1
|
Cao L, Chen J, Ni H, Gong X, Zang Z, Chang H. Kumquat Flavonoids Attenuate Atherosclerosis in ApoE -/- Mice by Inhibiting the Activation of NLRP3 Inflammasome through Upregulating MicroRNA-145. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40260463 DOI: 10.1021/acs.jafc.5c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Atherosclerosis (AS) is widely recognized as a consequence of chronic inflammation, with the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome playing a pivotal role in mediating this inflammatory response. Kumquat flavonoids (KFs), the primary active ingredients in kumquat, have demonstrated potential in modulating inflammation and may help prevent AS. Herein, this study aimed to explore the protective effects and underlying mechanisms of KFs on AS using an ApoE-/- mouse model fed a high-fat/cholesterol diet (HFCD) and the mouse aortic vascular smooth muscle cell (MOVAS) inflammation model induced by oxidized low-density lipoprotein (ox-LDL). Our results show that KFs significantly reduced serum lipid levels and suppressed the overproduction of inflammatory cytokines in ApoE-/- mice. Notably, KFs also decreased the area of atherosclerotic lesions and plaque formation in the aorta of ApoE-/- mice. Additionally, in vivo (mouse aortic tissue) and in vitro (MOVAS cells), KFs were found to inhibit the activation of NLRP3 inflammasome and simultaneously upregulate microRNA-145 (miR-145). In conclusion, our findings suggest that KFs exert their inhibitory effects on NLRP3 inflammasome through upregulating miR-145, thereby alleviating the progression of AS.
Collapse
Affiliation(s)
- Linhai Cao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Junli Chen
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
| | - Hongxia Ni
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoxiao Gong
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ziyan Zang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Yaacoub S, Boudaka A, AlKhatib A, Pintus G, Sahebkar A, Kobeissy F, Eid AH. The pharmaco-epigenetics of hypertension: a focus on microRNA. Mol Cell Biochem 2024; 479:3255-3271. [PMID: 38424404 PMCID: PMC11511726 DOI: 10.1007/s11010-024-04947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Hypertension is a major harbinger of cardiovascular morbidity and mortality. It predisposes to higher rates of myocardial infarction, chronic kidney failure, stroke, and heart failure than most other risk factors. By 2025, the prevalence of hypertension is projected to reach 1.5 billion people. The pathophysiology of this disease is multifaceted, as it involves nitric oxide and endothelin dysregulation, reactive oxygen species, vascular smooth muscle proliferation, and vessel wall calcification, among others. With the advent of new biomolecular techniques, various studies have elucidated a gaping hole in the etiology and mechanisms of hypertension. Indeed, epigenetics, DNA methylation, histone modification, and microRNA-mediated translational silencing appear to play crucial roles in altering the molecular phenotype into a hypertensive profile. Here, we critically review the experimentally determined associations between microRNA (miRNA) molecules and hypertension pharmacotherapy. Particular attention is given to the epigenetic mechanisms underlying the physiological responses to antihypertensive drugs like candesartan, and other relevant drugs like clopidogrel, aspirin, and statins among others. Furthermore, how miRNA affects the pharmaco-epigenetics of hypertension is especially highlighted.
Collapse
Affiliation(s)
- Serge Yaacoub
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, Lebanese International University, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Li P, Zhao J, Ma Y, Wang L, Liang S, Fan F, Wei T, Feng L, Hu X, Hu Y, Wang Z, Qin H. Transplantation of miR-145a-5p modified M2 type microglia promotes the tissue repair of spinal cord injury in mice. J Transl Med 2024; 22:724. [PMID: 39103885 PMCID: PMC11302162 DOI: 10.1186/s12967-024-05492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND The traumatic spinal cord injury (SCI) can cause immediate multi-faceted function loss or paralysis. Microglia, as one of tissue resident macrophages, has been reported to play a critical role in regulating inflammation response during SCI processes. And transplantation with M2 microglia into SCI mice promotes recovery of motor function. However, the M2 microglia can be easily re-educated and changed their phenotype due to the stimuli of tissue microenvironment. This study aimed to find a way to maintain the function of M2 microglia, which could exert an anti-inflammatory and pro-repair role, and further promote the repair of spinal cord injury. METHODS To establish a standard murine spinal cord clip compression model using Dumont tying forceps. Using FACS, to sort microglia from C57BL/6 mice or CX3CR1GFP mice, and further culture them in vitro with different macrophage polarized medium. Also, to isolate primary microglia using density gradient centrifugation with the neonatal mice. To transfect miR-145a-5p into M2 microglia by Lipofectamine2000, and inject miR-145a-5p modified M2 microglia into the lesion sites of spinal cord for cell transplanted therapy. To evaluate the recovery of motor function in SCI mice through behavior analysis, immunofluorescence or histochemistry staining, Western blot and qRT-PCR detection. Application of reporter assay and molecular biology experiments to reveal the mechanism of miR-145a-5p modified M2 microglia therapy on SCI mice. RESULTS With in vitro experiments, we found that miR-145a-5p was highly expressed in M2 microglia, and miR-145a-5p overexpression could suppress M1 while promote M2 microglia polarization. And then delivery of miR-145a-5p overexpressed M2 microglia into the injured spinal cord area significantly accelerated locomotive recovery as well as prevented glia scar formation and neuron damage in mice, which was even better than M2 microglia transplantation. Further mechanisms showed that overexpressed miR-145a-5p in microglia inhibited the inflammatory response and maintained M2 macrophage phenotype by targeting TLR4/NF-κB signaling. CONCLUSIONS These findings indicate that transplantation of miR-145a-5p modified M2 microglia has more therapeutic potential for SCI than M2 microglia transplantation from epigenetic perspective.
Collapse
Affiliation(s)
- Penghui Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Junlong Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiqian Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Fan Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Tiaoxia Wei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yiyang Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hongyan Qin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Manwani B, Brathaban N, Baqai A, Munshi Y, Ahnstedt HW, Zhang M, Arkelius K, Llera T, Amorim E, Elahi FM, Singhal NS. Small RNA signatures of acute ischemic stroke in L1CAM positive extracellular vesicles. Sci Rep 2024; 14:13560. [PMID: 38866905 PMCID: PMC11169361 DOI: 10.1038/s41598-024-63633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
L1CAM-positive extracellular vesicles (L1EV) are an emerging biomarker that may better reflect ongoing neuronal damage than other blood-based biomarkers. The physiological roles and regulation of L1EVs and their small RNA cargoes following stroke is unknown. We sought to characterize L1EV small RNAs following stroke and assess L1EV RNA signatures for diagnosing stroke using weighted gene co-expression network analysis and random forest (RF) machine learning algorithms. Interestingly, small RNA sequencing of plasma L1EVs from patients with stroke and control patients (n = 28) identified micro(mi)RNAs known to be enriched in the brain. Weighted gene co-expression network analysis (WGCNA) revealed small RNA transcript modules correlated to diagnosis, initial NIH stroke scale, and age. L1EV RNA signatures associated with the diagnosis of AIS were derived from WGCNA and RF classification. These small RNA signatures demonstrated a high degree of accuracy in the diagnosis of AIS with an area under the curve (AUC) of the signatures ranging from 0.833 to 0.932. Further work is necessary to understand the role of small RNA L1EV cargoes in the response to brain injury, however, this study supports the utility of L1EV small RNA signatures as a biomarker of stroke.
Collapse
Affiliation(s)
- Bharti Manwani
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Nivetha Brathaban
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Abiya Baqai
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Yashee Munshi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Hilda W Ahnstedt
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Mengqi Zhang
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Kajsa Arkelius
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Ted Llera
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Edilberto Amorim
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Fanny M Elahi
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Neel S Singhal
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA.
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94150, USA.
| |
Collapse
|
5
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
6
|
Xiong Y, Xu J, Zhang D, Wu S, Li Z, Zhang J, Xia Z, Xia P, Xia C, Tang X, Liu X, Liu J, Yu P. MicroRNAs in Kawasaki disease: An update on diagnosis, therapy and monitoring. Front Immunol 2022; 13:1016575. [PMID: 36353615 PMCID: PMC9638168 DOI: 10.3389/fimmu.2022.1016575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 08/15/2023] Open
Abstract
Kawasaki disease (KD) is an acute autoimmune vascular disease featured with a long stage of febrile. It predominantly afflicts children under 5 years old and causes an increased risk of cardiovascular combinations. The onset and progression of KD are impacted by many aspects, including genetic susceptibility, infection, and immunity. In recent years, many studies revealed that miRNAs, a novel class of small non-coding RNAs, may play an indispensable role in the development of KD via differential expression and participation in the central pathogenesis of KD comprise of the modulation of immunity, inflammatory response and vascular dysregulation. Although specific diagnose criteria remains unclear up to date, accumulating clinical evidence indicated that miRNAs, as small molecules, could serve as potential diagnostic biomarkers and exhibit extraordinary specificity and sensitivity. Besides, miRNAs have gained attention in affecting therapies for Kawasaki disease and providing new insights into personalized treatment. Through consanguineous coordination with classical therapies, miRNAs could overcome the inevitable drug-resistance and poor prognosis problem in a novel point of view. In this review, we systematically reviewed the existing literature and summarized those findings to analyze the latest mechanism to explore the role of miRNAs in the treatment of KD from basic and clinical aspects retrospectively. Our discussion helps to better understand the pathogenesis of KD and may offer profound inspiration on KD diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yiyi Xiong
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiawei Xu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuqin Wu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhongbin Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cai Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianping Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Wang Y, Liu L, Li J. LncRNA KCNQ1OT1 depletion inhibits the malignant development of atherosclerosis by miR-145-5p. Microvasc Res 2022; 139:104236. [PMID: 34464666 DOI: 10.1016/j.mvr.2021.104236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atherosclerosis (AS) is a lipid-driven inflammatory disease of the arterial intima. Evidence is growing that dysregulation of lncRNAs is implicated in the pathogenesis of AS. In this research, the role of lncRNA KCNQ1OT1 in AS was investigated. METHODS ApoE-/- mice were fed on a high fat diet to establish mouse models of AS. Macrophages (THP-1) were treated with oxidized low-density lipoprotein (ox-LDL) to establish cell models of AS. Atherosclerotic lesions of AS mice were determined by performing Oil red O staining. Lipid metabolic disorders and inflammatory were detected using specific assay kits. KCNQ1OT1 and miR-145-5p expression was measured using RT-qPCR. Levels of PPARα and CPT1 were measured using western blot. RESULTS KCNQ1OT1 expression was upregulated and miR-145-5p was downregulated in atherosclerotic plaques of AS mice and ox-LDL-treated THP-1 cells. Lipid metabolic disorders and inflammation in vivo and in vitro were attenuated by either KCNQ1OT1 knockdown or miR-145-5p overexpression. Additionally, KCNQ1OT1 acted as a molecular sponge of miR-145-5p and downregulated miR-145-5p expression. Furthermore, silencing miR-145-5p abolished the effect of KCNQ1OT1 knockdown. CONCLUSION Silencing KCNQ1OT1 attenuates AS progression by sponging miR-145-5p.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Disease Models, Animal
- Disease Progression
- Gene Expression Regulation
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/prevention & control
- Lipoproteins, LDL/toxicity
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Plaque, Atherosclerotic
- Potassium Channels, Voltage-Gated/genetics
- Potassium Channels, Voltage-Gated/metabolism
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- THP-1 Cells
- Mice
Collapse
Affiliation(s)
- Yebao Wang
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China
| | - Ling Liu
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China
| | - Jianmin Li
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
8
|
Zhang X, Qi W, Shi Y, Li X, Yin J, Huo C, Zhang R, Zhao W, Ye J, Zhou L, Ye L. Role of miR-145-5p/ CD40 in the inflammation and apoptosis of HUVECs induced by PM 2.5. Toxicology 2021; 464:152993. [PMID: 34678319 DOI: 10.1016/j.tox.2021.152993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022]
Abstract
Fine particulate matter (PM2.5) exposure can cause the injury of vascular endothelial cells by inflammatory response. CD40 works in inflammation of endothelial cells and it may be regulated by the miRNAs. This study aimed to clarify the role and mechanism of CD40 and miR-145-5p in PM2.5-induced injury of human umbilical vein endothelial cells (HUVECs). HUVECs were treated with different concentrations of PM2.5 exposure (0, 100, 200, 400 μg/mL) for 24 h. The si-RNA was used for CD40 gene silencing (0, 200 μg/mL PM2.5, siRNA-CD40 and siRNA-CD40 + 200 μg/mL PM2.5). Mimics was used for overexpression of miR-145-5p (0, 200 μg/mL PM2.5, mimics and mimics+200 μg/mL PM2.5). The cell viability of HUVECs was detected with Cell Counting Kit8 (CCK8) kit. The level of cell apoptosis was detected by flow cytometry. The inflammation-related factor including interleukin-1β (IL-1β), interleukin-18 (IL-18), tumor necrosis factor α (TNF-α) and C1q complement/tumor necrosis factor (TNF)-associated proteins9 (CTRP9) were tested with enzyme-linked immunosorbent assay (ELISA) kits. The mRNA and protein expression levels of CD40, CD40L, caspase1, NLRP3 (Nod-like receptor family pyrin domain-containing 3) and IKKB were detected with quantitative real-time PCR (qRT-PCR), Western blot and Immunofluorescence. Compared with the control group, the cell viability of HUVECs exposed to PM2.5 was significantly decreased (p < 0.05); the levels of IL-Iβ and TNF-α were significantly increased, while the level of CTRP9 was significantly decreased (p < 0.05). The proportion of apoptotic cells was increased after being treated with PM2.5 (p < 0.05). Besides, the mRNA and protein levels of CD40, CD40L, IKKB, NLRP3 and caspase1 were increased comparing with the control group (p < 0.05). After CD40 silencing, the condition of inflammation and apoptosis in HUVECs exposed to PM2.5 was alleviated, and the expression levels of CD40L, IKKB, NLRP3 and caspase1 were significantly decreased (p < 0.05). Furthermore, miR-145-5p was significantly down-regulated after exposure to 200μg/mL PM2.5 (p < 0.05). After over-expression of miR-145-5p, the expression level of CD40 was decreased (p < 0.05). Taken together, PM2.5 can cause inflammation and apoptosis of HUVECs via the activation of CD40, which can be regulated by miR-145-5p. Over-expression of miR-145-5p can down-regulate CD40, further inhibiting the inflammation and apoptosis of HUVECs induced by PM2.5.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ruxuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Weisen Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiaming Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Ji N, Wang Y, Gong X, Ni S, Zhang H. CircMTO1 inhibits ox-LDL-stimulated vascular smooth muscle cell proliferation and migration via regulating the miR-182-5p/RASA1 axis. Mol Med 2021; 27:73. [PMID: 34238206 PMCID: PMC8268171 DOI: 10.1186/s10020-021-00330-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play critical roles in the development of atherosclerosis (AS). This study investigated the role of circMTO1 in the progression of AS. METHODS Serum samples from AS patients and healthy volunteers and vascular smooth muscle cells (VSMCs) were used as the study materials. The expressions of circMTO1 and miR-182-5p were measured by RT-qPCR. The effects of circMTO1, miR-182-5p, and RASA1 on VSMC proliferation and apoptosis were examined by MTT and BrdU assays and wound healing and flow cytometric analyses, respectively. Downstream target genes of circMTO1 and miR-182-5p were predicted using target gene prediction and screening and confirmed using a luciferase reporter assay. RASA1 expression was detected by RT-qPCR and Western blot. RESULTS circMTO1 expression was decreased, while miR-182-5p expression was increased in human AS sera and oxidized low-density lipoprotein (ox-LDL)-stimulated VSMCs. CircMTO1 overexpression inhibited the proliferation and promoted the apoptosis of ox-LDL-stimulated VSMCs. CircMTO1 was found to be served as a sponge of miR-182-5p and RASA1 as a target of miR-182-5p. Moreover, circMTO1 acted as a ceRNA of miR-182-5p to enhance RASA1 expression. Furthermore, miR-182-5p overexpression and RASA1 knockdown reversed the effects of circMTO1 overexpression on the proliferation, migration, and apoptosis of ox-LDL-stimulated VSMCs. CONCLUSION CircMTO1 inhibited the proliferation and promoted the apoptosis of ox-LDL-stimulated VSMCs by regulating miR-182-5p/RASA1 axis. These results suggest that circMTO1 has potential in AS treatment.
Collapse
Affiliation(s)
- Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, No.699, Jiangdong Road, Yiwu City, 322000, Zhejiang Province, People's Republic of China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, No.699, Jiangdong Road, Yiwu City, 322000, Zhejiang Province, People's Republic of China
| | - Xinyan Gong
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, No.699, Jiangdong Road, Yiwu City, 322000, Zhejiang Province, People's Republic of China
| | - Shimao Ni
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, No.699, Jiangdong Road, Yiwu City, 322000, Zhejiang Province, People's Republic of China
| | - Hui Zhang
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, No.699, Jiangdong Road, Yiwu City, 322000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
10
|
Inhibition of miR-214-3p Protects Endothelial Cells from ox-LDL-Induced Damage by Targeting GPX4. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9919729. [PMID: 34327240 PMCID: PMC8277498 DOI: 10.1155/2021/9919729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
It is generally believed that excessive production of reactive oxygen species (ROS) during cardiovascular diseases impairs endothelial function. In this study, we aimed to investigate whether miR-214-3p is involved in the endothelial dysfunction induced by oxidized low-density lipoprotein (ox-LDL). In cultured vascular endothelial cells (VECs), the effects of miR-214-3p on endothelial injury induced by 100 mg/L ox-LDL were evaluated by knockdown of miR-214-3p. Western blotting was used to determine the expression of glutathione peroxidase 4 (GPX4) and endothelial nitric oxide synthase (eNOS) in VECs under different conditions. A luciferase reporter assay was used to identify GPX4 as the target of miR-214-3p. Our data showed that 100 mg/L ox-LDL significantly decreased the expression of GPX4 and eNOS, which was associated with increases in ROS levels and impairments of VEC viability and migration. Knockdown of miR-214-3p could partially reduce the increase in ROS, restore the decreased expression of GPX4 and eNOS, and thus rescue the impaired endothelial function caused by ox-LDL. Our data demonstrated that ox-LDL could induce upregulation of miR-214-3p and result in suppression of GPX4 in VECs. Downregulation of miR-214-3p could protect VECs from ROS-induced endothelial dysfunction by reversing its inhibitory effect on GPX4 expression.
Collapse
|
11
|
Ohayon L, Zhang X, Dutta P. The role of extracellular vesicles in regulating local and systemic inflammation in cardiovascular disease. Pharmacol Res 2021; 170:105692. [PMID: 34182130 DOI: 10.1016/j.phrs.2021.105692] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Extracellular vesicles are heterogeneous structures surrounded by cell membranes and carry complex contents including nucleotides, proteins, and lipids. These proteins include cytokines and chemokines that are important for exaggerating local and systemic inflammation in disease. Extracellular vesicles are mainly categorized as exosomes and micro-vesicles, which are directly shed from the endosomal system or originated from the cell membrane, respectively. By transporting several bioactive molecules to recipient cells and tissues, extracellular vesicles have favorable, neutral, or detrimental impacts on their targets, such as switching cell phenotype, modulating gene expression, and controlling biological pathways such as inflammatory cell recruitment, activation of myeloid cells and cell proliferation. Extracellular vesicles mediate these functions via both autocrine and paracrine signaling. In the cardiovascular system, extracellular vesicles can be secreted by multiple cell types like cardiomyocytes, smooth muscle cells, macrophages, monocytes, fibroblasts, and endothelial cells, and affect functions of cells or tissues in distant organs. These effects involve maintaining homeostasis, regulating inflammation, and triggering pathological process in cardiovascular disease. In this review, we mainly focus on the role of micro-vesicles and exosomes, two important subtypes of extracellular vesicles, in local and systemic inflammation in cardiovascular diseases such as myocardial infarction, atherosclerosis and heart failure. We summarize recent findings and knowledge on the effect of extracellular vesicles in controlling both humoral and cellular immunity, and the therapeutic approaches to harness this knowledge to control exacerbated inflammation in cardiovascular diseases.
Collapse
Affiliation(s)
- Lee Ohayon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xinyi Zhang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, Siller-Matula JM, Filipiak KJ, Postula M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front Physiol 2021; 12:652579. [PMID: 33935804 PMCID: PMC8081881 DOI: 10.3389/fphys.2021.652579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs, able to regulate cellular functions by specific gene modifications. Platelets are the major source for circulating miRNAs, with significant regulatory potential on cardiovascular pathophysiology. MiRNAs have been shown to modify the expression of platelet proteins influencing platelet reactivity. Circulating miRNAs can be determined from plasma, serum, or whole blood, and they can be used as diagnostic and prognostic biomarkers of platelet reactivity during antiplatelet therapy as well as novel therapeutic targets in cardiovascular diseases (CVDs). Herein, we review diagnostic and prognostic value of miRNAs levels related to platelet reactivity based on human studies, presenting its interindividual variability as well as the substantial role of genetics. Furthermore, we discuss antiplatelet treatment in the context of miRNAs alterations related to pathways associated with drug response.
Collapse
Affiliation(s)
- Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Aleksandra Gasecka
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Krzysztof J Filipiak
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| |
Collapse
|
13
|
Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, Zhu Z, Li D, Wang T, Liu K. The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:616161. [PMID: 33511124 PMCID: PMC7835482 DOI: 10.3389/fcell.2020.616161] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small vesicles (30–150 nm in diameter) enclosed by a lipid membrane bilayer, secreted by most cells in the body. They carry various molecules, including proteins, lipids, mRNA, and other RNA species, such as long non-coding RNA, circular RNA, and microRNA (miRNA). miRNAs are the most numerous cargo molecules in the exosome. They are endogenous non-coding RNA molecules, approximately 19–22-nt-long, and important regulators of protein biosynthesis. Exosomes can be taken up by neighboring or distant cells, where they play a role in post-transcriptional regulation of gene expression by targeting mRNA. Exosomal miRNAs have diverse functions, such as participation in inflammatory reactions, cell migration, proliferation, apoptosis, autophagy, and epithelial–mesenchymal transition. There is increasing evidence that exosomal miRNAs play an important role in cardiovascular health. Exosomal miRNAs are widely involved in the occurrence and development of cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, heart failure (HF), myocardial ischemia reperfusion injury, and pulmonary hypertension. In this review, we present a systematic overview of the research progress into the role of exosomal miRNAs in cardiovascular diseases, and present new ideas for the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Dongdong Zheng
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ming Huo
- Department of Day Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tiance Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Tao J, Xia L, Cai Z, Liang L, Chen Y, Meng J, Wang Z. Interaction Between microRNA and DNA Methylation in Atherosclerosis. DNA Cell Biol 2020; 40:101-115. [PMID: 33259723 DOI: 10.1089/dna.2020.6138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease accompanied by complex pathological changes, such as endothelial dysfunction, foam cell formation, and vascular smooth muscle cell proliferation. Many approaches, including regulating AS-related gene expression in the transcriptional or post-transcriptional level, contribute to alleviating AS development. The DNA methylation is a crucial epigenetic modification in regulating cell function by silencing the relative gene expression. The microRNA (miRNA) is a type of noncoding RNA that plays an important role in gene post-transcriptional regulation and disease development. The DNA methylation and the miRNA are important epigenetic factors in AS. However, recent studies have found a mutual regulation between these two factors in AS development. In this study, recent insights into the roles of miRNA and DNA methylation and their interaction in the AS progression are reviewed.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Linzhen Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Zemin Cai
- Department of Pediatrics and The First Affiliated Hospital of University of South China, Hengyang, China
| | - Lingli Liang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yanjun Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
15
|
Chauhan P, Dandapat J, Sarkar A, Saha B. March of Mycobacterium: miRNAs intercept host cell CD40 signalling. Clin Transl Immunology 2020; 9:e1179. [PMID: 33072321 PMCID: PMC7541823 DOI: 10.1002/cti2.1179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
The disease tuberculosis is fatal if untreated. It is caused by the acid-fast bacilli Mycobacterium tuberculosis. Mycobacterium resides and replicates within the alveolar macrophages, causing inflammation and granuloma, wherein macrophage-T cell interactions enhance the inflammation-causing pulmonary caseous lesions. The first interactions between Mycobacterium and the receptors on macrophages decide the fate of Mycobacterium because of phagolysosomal impairments and the expression of several miRNAs, which may regulate CD40 expression on macrophages. While the altered phagolysosomal functions impede antigen presentation to the T cell-expressed antigen receptor, the interactions between the macrophage-expressed CD40 and the T cell-expressed CD40-ligand (CD40L or CD154) provide signals to T cells and Mycobacterium-infected macrophages. These two functions significantly influence the resolution or persistence of Mycobacterium infection. CD40 controls T-cell polarisation and host-protective immunity by eliciting interleukin-12p40, nitric oxide, reactive oxygen species and IFN-γ production. Indeed, CD40-deficient mice succumb to low-dose aerosol infection with Mycobacterium because of deficient interleukin (IL)-12 production leading to impaired IFN-γ-secreting T-cell response. In contrast, despite generating fewer granulomas, the CD40L-deficient mice developed anti-mycobacterial T-cell responses to the levels observed in the wild-type mice. These host-protective responses are significantly subdued by the Mycobacterium-infected macrophage produced TGF-β and IL-10, which promote pro-mycobacterial T-cell responses. The CD40-CD40L-induced counteractive immune responses against Mycobacterium thus present a conundrum that we explain here with a reconciliatory hypothesis. Experimental validation of the hypothesis will provide a rationale for designing anti-tubercular immunotherapy.
Collapse
Affiliation(s)
| | | | - Arup Sarkar
- Trident Academy of Creative TechnologyBhubaneswarIndia
| | - Bhaskar Saha
- National Centre for Cell Science (NCCS)PuneIndia
- Trident Academy of Creative TechnologyBhubaneswarIndia
| |
Collapse
|
16
|
The Effect of Prophylactic Anticoagulation with Heparin on the Brain Cells of Sprague-Dawley Rats in a Cardiopulmonary-Cerebral Resuscitation Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8430746. [PMID: 33005203 PMCID: PMC7504766 DOI: 10.1155/2020/8430746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
After a cardiac arrest (CA) of 5 to 10 min, a marked activation of blood coagulation occurs and microthrombi are found in the cerebral vessels. These microcirculatory disturbances directly affect the outcome on cardiopulmonary resuscitation (CPR). The purpose of this study was to investigate the effects and potential mechanisms of prophylactic anticoagulation on rat brain cells after cerebral CPR. After setting up an asphyxial CA model, we monitored the basic parameters such as the vitals and survival rate of the rats and assessed the respective neurological deficit (ND) and histological damage (HD) scores of their brain tissues. We, furthermore, investigated the influence of heparin on the expressions of TNF-α, IL-1β, CD40, NF-κB, and HIF-1α after asphyxial CA. The results showed that anticoagulation with heparin could obviously improve the outcome and prognosis of brain ischemia, including improvement of neurological function recovery and prevention of morphological and immunohistochemical injury on the brain, while significantly increasing the success rate of CPR. Treatment with heparin significantly inhibited the upregulation of CD40, NF-κB, and HIF-1α induced by asphyxial CA. Thrombolysis treatment may improve the outcome and prognosis of CPR, and future clinical studies need to evaluate the efficacy of early heparin therapy after CA.
Collapse
|
17
|
Paseban M, Marjaneh RM, Banach M, Riahi MM, Bo S, Sahebkar A. Modulation of microRNAs by aspirin in cardiovascular disease. Trends Cardiovasc Med 2020; 30:249-254. [DOI: 10.1016/j.tcm.2019.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/12/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
|
18
|
Yoon JK, Kim DH, Kang ML, Jang HK, Park HJ, Lee JB, Yi SW, Kim HS, Baek S, Park DB, You J, Lee SD, Sei Y, Ahn SI, Shin YM, Kim CS, Bae S, Kim Y, Sung HJ. Anti-Atherogenic Effect of Stem Cell Nanovesicles Targeting Disturbed Flow Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000012. [PMID: 32239653 DOI: 10.1002/smll.202000012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Atherosclerosis development leads to irreversible cascades, highlighting the unmet need for improved methods of early diagnosis and prevention. Disturbed flow formation is one of the earliest atherogenic events, resulting in increased endothelial permeability and subsequent monocyte recruitment. Here, a mesenchymal stem cell (MSC)-derived nanovesicle (NV) that can target disturbed flow sites with the peptide GSPREYTSYMPH (PREY) (PMSC-NVs) is presented which is selected through phage display screening of a hundred million peptides. The PMSC-NVs are effectively produced from human MSCs (hMSCs) using plasmid DNA designed to functionalize the cell membrane with PREY. The potent anti-inflammatory and pro-endothelial recovery effects are confirmed, similar to those of hMSCs, employing mouse and porcine partial carotid artery ligation models as well as a microfluidic disturbed flow model with human carotid artery-derived endothelial cells. This nanoscale platform is expected to contribute to the development of new theragnostic strategies for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Jeong-Kee Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dae-Hyun Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Mi-Lan Kang
- TMD LAB Co., Ltd, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyeon-Ki Jang
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Ji Park
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Jung Bok Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Se Won Yi
- TMD LAB Co., Ltd, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye-Seon Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sewoom Baek
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dan Bi Park
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jin You
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | - Yoshitaka Sei
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Song Ih Ahn
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Young Min Shin
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | - Sangsu Bae
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Institute for Electronics and Nanotechnology (IEN), Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
19
|
Li L, Liu M, He L, Wang S, Cui S. Baicalin relieves TNF-α-evoked injury in human aortic endothelial cells by up-regulation of miR-145. Phytother Res 2019; 34:836-845. [PMID: 31793706 DOI: 10.1002/ptr.6566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Hypertension is recognized to be associated with low-grade inflammation. Baicalin (BAI) is reported to possess various pharmacological including anti-inflammatory activities. This research explored the molecular mechanism by which BAI functions in human aortic endothelial cells (HAECs). HAECs were pretreated with BAI. Cell viability, apoptosis, and expressions of crucial proteins were respectively evaluated using cell counting kit-8 assay, flow cytometry, and western blot. Productions of cytokines were respectively assessed employing quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Cell transfection was utilized to alter miR-145 expression. The expressions of proteins participated in JNK and p38MAPK pathways were analyzed utilizing western blot. TNF-α inducement successfully evoked inflammatory injury in HAECs, exhibiting as prominently suppressed viability, while facilitated apoptosis and productions of cytokines. However, BAI pretreatment significantly ameliorated TNF-α-triggered inflammatory injuries. Besides, miR-145 expression was markedly inhibited by TNF-α inducement, while notably elevated by BAI pretreatment. Although miR-145 overexpression had no significant influence on apoptosis, miR-145 silence observably reversed BAI pretreatment-evoked protective influences on TNF-α-induced HAECs, as well as the inhibited impacts on the levels of key proteins involved in JNK and p38MAPK pathways. This investigation illustrated that BAI relieved TNF-α-triggered injuries through upregulating miR-145 via suppressing JNK and p38MAPK pathways.
Collapse
Affiliation(s)
- Ling Li
- Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou, China
| | - Min Liu
- Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lianman He
- Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shanshan Wang
- Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shuxian Cui
- Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
20
|
Tanshinone ⅡA inhibits homocysteine-induced proliferation of vascular smooth muscle cells via miR-145/CD40 signaling. Biochem Biophys Res Commun 2019; 522:157-163. [PMID: 31757424 DOI: 10.1016/j.bbrc.2019.11.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Tanshinone IIA (Tan IIA), isolated from the traditional Chinese herb Danshen, exhibits broad cardiovascular protective effects. However, the effect of Tan IIA on Homocysteine (Hcy)-induced proliferation of vascular smooth muscle cells (VSMCs) remains unknown. We herein determined whether Tan IIA exerted anti-proliferative effect in Hcy-treating VSMCs, and further investigated the underlying mechanism (miR-145/CD40 signaling). The results showed that Tan IIA significantly inhibited VSMCs proliferation induced by Hcy in a dose-dependent manner, and reversed the VSMCs injury as indicated by decreased KLF4 and increased Calponin expression. In view of the key role of miR-145 in VSMCs, we further explored the role of miR-145 on the protective effect of Tan IIA against Hcy-induced VSMCs proliferation. The miR-145 expression was down-regulated and its targeted gene CD40 was up-regulated in Hcy-treating VSMCs, while the Tan IIA reversed the effect of Hcy, suggesting the miR-145/CD40 may be involve in the protective effect of Tan IIA. To determine the speculation, miR-145 inhibitor was used to inhibit miR-145 expression. The results indicated that miR-145 inhibitor can suppress the protective effects of Tan IIA against Hcy-induced VSMCs proliferation. Collectively, present study demonstrates that Tan IIA inhibits Hcy-induced proliferation of VSMCs via miR-145/CD40 signaling.
Collapse
|
21
|
Pierce JB, Feinberg MW. Editorial commentary: MicroRNAs as effectors and indicators of aspirin therapeutic potential. Trends Cardiovasc Med 2019; 30:255-256. [PMID: 31547951 DOI: 10.1016/j.tcm.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Jacob B Pierce
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, United States.
| |
Collapse
|
22
|
Wang H, Liao S, Li H, Chen Y, Yu J. Long Non-coding RNA TUG1 Sponges Mir-145a-5p to Regulate Microglial Polarization After Oxygen-Glucose Deprivation. Front Mol Neurosci 2019; 12:215. [PMID: 31551710 PMCID: PMC6748346 DOI: 10.3389/fnmol.2019.00215] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
Microglia plays a critical role in neuroinflammation after ischemic stroke by releasing diverse inflammatory cytokines. Long non-coding RNA taurine up-regulated gene 1 (lncRNA TUG1) is widely expressed in adult brain and has been reported to participate in multiple biological processes associated with nervous system diseases. However, the role of TUG1 in microglial activation remains unidentified. BV-2 microglial cells were cultured in vitro and TUG1 siRNA was used to knock down its RNA level. Microglial cells were subjected to oxygen-glucose deprivation (OGD) for 4 h following TUG1 siRNA or scramble siRNA transient transfection. After 24 h reoxygenation, TUG1 level and microglial M1/M2 phenotype, as well as releasing inflammatory cytokines and their role to viability of SH-SY5Y neuroblastoma cells were determined by quantitative real-time PCR (qRT-PCR), ELISA, immunofluorescence and western blot. In addition, miR-145a-5p, a putative microRNA to bind with TUG1 by bioinformatics analysis, was simultaneously examined, then the interaction of TUG1 with miR-145a-5p and the potential involvement of NF-κB pathway were further evaluated by RNA-RNA pull-down assay and western blot. The cellular level of TUG1 was transiently up-regulated in microglial cells 24 h after OGD treatment, with an inverse correlation to downregulated miR-145a-5p. TUG1 knockdown drove microglial M1-like to M2-like phenotypic transformation with reduced production of pro-inflammatory cytokines (tumor necrosis factor-α, TNF-α; interleukin-6, IL-6) and incremental release of anti-inflammatory cytokine (interleukin-10, IL-10), as a result, promoted the survival of SH-SY5Y cells. Meanwhile, TUG1 knockdown prevented OGD-induced activation of NF-κB pathway as well, represented by decreased ratios of p-p65/p65 and p-IκBα/IκBα proteins. Furthermore, we found that TUG1 could physically bind to miR-145a-5p while miR-145a-5p inhibitor abolished the protective effects of TUG1 knockdown through activation of NF-κB pathway, suggesting a negative interaction between TUG1 and miR-145a-5p. Our study demonstrated that lncRNA TUG1, sponging miR-145a-5p with negative interaction, could regulate microglial polarization and production of inflammatory cytokines at a relatively early stage after OGD insult, where NF-κB pathway might be involved, possibly providing a promising therapeutic target against inflammatory injury.
Collapse
Affiliation(s)
- Haoyue Wang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Songjie Liao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongjie Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yicong Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Yu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Engineering Center for Major Neurological Disease Treatment, Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Cai D, Wei D, Chen S, Chen X, Li S, Chen W, He W. MiR-145 protected the cell viability of human cerebral cortical neurons after oxygen-glucose deprivation by downregulating EPHA4. Life Sci 2019; 231:116517. [PMID: 31150684 DOI: 10.1016/j.lfs.2019.05.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 02/05/2023]
Abstract
Our previous study indicated that microRNA 145 (miR-145) and its predicated target, erythropoietin-producing hepatoma (EPH) receptor A4 (EPHA4), was closely associated with ischemic stroke. In this study, we aimed to further explore their function in a model of oxygen-glucose deprivation (OGD). The expression of miR-145 in the blood of 44 patients with ischemic stroke and 37 normal controls was detected by qRT-PCR. After transfection with either the wild- or mutant-type pGL3-promoter EPHA4 3'UTR into the miR-145 mimic and miR-145 inhibitor, a dual-luciferase reporter assay was performed to explore the interaction between miR-145 and EPHA4. qRT-PCR and Western blot were performed to further explore the effects of miR-145 on EPHA4 expression after an miR-145 mimic, an miR-145 inhibitor or LV-sh-EPHA4 was transfected into cerebral cortical neurons. The expression of miR-145 was significantly upregulated in the blood of patients with ischemic stroke compared to that of normal controls. Dual-luciferase reporter assay, qRT-PCR and Western blot results indicated that miR-145 indeed targets EPHA4 through its 3'-UTR and regulates the expression level of EPHA4 at both the mRNA and protein levels. Moreover, the OGD model was successfully constructed, and miR-145 exerted a protective effects in cell viability in the OGD model by downregulating EPHA4. The expression of LOC105376244 could be regulated by the miR-145-EPHA4 interaction. MiR-145 exerted a protective effects in cell viability in the OGD model by downregulating EPHA4, which suggested their potential roles in ischemic stroke and requires further research.
Collapse
Affiliation(s)
- De Cai
- Department of Pharmacy, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Duncan Wei
- Department of Pharmacy, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Siqia Chen
- Department of Neurology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xianguang Chen
- Department of Neurology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shunxian Li
- Department of Neurology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wenjie Chen
- Department of Neurology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wenzhen He
- Department of Pharmacy, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
24
|
Fleming DS, Miller LC. Differentially Expressed MiRNAs and tRNA Genes Affect Host Homeostasis During Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Infections in Young Pigs. Front Genet 2019; 10:691. [PMID: 31428130 PMCID: PMC6687759 DOI: 10.3389/fgene.2019.00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Porcine respiratory and reproductive syndrome virus (PRRSV) is a single-stranded RNA virus member that infects pigs and causes losses to the commercial industry reaching upward of a billion dollars annually in combined direct and indirect costs. The virus can be separated into etiologies that contain multiple heterologous low and highly pathogenic strains. Recently, the United States has begun to see an increase in heterologous type 2 PRRSV strains of higher virulence (HP-PRRSV). The high pathogenicity of these strains can drastically alter host immune responses and the ability of the animal to maintain homeostasis. Because the loss of host homeostasis can denote underlying changes in gene and regulatory element expression profiles, the study aimed to examine the effect PRRSV infections has on miRNA and tRNA expression and the roles they play in host tolerance or susceptibility. Results: Using transcriptomic analysis of whole blood taken from control and infected pigs at several time points (1, 3, 8 dpi), the analysis returned a total of 149 statistically significant (FDR ⫹ 0.15) miRNAs (n = 89) and tRNAs (n = 60) that were evaluated for possible pro- and anti-viral effects. The tRNA differential expression increased in both magnitude and count as dpi increased, with no statistically significant expression at 1 dpi, but increases at 3 and 8 dpi. The most abundant tRNA amino acid at 3 dpi was alanine, while glycine was the most abundant at 8 dpi. For the miRNAs, focus was put on upregulation that can inhibit gene expression. These results yielded candidates with potential anti- and pro-viral actions such as Ssc-miR-125b, which is predicted to limit PRRSV viral levels, and Ssc-miR-145-5p shown to cause alternative macrophage priming. The results also showed that both the tRNAs and miRNAs displayed expression patterns. Conclusions: The results indicated that the HP-PRRSV infection affects host homeostasis through changes in miRNA and tRNA expression and their subsequent gene interactions that target and influence the function of host immune, metabolic, and structural pathways.
Collapse
Affiliation(s)
- Damarius S Fleming
- ORAU/ORISE, Oak Ridge, TN, United States.,Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, United States
| | - Laura C Miller
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
25
|
Vicagrel enhances aspirin-induced inhibition of both platelet aggregation and thrombus formation in rodents due to its decreased metabolic inactivation. Biomed Pharmacother 2019; 115:108906. [DOI: 10.1016/j.biopha.2019.108906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
|
26
|
Zhang L, Li T, Miao X, Ding L, Wang S, Wang Y. Aspirin suppresses NFκB1 expression and inactivates cAMP signaling pathway to treat atherosclerosis. Biofactors 2019; 45:343-354. [PMID: 30633827 DOI: 10.1002/biof.1487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
Aspirin showed both favorable efficacy and safety in the treatment of atherosclerosis (AS). This study aimed to explore the effects of Aspirin on AS treatment. Differentially expressed mRNAs in AS were screened out and visualized by R project. The mRNA expression levels of NFκB1 and its targets were detected by qRT-PCR. The protein expression levels of NFκB1, intercellular cell adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1) were detected by western blot analysis. Besides, CCK-8 and flow cytometry assay were employed to evaluate the effects of Aspirin on cell proliferation rate and cell apoptotic rate respectively. Mouse model of AS was established for the verification of Aspirin-mediated suppression of AS progression in vivo. NFκB1 and Anti-Mullerian Hormone (AMH) were both over-expressed in atherosclerotic femoral artery tissues compared with healthy femoral artery tissues. cAMP signaling pathway was activated in AS. Overexpression of NFκB1 largely increased cell proliferation rate of VSMCs, which was instead down-regulated with suppression of NFκB1 in AS. By contrast, down-regulation of NFκB1 greatly increased cell apoptotic rate of VSMCs, which was otherwise reversed with up-regulation of NFκB1 in AS. It was proved that Aspirin increased cell apoptotic rate yet decreased cell proliferation rate of VSMCs to suppress AS progression by down-regulating the expression of NFκB1 and its targets, which might well provide us with more therapeutic strategies for treatment of AS. © 2019 BioFactors, 45(3):343-354, 2019.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Te Li
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Miao
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lijuan Ding
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Shudong Wang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yonggang Wang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Portelli SS, Robertson EN, Malecki C, Liddy KA, Hambly BD, Jeremy RW. Epigenetic influences on genetically triggered thoracic aortic aneurysm. Biophys Rev 2018; 10:1241-1256. [PMID: 30267337 PMCID: PMC6233334 DOI: 10.1007/s12551-018-0460-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Genetically triggered thoracic aortic aneurysms (TAAs) account for 30% of all TAAs and can result in early morbidity and mortality in affected individuals. Epigenetic factors are now recognised to influence the phenotype of many genetically triggered conditions and have become an area of interest because of the potential for therapeutic manipulation. Major epigenetic modulators include DNA methylation, histone modification and non-coding RNA. This review examines epigenetic modulators that have been significantly associated with genetically triggered TAAs and their potential utility for translation to clinical practice.
Collapse
Affiliation(s)
- Stefanie S Portelli
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Elizabeth N Robertson
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Cassandra Malecki
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kiersten A Liddy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Richmond W Jeremy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
28
|
Hypermethylation of the Micro-RNA 145 Promoter Is the Key Regulator for NLRP3 Inflammasome-Induced Activation and Plaque Formation. JACC Basic Transl Sci 2018; 3:604-624. [PMID: 30456333 PMCID: PMC6234615 DOI: 10.1016/j.jacbts.2018.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/14/2018] [Accepted: 06/19/2018] [Indexed: 01/17/2023]
Abstract
miR-145 in vessels decreases with plaque progression. DNMT1 and TET2 dynamic imbalance leads to miR-145 promoter hypermethylation. Reduction of miR-145 activates NLRP3 inflammasome through CD137/NFATc1 signaling. DNMT1 and TET2 could be promising therapeutic candidates for atherosclerosis in the future.
Two major issues are involved in clinical atherosclerosis treatment. First, there are no significant clinical markers for early diagnosis of atherosclerosis. Second, the plaque will not regress once it initiates even if the risk factors are removed. In this paper, the research shows that the hypermethylation level of the microRNA 145 (miR-145) promoter is related to a DNMT1 and TET2 dynamic imbalance. The reduction of miR-145 causes NLRP3 (nucleotide-binding oligomerization domain-like receptor protein 3) inflammasome activation through CD137/NFATc1 signaling. These findings could be a potential target for plaque regression in the future.
Collapse
|
29
|
Xue WS, Wang N, Wang NY, Ying YF, Xu GH. miR-145 protects the function of neuronal stem cells through targeting MAPK pathway in the treatment of cerebral ischemic stroke rat. Brain Res Bull 2018; 144:28-38. [PMID: 30179678 DOI: 10.1016/j.brainresbull.2018.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
This study is designed to investigate the function of the miR-145 in the protection of neural stem cells (NSCs) through targeting mitogen-activated protein kinase (MAPK) pathway in the treatment of cerebral ischemic stroke rat. In our study, rat NSCs were selected and cultured in complete medium. The light microscopy was used to observe the morphology of NSCs at different times. The quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR) was used to detect the miR-145 and other related mRNAs of the MARK pathway. The Western blotting was used to detect the activation of MAPK pathway and neuronal specific markers. The Immunofluorescence was used to detect the expression of the neuron-specific enolase. And the cell viability was detected by Cell Counting Kit (CCK)-8 assay. The flow cytometry was used to test the cell cycle and apoptosis. The ischemic stroke rat models were established and neural stem cell transplantation was performed. The neurological function score, balance beam experiment, and cortical Nissl staining were used to evaluate the postoperative neurological function in rats. The expression of miR-145, extracellular signal-regulated kinase (ERK), and p38 mRNA in rat NSCs increased in a time-dependent manner. Compared with the Blank group, the over-expression of miR-145 promoted the expression of related mRNA and protein of the MAPK pathway in NSCs, while the decreased expression of miR-145 suppressed the MAPK Pathways. Compared with the Blank group, over-expression of miR-145 in NSCs promoted the up-regulation of Cyclin D1, Nestin, neuron-specific enolase (NSE), and Glial fibrillary acidic protein (GFAP) proteins, enhanced the activity of NSCs, and promoted cell proliferation and differentiation, while inhibited the cell apoptosis and the Cleaved-caspase 3 expression. After treatment of NSCs in the SB203580 group, the Nestin, NSE, and GFAP were decreased; cell viability, proliferation and differentiation were inhibited, while Cleaved-caspase 3 protein and cell apoptosis rate increased. The results of animal experiments showed that compared with the Blank group, the walking ability and neurological impairment recovered rapidly in the rats after transplantation of NSCs with over-expression of miR-145, and more neurons were generated in the cortex. After the transplantation of SB203580-treated NSCs, the walking ability and neurological impairment of the rats were slower and the cortical neurons were less. We conclude that miR-145 protects the function of neuronal stem cells through targeting MAPK pathway in the treatment of cerebral ischemic stroke rat.
Collapse
Affiliation(s)
- Wei-Shu Xue
- The Second Neurology Department, the Fourth Hospital of Harbin, Harbin, Heilongjiang 150026, PR China.
| | - Nan Wang
- The Second Neurology Department, the Fourth Hospital of Harbin, Harbin, Heilongjiang 150026, PR China
| | - Ning-Yao Wang
- The Second Neurology Department, the Fourth Hospital of Harbin, Harbin, Heilongjiang 150026, PR China
| | - Yue-Fen Ying
- The Second Neurology Department, the Fourth Hospital of Harbin, Harbin, Heilongjiang 150026, PR China
| | - Guo-Hui Xu
- The Second Neurology Department, the Fourth Hospital of Harbin, Harbin, Heilongjiang 150026, PR China
| |
Collapse
|
30
|
Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Front Immunol 2018; 9:1377. [PMID: 29988529 PMCID: PMC6026627 DOI: 10.3389/fimmu.2018.01377] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/04/2018] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a complicated biological and pathophysiological cascade of responses to infections and injuries, and inflammatory mechanisms are closely related to many diseases. The magnitude, the complicated network of pro- and anti-inflammatory factors, and the direction of the inflammatory response can impact on the development and progression of various disorders. The currently available treatment strategies often target the symptoms and not the causes of inflammatory disease and may often be ineffective. Since the onset and termination of inflammation are crucial to prevent tissue damage, a range of mechanisms has evolved in nature to regulate the process including negative and positive feedback loops. In this regard, microRNAs (miRNAs) have emerged as key gene regulators to control inflammation, and it is speculated that they are fine-tune signaling regulators to allow for proper resolution and prevent uncontrolled progress of inflammatory reactions. In this review, we discuss recent findings related to significant roles of miRNAs in immune regulation, especially the potential utility of these molecules as novel anti-inflammatory agents to treat inflammatory diseases. Furthermore, we discuss the possibilities of using miRNAs as drugs in the form of miRNA mimics or miRNA antagonists.
Collapse
Affiliation(s)
- Alireza Tahamtan
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
He W, Wei D, Cai D, Chen S, Li S, Chen W. Altered Long Non-Coding RNA Transcriptomic Profiles in Ischemic Stroke. Hum Gene Ther 2018; 29:719-732. [PMID: 29284304 DOI: 10.1089/hum.2017.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A previous study described the important regulatory roles of microRNAs (miRNAs) in ischemic stroke. However, the functional significance of long non-coding RNA (lncRNAs) in ischemic stroke was largely unknown. This study aimed to identify lncRNA profiling and elucidate the regulatory mechanisms in the pathophysiology of stroke. RNA sequencing was performed on the blood of three ischemic stroke patients and three normal controls. Differential expression analysis was used to identify differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs). After further correlation and co-expression analysis, the corresponding co-expression networks and miRN-lncRNA-mRNA interaction network were then constructed. The expression of DElncRNAs and DEmRNAs was verified in Gene Expression Omnibus. RNA sequencing and subsequent bioinformatics analysis produced a total of 61 DElncRNAs (14 upregulated and 47 downregulated) and 673 DEmRNAs (432 upregulated and 241 downregulated). LOC105372881 and LOC101929707 were the most highly increased and decreased lncRNAs in ischemic stroke. LncRNA-mRNA co-expression networks were constructed according to 3,008 positively co-expressed and 607 negatively co-expressed lncRNA-mRNA pairs. The DElncRNAs may play roles in the pathways of glycolysis/gluconeogenesis, arrhythmogenic right ventricular cardiomyopathy, adherens junction, lysosome, and hematopoietic cell lineage by regulating their co-expressed mRNAs. Combined with previous data, a miRNA-lncRNA-mRNA interaction network for ischemic stroke was constructed. Based on GSE22255, the expression of six DElncRNAs (CEBPA-AS1, LINC00884, HCG27, MATN1-AS1, HCG26, and LINC01184) and 11 DEmRNAs (TREML4, AHSP, PI3, TESC, ANXA3, OAS1, OAS2, IFI6, ISG15, IFI44L, and LY6E) was similar to the current sequencing data. This study is the first to identify blood lncRNAs in human ischemic stroke using RNA sequencing. The findings may be the foundation for understanding the potential role of lncRNAs in ischemic stroke.
Collapse
Affiliation(s)
- Wenzhen He
- 1 Department of Neurology, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Duncan Wei
- 2 Department of Pharmacy, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - De Cai
- 2 Department of Pharmacy, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Siqia Chen
- 1 Department of Neurology, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Shunxian Li
- 1 Department of Neurology, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Wenjie Chen
- 1 Department of Neurology, First Affiliated Hospital of Shantou University Medical College , Shantou, China
| |
Collapse
|
32
|
Nejad C, Stunden HJ, Gantier MP. A guide to miRNAs in inflammation and innate immune responses. FEBS J 2018; 285:3695-3716. [DOI: 10.1111/febs.14482] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Charlotte Nejad
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton Australia
- Department of Molecular and Translational Science Monash University Clayton Australia
| | - H. James Stunden
- Institute of Innate Immunity Biomedical Center University Hospitals Bonn Bonn Germany
| | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton Australia
- Department of Molecular and Translational Science Monash University Clayton Australia
| |
Collapse
|
33
|
Zheng H, Han Y, Du Y, Shi X, Huang H, Yu X, Tan X, Hu C, Wang Y, Zhou S. Regulation of Hypertension for Secondary Prevention of Stroke: The Possible 'Bridging Function' of Acupuncture. Complement Med Res 2018; 25:45-51. [PMID: 29393105 DOI: 10.1159/000475930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, stroke is the leading cause of mortality and disability, with hypertension being an independent risk factor for a secondary stroke. Acupuncture for the treatment of hypertension gains more attention in alternative and complementary medicine, but the results are inconsistent. Few studies regarding the secondary prevention of stroke by managing hypertension with acupuncture have been carried out as there are some problems regarding the antihypertensive drug status in the secondary prevention of stroke. Still, the potential of acupuncture in regulating the blood pressure for secondary stroke prevention deserves our focus. This review is based on papers recorded in the PubMed, Embase, and Web of Science databases, from their inception until March 28, 2017, and retrieved with the following search terms: hypertension and acupuncture, limited in spontaneously hypertensive rats (SHRs), stress-induced (or cold-induced) hypertensive or pre-hypertensive models. We find that, in these hypertensive animals, acupuncture could mainly influence factors related to the nervous system, oxidative stress, the endocrine system, cardiovascular function, and hemorheology, which are closely associated with the stroke outcome. This trend may give us a hint that acupuncture might well participate in the secondary prevention of stroke through these pathways when used in the management of hypertension.
Collapse
|
34
|
Yuan M, Zhang L, You F, Zhou J, Ma Y, Yang F, Tao L. MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol Cell Biochem 2017; 431:123-131. [PMID: 28281187 DOI: 10.1007/s11010-017-2982-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/24/2017] [Indexed: 12/30/2022]
Abstract
An increasing body of evidence indicates that inflammation and apoptosis are involved in the development of acute myocardial infarction (AMI). In this study, we sought to investigate the specific role and the underlying regulatory mechanism of miR-145-5p in myocardial ischemic injury. H9c2 cardiac cells were exposed to hypoxia to establish a model of myocardial hypoxic/ischemic injury. We found that miR-145-5p was notably down-regulated, while CD40 expression was highly elevated in H9c2 cells following exposure to acute hypoxia. Additionally, hypoxia markedly enhanced the inflammatory response, as reflected by an increase in the secretion of the cytokines IL-1β, TNF-α, and IL-6, whereas the introduction of miR-145-5p effectively suppressed inflammatory factor production triggered by hypoxia. Furthermore, we observed hypoxia stimulation significantly augmented apoptosis accompanied by a decrease in the expression of Bcl-2 and an increase in the expression of Bax, Caspase-3, and Caspase-9. However, augmentation of miR-145-5p led to a dramatic prevention of hypoxia-induced apoptosis. Importantly, we identified CD40 as a direct target of miR-145-5p. Interestingly, the depletion of CD40 with small interfering RNAs (siRNAs) apparently repressed the production of inflammatory cytokines and apoptosis in the setting of acute hypoxic treated. Taken together, these data demonstrated that miR-145-5p may function as a cardiac-protective molecule in myocardial ischemic injury by ameliorating inflammation and apoptosis via negative regulation of CD40. The study gives evidence that miR-145-5p provides an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Cardiology, Xijing Hospital, Changle Xi 17, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Liwei Zhang
- Department of Cardiology, the First Affiliated Hospital of General Hospital of PLA, Beijing, 100048, People's Republic of China
| | - Fei You
- Department of Cardiology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Jingyu Zhou
- Department of Cardiology, Xijing Hospital, Changle Xi 17, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yongjiang Ma
- Department of Cardiology, the First Affiliated Hospital of General Hospital of PLA, Beijing, 100048, People's Republic of China
| | - Feifei Yang
- Department of Cardiology, the First Affiliated Hospital of General Hospital of PLA, Beijing, 100048, People's Republic of China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Changle Xi 17, Xi'an, 710032, Shaanxi, People's Republic of China
| |
Collapse
|
35
|
Wu T, Xiang Y, Lv Y, Li D, Yu L, Guo R. miR-590-3p mediates the protective effect of curcumin on injured endothelial cells induced by angiotensin II. Am J Transl Res 2017; 9:289-300. [PMID: 28337260 PMCID: PMC5340667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Curcumin (Cur) has multiple pharmacological effects including antitumor, anti-inflammatory, antioxidant and cardiovascular protective effects. This research aims to further explore whether the cardiovascular protective effects of Cur are mediated by the miR-590-3p/CD40 pathway. Endothelial cells (ECs) were cultivated with 10-7 mol/L angiotensin II (Ang II) to establish a damage model. Real-time PCR was used to determine the expression of CD40 and eNOS mRNA on ECs. The protein expressions of CD40 and eNOS were detected by Western blot analysis. The intracellular activities of SOD, CAT and MDA level were determined by corresponding detection kits, and the level of reactive oxygen species (ROS) in ECs was measured by ROS assay kit. Ang II increased both the mRNA and protein level of CD40, while it down-regulated the expression of eNOS at mRNA and protein level. These observations were accompanied by decreased activities of SOD and CAT with increased levels of intracellular MDA and ROS. Cur and miR-590-3p mimics inhibited the expressions of CD40 mRNA and protein induced by Ang II and alleviated the intracellular oxidative stress seen with increased levels of eNOS. However, these beneficial effects caused by Cur were partially reversed in the presence of miR-590-3p inhibitors. Our results indicate miR-590-3p is involved in the anti-inflammatory effects of Cur in ECs damaged by Ang II.
Collapse
Affiliation(s)
- Tian Wu
- Department of Pharmacy, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Yuanyuan Xiang
- Department of Pharmacy, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Yu Lv
- Department of Pharmacy, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Dai Li
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Lijin Yu
- Department of Pharmacy, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
36
|
Pang X, Tang Y, Zhang D. Role of miR-145 in chronic constriction injury in rats. Exp Ther Med 2016; 12:4121-4127. [PMID: 28105140 DOI: 10.3892/etm.2016.3900] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
The present study aims to investigate the effects and underlying mechanisms of miRNA-145 (miR-145) in rat models of chronic constriction injury (CCI). Rats were randomly divided into control, sham, CCI, agomiRNA (agomiR)-normal control (NC) and agomiR-145 groups (n=25 in each group); in addition, 30 rats with CCI were divided into small hairpin (sh)RNA-NC and shRNA-ras responsive element binding protein 1 (RREB1) groups. Paw withdrawal thermal latency (PWTL) and paw withdrawal mechanical threshold (PWMT) were detected. Reverse transcription-quantitative polymerase chain reaction was used to detect miR-145 expression levels, and western blotting was performed to measure RREB1 and phosphorylated-protein kinase B (p-AKT) expression levels. In addition, a dual luciferase reporter assay was conducted to identify the target gene of miR-145. PWMT and PWTL were decreased in CCI rats and this decrease was alleviated by miR-145 injection. At 1, 3, 5 and 7 days after CCI, miR-145 expression level in the spinal cord tissue of rats in the CCI group was significantly decreased compared with 1 day before CCI (P<0.05). Compared with the CCI group, miR-145 expression level in the agomiR-145 group was significantly higher (P<0.05). In addition, expression levels of RREB1 and p-AKT were significantly increased in the CCI group and significantly decreased in the agomiR-145 group (P<0.05). Furthermore, knockdown of RREB1 expression by shRNA-RREB1 significantly increased values of PWMT and PWTL, decreased expression levels of RREB1 and p-AKT, and increased miR-145 expression levels (P<0.05). Further investigation demonstrated that miR-145 can bind with RREB1 mRNA. In conclusion, miR-145 may be involved in the development of CCI through regulating the expression of RREB1.
Collapse
Affiliation(s)
- Xiaolin Pang
- Department of Anesthesiology, First Hospital of Tsinghua University, Beijing 100016, P.R. China
| | - Yuanzhang Tang
- Department of Pain Management, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| | - Dongya Zhang
- Department of Anesthesiology, First Hospital of Tsinghua University, Beijing 100016, P.R. China
| |
Collapse
|