon flux (29 vs. 5), and influencing key RPE metabolites such as alanine, glycine, aspartate, proline, citrate, α-ketoglutarate, and palmitate. Overall, these findings position ARPE-19 cells as a more responsive platform for studying inflammatory cytokine effects on RPE metabolism and reveal critical RPE metabolites which may be linked with AMD pathogenesis.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Kelly Lim
- South Australian Health and Medical Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- South Australian Health and Medical Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
11
|
Sun J, Li Z, Chen Y, Chang Y, Yang M, Zhong W. Enhancing Analysis of Extracellular Vesicles by Microfluidics. Anal Chem 2025; 97:6922-6937. [PMID: 40133233 DOI: 10.1021/acs.analchem.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Extracellular vesicles (EVs) play crucial roles in intercellular communication and hold great promise as biomarkers for noninvasive disease diagnosis. Intensive research efforts have been devoted to discovering the EV subpopulations responsible for specific functions or with enhanced effectiveness as disease markers, through extensive EV purification and content analysis. However, their high heterogeneity in size and cargo composition poses significant challenges for reaching such goals. Isolation methods like ultracentrifugation and size-exclusion chromatography, as well as content analysis approaches like polymerase chain reaction and enzyme-linked immunosorbent assay, have made significant contributions to improving our understanding of EV biology. Nonetheless, these methods face limitations in isolation efficiency, EV purity, and detection sensitivity and specificity due to issues like large sample consumption, unsatisfactory purity, and insufficient resolution in EV subtyping. Microfluidic technology presents promising solutions to these challenges, leveraging their intrinsic capabilities in precise flow and external energy field manipulation, sample compartmentalization, and signal enhancement at the micro- and nanoscale. Hence, this review summarizes the recent developments in microfluidics-enabled EV analysis, paying special attention to the unique microfluidic features exploited. Strategies such as viscoelastic and inertial flow, fluid mixing, and external-field-assisted approaches in improving EV purification, as well as compartmentalization and micro/nanostructures for enhancing EV detection, are examined. Furthermore, the current limitations and potential future directions are discussed to inspire advancements in this rapidly developing field.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen 518057, P. R. China
| | | | | | | | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen 518057, P. R. China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | | |
Collapse
|
12
|
Sheikh IA, Kiela PR, Ghishan FK. Isolation of In Vitro Osteoblastic-Derived Matrix Vesicles by Ultracentrifugation and Cell-Free Mineralization Assay. Bio Protoc 2025; 15:e5258. [PMID: 40224653 PMCID: PMC11986701 DOI: 10.21769/bioprotoc.5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Matrix vesicles (MVs) represent a heterogeneous group of spherical membrane-bound extracellular vesicles in the range of 100-200 nm in diameter secreted by mineralizing osteoblasts. The initial synthesis of the amorphous calcium phosphate occurs within the confines of the intracellular MVs, which are capable of transporting Pi and Ca2+ into the MV lumen. Thus, understanding the initial process of MV-mediated mineralization is critical in developing better therapeutic strategies for various bone-related disorders such as osteoporosis and addressing ectopic calcification of soft tissues. Although various techniques and commercially available kits are now available for isolating MVs, isolating a pure population of MVs is challenging mainly because of their variable size and lack of consensus protein markers. This ultracentrifugation-based protocol ensures high purity of isolated MVs by removing other contaminated extracellular vesicles and cellular debris through sequential centrifugation steps but also allows downstream functional mineralization assays of the isolated MVs. Key features • Simple and rapid high-quality isolation of MVs from in vitro culture of mineralizing osteoblasts by ultracentrifugation. • Use of isolated MVs for various functional assays such as mineralization efficacy. • Cell-free mineralization assay to determine intrinsic mineralization efficacy of the isolated MVs under desired experimental conditions.
Collapse
Affiliation(s)
- Irshad A. Sheikh
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Pawel R. Kiela
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Fayez K. Ghishan
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Giusti I, Caruso Bavisotto C. New Challenges and Opportunities: Extracellular Vesicles in Biological and Biochemical Processes. Int J Mol Sci 2025; 26:3395. [PMID: 40244283 PMCID: PMC11989255 DOI: 10.3390/ijms26073395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Cell-to-cell communication plays a crucial role in many processes, both in physiological and pathological assets [...].
Collapse
Affiliation(s)
- Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
14
|
Mukerjee N, Bhattacharya A, Maitra S, Kaur M, Ganesan S, Mishra S, Ashraf A, Rizwan M, Kesari KK, Tabish TA, Thorat ND. Exosome isolation and characterization for advanced diagnostic and therapeutic applications. Mater Today Bio 2025; 31:101613. [PMID: 40161926 PMCID: PMC11950786 DOI: 10.1016/j.mtbio.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Advancements in exosome isolation technologies are pivotal for transforming personalized medicine and enhancing clinical diagnostics. Exosomes, small extracellular vesicles with diameters ranging between 30 and 150 nm, are secreted into bodily fluids by a variety of cells and play essential roles in intercellular communication. These vesicles facilitate the transfer of nucleic acids, lipids, and proteins, affecting a wide range of biological and pathological processes. Given their importance in disease diagnostics, therapy, and as biomarkers, there has been a surge in developing methods to isolate them from fluids such as urine, saliva, blood, and cerebrospinal fluid. While traditional isolation techniques like ultracentrifugation and polymer-based precipitation have been foundational, recent technological advances have introduced more precise methods like microfluidics and immunoaffinity capture. These newer methods enable high-throughput and specific exosome isolation by targeting surface markers, thus enhancing purity. However, challenges such as balancing purity with yield and the lack of standardized protocols across different laboratories persist, impacting the consistency of findings. By integrating advanced isolation techniques and discussing their implications in diagnostics and therapy, this review aims to catalyze further research and adoption of exosome-based technologies in medicine, marking a significant stride towards tailored healthcare solutions.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Centre for Infectious Diseases & Microbiology, School of Public Health Sciences and Technology, Malla Reddy Vishwavidyapeeth, Hyderabad 500 055, Telangana, India
| | - Arghya Bhattacharya
- Department of Pharmacology, Bengal School of Technology, West Bengal, Kolkata, 712102, India
| | - Swastika Maitra
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tanveer A. Tabish
- Radcliffe Department of Medicine, University of Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Department of Physics and Bernal Institute, University of Limerick, Castletroy, Limerick V94T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC) University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
| |
Collapse
|
15
|
Jinesh S, Özüpek B, Aditi P. Premature aging and metabolic diseases: the impact of telomere attrition. FRONTIERS IN AGING 2025; 6:1541127. [PMID: 40231186 PMCID: PMC11995884 DOI: 10.3389/fragi.2025.1541127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Driven by genetic and environmental factors, aging is a physiological process responsible for age-related degenerative changes in the body, cognitive decline, and impaired overall wellbeing. Notably, premature aging as well as the emergence of progeroid syndromes have posed concerns regarding chronic health conditions and comorbidities in the aging population. Accelerated telomere attrition is also implicated in metabolic dysfunction and the development of metabolic disorders. Impaired metabolic homeostasis arises secondary to age-related increases in the synthesis of free radicals, decreased oxidative capacity, impaired antioxidant defense, and disrupted energy metabolism. In particular, several cellular and molecular mechanisms of aging have been identified to decipher the influence of premature aging on metabolic diseases. These include defective DNA repair, telomere attrition, epigenetic alterations, and dysregulation of nutrient-sensing pathways. The role of telomere attrition premature aging in the pathogenesis of metabolic diseases has been largely attributed to pro-inflammatory states that promote telomere shortening, genetic mutations in the telomerase reverse transcriptase, epigenetic alteration, oxidative stress, and mitochondrial dysfunctions. Nonetheless, the therapeutic interventions focus on restoring the length of telomeres and may include treatment approaches to restore telomerase enzyme activity, promote alternative lengthening of telomeres, counter oxidative stress, and decrease the concentration of pro-inflammatory cytokines. Given the significance and robust potential of delaying telomere attrition in age-related metabolic diseases, this review aimed to explore the molecular and cellular mechanisms of aging underlying premature telomere attrition and metabolic diseases, assimilating evidence from both human and animal studies.
Collapse
Affiliation(s)
| | | | - Prerana Aditi
- Department of Medical Biochemistry, Faculty of Allied Health Sciences, Mahayogi Gorakhnath University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
16
|
Kim YM, Kim H, Park SC, Lee M, Jang MK. Targeted drug delivery of cancer cell-derived extracellular vesicles decorated with a VEGFR-binding peptide. Colloids Surf B Biointerfaces 2025; 252:114661. [PMID: 40203507 DOI: 10.1016/j.colsurfb.2025.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
Chemotherapy is commonly used to manage cancer lesions, but its use is limited or has a high risk of failure due to the side effects of the drugs. The use of a drug delivery system can minimize the side effects of drugs and maximize their anticancer effects. This study investigated the potential of tumor cell-derived small extracellular vesicles (sEV) as drug delivery vehicles for doxorubicin (Dox). In addition, the decoration of vascular endothelial growth factor receptor (VEGFR)-targeting peptide on the sEV provided an enhance specific cancer cell-targeting effect in vitro or homing capacity in vivo. The extrusion method was effective in loading Dox and displaying targeting peptide. The effective Dox release was resulted under acidic condition, an endosome pH. The growth of tumor masses on MCF-7 xenografted mice were significantly inhibited by this drug delivery system. We believe that our results will provide useful information for the development of chemotherapeutic drug delivery systems.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Chemical Engineering, College of Engineering, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam 57922, Republic of Korea
| | - Hyeonseok Kim
- Department of Chemical Engineering, College of Engineering, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam 57922, Republic of Korea
| | - Seong-Cheol Park
- Department of Chemical Engineering, College of Engineering, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam 57922, Republic of Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam 57922, Republic of Korea.
| | - Mi-Kyeong Jang
- Department of Chemical Engineering, College of Engineering, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam 57922, Republic of Korea.
| |
Collapse
|
17
|
Fan Q, Zhao M, Zhang XD, Chu TY, Kou ZX, Zhao Q. Research progress and prospect of MAPK signaling pathway in knee osteoarthritis. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2025; 35:134. [PMID: 40140124 PMCID: PMC11947053 DOI: 10.1007/s00590-025-04261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
The knee joint, one of the most vulnerable joints in the human body, is susceptible to degenerative changes due to factors such as aging, obesity, trauma, inflammation, and genetic predisposition. These factors contribute to primary or secondary degeneration of knee joint cartilage and bone hyperplasia. Knee osteoarthritis (KOA), a prevalent condition particularly among the elderly, significantly impacts patients' quality of life. Aberrant activation of cellular signaling pathways, namely the NF-κB, MAPK, and Wnt pathways, has been identified as a key factor in the pathogenesis of KOA. These pathways contribute to inflammation, cartilage degradation, and disruption of the anabolic-catabolic balance within articular cartilage. Understanding the precise roles of these pathways is crucial for developing targeted therapies to prevent and treat knee OA. Therefore, further exploration of the pathogenesis of knee osteoarthritis is essential to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Qiao Fan
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
- Henan Luoyang Orthopedics Hospital (Henan Provincial Orthopedics Hospital), Zhengzhou, 450000, China
| | - MingYu Zhao
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China.
- Henan Luoyang Orthopedics Hospital (Henan Provincial Orthopedics Hospital), Zhengzhou, 450000, China.
- Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China.
| | - Xiang-Dong Zhang
- Henan Luoyang Orthopedics Hospital (Henan Provincial Orthopedics Hospital), Zhengzhou, 450000, China
| | - Tian-Yun Chu
- Henan Luoyang Orthopedics Hospital (Henan Provincial Orthopedics Hospital), Zhengzhou, 450000, China
| | - Zhao-Xi Kou
- Henan Luoyang Orthopedics Hospital (Henan Provincial Orthopedics Hospital), Zhengzhou, 450000, China
| | - Qi Zhao
- Henan Luoyang Orthopedics Hospital (Henan Provincial Orthopedics Hospital), Zhengzhou, 450000, China
| |
Collapse
|
18
|
Onyiba CI, Kumar NK, Scarlett CJ, Weidenhofer J. Cell Progression and Survival Functions of Enzymes Secreted in Extracellular Vesicles Associated with Breast and Prostate Cancers. Cells 2025; 14:468. [PMID: 40214422 PMCID: PMC11988166 DOI: 10.3390/cells14070468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound cargoes secreted by normal and pathological cells. Through their protein, nucleic acid, and lipid cargoes, EVs mediate several cellular processes, such as cell-cell communication, cell development, immune response, and tissue repair. Most importantly, through their enzyme cargo, EVs mediate pathophysiological processes, including the pathogenesis of cancer. In this review, we enumerate several enzymes secreted in EVs (EV enzyme cargo) from cells and patient clinical samples of breast and prostate cancers and detail their contributions to the progression and survival of both cancers. Findings in this review reveal that the EV enzyme cargo could exert cell progression functions via adhesion, proliferation, migration, invasion, and metastasis. The EV enzyme cargo might also influence cell survival functions of chemoresistance, radioresistance, angiogenesis, cell death inhibition, cell colony formation, and immune evasion. While the current literature provides evidence of the possible contributions of the EV enzyme cargo to the progression and survival mechanisms of breast and prostate cancers, future studies are required to validate that these effects are modified by EVs and provide insights into the clinical applications of the EV enzyme cargo in breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Niwasini Krishna Kumar
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Christopher J. Scarlett
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
19
|
Semeradtova A, Liegertova M, Herma R, Capkova M, Brignole C, Del Zotto G. Extracellular vesicles in cancer´s communication: messages we can read and how to answer. Mol Cancer 2025; 24:86. [PMID: 40108630 PMCID: PMC11921637 DOI: 10.1186/s12943-025-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Extracellular vesicles (EVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME), profoundly influencing cancer progression. These nano-sized vesicles, released by both tumor and stromal cells, carry a diverse cargo of proteins, nucleic acids, and lipids, reflecting the dynamic cellular landscape and mediating intricate interactions between cells. This review provides a comprehensive overview of the biogenesis, composition, and functional roles of EVs in cancer, highlighting their significance in both basic research and clinical applications. We discuss how cancer cells manipulate EV biogenesis pathways to produce vesicles enriched with pro-tumorigenic molecules, explore the specific contributions of EVs to key hallmarks of cancer, such as angiogenesis, metastasis, and immune evasion, emphasizing their role in shaping TME and driving therapeutic resistance. Concurrently, we submit recent knowledge on how the cargo of EVs can serve as a valuable source of biomarkers for minimally invasive liquid biopsies, and its therapeutic potential, particularly as targeted drug delivery vehicles and immunomodulatory agents, showcasing their promise for enhancing the efficacy and safety of cancer treatments. By deciphering the intricate messages carried by EVs, we can gain a deeper understanding of cancer biology and develop more effective strategies for early detection, targeted therapy, and immunotherapy, paving the way for a new era of personalized and precise cancer medicine with the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Alena Semeradtova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic.
| | - Michaela Liegertova
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Regina Herma
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Magdalena Capkova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| |
Collapse
|
20
|
Wang F, Feng J, Jin A, Shao Y, Shen M, Ma J, Lei L, Liu L. Extracellular Vesicles for Disease Treatment. Int J Nanomedicine 2025; 20:3303-3337. [PMID: 40125438 PMCID: PMC11928757 DOI: 10.2147/ijn.s506456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Traditional drug therapies suffer from problems such as easy drug degradation, side effects, and treatment resistance. Traditional disease diagnosis also suffers from high error rates and late diagnosis. Extracellular vesicles (EVs) are nanoscale spherical lipid bilayer vesicles secreted by cells that carry various biologically active components and are integral to intercellular communication. EVs can be found in different body fluids and may reflect the state of the parental cells, making them ideal noninvasive biomarkers for disease-specific diagnosis. The multifaceted characteristics of EVs render them optimal candidates for drug delivery vehicles, with evidence suggesting their efficacy in the treatment of various ailments. However, poor stability and easy degradation of natural EVs have affected their applications. To solve the problems of poor stability and easy degradation of natural EVs, they can be engineered and modified to obtain more stable and multifunctional EVs. In this study, we review the shortcomings of traditional drug delivery methods and describe how to modify EVs to form engineered EVs to improve their utilization. An innovative stimulus-responsive drug delivery system for EVs has also been proposed. We also summarize the current applications and research status of EVs in the diagnosis and treatment of different systemic diseases, and look forward to future research directions, providing research ideas for scholars.
Collapse
Affiliation(s)
- Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Mengen Shen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiaqi Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, People’s Republic of China
| |
Collapse
|
21
|
Vafadar A, Younesi M, Babadi S, Alizadeh M, Movahedpour A, Savardashtaki A. Exosome biosensors for detection of liver cancer. Clin Chim Acta 2025; 570:120199. [PMID: 39961411 DOI: 10.1016/j.cca.2025.120199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Liver cancer is a significant global health concern due to its poor prognosis, often resulting from late-stage diagnosis and limited treatment options. While non-invasive methods such as ultrasound, blood tests (like AFP and PIVKA-II), CT scans, and MRIs are commonly employed in liver cancer diagnosis, they can occasionally be limited in sensitivity or associated with high costs. This has heightened the demand for innovative, non-invasive biomarkers that enable early and accurate diagnosis, leading to increased interest in the potential of exosomes. Exosomes are small vesicles released by cells and have the potential to serve as biomarkers for liver cancer. They contain a variety of biomolecules, including nucleic acids, proteins, and lipids, which can offer important information about cell health and disease progression. Developing fast, accurate, sensitive, and reliable techniques for detecting exosomes is essential. Biosensors, analytical tools for biological samples, have emerged as powerful instruments for analyzing exosomes. This review focuses on recent advancements in biosensor technology for exosome detection and explores future perspectives. The goal is to promote the development of innovative biosensor-based methods for detecting exosomes to enable earlier diagnosis and better clinical management of liver cancer.
Collapse
Affiliation(s)
- Asma Vafadar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Younesi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Babadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Chae CW, Choi G, Yoon T, Kwon YW. Exosome-Based Therapy in Cardiovascular Diseases: A New Frontier in Cardiovascular Disease Treatment. Korean Circ J 2025; 55:55.e54. [PMID: 40206010 DOI: 10.4070/kcj.2025.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/11/2025] Open
Abstract
Exosomes, small extracellular vesicles ranging from 30 to 150 nanometers in diameter, have emerged as pivotal mediators of intercellular communication. These vesicles, originally perceived as cellular debris, are now recognized for their intricate roles in transporting bioactive molecules, including proteins, lipids, and nucleic acids, between cells. Exosomes have received considerable attention due to their roles in diverse physiological and pathological processes, especially in relation to cardiovascular diseases (CVDs). CVDs are intricately linked, sharing common risk factors and pathological mechanisms, such as inflammation, oxidative stress, and endothelial dysfunction. Exosomes have been implicated in either directly or indirectly influencing these phenomena. They are secreted by virtually all cell types, including endothelial cells, cardiomyocytes, and stem cells, play critical roles in maintaining vascular homeostasis and responding to pathological stimuli. Their capacity to traverse biological barriers, maintain stability in circulation, and effectively encapsulate and deliver a variety of molecular cargos makes them promising candidates for both biomarkers and therapeutic agents. This review aims to explore the multifaceted roles of exosomes in CVDs. And we will discuss the mechanisms of exosome biogenesis and release, their molecular composition, and the ways in which they contribute to disease pathophysiology. Additionally, we will emphasize the potential of exosomes as diagnostic biomarkers and their therapeutic uses, highlighting their significance in the advancement of innovative treatment strategies. This review explores recent findings and advancements in exosome research, emphasizing their significance in CVD and paving the way for future studies and clinical applications.
Collapse
Affiliation(s)
- Cheong-Whan Chae
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Translational Medicine, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Gun Choi
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Taehun Yoon
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Yoo-Wook Kwon
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
23
|
Abbas M, Gaye A. Emerging roles of noncoding RNAs in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2025; 328:H603-H621. [PMID: 39918596 DOI: 10.1152/ajpheart.00681.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
This review comprehensively examines the diverse roles of noncoding RNAs (ncRNAs) in the pathogenesis and treatment of cardiovascular disease (CVD), focusing on microRNA (miRNA), long noncoding RNA (lncRNA), piwi-interacting RNA (piRNA), small-interfering RNA (siRNA), circular RNA (circRNA), and vesicle-associated RNAs. These ncRNAs are integral regulators of key cellular processes, including gene expression, inflammation, and fibrosis, and they hold great potential as both diagnostic biomarkers and therapeutic targets. The review highlights novel insights into how these RNA species, particularly miRNAs, lncRNAs, and piRNAs, contribute to various CVDs such as hypertension, atherosclerosis, and myocardial infarction. In addition, it explores the emerging role of extracellular vesicles (EVs) in intercellular communication and their therapeutic potential in cardiovascular health. The review underscores the need for continued research into ncRNAs and RNA-based therapies, with a focus on advancing delivery systems and expanding personalized medicine approaches to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Malak Abbas
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical School, Nashville, Tennessee, United States
| |
Collapse
|
24
|
Lee SH. The role of extracellular vesicles in embryo development: implications for reproductive health and therapeutic potential. Reprod Fertil Dev 2025; 37:RD24151. [PMID: 40153376 DOI: 10.1071/rd24151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/11/2025] [Indexed: 03/30/2025] Open
Abstract
Extracellular vesicles (EVs) contain various biological molecules, such as proteins, lipids, and diverse nucleic acids, which alter various physiological and pathological processes in recipient cells. This review focuses on the current understanding of the biological characteristics of EVs on embryo development and their potential therapeutic value in treating reproductive disorders. EVs play a crucial role in early embryo development, from fertilization to the pre-implantation stage, gastrulation, cell differentiation, and organogenesis. During the pre-implantation period, EVs interact with maternal reproductive tissue and promote implantation receptivity. In gastrulation, EVs regulate cell differentiation, contributing to tissue formation and maintenance. Abnormal bioactive molecules in EVs are closely related to developmental disorders. Thus, EVs have the potential to serve as biomarkers. Moreover, EVs can serve as therapeutic agents, delivering genetic material for targeted tissue/organs. The findings of this review highlight the potential role of EVs in intercellular signaling during embryo development. This can help advance assisted reproductive technologies and therapies to overcome infertility issues and developmental disorders.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Carberry CK, Hartwell H, Rider CV, Wheeler M, Auerbach S, Rager JE. Extracellular Vesicle (EV) Mechanisms of Toxicity for Per and Polyfluoroalkyl Substances: Comparing Transcriptomic Points of Departure Across Global Versus EV Regulatory Gene Sets. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025; 66:99-121. [PMID: 40105262 PMCID: PMC11991898 DOI: 10.1002/em.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/31/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Extracellular vesicles (EVs) are emitted from cells throughout the body and serve as signaling molecules that mediate disease development. Emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) impact EV release and content, influencing liver toxicity. Still, the upstream regulators of EV changes affected by PFAS exposure remain unclear. This study evaluated the hypothesis that PFAS exposures, individually and in a mixture, alter the expression of genes involved in EV regulation at concentrations comparable to genes involved in global biological response mechanisms. HepG2 liver cells were treated at multiple concentrations with individual PFOS, PFOA, or PFHxA, in addition to an equimolar PFAS mixture. Gene expression data were analyzed using three pipelines for concentration-response modeling, with results compared against empirically derived datasets. Final benchmark concentration (BMC) modeling was conducted via Laplace model averaging in BMDExpress (v3). BMCs were derived at an individual gene level and across different gene sets, including Gene Ontology (GO) annotations as well as a custom EV regulation gene set. To determine relative PFAS contributions to the evaluated mixture, relative potency factors were calculated across resulting BMCs using PFOS as a standard reference chemical. Results demonstrated that PFAS exposures altered the expression of genes involved in EV regulation, particularly for genes overlapping with endoplasmic reticulum stress. EV regulatory gene changes occurred at similar BMCs as global gene set alterations, supporting concurrent regulation and the role of EVs in PFAS toxicology. This application of transcriptomics-based BMC modeling further validates its utility in capturing both established and novel pathways of toxicity.
Collapse
Affiliation(s)
- Celeste K. Carberry
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hadley Hartwell
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cynthia V. Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Matthew Wheeler
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, RTP, NC, USA
| | - Scott Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Julia E. Rager
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
26
|
Sun X, Wan J, Zhang Y, Shen Y, Tang Y, Yin Y, Chamley LW, Zhao M, Chen Q. Placental extracellular vesicles induce ovarian tumour cell death in an ex vivo explant model: Possible therapeutic potential. Placenta 2025; 160:20-28. [PMID: 39752926 DOI: 10.1016/j.placenta.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025]
Abstract
INTRODUCTION Placental extracellular vesicles (EVs), lipid-enclosed particles released from the placenta, can facilitate intercellular communication and are classified as micro- or nano-EVs depending on size. Placental EVs contain molecules associated with cell proliferation and death. In this study, we investigated whether treating human ovarian tumour explants with placental EVs could induce ovarian tumour cell death. METHODS Human ovarian tumours were collected. After directly treating human ovarian tumour explants with placental EVs, cellular necrosis was observed in ovarian tumour explants by HE stains. Cell death-associated miRNAs were measured. RESULTS Expression of apoptosis and senescence-associated proteins, including NF-κβ and γ H2AX, were significantly increased, while proliferation-associated proteins were significantly reduced in the explants after exposure to placental EVs. Furthermore, miRNA-519a-5p, miRNA-512-3p and miRNA-143-3p, which were reported to promote ovarian cancer cell apoptosis or inhibition of ovarian cancer cell growth, were significantly increased, and the target genes of miRNA-519a-5p and miRNA-512-3p were significantly reduced in the explants after exposure to placental EVs. Transfection of SK-OV-3 ovarian cancer cells with a mimic of miRNA-519a-5p or miRNA-143-3p reduced the viability of these cells. DISCUSSION Our study demonstrated that placental EVs could induce necrosis in ovarian tumour explants. Increased levels of apoptosis and senescence-associated proteins and miRNAs could contribute to this change in ovarian tumour cell phenotype after exposure to placental EVs.
Collapse
Affiliation(s)
- Xinyi Sun
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Jiayi Wan
- Department of Pathology, Wuxi No 2 People's Hospital, Nanjing Medical University, China
| | - Yi Zhang
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Ye Shen
- Department of Family Planning, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yunhui Tang
- Department of Family Planning, The Hospital of Obstetrics & Gynaecology, Fudan University, China
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lawrence W Chamley
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Min Zhao
- Department of Gynaecological Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Qi Chen
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand.
| |
Collapse
|
27
|
Zhang X, Guo Y, Fang K, Huang X, Lan D, Wang M, Jia L, Ji X, Meng R, Zhou D. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in ischemic stroke: A meta-analysis of preclinical studies. Brain Res Bull 2025; 221:111219. [PMID: 39837375 DOI: 10.1016/j.brainresbull.2025.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/22/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Ischemic stroke (IS) remains a significant global health burden, necessitating the development of novel therapeutic strategies. This study aims to systematically evaluate the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-Exos) on IS outcomes in rodent models. METHODS A comprehensive literature search was conducted across multiple databases to identify studies investigating the effects of MSC-Exos on rodent models of IS. Following rigorous inclusion and exclusion criteria, 73 high-quality studies were selected for meta-analysis. Primary outcomes included reductions in infarct volume/ratio and improvements in functional recovery scores. Data extraction and analysis were performed using RevMan 5.3 software. RESULTS Pooled data indicated that MSC-Exos administration significantly reduced infarct size and improved functional recovery scores in rodent models of IS. Treatment within 24 hours and beyond 24 hours of stroke induction both demonstrated substantial reductions in infarct volume/ratio compared to controls. Furthermore, MSC-Exos-treated groups exhibited marked improvements in functional recovery, as assessed by various neurobehavioral tests. The meta-analysis showed no significant publication bias, and heterogeneity levels were acceptable. CONCLUSIONS MSC-Exos reveal significant therapeutic potential for IS, with evidence supporting their efficacy in reducing infarct size and enhancing functional recovery in preclinical rodent models. These findings pave the way for further research and potential clinical translation.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Yibing Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Kun Fang
- Capital Medical University, Beijing 100069, China.
| | - Xiangqian Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
28
|
Orefice NS, Petrillo G, Pignataro C, Mascolo M, De Luca G, Verde S, Pentimalli F, Condorelli G, Quintavalle C. Extracellular vesicles and microRNAs in cancer progression. Adv Clin Chem 2025; 125:23-54. [PMID: 39988407 DOI: 10.1016/bs.acc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.
Collapse
Affiliation(s)
- Nicola S Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Martina Mascolo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Giada De Luca
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| | - Sara Verde
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Aka biotech S.r.l., Napoli, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", Bari, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy; Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy.
| | - Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| |
Collapse
|
29
|
Hickman E, Carberry V, Carberry C, Cooper B, Mordant AL, Mills A, Sokolsky M, Herring LE, Alexis NE, Rebuli ME, Jaspers I, Sheats K, Rager JE. Respiratory extracellular vesicle isolation optimization through proteomic profiling of equine samples and identification of candidates for cell-of-origin studies. PLoS One 2025; 20:e0315743. [PMID: 39854355 PMCID: PMC11760557 DOI: 10.1371/journal.pone.0315743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/01/2024] [Indexed: 01/26/2025] Open
Abstract
Growing evidence supports the importance of extracellular vesicle (EV) as mediators of communication in pathological processes, including those underlying respiratory disease. However, establishing methods for isolating and characterizing EVs remains challenging, particularly for respiratory samples. This study set out to address this challenge by comparing different EV isolation methods and evaluating their impacts on EV yield, markers of purity, and proteomic signatures, utilizing equine/horse bronchoalveolar lavage samples. Horses can serve as effective translational animal models for respiratory studies due to similarities with human immune responses, shared environmental exposures, and naturally occurring respiratory diseases including asthma. Further, horses are long-lived large animals that allow for longitudinal sample collection, and provide large sample volume and cell yield, which are particularly useful since EV research is commonly limited by low sample yields. Here, EVs were isolated from horse bronchoalveolar lavage fluid (BALF) using four different methods (ultracentrifugation, microcentrifugation, and two sizes of size exclusion chromatography columns) and characterized by measuring particle counts, EV purity, total protein yield, and proteomic cargo, with a specific focus on vesicle surface marker expression potentially informing cell type of origin. We found that size exclusion chromatography yielded the highest particle counts, greatest EV purity markers and elevated vesicle surface marker expression. Overall proteomic profiles differed across isolation methods, with size exclusion chromatography clustering separately from centrifugation. Taken together, our results demonstrate that different isolation methods impact characteristics of EVs, notably that size exclusion chromatography, compared to centrifugation methods, resulted in higher EV purity and better characterized proteomic diversity, including information on EV cell-of-origin. This is the first study to characterize proteomic profiles of EVs following different isolation methods using equine BALF. The results of this study will pave the way for future studies using equine and human samples to characterize respiratory tract EVs.
Collapse
Affiliation(s)
- Elise Hickman
- Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Victoria Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Celeste Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bethanie Cooper
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Angie L. Mordant
- UNC Michael Hooker Proteomics Core, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Allie Mills
- UNC Michael Hooker Proteomics Core, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marina Sokolsky
- Center for Nanotechnology in Drug Delivery, UNC School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Laura E. Herring
- UNC Michael Hooker Proteomics Core, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Neil E. Alexis
- Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Meghan E. Rebuli
- Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Katie Sheats
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Julia E. Rager
- Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
30
|
Kim K, Han M, Lee D. InTiCAR: Network-based identification of significant inter-tissue communicators for autoimmune diseases. Comput Struct Biotechnol J 2025; 27:333-345. [PMID: 39897058 PMCID: PMC11782887 DOI: 10.1016/j.csbj.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Inter-tissue communicators (ITCs) are intricate and essential aspects of our body, as they are the keepers of homeostatic equilibrium. It is no surprise that the dysregulation of the exchange between tissues are at the core of various disorders. Among such conditions, autoimmune diseases (AIDs) refer to a collection of pathological conditions where the miscommunication drives the immune system to mistakenly attack one's own body. Due to their myriad and diverse pathophysiologies, AIDs cannot be easily diagnosed or treated, and continuous efforts are required to seek for potential diagnostic markers or therapeutic targets. The identification of ITCs with significant involvement in the disease states is therefore crucial. Here, we present InTiCAR, Inter-Tissue Communicators for Autoimmune diseases by Random walk with restart, which is a network exploration-based analysis method that suggests disease-specific ITCs based on prior knowledge of disease genes, without the need for the external expression data. We first show that distinct ITC profile s can be acquired for various diseases by InTiCAR. We further illustrate that, for autoimmune diseases (AIDs) specifically, the disease-specific ITCs outperform disease genes in diagnosing patients using the UK Biobank plasma proteome dataset. Also, through CMap LINCS dataset, we find that high perturbation on the AIDs genes can be observed by the disease-specific ITCs. Our results provide and highlight unique perspectives on biological network analysis by focusing on the entities of extracellular communications.
Collapse
Affiliation(s)
- Kwansoo Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Manyoung Han
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
31
|
Joshi U, Shah S, Gupta S, George LB, Highland H. Evaluation of Exosomal Proteins as Potential Biomarkers from RBC Stages of Plasmodium falciparum 3D7. ACS Infect Dis 2025; 11:164-180. [PMID: 39694666 DOI: 10.1021/acsinfecdis.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Falciparum malaria relies extensively on cell-to-cell communication, and earlier research on the function of exosomal proteins derived from infected red blood cells (iRBCs) has been classified into numerous important roles. In this study, the exosomes were derived from Pf3D7-iRBCs cultured in vitro during synchronized trophozoite stages. The isolated exosomes were assessed using NTA, FE-SEM, and flow cytometry. Our study reported heterogeneous populations of exosomes during the infection. Additionally, label-free quantification based on LC/MS-MS for protein profiling revealed the presence of both parasitic and host (RBC) proteins; out of a total of 124 proteins detected, 20 Pf3D7 proteins and 80 RBC proteins were identified. Exosomal RBC protein expression is different in cRBCs-Exo and iRBCs-Exo, which shows how the parasite and RBCs interact with each other. Functional classification reported that the majority of these Pf3D7 proteins are uncharacterized with unknown functions, few of which are involved in biological processes such as regulation of complement activation, response to external stimuli, immune system-mediated signaling pathway, protein processing, etc. Hence, studying these exosomal proteins and comparing them to previous research has helped us understand how exosomes help cells to communicate in malaria. It may also reveal new potential biomarkers for diagnostic methods or therapies for malaria.
Collapse
Affiliation(s)
- Urja Joshi
- Department of Biochemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
- Department of Zoology, BMTC, Human Genetics and Wildlife Biology and Conservation, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| | - Sumedha Shah
- Biological Engineering, IIT Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Sharad Gupta
- Biological Engineering, IIT Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Linz-Buoy George
- Department of Zoology, BMTC, Human Genetics and Wildlife Biology and Conservation, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| | - Hyacinth Highland
- Department of Zoology, BMTC, Human Genetics and Wildlife Biology and Conservation, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
32
|
Gurjar S, Bhat A R, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis 2025; 24:5. [PMID: 39773634 PMCID: PMC11705780 DOI: 10.1186/s12944-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial. Consequently, noninvasive biomarkers and imaging techniques are essential for analyzing disease risk and play a pivotal role in the global diagnostic process. The use of extracellular vesicles has emerged as promising for early diagnosis and therapy of various liver ailments. Herein, a comprehensive summary of the current diagnostic modalities for MASLD is presented, highlighting their advantages and limitations while exploring the potential of extracellular vesicles (EVs) as innovative diagnostic and therapeutic tools for MASLD. With this aim, this review emphasizes an in-depth understanding of the origin of EVs and the pathophysiological alterations of these ectosomes and exosomes in various liver diseases. This review also explores the therapeutic potential of EVs as key components in the future management of liver disease. The dual role of EVs as biomarkers and their therapeutic utility in MASLD essentially highlights their clinical integration to improve MASLD diagnosis and treatment. While EV-based therapies are still in their early stages of development and require substantial research to increase their therapeutic value before they can be used clinically, the diagnostic application of EVs has been extensively explored. Moving forward, developing diagnostic devices leveraging EVs will be crucial in advancing MASLD diagnosis. Thus, the literature summarized provides suitable grounds for clinicians and researchers to explore EVs for devising diagnostic and treatment strategies for MASLD.
Collapse
Affiliation(s)
- Swasthika Gurjar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Ramanarayana Bhat A
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
33
|
Monegatti S, Martinelli N, Friso S, Spronk HMH, Cate HT. Mechanisms and management of thrombosis in cancer: Focus on gastrointestinal malignancies. J Pharmacol Exp Ther 2025; 392:100018. [PMID: 39893001 DOI: 10.1124/jpet.124.002203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Cancer patients have an increased risk of venous thromboembolism, which is their second cause of death after disease progression itself. Several thrombotic risk factors coexist in cancer patients, including the ability of both cancer and tumoral microenvironment's cells to directly or indirectly activate platelets and the enzymes of the coagulation cascade, resulting in a hypercoagulable state of blood. This narrative review gives an overview of the main mechanisms leading to venous thromboembolism in cancer patients, including the role that platelets and the clotting proteins may have in tumor growth and metastasis. Of note, the hemostatic balance is altered in cancer patients who may, next to a thrombosis tendency, also have an increased risk of bleeding. To highlight the complexity and the precariousness of the hemostatic balance of these patients, we discuss 2 specific gastrointestinal malignancies: hepatocellular carcinoma, which is frequently associated with liver cirrhosis, a condition that causes profound alterations of hemostasis, and colorectal cancer, which is characterized by a fragile mucosa that is prone to bleeding. Understanding the molecular mechanisms of cancer-associated thrombosis may give a unique opportunity to develop new innovative drugs, acting differently on distinct pathways and potentially allowing to reduce the risk of bleeding related to antithrombotic therapies. SIGNIFICANCE STATEMENT: The topic is significant because understanding the molecular mechanisms leading to cancer-associated thrombosis and bleeding, focusing on gastrointestinal malignancies, enables the development of more rationale and innovative antithrombotic strategies for cancer-associated thrombosis. Eventually, this will support an improved and patient-tailored antithrombotic management in vulnerable oncologic patients.
Collapse
Affiliation(s)
- Simone Monegatti
- Department of Medicine, University of Verona, Verona, Italy; Departments of Internal Medicine and Biochemistry, Maastricht University Medical Centre and CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | | | | | - Henri M H Spronk
- Departments of Internal Medicine and Biochemistry, Maastricht University Medical Centre and CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Hugo Ten Cate
- Departments of Internal Medicine and Biochemistry, Maastricht University Medical Centre and CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands.
| |
Collapse
|
34
|
Kishta MS, Khamis A, Am H, Elshaar AH, Gül D. Exploring the tumor-suppressive role of miRNA-200c in head and neck squamous cell carcinoma: Potential and mechanisms of exosome-mediated delivery for therapeutic applications. Transl Oncol 2025; 51:102216. [PMID: 39615277 DOI: 10.1016/j.tranon.2024.102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a challenging malignancy due to its high rates of recurrence, metastasis, and resistance to conventional therapies. microRNA-200c (miRNA-200c) has emerged as a critical tumor suppressor in HNSCC, with the potential to inhibit epithelial-mesenchymal transition (EMT), which is considered as a key process in cancer metastasis and progression. Interestingly, there are also controversial findings in HNSCC characterizing miRNA-200c as oncogenic factor. This review article provides a comprehensive overview of the current understanding of miRNA-200c's general role in cancer, and particularly in HNSCC, highlighting its mechanisms of action, including the regulation of EMT and other oncogenic pathways. Additionally, the review explores the innovative approach of exosome-mediated delivery of miRNA-200c as a therapeutic strategy. Exosomes, as natural nanocarriers, offer a promising vehicle for the targeted delivery of miRNA-200c to tumor cells, potentially overcoming the limitations of traditional delivery methods and enhancing therapeutic efficacy. The review also discusses the challenges and future directions in the clinical application of miRNA-200c, particularly focusing on its potential to improve outcomes for HNSCC patients. This article seeks to provide valuable insights for researchers and clinicians working towards innovative treatments for this aggressive cancer type.
Collapse
Affiliation(s)
- Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, 12622 Cairo, Egypt.
| | - Aya Khamis
- Maxillofacial and Oral Surgery, University Medical Center, 55131 Mainz, Germany; Oral Pathology Department, Faculty of Dentistry, Alexandria University, 5372066 Alexandria, Egypt
| | - Hafez Am
- Medical Biochemistry Department Faculty of medicine KafrElSheikh University, Kafr El-Sheikh, Egypt
| | | | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
35
|
Lorite P, Domínguez JN, Palomeque T, Torres MI. Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies. Int J Mol Sci 2024; 26:189. [PMID: 39796048 PMCID: PMC11720073 DOI: 10.3390/ijms26010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites. The complexity and diversity of EVs require a robust and standardized approach. By adhering to standardized protocols and guidelines, researchers can ensure the consistency, purity, and reproducibility of isolated EVs, facilitating their use in diagnostics, therapies, and research. Exosomes and microvesicles represent an exciting frontier in modern medicine, with significant potential to transform the diagnosis and treatment of various diseases with an important role in personalized medicine and precision therapy. The primary objective of this review is to provide an updated analysis of the significance of EVs by highlighting their mechanisms of action and exploring their applications in the diagnosis and treatment of various diseases. Additionally, the review addresses the existing limitations and future potential of EVs, offering practical recommendations to resolve current challenges and enhance their viability for clinical use. This comprehensive approach aims to bridge the gap between EV research and its practical application in healthcare.
Collapse
Affiliation(s)
| | | | | | - María Isabel Torres
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (P.L.); (J.N.D.); (T.P.)
| |
Collapse
|
36
|
Li P, Lu M, Peng T, Wu Y, Zhu L, Liu Y, Zhang W, Xiang T. An improvised one-step OptiPrep cushion ultracentrifugation method for outer membrane vesicles isolation of Klebsiella pneumoniae. BMC Microbiol 2024; 24:548. [PMID: 39732632 DOI: 10.1186/s12866-024-03649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/13/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity. RESULTS This study proposes an innovative strategy that combines traditional differential centrifugation (DC) with one-step ultracentrifugation (ODG) to develop a dual differential gradient centrifugation (DDGC) method for extracting outer membrane vesicles from Klebsiella pneumoniae. By comparing the DC and DDGC extraction methods, we found that OMVs extracted by DDGC exhibited more typical morphology, clearer backgrounds, and more uniform particle size distribution. The lipid polysaccharide (LPS) content in OMVs extracted by DDGC was significantly higher than that obtained by DC, and the outer membrane protein content was also greater, demonstrating enhanced biological activity. Biological activity assays indicated that OMVs extracted by DDGC showed stronger cytotoxicity to A549 lung epithelial cells, a significant decrease in cell viability, and higher levels of inflammatory factor expression(IL-6, TNF-α, IL-1β, and IL-8). CONCLUSION Our study demonstrates the advantages of the DDGC method in extracting K. pneumoniae OMVs, showing improvements in morphology, particle size distribution, protein content, and biological activity. This provides a solid foundation for further exploration of the biological functions of OMVs and their potential applications in the biomedical field.
Collapse
Affiliation(s)
- Ping Li
- Department of Respiratory and Critical Care Medicine, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China
| | - Ming Lu
- Department of Respiratory and Critical Care Medicine, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China
| | - Tingxiu Peng
- Department of Respiratory and Critical Care Medicine, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yifan Wu
- Department of Respiratory and Critical Care Medicine, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lanlan Zhu
- Department of Respiratory and Critical Care Medicine, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China
| | - Yang Liu
- Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong wai zheng jie No. 17, Nanchang, 330006, PR China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China.
| | - Tianxin Xiang
- Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China.
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330052, P.R. China.
| |
Collapse
|
37
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the pan-cancer role of exosomal miRNAs in metastasis across cancers. Comput Struct Biotechnol J 2024; 27:252-264. [PMID: 39866667 PMCID: PMC11763893 DOI: 10.1016/j.csbj.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Exosomal microRNAs (exomiRs) play a critical role in intercellular communication, especially in cancer, where they regulate key cellular processes like proliferation, angiogenesis, and metastasis, highlighting their significance as potential diagnostic and therapeutic targets. Here, we aimed to characterize the role of exomiRs, derived from seven cancer types (four cell lines and three tumors), in influencing the pre-metastatic niche (PMN). In each cancer type we extracted high confidence exomiRs (LogFC >= 2 in exosomes relative to control), their experimentally validated targets, and the enriched pathways among those targets. We then selected the top100 high-confidence targets based on their frequency of appearance in the enriched pathways. We observed significantly higher GC content in exomiRs relative to genomic background. Gene Ontology analysis revealed both general cancer processes, such as wound healing and epithelial cell proliferation, as well as cancer-specific processes, such as "angiogenesis" in the kidney and "ossification" in the lung. ExomiR targets were enriched for cancer-specific tumor suppressor genes and downregulated in PMN formed in lungs compared to normal. Motif analysis showed high inter-cancer similarity among motifs enriched in exomiRs. Our analysis recapitulated exomiRs associated with M2 macrophage differentiation and chemoresistance, such as miR-21 and miR-222-3p, regulating signaling pathways like PTEN/PI3/Akt, NF-kB, etc. Additionally, Cox regression analysis in TCGA indicated that exomiR targets are significantly associated with better overall survival of patients. Lastly, support vector machine model using exomiR targets gene expression classified responders and non-responders to therapy with an AUROC ranging from 0.72 to 0.96, higher than previously reported gene signatures.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
38
|
Wang L, Zhang X, Yang Z, Wang B, Gong H, Zhang K, Lin Y, Sun M. Extracellular vesicles: biological mechanisms and emerging therapeutic opportunities in neurodegenerative diseases. Transl Neurodegener 2024; 13:60. [PMID: 39643909 PMCID: PMC11622582 DOI: 10.1186/s40035-024-00453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles originating from different cells within the brain. The pathophysiological role of EVs in neurodegenerative diseases is progressively acknowledged. This field has advanced from basic biological research to essential clinical significance. The capacity to selectively enrich specific subsets of EVs from biofluids via distinctive surface markers has opened new avenues for molecular understandings across various tissues and organs, notably in the brain. In recent years, brain-derived EVs have been extensively investigated as biomarkers, therapeutic targets, and drug-delivery vehicles for neurodegenerative diseases. This review provides a brief overview of the characteristics and physiological functions of the various classes of EVs, focusing on the biological mechanisms by which various types of brain-derived EVs mediate the occurrence and development of neurodegenerative diseases. Concurrently, novel therapeutic approaches and challenges for the use of EVs as delivery vehicles are delineated.
Collapse
Affiliation(s)
- Ling Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Lin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
39
|
Hua Y, Jiang P, Dai C, Li M. Extracellular vesicle autoantibodies. J Autoimmun 2024; 149:103322. [PMID: 39341173 DOI: 10.1016/j.jaut.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Autoantibodies are immunoglobulin proteins produced by autoreactive B cells responding to self-antigens. Extracellular vesicles (EVs) are membranous structures released by almost all types of cells and extensively distributed in various biological fluids. Studies have indicated that EVs loaded with self-antigens not only play important roles in antigen presentation and autoantibody production but can also form functional immune complexes with autoantibodies (termed EV autoantibodies). While numerous papers have summarized the production and function of pathogenic autoantibodies in diseases, especially autoimmune diseases, reviews on EV autoantibodies are rare. In this review, we outline the existing knowledge about EVs, autoantibodies, and EV antigens, highlighting the formation of EV autoantibodies and their functions in autoimmune diseases and cancers. In conclusion, EV autoantibodies may be involved in the occurrence of disease(s) and also serve as potential non-invasive markers that could help in the diagnosis and/or prognosis of disease. Additional studies designed to define in more detail the molecular characteristics of EV autoantibodies and their contribution to disease are recommended.
Collapse
Affiliation(s)
- Yan Hua
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China
| | - Panpan Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China
| | - Chunyang Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
40
|
Tsai HF, Shen AQ. Impact of dcEF on microRNA profiles in glioblastoma and exosomes using a novel microfluidic bioreactor. BIOMICROFLUIDICS 2024; 18:064106. [PMID: 39742343 PMCID: PMC11686958 DOI: 10.1063/5.0228901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Glioblastoma multiforme, the most common type of highly aggressive primary brain tumor, is influenced by complex molecular signaling pathways, where microRNAs (miRNAs) play a critical regulatory role. Originating from glial cells, glioblastoma cells are affected by the physiological direct current electric field (dcEF) in the central nervous system. While dcEF has been shown to affect glioblastoma migration (electrotaxis), the specific impact on glioblastoma intercellular communication and miRNA expression in glioblastoma cells and their exosomes remains unclear. This study aims to fill this gap by investigating the differential expression of microRNAs in glioblastoma cells and exosomes under dcEF stimulation. We have developed a novel, reversibly sealed dcEF stimulation bioreactor that ensures uniform dcEF stimulation across a large cell culture area, specifically targeting glioblastoma cells and primary human astrocytes. Using microarray analysis, we examined differential miRNA profiles in both cellular and exosomal RNAs. Our study identified shared molecular targets and pathways affected by dcEF stimulation. Our findings reveal significant changes in miRNA expression due to dcEF stimulation, with specific miRNAs, such as hsa-miR-4440 being up-regulated and hsa-miR-3201 and hsa-mir-548g being down-regulated. Future research will focus on elucidating the molecular mechanisms of these miRNAs and their potential as diagnostic biomarkers. The developed platform offers high-quality dcEF stimulation and rapid sample recovery, with potential applications in tissue engineering and multi-omics molecular analysis.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan and Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
41
|
Bang S, Qamar AY, Yun SH, Gu NY, Kim H, Han A, Kang H, Park HS, Kim SI, Saadeldin IM, Lee S, Cho J. Embryotrophic effect of exogenous protein contained adipose-derived stem cell extracellular vesicles. J Anim Sci Biotechnol 2024; 15:145. [PMID: 39488683 PMCID: PMC11531693 DOI: 10.1186/s40104-024-01106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) regulate cell metabolism and various biological processes by delivering specific proteins and nucleic acids to surrounding cells. We aimed to investigate the effects of the cargo contained in EVs derived from adipose-derived stem cells (ASCs) on the porcine embryonic development. METHODS ASCs were isolated from porcine adipose tissue and characterized using ASC-specific markers via flow cytometry. EVs were subsequently extracted from the conditioned media of the established ASCs. These EVs were added to the in vitro culture environment of porcine embryos to observe qualitative improvements in embryonic development. Furthermore, the proteins within the EVs were analyzed to investigate the underlying mechanisms. RESULTS We observed a higher blastocyst development rate and increased mitochondrial activity in early stage embryos in the ASC-EVs-supplemented group than in the controls (24.8% ± 0.8% vs. 28.6% ± 1.1%, respectively). The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of blastocysts also revealed significantly reduced apoptotic cells in the ASC-EVs-supplemented group. Furthermore, through proteomics, we detected the proteins in ASC-EVs and blastocysts from each treatment group. This analysis revealed a higher fraction of proteins in the ASC-EVs-supplemented group than in the controls (1,547 vs. 1,495, respectively). Gene analysis confirmed that ASC-EVs showed a high expression of tyrosine-protein kinase (SRC), whereas ASC-EVs supplemented blastocysts showed a higher expression of Cyclin-dependent kinase 1 (CDK1). SRC is postulated to activate protein kinase B (AKT), which inhibits the forkhead box O signaling pathway and activates CDK1. Subsequently, CDK1 activation influences the cell cycle, thereby affecting in vitro embryonic development. CONCLUSION ASC-EVs promote mitochondrial activity, which is crucial for the early development of blastocysts and vital in the downregulation of apoptosis. Additionally, ASC-EVs supply SRC to porcine blastocysts, thereby elongating the cell cycle.
Collapse
Affiliation(s)
- Seonggyu Bang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ahmad Yar Qamar
- College of Veterinary and Animal Sciences, Jhang Sub-campus of University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang, Chungcheongbuk-Do, 28119, Republic of Korea
| | - Na-Yeon Gu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-Do, 39660, Republic of Korea
| | - Heyyoung Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Ayeong Han
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heejae Kang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye Sun Park
- Korea Basic Science Institute (KBSI), Ochang, Chungcheongbuk-Do, 28119, Republic of Korea
| | - Seung Ii Kim
- Korea Basic Science Institute (KBSI), Ochang, Chungcheongbuk-Do, 28119, Republic of Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
42
|
Essien SA, Ahuja I, Eisenhoffer GT. Apoptotic extracellular vesicles carrying Mif regulate macrophage recruitment and compensatory proliferation in neighboring epithelial stem cells during tissue maintenance. PLoS Biol 2024; 22:e3002194. [PMID: 39495793 DOI: 10.1371/journal.pbio.3002194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2024] [Accepted: 08/27/2024] [Indexed: 11/06/2024] Open
Abstract
Apoptotic cells can signal to neighboring cells to stimulate proliferation and compensate for cell loss to maintain tissue homeostasis. While apoptotic cell-derived extracellular vesicles (AEVs) can transmit instructional cues to mediate communication with neighboring cells, the molecular mechanisms that induce cell division are not well understood. Here, we show that macrophage migration inhibitory factor (Mif)-containing AEVs regulate compensatory proliferation via ERK signaling in epithelial stem cells of larval zebrafish. Time-lapse imaging showed efferocytosis of AEVs from dying epithelial stem cells by healthy neighboring stem cells. Proteomic and ultrastructure analysis of purified AEVs identified Mif localization on the AEV surface. Pharmacological inhibition or genetic mutation of Mif, or its cognate receptor CD74, decreased levels of phosphorylated ERK and compensatory proliferation in the neighboring epithelial stem cells. Disruption of Mif activity also caused decreased numbers of macrophages patrolling near AEVs, while depletion of the macrophage lineage resulted in a reduced proliferative response by the epithelial stem cells. We propose that AEVs carrying Mif directly stimulate epithelial stem cell repopulation and guide macrophages to cell non-autonomously induce localized proliferation to sustain overall cell numbers during tissue maintenance.
Collapse
Affiliation(s)
- Safia A Essien
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ivanshi Ahuja
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - George T Eisenhoffer
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
43
|
Jiang Y, Harberts J, Assadi A, Chen Y, Spatz JP, Duan W, Nisbet DR, Voelcker NH, Elnathan R. The Roles of Micro- and Nanoscale Materials in Cell-Engineering Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410908. [PMID: 39401098 DOI: 10.1002/adma.202410908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Indexed: 11/29/2024]
Abstract
Customizable manufacturing of ex vivo cell engineering is driven by the need for innovations in the biomedical field and holds substantial potential for addressing current therapeutic challenges; but it is still only in its infancy. Micro- and nanoscale-engineered materials are increasingly used to control core cell-level functions in cellular engineering. By reprogramming or redirecting targeted cells for extremely precise functions, these advanced materials offer new possibilities. This influences the modularity of cell reprogramming and reengineering, making these materials part of versatile and emerging technologies. Here, the roles of micro- and nanoscale materials in cell engineering are highlighted, demonstrating how they can be adaptively controlled to regulate cellular reprogramming and core cell-level functions, including differentiation, proliferation, adhesion, user-defined gene expression, and epigenetic changes. The current reprogramming routes used to achieve pluripotency from somatic cells and the significant potential of induced pluripotent stem cell technology for translational biomedical research are covered. Recent advances in nonviral intracellular delivery modalities for cell reprogramming and their constraints are evaluated. This paper focuses on emerging physical and combinatorial approaches of intracellular delivery for cell engineering, revealing the capabilities and limitations of these routes. It is showcased how these programmable materials are continually being explored as customizable tools for inducing biophysical stimulation. Harnessing the power of micro- and nanoscale-engineered materials will be a step change in the design of cell engineering, producing a suite of powerful tools for addressing potential future challenges in therapeutic cell engineering.
Collapse
Affiliation(s)
- Yuan Jiang
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Jann Harberts
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Artin Assadi
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Zhejiang, 325000, China
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Max Planck Schools, 69120, Heidelberg, Germany
| | - Wei Duan
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - David R Nisbet
- The Graeme Clark Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Parkville, VIC, 3010, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Roey Elnathan
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
44
|
Oli AN, Adejumo SA, Rowaiye AB, Ogidigo JO, Hampton-Marcell J, Ibeanu GC. Tumour Immunotherapy and Applications of Immunological Products: A Review of Literature. J Immunol Res 2024; 2024:8481761. [PMID: 39483536 PMCID: PMC11527548 DOI: 10.1155/2024/8481761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant tumors, characterized by uncontrolled cell proliferation, are a leading global health challenge, responsible for over 9.7 million deaths in 2022, with new cases expected to rise to 35 million annually by 2050. Immunotherapy is preferred to other cancer therapies, offering precise targeting of malignant cells while simultaneously strengthening the immune system's complex responses. Advances in this novel field of science have been closely linked to a deeper knowledge of tumor biology, particularly the intricate interplay between tumor cells, the immune system, and the tumor microenvironment (TME), which are central to cancer progression and immune evasion. This review offers a comprehensive analysis of the molecular mechanisms that govern these interactions, emphasizing their critical role in the development of effective immunotherapeutic products. We critically evaluate the current immunotherapy approaches, including cancer vaccines, adoptive T cell therapies, and cytokine-based treatments, highlighting their efficacy and safety. We also explore the latest advancements in combination therapies, which synergistically integrate multiple immunotherapeutic strategies to overcome resistance and enhance therapeutic outcomes. This review offers key insights into the future of cancer immunotherapy with a focus on advancing more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 420211, Nigeria
| | - Samson Adedeji Adejumo
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
| | - Adekunle Babajide Rowaiye
- National Biotechnology Development Agency, Abuja 900211, Nigeria
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| | | | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
| | - Gordon C. Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| |
Collapse
|
45
|
Shama KA, Greenberg ZF, Tammame C, He M, Taylor BL. Diseased Tendon Models Demonstrate Influence of Extracellular Matrix Alterations on Extracellular Vesicle Profile. Bioengineering (Basel) 2024; 11:1019. [PMID: 39451395 PMCID: PMC11505312 DOI: 10.3390/bioengineering11101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Tendons enable movement through their highly aligned extracellular matrix (ECM), predominantly composed of collagen I. Tendinopathies disrupt the structural integrity of tendons by causing fragmentation of collagen fibers, disorganization of fiber bundles, and an increase in glycosaminoglycans and microvasculature, thereby driving the apparent biomechanical and regenerative capacity in patients. Moreover, the complex cellular communication within the tendon microenvironment ultimately dictates the fate between healthy and diseased tendon, wherein extracellular vesicles (EVs) may facilitate the tendon's fate by transporting biomolecules within the tissue. In this study, we aimed to elucidate how the EV functionality is altered in the context of tendon microenvironments by using polycaprolactone (PCL) electrospun scaffolds mimicking healthy and pathological tendon matrices. Scaffolds were characterized for fiber alignment, mechanical properties, and cellular activity. EVs were isolated and analyzed for concentration, heterogeneity, and protein content. Our results show that our mimicked healthy tendon led to an increase in EV secretion and baseline metabolic activity over the mimicked diseased tendon, where reduced EV secretion and a significant increase in metabolic activity over 5 days were observed. These findings suggest that scaffold mechanics may influence EV functionality, offering insights into tendon homeostasis. Future research should further investigate how EV cargo affects the tendon's microenvironment.
Collapse
Affiliation(s)
- Kariman A. Shama
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| | | | - Chadine Tammame
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| | - Mei He
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32603, USA;
| | - Brittany L. Taylor
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| |
Collapse
|
46
|
Zhen K, Wei X, Zhi Z, Shang S, Zhang S, Xu Y, Fu X, Cheng L, Yao J, Li Y, Chen X, Liu P, Zhang H. Circulating Extracellular Vesicles from Heart Failure Patients Inhibit Human Cardiomyocyte Activities. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10571-1. [PMID: 39384702 DOI: 10.1007/s12265-024-10571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Extracellular vesicles (EVs) have been implicated in cardiac remodeling during heart failure (HF). However, the role of circulating EVs (CEVs) in the process of HF is poorly understood. To elucidate the molecular mechanism associated with CEVs in the context of HF, the proteome of 4D label-free EVs from plasma samples was identified. Among the identified proteins, 6 exhibited upregulation while 9 demonstrated downregulation in CEVs derived from HF patients (HCEVs) compared to healthy controls (NCEVs). Our results showed that up-regulated proteins mainly participate in the primary metabolic, glycerolipid metabolic processes, oxidation-reduction process, and inflammatory amplification. In contrast, the down-regulated proteins influenced cell development, differentiation, and proliferation. Compared to NCEVs, HCEVs significantly induced inflammation and triacylglycerol (TAG) accumulation in human cardiomyocytes (HCMs) in vitro. They also compromised their regenerative capacities, triggered endoplasmic reticulum (ER) stress and increased autophagy in HCMs. Further, HCEVs induced differentiation of human cardiac fibroblasts (HCFs), amplifying pro-inflammatory, and pro-fibrotic factors, and enhancing extracellular matrix deposition. Notably, HCEVs are also associated with an increase in the HF biomarker MMP9 within HCFs and demonstrate a negative correlation with autophagic flux. In conclusion, HCEVs appear pivotal in advancing HF via pathological cardiac remodeling.
Collapse
Affiliation(s)
- Ke Zhen
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100011, China
| | - Xiaojuan Wei
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Zelun Zhi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiyu Shang
- The First Clinical Medical College, Hebei North University, Zhangjiakou, 075132, China
| | - Shuyan Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yilu Xu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Xiaochuan Fu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linjia Cheng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Jing Yao
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Yue Li
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Xia Chen
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongchao Zhang
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China.
| |
Collapse
|
47
|
Resch U, Hackl H, Pereyra D, Santol J, Brunnthaler L, Probst J, Jankoschek AS, Aiad M, Nolte H, Krueger M, Starlinger P, Assinger A. SILAC-Based Characterization of Plasma-Derived Extracellular Vesicles in Patients Undergoing Partial Hepatectomy. Int J Mol Sci 2024; 25:10685. [PMID: 39409015 PMCID: PMC11476990 DOI: 10.3390/ijms251910685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Post-hepatectomy liver failure (PHLF) remains a significant risk for patients undergoing partial hepatectomy (PHx). Reliable prognostic markers and treatments to enhance liver regeneration are lacking. Plasma nanoparticles, including lipoproteins, exosomes, and extracellular vesicles (EVs), can reflect systemic and tissue-wide proteostasis and stress, potentially aiding liver regeneration. However, their role in PHLF is still unknown. METHODS Our study included nine patients with hepatocellular carcinoma (HCC) undergoing PHx: three patients with PHLF, three patients undergoing the associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) procedure, and three matched controls without complications after PHx. Patient plasma was collected before PHx as well as 1 and 5 days after. EVs were isolated by ultracentrifugation, and extracted proteins were subjected to quantitative mass spectrometry using a super-SILAC mix prepared from primary and cancer cell lines. RESULTS We identified 2625 and quantified 2570 proteins in the EVs of PHx patients. Among these, 53 proteins were significantly upregulated and 32 were downregulated in patients with PHLF compared to those without PHLF. Furthermore, 110 proteins were upregulated and 78 were downregulated in PHLF patients compared to those undergoing ALPPS. The EV proteomic signature in PHLF indicates significant disruptions in protein translation, proteostasis, and intracellular vesicle biogenesis, as well as alterations in proteins involved in extracellular matrix (ECM) remodelling and the metabolic and cell cycle pathways, already present before PHx. CONCLUSIONS Longitudinal proteomic analysis of the EVs circulating in the plasma of human patients undergoing PHx uncovers proteomic signatures associated with PHLF, which reflect dying hepatocytes and endothelial cells and were already present before PHx.
Collapse
Affiliation(s)
- Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
- Cluster of Excellence/Cellular Stress Responses in Aging/Associated Diseases (CECAD), Proteomics Core Facilities, University of Cologne, Joseph-Stelzmann Strasse 26, D-50931 Cologne, Germany
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020 Innsbruck, Austria
| | - David Pereyra
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Jonas Santol
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Laura Brunnthaler
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Joel Probst
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Anna Sofie Jankoschek
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Monika Aiad
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Hendrik Nolte
- Cluster of Excellence/Cellular Stress Responses in Aging/Associated Diseases (CECAD), Proteomics Core Facilities, University of Cologne, Joseph-Stelzmann Strasse 26, D-50931 Cologne, Germany
| | - Marcus Krueger
- Cluster of Excellence/Cellular Stress Responses in Aging/Associated Diseases (CECAD), Proteomics Core Facilities, University of Cologne, Joseph-Stelzmann Strasse 26, D-50931 Cologne, Germany
| | - Patrick Starlinger
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020 Innsbruck, Austria
- Department of Surgery, General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
48
|
Tati V, Muthukumar V S, Shukla S. Mesenchymal vs. epithelial extracellular vesicles in corneal epithelial repair, apoptosis, and immunomodulation: An in vitro study. Exp Eye Res 2024; 247:110027. [PMID: 39127238 DOI: 10.1016/j.exer.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Corneal injuries often lead to epithelial damage, apoptosis, and inflammation which impact visual function. Effective epithelial healing is critical for optimal vision and functioning of the cornea. Mesenchymal stem/stromal cells (MSCs)-derived extracellular vesicles (EVs) present promising avenues for cell-free therapy, however, evaluation of their specific roles in corneal epithelial injury requires further investigations with due consideration to the endogenous human corneal epithelial cell-derived EVs (HCEC-EVs). This study aims to isolate and characterize the EVs from a commonly available human corneal epithelial cell line (HCE-2 [50. B1], ATCC) and evaluate their corneal epithelial repair, anti-apoptotic, and immunomodulatory potential in comparison with human bone marrow mesenchymal stem cell-derived EVs (BM-MSC-EVs) in vitro. Both the BM-MSC- and HCEC-EVs exhibited similar morphology with a diameter <150 nm. However, the yield of EVs from HCECs was higher than that of BM-MSCs. Nanoparticle tracking analysis revealed an average EV size of ∼120 nm, while western blotting confirmed the presence of CD63, CD81, and TSG101, whereas Calnexin could not be detected in the BM-MSC- and HCEC-EVs. The corneal epithelial repair was monitored through in vitro wound healing assay, whereas apoptosis was studied through flow cytometry-based Propidium iodide staining in H2O2-treated cells. IL-1β-stimulated HCECs were treated with BM-MSC- and HCEC-EVs for 24 h and expression of pro- (IL-6 and TNF-α) and anti-inflammatory (IL-10 and TGF-β) cytokines was evaluated through ELISA. Our results, limited to in vitro investigations, suggest that compared with HCEC-EVs, BM-MSC-EVs showed: i) accelerated corneal epithelial healing, ii) enhanced anti-apoptotic potential, and iii) improved anti-inflammatory properties, in cultured HCECs.
Collapse
Affiliation(s)
- Vasudeva Tati
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, 500034, India; Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, India
| | - Sai Muthukumar V
- Electron Microscopy Laboratory, Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Sri Sathya Sai District, Andhra Pradesh, India
| | - Sachin Shukla
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, 500034, India; Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, India.
| |
Collapse
|
49
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the role of exosomal miRNAs in metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608894. [PMID: 39372783 PMCID: PMC11451750 DOI: 10.1101/2024.08.20.608894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Exosomal microRNAs (exomiRs), transported via exosomes, play a pivotal role in intercellular communication. In cancer, exomiRs influence tumor progression by regulating key cellular processes such as proliferation, angiogenesis, and metastasis. Their role in mediating communication between cancer cells and the tumor microenvironment highlights their significance as potential diagnostic and therapeutic targets. Methodology In this study, we aimed to characterize the role of exomiRs in influencing the pre-metastatic niche (PMN). Across 7 tumor types, including 4 cell lines and three tumors, we extracted high confidence exomiRs (Log FC >= 2 in exosomes relative to control) and their targets (experimentally identified and targeted by at least 2 exomiRs). Subsequently, we identified enriched pathways and selected the top 100 high-confidence exomiR targets based on the frequency of their appearance in the enriched pathways. These top 100 targets were consistently used throughout the analysis. Results Cancer cell line and tumor derived ExomiRs have significantly higher GC content relative to genomic background. Pathway enriched among the top exomiR targets included general cancer-associated processes such as "wound healing" and "regulation of epithelial cell proliferation", as well as cancer-specific processes, such as "regulation of angiogenesis in kidney" (KIRC), "ossification" in lung (LUAD), and "positive regulation of cytokine production" in pancreatic cancer (PAAD). Similarly, 'Pathways in cancer' and 'MicroRNAs in cancer' ranked among the top 10 enriched KEGG pathways in all cancer types. ExomiR targets were not only enriched for cancer-specific tumor suppressor genes (TSG) but are also downregulated in pre-metastatic niche formed in lungs compared to normal lung. Motif analysis shows high similarity among motifs identified from exomiRs across cancer types. Our analysis recapitulates exomiRs associated with M2 macrophage differentiation and chemoresistance such as miR-21 and miR-222-3p, regulating signaling pathways such as PTEN/PI3/Akt, NF-κB, etc. Cox regression indicated that exomiR targets are significantly associated with overall survival of patients in TCGA. Lastly, a Support Vector Machine (SVM) model using exomiR target gene expression classified responders and non-responders to neoadjuvant chemotherapy with an AUROC of 0.96 (in LUAD), higher than other previously reported gene signatures. Conclusion Our study characterizes the pivotal role of exomiRs in shaping the PMN in diverse cancers, underscoring their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
50
|
Fathi E, Valipour B, Jafari S, Kazemi A, Montazersaheb S, Farahzadi R. The role of the hematopoietic stem/progenitor cells-derived extracellular vesicles in hematopoiesis. Heliyon 2024; 10:e35051. [PMID: 39157371 PMCID: PMC11327835 DOI: 10.1016/j.heliyon.2024.e35051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are tightly regulated by specific microenvironments called niches to produce an appropriate number of mature blood cell types. Self-renewal and differentiation are two hallmarks of hematopoietic stem and progenitor cells, and their balance is critical for proper functioning of blood and immune cells throughout life. In addition to cell-intrinsic regulation, extrinsic cues within the bone marrow niche and systemic factors also affect the fate of HSCs. Despite this, many paracrine and endocrine factors that influence the function of hematopoietic cells remain unknown. In hematological malignancies, malignant cells remodel their niche into a permissive environment to enhance the survival of leukemic cells. These events are accompanied by loss of normal hematopoiesis. It is well known that extracellular vehicles (EVs) mediate intracellular interactions under physiological and pathological conditions. In other words, EVs transfer biological information to surrounding cells and contribute not only to physiological functions but also to the pathogenesis of some diseases, such as cancers. Therefore, a better understanding of cell-to-cell interactions may lead to identification of potential therapeutic targets. Recent reports have suggested that EVs are evolutionarily conserved constitutive mediators that regulate hematopoiesis. Here, we focus on the emerging roles of EVs in normal and pathological conditions, particularly in hematological malignancies. Owing to the high abundance of EVs in biological fluids, their potential use as biomarkers and therapeutic tools is discussed.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdolhassan Kazemi
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|