1
|
Zhang X, Xu H, Yin S, Gozal D, Khalyfa A. Obstructive sleep apnea and memory impairments: Clinical characterization, treatment strategies, and mechanisms. Sleep Med Rev 2025; 81:102092. [PMID: 40286536 DOI: 10.1016/j.smrv.2025.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Obstructive sleep apnea (OSA), is associated with dysfunction in the cardiovascular, metabolic and neurological systems. However, the relationship between OSA and memory impairment, intervention effects, and underlying pathways are not well understood. This review summarizes recent advances in the clinical characterization, treatment strategies, and mechanisms of OSA-induced memory impairments. OSA patients may exhibit significant memory declines, including impairments in working memory from visual and verbal sources. The underlying mechanisms behind OSA-related memory impairment are complex and multifactorial with poorly understood aspects that require further investigation. Neuroinflammation, oxidative stress, neuronal damage, synaptic plasticity, and blood-brain barrier dysfunction, as observed under exposures to intermittent hypoxia and sleep fragmentation are likely contributors to learning and memory dysfunction. Continuous positive airway pressure treatment can provide remarkable relief from memory impairment in OSA patients. Other treatments are emerging but need to be rigorously evaluated for cognitive improvement. Clinically, reliable and objective diagnostic tools are necessary for accurate diagnosis and clinical characterization of cognitive impairments in OSA patients. The complex links between gut-brain axis, epigenetic landscape, genetic susceptibility, and OSA-induced memory impairments suggest new directions for research. Characterization of clinical phenotypic clusters can facilitate advances in precision medicine to predict and treat OSA-related memory deficits.
Collapse
Affiliation(s)
- Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huajun Xu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
2
|
Yang J, Zhang H, Yang L, Yi S, Zhang T. Investigating the Role of Scd1 in OSAHS-Induced Vascular Changes. J Biochem Mol Toxicol 2025; 39:e70221. [PMID: 40233246 DOI: 10.1002/jbt.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/16/2025] [Accepted: 03/03/2025] [Indexed: 04/17/2025]
Abstract
This study investigates the role of Stearoyl-CoA Desaturase-1 (Scd1) in vascular remodeling associated with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) using multi-omics analysis. Transcriptomic and metabolomic datasets of OSAHS mouse models were analyzed to identify differentially expressed genes and metabolites, followed by functional enrichment analysis. Key genes were screened using weighted gene correlation network analysis (WGCNA) and machine learning, and a PPI network was constructed. An OSAHS mouse model was developed via intermittent hypoxia exposure. Human aortic smooth muscle cells (HASMCs) were subjected to hypoxia/reoxygenation cycles to simulate OSAHS in vitro. Blood pressure, plasma lipid profiles, histological changes in the thoracic aorta, and Scd1 protein expression were assessed. CCK-8 and Transwell assays evaluated HASMC proliferation and migration. Scd1 was identified as a critical factor in OSAHS-related vascular remodeling, with its expression significantly upregulated in vascular tissues of OSAHS mice. Metabolomic analysis revealed changes in fatty acid metabolism. Scd1 knockdown reduced blood pressure, lipid levels, aortic wall thickness, collagen deposition, elastic fiber accumulation, and mucin deposition in vivo. In vitro, hypoxia/reoxygenation cycles elevated Scd1 expression, while Scd1 knockdown inhibited HASMC proliferation and migration. Multi-omics analyses highlight Scd1 as a key regulator in OSAHS-associated vascular remodeling, driving pathological changes through its upregulation. These findings suggest Scd1 as a potential therapeutic target for managing OSAHS-related vascular pathologies.
Collapse
MESH Headings
- Stearoyl-CoA Desaturase/metabolism
- Stearoyl-CoA Desaturase/genetics
- Animals
- Mice
- Humans
- Vascular Remodeling
- Sleep Apnea, Obstructive/pathology
- Sleep Apnea, Obstructive/metabolism
- Sleep Apnea, Obstructive/genetics
- Sleep Apnea, Obstructive/enzymology
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cell Proliferation
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Disease Models, Animal
- Cell Movement
Collapse
Affiliation(s)
- Jing Yang
- Department of Respiratory and Critical Care Medicine, South China Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Hui Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lulu Yang
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shen Yi
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zhang
- Department II of Respiratory and Critical Care in Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
3
|
Roşian ŞH, Boarescu I, Boarescu PM. Antioxidant and Anti-Inflammatory Effects of Bioactive Compounds in Atherosclerosis. Int J Mol Sci 2025; 26:1379. [PMID: 39941147 PMCID: PMC11818840 DOI: 10.3390/ijms26031379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by the accumulation of lipids and immune cells within arterial walls, remains a leading cause of cardiovascular morbidity and mortality worldwide. Oxidative stress and inflammation are central to its pathogenesis, driving endothelial dysfunction, foam cell formation, and plaque instability. Emerging evidence highlights the potential of bioactive compounds with antioxidant and anti-inflammatory properties to mitigate these processes and promote vascular health. This review explores the mechanisms through which bioactive compounds-such as polyphenols, carotenoids, flavonoids, omega-3 fatty acids, coenzyme Q10, and other natural compounds-modulate oxidative stress and inflammation in atherosclerosis. It examines their effects on key molecular pathways, including the inhibition of reactive oxygen species (ROS) production, suppression of nuclear factor-κB (NF-κB), and modulation of inflammatory cytokines. By integrating current knowledge, this review underscores the therapeutic potential of dietary and supplemental bioactive compounds as complementary strategies for managing atherosclerosis, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Ştefan Horia Roşian
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, 400001 Cluj-Napoca, Romania;
- Cardiology Department of Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400001 Cluj-Napoca, Romania
| | - Ioana Boarescu
- Neurology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
| | - Paul-Mihai Boarescu
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
- Cardiology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
| |
Collapse
|
4
|
Liu X, Wang B, Hao W, Qiu Y, Guo Q, Guo Y, Xin Q, Fan J, Que B, Gong W, Zheng W, Wang X, Nie S. Association of Obstructive Sleep Apnea and Nocturnal Hypoxemia With the Circadian Rhythm of Myocardial Infarction. J Am Heart Assoc 2025; 14:e036729. [PMID: 39868516 PMCID: PMC12074749 DOI: 10.1161/jaha.124.036729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND The circadian rhythm of myocardial infarction (MI) in patients with obstructive sleep apnea (OSA) remains disputable and no studies have directly evaluated the relationship between nocturnal hypoxemia and the circadian rhythm of MI. The aim of the current study was to evaluate the association of OSA and nocturnal hypoxemia with MI onset during the night. METHODS Patients with MI in the OSA-acute coronary syndrome (ACS) project (NCT03362385) were recruited. The time of MI onset was identified by patient's report of the chest pain that prompted hospital admission. All patients underwent an overnight sleep study using a type III portable sleep monitoring device after clinical stabilization during hospitalization. The difference in circadian variation of MI onset was evaluated between patients with moderate/severe OSA and non/mild OSA and those with or without nocturnal hypoxemia. Nocturnal hypoxemia was evaluated using 3 variables, including oxygen desaturation index, minimum oxygen saturation, and total sleep time with saturation <90%. RESULTS Among 713 patients enrolled, 398 (55.8%) had moderate/severe OSA (apnea-hypopnea index ≥15 events·h - 1). Compared with the non/mild OSA group, the MI onset was significantly increased in the moderate/severe OSA group between midnight to 5:59 am in 6-hour epochs analysis (26.9% versus 18.4%, P=0.008). Only in patients with both moderate/severe OSA and nocturnal hypoxemia, including oxygen desaturation index ≥15, minimum oxygen saturation ≤86%, and total sleep time with saturation <90% ≥2%, the incidence of MI onset between midnight to 5:59 am was significantly increased. Moderate/severe OSA (adjusted odds ratio 1.66 [95% CI, 1.13-2.43]; P=0.01) and nocturnal hypoxemia (oxygen desaturation index ≥15 model, adjusted odds ratio 1.80, [95% CI, 1.21-2.66]; minimum oxygen saturation ≤86% model, adjusted odds ratio 1.70 [95% CI, 1.16-2.47]; P=0.006; total sleep time with saturation <90% ≥2% model, adjusted odds ratio 1.54 [95% CI, 1.04-2.27]; P=0.03) significantly predicted MI occurrence from midnight to 6:00 am. CONCLUSIONS A peak of incident MI onset between midnight to 5:59 am was observed in patients with moderate/severe OSA, especially in those presenting with nocturnal hypoxemia.
Collapse
Affiliation(s)
- Xiaochen Liu
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Bin Wang
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
- Division of CardiologyQingdao Municipal Hospital, Shandong ProvinceQingdaoChina
| | - Wen Hao
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Yuyao Qiu
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Qian Guo
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Yingying Guo
- Cardiometabolic Medicine CenterFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingjie Xin
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Jingyao Fan
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Bin Que
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Wei Gong
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
- Department of CardiologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Wen Zheng
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Xiao Wang
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
- Cardiometabolic Medicine CenterFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shaoping Nie
- Center for Coronary Artery Disease, Division of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Gong Z, Yang H, Gao L, Liu Y, Chu Q, Luo C, Kang L, Zhai H, Xu Q, Wu W, Li N, Li R. Mechanisms of wogonoside in the treatment of atherosclerosis based on network pharmacology, molecular docking, and experimental validation. BMC Complement Med Ther 2025; 25:28. [PMID: 39871254 PMCID: PMC11770944 DOI: 10.1186/s12906-025-04760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Atherosclerosis serves as the fundamental pathology for a variety of cardiovascular disorders, with its pathogenesis being closely tied to the complex interplay among lipid metabolism, oxidative stress, and inflammation. Wogonoside is a natural flavonoid extracted from Scutellaria baicalensis with a variety of biological activities, including anti-inflammatory, hypolipidemic, and cardiac function improvement properties. Despite these known effects, the specific role of wogonoside in the context of atherosclerosis remains to be elucidated. PURPOSE To validate the efficacy of wogonoside in the treatment of atherosclerosis and to investigate its possible therapeutic mechanisms. METHODS Network pharmacology was used to obtain the core targets and signaling pathways that may be efficacious in the treatment of atherosclerosis with wogonoside, which were validated using molecular docking and molecular dynamics simulations. To further validate the core targets in the signaling pathway, we performed in vivo experiments using apolipoprotein E (ApoE)-/- mice. This included pathological morphology and lipid deposition analysis of mouse aorta, serum lipid level analysis, Elisa analysis, oxidative stress analysis, reactive oxygen species (ROS) fluorescence assay, immunohistochemical analysis and protein blot analysis. RESULTS Predictions were obtained that wogonoside treatment of atherosclerosis has 31 core targets, which are mainly focused on pathways such as Toll-like receptor (TLR) signaling pathway and NF-kappa B (NF-κB ) signaling pathway. Molecular docking and molecular dynamics simulations showed that wogonoside has good binding properties to the core targets. In vivo experimental results showed that wogonoside significantly inhibited aortic inflammatory response and lipid deposition, significantly reduced the release levels of total cholesterol (TC), triglycerides (TG), low-density-lipoprotein cholesterol (LDL-C), oxidized low density (ox-LDL) and free fatty acid (FFA), and significantly inhibited the release of inflammatory factors TNF-α, IL-1β, IL-6 and oxidative stress in ApoE-/- mice. Further molecular mechanism studies showed that wogonoside significantly inhibited the activation of TLR4/NF-κB signaling pathway in ApoE-/- mice. CONCLUSION Wogonoside may be an effective drug monomer for the treatment of atherosclerosis, and its mechanism of action is closely related to the inhibition of the activation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhaohui Gong
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Haixin Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Li Gao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yi Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Qingmin Chu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuanjin Luo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Liang Kang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiqi Zhai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Rong Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
6
|
Cetin-Atalay R, Meliton AY, Tian Y, Sun KA, Woods PS, Shin KWD, Cho T, Gileles-Hillel A, Hamanaka RB, Mutlu GM. Sustained hypoxia but not intermittent hypoxia induces HIF-1α transcriptional response in human aortic endothelial cells. Mol Omics 2025; 21:19-31. [PMID: 39513671 PMCID: PMC11563308 DOI: 10.1039/d4mo00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxic environments at the cellular level and is an independent risk factor for the development of cardiovascular disease. Endothelial cell (EC) dysfunction precedes the development of cardiovascular disease; however, the mechanisms by which ECs respond to these intermittent hypoxic events are poorly understood. To better understand EC responses to hypoxia, we examined the effects of sustained hypoxia (SH) and intermittent hypoxia (IH) on the activation of HIF-1α in ECs. While SH stabilized HIF-1α and led to its nuclear localization, IH did not activate HIF-1α and the expression of its target genes. Using RNA-sequencing, we evaluated transcriptional responses of ECs to hypoxia. SH induced the expression of HIF-1α and hypoxia response genes, while IH affected cell-cycle regulation genes. A cytoscape protein-protein interaction network for EC response to hypoxia was created with differentially expressed genes. The network comprises cell-cycle regulation, inflammatory signaling via NF-κB and response to VEGF stimulus subnetworks on which SH and IH had distinct activities. As OSA is associated with elevated catecholamines, we investigated the effect of epinephrine on the EC response to SH and IH. Transcriptomic responses under IH and epinephrine revealed protein-protein interaction networks emphasizing distinct subnetworks, including cytokine-mediated TNFα signaling via NF-κB, Wnt/LRP/DKK signaling and cell cycle regulation. This study reveals differential transcriptomic responses under SH and IH characterised by HIF-1α transcriptional response induced only by SH, but not by IH. The study also features the potential molecular events that may occur at the vascular level in OSA.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA.
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA.
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA.
| | - Kaitlyn A Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA.
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA.
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA.
| | - Takugo Cho
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA.
| | - Alex Gileles-Hillel
- Department of Pediatrics, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA.
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Polecka A, Nawrocki J, Pulido MA, Olszewska E. Mandibular Advancement Devices in Obstructive Sleep Apnea and Its Effects on the Cardiovascular System: A Comprehensive Literature Review. J Clin Med 2024; 13:6757. [PMID: 39597901 PMCID: PMC11594591 DOI: 10.3390/jcm13226757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea syndrome (OSA) is a chronic inflammatory disease characterized by endothelial dysfunction and cardiovascular complications. Continuous positive airway pressure (CPAP) is the standard treatment, hence poor adherence has prompted interest in mandibular advancement devices (MAD) as an alternative. This comprehensive review aimed to explore the effects of MAD therapy on oxidative stress, inflammation, endothelial function, and its impact on the cardiovascular risk in OSA patients. RESULTS MAD therapy significantly reduces the apnea-hypopnea index (AHI), improves serum nitric oxide (NOx) concentrations, reduces oxidative stress markers, and enhances endothelial function. Animal studies indicated that MAD reduces myocardial fibrosis and attenuates inflammatory markers. While both CPAP and MADs improve endothelial function and heart rate variability, CPAP is more effective in reducing OSA severity. Nevertheless, MAD has higher compliance, contributing to its positive impact on cardiovascular function. Moreover, CPAP and MADs have similar effectiveness in reducing cardiovascular risk. CONCLUSIONS MAD therapy is an effective alternative to CPAP, particularly for patients with mild to moderate OSA as well as those intolerant to CPAP. It offers significant improvements in endothelial function and oxidative stress. Further studies are needed to assess MAD therapy in comprehensive OSA management.
Collapse
Affiliation(s)
- Agnieszka Polecka
- Department of Cardiology and Internal Medicine with Cardiac Intensive Care Unit, Doctoral School of the Medical University of Bialystok, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jakub Nawrocki
- Clinic of Orthodontics, Wroclaw University Dental Center, Krakowska 26, 50-425 Wroclaw, Poland;
| | | | - Ewa Olszewska
- Sleep Apnea Surgery Center, Department of Otolaryngology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
8
|
Mao Z, Zheng P, Zhu X, Wang L, Zhang F, Liu H, Li H, Zhou L, Liu W. Obstructive sleep apnea hypopnea syndrome and vascular lesions: An update on what we currently know. Sleep Med 2024; 119:296-311. [PMID: 38723575 DOI: 10.1016/j.sleep.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is the most prevalent sleep and respiratory disorder. This syndrome can induce severe cardiovascular and cerebrovascular complications, and intermittent hypoxia is a pivotal contributor to this damage. Vascular pathology is closely associated with the impairment of target organs, marking a focal point in current research. Vascular lesions are the fundamental pathophysiological basis of multiorgan ailments and indicate a shared pathogenic mechanism among common cardiovascular and cerebrovascular conditions, suggesting their importance as a public health concern. Increasing evidence shows a strong correlation between OSAHS and vascular lesions. Previous studies predominantly focused on the pathophysiological alterations in OSAHS itself, such as intermittent hypoxia and fragmented sleep, leading to vascular disruptions. This review aims to delve deeper into the vascular lesions affected by OSAHS by examining the microscopic pathophysiological mechanisms involved. Emphasis has been placed on examining how OSAHS induces vascular lesions through disruptions in the endothelial barrier, metabolic dysregulation, cellular phenotype alterations, neuroendocrine irregularities, programmed cell death, vascular inflammation, oxidative stress and epigenetic modifications. This review examines the epidemiology and associated risk factors for OSAHS and vascular diseases and subsequently describes the existing evidence on vascular lesions induced by OSAHS in the cardiovascular, cerebrovascular, retinal, renal and reproductive systems. A detailed account of the current research on the pathophysiological mechanisms mediating vascular lesions caused by OSAHS is provided, culminating in a discussion of research advancements in therapeutic modalities to mitigate OSAHS-related vascular lesions and the implications of these treatment strategies.
Collapse
Affiliation(s)
- Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
9
|
Kang W, Zhu D, Zhang S, Qiao X, Liu J, Liu C, Lu H. Role of NF-κB in cardiac changes of obstructive sleep apnoea rabbits treated by mandibular advancement device. J Oral Rehabil 2024; 51:962-969. [PMID: 38379384 DOI: 10.1111/joor.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/28/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is an independent risk factor for cardiovascular diseases. We aimed to investigate the role of nuclear factor-kappa B (NF-κB) in the changes of cardiac structures in OSA rabbits treated by mandibular advancement device (MAD). METHODS Eighteen male New Zealand white rabbits aged 6 months were randomly divided into three groups: control group, group OSA and group MAD. Hyaluronate gel was injected into the soft palate of the rabbits in group OSA and group MAD to induce OSA. The cone beam computer tomography (CBCT) of the upper airway and polysomnography (PSG) was performed to ensure successful modelling. CBCT and PSG were applied again to detect the effects of MAD treatment. All animals were induced to sleep in a supine position for 4-6 h a day for 8 weeks. Then the levels of NF-κB, Interleukin 6 (IL-6), Interleukin 10 (IL-10) and the proportion of myocardial fibrosis (MF) were detected. RESULTS The higher activation of NF-κB, IL-6 and IL-10 were found in the OSA group than in the control group, leading to the increase of collagen fibres compared with the control group. Furthermore, the apnoea-hypopnea index (AHI) was positively correlated with the above factors. There were no significant differences between group MAD and the control group. CONCLUSION The NF-κB pathway was activated in the myocardium of OSA rabbits, which accelerated the development of MF. Early application of MAD could reduce the activation of NF-κB in the myocardium and prevent the development of MF.
Collapse
Affiliation(s)
- Wenjing Kang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, PR China
| | - Dechao Zhu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, PR China
| | - Shilong Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, PR China
| | - Xing Qiao
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, PR China
| | - Jie Liu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, PR China
| | - Chunyan Liu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, PR China
| | - Haiyan Lu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
10
|
Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, Azadfallah A, Mahdizade Ari M, Hemmati M, Darban M, Alavi Toosi P, Banihashemian SZ. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm 2024; 2024:5830491. [PMID: 38445291 PMCID: PMC10914434 DOI: 10.1155/2024/5830491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4 activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipoprotein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9), which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9, and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.
Collapse
Affiliation(s)
- Bahador Bagheri
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Ahmad Nouri
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahyar Mahdizade Ari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemmati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Darban
- Department of Internal Medicine, Kowsar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Alavi Toosi
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
11
|
Mekhael M, Marrouche N, Hajjar AHE, Donnellan E. The relationship between atrial fibrillation and coronary artery disease: Understanding common denominators. Trends Cardiovasc Med 2024; 34:91-98. [PMID: 36182022 DOI: 10.1016/j.tcm.2022.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 01/04/2023]
Abstract
Atrial fibrillation (AF) and coronary artery disease (CAD) are highly prevalent cardiovascular conditions. The coexistence of both diseases is common as they share similar risk factors and common pathophysiological characteristics. Systemic inflammatory conditions are associated with an increased incidence of both AF and CAD. The presence of both entities increases the incidence of complications and adverse outcomes. Furthermore, their coexistence poses challenges for the management of patients, particularly with respect to anticoagulation and rhythm management. In this review, we aim to better understand the relationship between AF and CAD by detailing basic molecular pathophysiology, assessing therapeutic guidelines, and describing interactions between the two conditions.
Collapse
Affiliation(s)
- Mario Mekhael
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Eoin Donnellan
- Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
12
|
Velpuri P, Rai V, Agrawal DK. Role of sirtuins in attenuating plaque vulnerability in atherosclerosis. Mol Cell Biochem 2024; 479:51-62. [PMID: 36952068 PMCID: PMC10034899 DOI: 10.1007/s11010-023-04714-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Atherosclerosis is characterized by the development of intimal plaque, thrombosis, and stenosis of the vessel lumen causing decreased blood flow and hypoxia precipitating angina. Chronic inflammation in the stable plaque renders it unstable and rupture of unstable plaques results in the formation of emboli leading to hypoxia/ischemia to the organs by occluding the terminal branches and precipitate myocardial infarction and stroke. Such delibitating events could be controlled by the strategies that prevent plaque development or plaque stabilization. Despite the use of statins to stabilize plaques, there is a need for novel targets due to continuously increasing cases of cardiovascular events. Sirtuins (SIRTs), a family of signaling proteins, are involved in sustaining genome integrity, DNA damage response and repair, modulating oxidative stress, aging, inflammation, and energy metabolism. SIRTs play a critical role in modulating inflammation and involves in the development and progression of atherosclerosis. The role of SIRTs in relation to atherosclerosis and plaque vulnerability is scarcely discussed in the literature. Since SIRTs regulate oxidative stress, inflammation, and aging, they may also regulate plaque progression and vulnerability as these molecular mechanisms underlie the pathogenesis of plaque development, progression, and vulnerability. This review critically discusses the role of SIRTs in plaque progression and vulnerability and the possibility of targeting SIRTs to attenuate plaque rupture, focusing on the highlights in genomics, molecular pathways, and cell types involved in the underlying pathophysiology.
Collapse
Affiliation(s)
- Prathosh Velpuri
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
13
|
Zhang Y, Ye S, Hou X, Yu W, Wang X, Mu Q, Han F, Guo J. Possible genetic cross-talk between Down syndrome and obstructive sleep apnea revealed by transcriptomic analysis. Sleep Breath 2023; 27:2469-2478. [PMID: 37213066 DOI: 10.1007/s11325-023-02845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE Down syndrome (DS) is linked to a higher prevalence of obstructive sleep apnea (OSA) than in the general population, which in turn contributes to worse cognitive impairment in DS. However, the shared pathogenic mechanisms for DS and OSA remain incompletely illustrated. This study was designed to decipher the genetic cross-talk between DS and OSA by bioinformatics approach. METHODS Transcriptomic datasets of DS (GSE59630) and OSA (GSE135917) were accessed from the Gene Expression Omnibus (GEO) repository. After screening out the common differentially expressed genes (DEGs) for DS and OSA, gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out. A protein-protein interaction (PPI) network was then constructed to determine essential modules and hub genes. Finally, based on hub genes, transcriptional factor (TF)-gene interaction and TF-miRNA regulatory networks were constructed. RESULTS DS and OSA showed 229 DEGs. Functional analyses revealed how oxidative stress and inflammatory response were critical in the progression of DS and OSA. Ten significant hub genes were identified, including TLR4, SOD1, IGF1, FGF2, NFE2L2, PECAM1, S100A8, S100A9, FCGR3A, and KCNA1, which were candidate targets for DS and OSA. CONCLUSIONS We found that DS and OSA display similarities in their pathogenesis. Key genes and signaling pathways revealed to be in common between the two conditions could lead us to new therapeutic targets for DS and OSA.
Collapse
Affiliation(s)
- Yang Zhang
- Peking University People's Hospital, Beijing, China
| | - Shuai Ye
- Peking University People's Hospital, Beijing, China
| | - Xueyu Hou
- Peking University People's Hospital, Beijing, China
| | - Weidong Yu
- Peking University People's Hospital, Beijing, China
| | - Xinjuan Wang
- Peking University People's Hospital, Beijing, China
| | - Qing Mu
- Peking University People's Hospital, Beijing, China
| | - Fang Han
- Peking University People's Hospital, Beijing, China.
| | - Jingzhu Guo
- Peking University People's Hospital, Beijing, China.
| |
Collapse
|
14
|
Arnaud C, Billoir E, de Melo Junior AF, Pereira SA, O'Halloran KD, Monteiro EC. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: from adaptation to maladaptation. J Physiol 2023; 601:5553-5577. [PMID: 37882783 DOI: 10.1113/jp284166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is the dominant pathological feature of human obstructive sleep apnoea (OSA), which is highly prevalent and associated with cardiovascular and renal diseases. CIH causes hypertension, centred on sympathetic nervous overactivity, which persists following removal of the CIH stimulus. Molecular mechanisms contributing to CIH-induced hypertension have been carefully delineated. However, there is a dearth of knowledge on the efficacy of interventions to ameliorate high blood pressure in established disease. CIH causes endothelial dysfunction, aberrant structural remodelling of vessels and accelerates atherosclerotic processes. Pro-inflammatory and pro-oxidant pathways converge on disrupted nitric oxide signalling driving vascular dysfunction. In addition, CIH has adverse effects on the myocardium, manifesting atrial fibrillation, and cardiac remodelling progressing to contractile dysfunction. Sympatho-vagal imbalance, oxidative stress, inflammation, dysregulated HIF-1α transcriptional responses and resultant pro-apoptotic ER stress, calcium dysregulation, and mitochondrial dysfunction conspire to drive myocardial injury and failure. CIH elaborates direct and indirect effects in the kidney that initially contribute to the development of hypertension and later to chronic kidney disease. CIH-induced morphological damage of the kidney is dependent on TLR4/NF-κB/NLRP3/caspase-1 inflammasome activation and associated pyroptosis. Emerging potential therapies related to the gut-kidney axis and blockade of aryl hydrocarbon receptors (AhR) are promising. Cardiorenal outcomes in response to intermittent hypoxia present along a continuum from adaptation to maladaptation and are dependent on the intensity and duration of exposure to intermittent hypoxia. This heterogeneity of OSA is relevant to therapeutic treatment options and we argue the need for better stratification of OSA phenotypes.
Collapse
Affiliation(s)
- Claire Arnaud
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | - Emma Billoir
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | | | - Sofia A Pereira
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Emilia C Monteiro
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Wang C, Chang L, Wang J, Xia L, Cao L, Wang W, Xu J, Gao H. Leptin and risk factors for atherosclerosis: A review. Medicine (Baltimore) 2023; 102:e36076. [PMID: 37986371 PMCID: PMC10659641 DOI: 10.1097/md.0000000000036076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Leptin is a hormone secreted primarily by adipose tissue. It regulates an organism's metabolism, energy balance, and body weight through a negative feedback mechanism. When a person or animal has low body fat and little energy, the leptin level in the body decreases, and conversely, when there is an excess of nutrients, the leptin level increases, giving a feeling of satiety. However, when leptin levels are abnormal (too high or too low) for a number of reasons, it can negatively affect your health, inducing inflammatory responses, obesity, and other problems. Many studies have shown that abnormal leptin levels, such as hyperleptinemia, are closely associated with common risk factors for atherosclerosis (AS). This review systematically states the relationship between leptin and common risk factors for AS (inflammation, obesity, diabetes mellitus, hypertension, and sleep disorders) and provides some new thoughts on the future direction of research on both. Because the abnormal level of leptin will have adverse effects on multiple atherosclerotic risk factors, how to regulate the leptin level of patients with AS, and whether we can treat and prevent AS by intervening the leptin level, these may be our new research directions in the future.
Collapse
Affiliation(s)
- Cheng Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Liping Chang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Libo Xia
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Liyuan Cao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jianwen Xu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Huize Gao
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
16
|
Patel P, Rai V, Agrawal DK. Role of oncostatin-M in ECM remodeling and plaque vulnerability. Mol Cell Biochem 2023; 478:2451-2460. [PMID: 36856919 PMCID: PMC10579161 DOI: 10.1007/s11010-023-04673-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Atherosclerosis is a multifactorial inflammatory disease characterized by the development of plaque formation leading to occlusion of the vessel and hypoxia of the tissue supplied by the vessel. Chronic inflammation and altered collagen expression render stable plaque to unstable and increase plaque vulnerability. Thinned and weakened fibrous cap results in plaque rupture and formation of thrombosis and emboli formation leading to acute ischemic events such as stroke and myocardial infarction. Inflammatory mediators including TREM-1, TLRs, MMPs, and immune cells play a critical role in plaque vulnerability. Among the other inflammatory mediators, oncostatin-M (OSM), a pro-inflammatory cytokine, play an important role in the development and progression of atherosclerosis, however, the role of OSM in plaque vulnerability and extracellular matrix remodeling (ECM) is not well understood and studied. Since ECM remodeling plays an important role in atherosclerosis and plaque vulnerability, a detailed investigation on the role of OSM in ECM remodeling and plaque vulnerability is critical. This is important because the role of OSM has been discussed in the context of proliferation of vascular smooth muscle cells and regulation of cytokine expression but the role of OSM is scarcely discussed in relation to ECM remodeling and plaque vulnerability. This review focuses on critically discussing the role of OSM in ECM remodeling and plaque vulnerability.
Collapse
Affiliation(s)
- Parth Patel
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
17
|
Zhang X, Zheng Y, Wang Z, Gan J, Yu B, Lu B, Jiang X. Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases: Emphasis on oxidative stress. Biomed Pharmacother 2023; 167:115475. [PMID: 37722190 DOI: 10.1016/j.biopha.2023.115475] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
The vascular endothelium is vital in maintaining cardiovascular health by regulating vascular permeability and tone, preventing thrombosis, and controlling vascular inflammation. However, when oxidative stress triggers endothelial dysfunction, it can lead to chronic cardiovascular diseases (CVDs). This happens due to oxidative stress-induced mitochondrial dysfunction, inflammatory responses, and reduced levels of nitric oxide. These factors cause damage to endothelial cells, leading to the acceleration of CVD progression. Melatonin, a natural antioxidant, has been shown to inhibit oxidative stress and stabilize endothelial function, providing cardiovascular protection. The clinical application of melatonin in the prevention and treatment of CVDs has received widespread attention. In this review, based on bibliometric studies, we first discussed the relationship between oxidative stress-induced endothelial dysfunction and CVDs, then summarized the role of melatonin in the treatment of atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and other CVDs. Finally, the potential clinical use of melatonin in the treatment of these diseases is discussed.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Lu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
18
|
Žilienė E, Inčiūra A, Ugenskienė R, Juozaitytė E. Pathomorphological Manifestations and the Course of the Cervical Cancer Disease Determined by Variations in the TLR4 Gene. Diagnostics (Basel) 2023; 13:1999. [PMID: 37370894 DOI: 10.3390/diagnostics13121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Cervical cancer (CC) is often associated with human papillomavirus (HPV). Chronic inflammation has been described as one of the triggers of cancer. The immune system fights diseases, including cancer. The genetic polymorphism of pathogen recognition receptors potentially influences the infectious process, development, and disease progression. Many candidate genes SNPs have been contradictory demonstrated to be associated with cervical cancer by association studies, GWAS. TLR4 gene activation can promote antitumor immunity. It can also result in immunosuppression and tumor growth. Our study aimed to investigate eight selected polymorphisms of the TLR4 gene (rs10759932, rs1927906, rs11536898, rs11536865, rs10983755, rs4986790, rs4986791, rs11536897) and to determine the impact of polymorphisms in genotypes and alleles on the pathomorphological characteristics and progression in a group of 172 cervical cancer subjects with stage I-IV. Genotyping was performed by RT-PCR assay. We detected that the CA genotype and A allele of rs11536898 were significantly more frequent in patients with metastases (p = 0.026; p = 0.008). The multivariate logistic regression analysis confirmed this link to be significant. The effect of rs10759932 and rs11536898 on progression-free survival (PFS) and overall survival (OS) has been identified as important. In univariate and multivariate Cox analyses, AA genotype of rs11536898 was a negative prognostic factor for PFS (p = 0.024; p = 0.057, respectively) and OS (p = 0.008; p = 0.042, respectively). Rs11536898 C allele predisposed for longer PFS (univariate and multivariate: p = 0.025; p = 0.048, respectively) and for better OS (univariate and multivariate: p = 0.010; p = 0.043). The worse prognostic factor of rs10759932 in a univariate and multivariate Cox analysis for survival was CC genotype: shorter PFS (p = 0.032) and increased risk of death (p = 0.048; p = 0.015, respectively). The T allele of rs10759932 increased longer PFS (univariate and multivariate: p = 0.048; p = 0.019, respectively) and longer OS (univariate and multivariate: p = 0.037; p = 0.009, respectively). Our study suggests that SNPs rs10759932 and rs11536898 may have the potential to be markers contributing to the assessment of the cervical cancer prognosis. Further studies, preferably with larger groups of different ethnic backgrounds, are needed to confirm the results of the current study.
Collapse
Affiliation(s)
- Eglė Žilienė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Arturas Inčiūra
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rasa Ugenskienė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Elona Juozaitytė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
19
|
Cui S, Wu H, He Q, Wang L, Yi X, Feng G, Wu Q, Tao B, Han D, Hu Q, Xia H, Xu L. Fucoxanthin alleviated atherosclerosis by regulating PI3K/AKT and TLR4/NFκB mediated pyroptosis in endothelial cells. Int Immunopharmacol 2023; 120:110370. [PMID: 37235964 DOI: 10.1016/j.intimp.2023.110370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Fucoxanthin, a type of natural xanthophyll carotenoid, is mainly present in seaweeds and various microalgae. This compound has been proved to possess multiple functions including antioxidation, anti-inflammation and anti-tumor. Atherosclerosis is widely deemed as a chronic inflammation disease, and as the basis of vascular obstructive disease. However, there is rare research about fucoxanthin's effects on atherosclerosis. In this study, we demonstrated that the plaque area of mice treated with fucoxanthin was significantly reduced compared to the group that did not receive fucoxanthin. In addition, Bioinformatics analysis showed that PI3K/AKT signaling might be involved in the protective effect of fucoxanthin, and this hypothesis was then verified in vitro endothelial cell experiments. Besides, our further results showed that endothelial cell mortality measured by TUNEL and flow cytometry was significantly increased in the oxidized low-density lipoprotein (ox-LDL) treatment group while significantly decreased in the fucoxanthin treatment group. In addition, the pyroptosis protein expression level in the fucoxanthin group was significantly lower than that in the ox-LDL group, which indicated that fucoxanthin improved the pyroptosis level of endothelial cells. Furthermore, it was revealed that TLR4/NFκB signaling were also participated in the protection of fucoxanthin on endothelial pyroptosis. Moreover, the protection of fucoxanthin on endothelial cell pyroptosis was abrogated when PI3K/AKT was inhibited or TLR4 was overexpressed, which further suggested the anti-pyroptosis effect of fucoxanthin was mediated through regulations of PI3K/AKT and TLR4/NFκB signaling.
Collapse
Affiliation(s)
- Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Haoliang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qing He
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lina Wang
- Beijing Noahpharm Co., Ltd, Beijing 100000, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Gaoke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bo Tao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Danxiang Han
- Demeter Biotech (Zhuhai) Co. Ltd., Zhuhai 519075, China
| | - Qiang Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Lin Xu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
20
|
Tarawneh R. Microvascular Contributions to Alzheimer Disease Pathogenesis: Is Alzheimer Disease Primarily an Endotheliopathy? Biomolecules 2023; 13:830. [PMID: 37238700 PMCID: PMC10216678 DOI: 10.3390/biom13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer disease (AD) models are based on the notion that abnormal protein aggregation is the primary event in AD, which begins a decade or longer prior to symptom onset, and culminates in neurodegeneration; however, emerging evidence from animal and clinical studies suggests that reduced blood flow due to capillary loss and endothelial dysfunction are early and primary events in AD pathogenesis, which may precede amyloid and tau aggregation, and contribute to neuronal and synaptic injury via direct and indirect mechanisms. Recent data from clinical studies suggests that endothelial dysfunction is closely associated with cognitive outcomes in AD and that therapeutic strategies which promote endothelial repair in early AD may offer a potential opportunity to prevent or slow disease progression. This review examines evidence from clinical, imaging, neuropathological, and animal studies supporting vascular contributions to the onset and progression of AD pathology. Together, these observations support the notion that the onset of AD may be primarily influenced by vascular, rather than neurodegenerative, mechanisms and emphasize the importance of further investigations into the vascular hypothesis of AD.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
21
|
The intracellular signaling pathways governing macrophage activation and function in human atherosclerosis. Biochem Soc Trans 2022; 50:1673-1682. [DOI: 10.1042/bst20220441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by lipid accumulation and plaque formation in arterial vessel walls. Atherosclerotic plaques narrow the arterial lumen to increase the risk of heart attacks, ischemic stroke and peripheral vascular disease, which are major and worldwide health and economic burdens. Macrophage accumulation within plaques is characteristic of all stages of atherosclerosis and their presence is a potential marker of disease activity and plaque stability. Macrophages engulf lipids and modified lipoproteins to form foam cells that express pro-inflammatory and chemotactic effector molecules, stress inducing factors and reactive oxygen species. They control plaque stability and rupture through secretion of metalloproteinases and extracellular matrix degradation. Although macrophages can worsen disease by propagating inflammation, they can stabilize atherosclerotic plaques through tissue remodeling, promoting the formation of a fibrous cap, clearing apoptotic cells to prevent necrotic core formation and through vascular repair. In atherosclerosis, macrophages respond to dyslipidaemia, cytokines, dying cells, metabolic factors, lipids, physical stimuli and epigenetic factors and exhibit heterogeneity in their activation depending on the stimuli they receive. Understanding these signals and the pathways driving macrophage function within developing and established plaques and how they can be pharmacologically modulated, represents a strategy for the prevention and treatment of atherosclerosis. This review focusses on the current understanding of factors controlling macrophage heterogeneity and function in atherosclerosis. Particular attention is given to the macrophage intracellular signaling pathways and transcription factors activated by biochemical and biophysical stimuli within plaques, and how they are integrated to regulate plaque formation and stability.
Collapse
|
22
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
23
|
Fang T, Sun S, Zhao B, Dong J, Cao K, Wang W. NLRC5 modulates phenotypic transition and inflammation of human venous smooth muscle cells by activating Wnt/β-catenin pathway via TLR4 in varicose veins. Microvasc Res 2022; 143:104405. [PMID: 35835172 DOI: 10.1016/j.mvr.2022.104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
In varicose veins, abnormal phenotypic transition and inflammatory response is commonly found in venous smooth muscle cells (VSMCs). We aimed to explore the potential role and mechanism of NLRC5 exerted on VSMCs phenotypic transition and inflammation. NLRC5 expression was detected in varicose veins and platelet-derived growth factor (PDGF)-induced VSMCs by RT-qPCR and Western bolt assays. A loss-of-function assay was performed to evaluate the effects of NLRC5 knockdown on VSMC proliferation, migration, and phenotypic transition. ELISA was used to detect the contents of pro-inflammatory cytokines in the supernatant. The modulation of NLRC5 on TLR4 expression and Wnt/β-catenin signaling was also evaluated. We found that the expressions of NLRC5 in varicose veins and PDGF-induced VSMCs were upregulated. NLRC5 knockdown inhibited VSMC proliferation and migration. Extracellular matrix transformation was blocked by downregulating NLRC5 with increasing SM-22α expression and MMP-1/TIMP-1 ratio, as well as decreasing OPN and collagen I expressions. Besides, NLRC5 silencing reduced the contents of inflammatory cytokines. Furthermore, we found that NLRC5 regulated TLR4 expression, as well as subsequently activation of Wnt/β-catenin pathway and nuclear translocation of β-catenin, which was involved in NLRC5-mediated phenotypic transition and inflammatory in VSMCs. In conclusion, silencing NLRC5 depressed VSMCs' phenotypic transition and inflammation by modulating Wnt/β-catenin pathway via TLR4. This may provide a theoretical basis for treatment of varicose veins.
Collapse
Affiliation(s)
- Tao Fang
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Shaojun Sun
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Bingjie Zhao
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Jianxin Dong
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Kai Cao
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Wenli Wang
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China.
| |
Collapse
|
24
|
Luo B, Li Y, Zhu M, Cui J, Liu Y, Liu Y. Intermittent Hypoxia and Atherosclerosis: From Molecular Mechanisms to the Therapeutic Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1438470. [PMID: 35965683 PMCID: PMC9365608 DOI: 10.1155/2022/1438470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Intermittent hypoxia (IH) has a dual nature. On the one hand, chronic IH (CIH) is an important pathologic feature of obstructive sleep apnea (OSA) syndrome (OSAS), and many studies have confirmed that OSA-related CIH (OSA-CIH) has atherogenic effects involving complex and interacting mechanisms. Limited preventive and treatment methods are currently available for this condition. On the other hand, non-OSA-related IH has beneficial or detrimental effects on the body, depending on the degree, duration, and cyclic cycle of hypoxia. It includes two main states: intermittent hypoxia in a simulated plateau environment and intermittent hypoxia in a normobaric environment. In this paper, we compare the two types of IH and summarizes the pathologic mechanisms and research advances in the treatment of OSA-CIH-induced atherosclerosis (AS), to provide evidence for the systematic prevention and treatment of OSAS-related AS.
Collapse
Affiliation(s)
- Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
25
|
Synergistic Effect of Polydatin and Polygonatum sibiricum Polysaccharides in Combating Atherosclerosis via Suppressing TLR4-Mediated NF- κB Activation in ApoE-Deficient Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3885153. [PMID: 35845572 PMCID: PMC9283052 DOI: 10.1155/2022/3885153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
Objective Atherosclerosis is a chronic inflammatory disease, which is closely related to hyperlipidemia, inflammatory responses, and oxidative stress. As natural products, polydatin (PD) and Polygonatum sibiricum polysaccharides (PSP) have remarkable pharmacological effects in anti-inflammatory, antioxidant stress, and lipid regulation. In this study, we sought to investigate whether the combination of polydatin and P. sibiricum polysaccharides play an anti-atherosclerotic role in alleviating inflammatory responses by inhibiting the toll-like receptor4 (TLR4)/myeloid differentiation factor88(MyD88)/nuclear factor-kappa B(NF-κB) signaling pathway. Methods Thirty-two ApoE-/- mice were fed with a high-fat diet (HFD) starting at the age of 8 weeks. Mice were randomly divided into four groups; (1) model group, (2) PD (100 mg/kg) + PSP (50 mg/kg) group, (3) TAK-242 (3 mg/kg) (TLR4 inhibitor) group, (4) PD (100 mg/kg) + PSP (50 mg/kg) + TAK-242 (3 mg/kg) group. Eight age-matched wild-type C57BL/6J mice fed an ordinary diet were used as a control group. Blood lipid levels were measured with an automatic biochemical analyzer. The lipid accumulation and histopathological changes in the aorta and liver were observed by Oil Red O and hematoxylin and eosin (H&E) staining, respectively. ELISA was performed to measure the serum levels of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Western blot analysis was performed to analyze the expression of key proteins in the TLR4/MyD88/NF-κB signaling pathway. Results Compared with the model group, the combination of PD and PSP significantly inhibit serum lipids (low-density lipoprotein cholesterol, total cholesterol, and triglyceride) and cell adhesion molecules (VCAM-1, ICAM-1). Oil Red O staining indicated that the combination of PD and PSP decrease lipid accumulation in the aorta and liver. Moreover, H&E staining suggested that the combination of PD and PSP alleviate aortic intimal hyperplasia, inflammatory cell infiltration, and hepatic steatosis. Finally, the combination of PD and PSP inhibit the expression of TLR4, MyD88, and the phosphorylation level of NF-κB p65 protein in the aorta. Conclusions Polydatin synergizes with P. sibiricum polysaccharides in preventing the development of atherosclerosis in ApoE-/- mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
26
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
27
|
Inflammatory Burden and Immunomodulative Therapeutics of Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23020804. [PMID: 35054989 PMCID: PMC8775955 DOI: 10.3390/ijms23020804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Phenotyping cardiovascular illness and recognising heterogeneities within are pivotal in the contemporary era. Besides traditional risk factors, accumulated evidence suggested that a high inflammatory burden has emerged as a key characteristic modulating both the pathogenesis and progression of cardiovascular diseases, inclusive of atherosclerosis and myocardial infarction. To mechanistically elucidate the correlation, signalling pathways downstream to Toll-like receptors, nucleotide oligomerisation domain-like receptors, interleukins, tumour necrosis factor, and corresponding cytokines were raised as central mechanisms exerting the effect of inflammation. Other remarkable adjuvant factors include oxidative stress and secondary ferroptosis. These molecular discoveries have propelled pharmaceutical advancements. Statin was suggested to confer cardiovascular benefits not only by lowering cholesterol levels but also by attenuating inflammation. Colchicine was repurposed as an immunomodulator co-administered with coronary intervention. Novel interleukin-1β and −6 antagonists exhibited promising cardiac benefits in the recent trials as well. Moreover, manipulation of gut microbiota and associated metabolites was addressed to antagonise inflammation-related cardiovascular pathophysiology. The gut-cardio-renal axis was therein established to explain the mutual interrelationship. As for future perspectives, artificial intelligence in conjunction with machine learning could better elucidate the sequencing of the microbiome and data mining. Comprehensively understanding the interplay between the gut microbiome and its cardiovascular impact will help identify future therapeutic targets, affording holistic care for patients with cardiovascular diseases.
Collapse
|
28
|
Zhang L, Ko CY, Zeng YM. Immunoregulatory Effect of Short-Chain Fatty Acids from Gut Microbiota on Obstructive Sleep Apnea-Associated Hypertension. Nat Sci Sleep 2022; 14:393-405. [PMID: 35299627 PMCID: PMC8922759 DOI: 10.2147/nss.s354742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/27/2022] [Indexed: 12/12/2022] Open
Abstract
The intestine is the largest bacterial ecosystem and immune response organ of the human body. The microbiota regulates the metabolic and immune functions of the host through their metabolites. Short-chain fatty acids (SCFAs) are part of the metabolites of the gut microbiota (GM), providing energy to intestinal epithelial cells and regulating the immune system. A decrease in SCFA-producing bacteria, imbalanced effector T-helper cells (Th cells), and increasing corresponding inflammatory cytokine were found in both animal models and clinical patients with obstructive sleep apnea (OSA) and hypertension (HTN). Intervention with probiotics, prebiotics, or postbiotics in animal models simulating OSA-associated HTN restored blood pressure to normal, which allows the hypothesis that GM are involved in the pathophysiology of OSA-induced HTN patients through their metabolites' SCFAs; however, the exact regulatory mechanism is not completely clear. This review describes the potential mechanisms of SCFAs, a major metabolite of the GM, in the pathology of OSA-induced HTN, from the perspective of immune system regulation in the available studies.
Collapse
Affiliation(s)
- Li Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China
| | - Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China.,Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Yi-Ming Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China
| |
Collapse
|
29
|
Konwerski M, Gromadka A, Arendarczyk A, Koblowska M, Iwanicka-Nowicka R, Wilimski R, Czub P, Filipiak KJ, Hendzel P, Zielenkiewicz P, Opolski G, Gąsecka A, Mazurek T. Atherosclerosis Pathways are Activated in Pericoronary Adipose Tissue of Patients with Coronary Artery Disease. J Inflamm Res 2021; 14:5419-5431. [PMID: 34707383 PMCID: PMC8542577 DOI: 10.2147/jir.s326769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Perivascular release of inflammatory mediators may accelerate coronary lesion formation and contribute to plaque instability. Accordingly, we compared gene expression in pericoronary adipose tissue (PCAT) in patients with advanced coronary artery disease (CAD) and non-CAD controls. PATIENTS AND METHODS PCAT samples were collected during coronary bypass grafting from CAD patients (n = 21) and controls undergoing valve replacement surgery, with CAD excluded by coronary angiography (n = 19). Gene expression was measured by GeneChip™ Human Transcriptome Array 2.0. Obtained list of 1348 transcripts (2.0%) that passed the filter criteria was further analyzed by Ingenuity Pathway Analysis software, identifying 735 unique differentially expressed genes (DEGs). RESULTS Among the CAD patients, 416 (30.9%) transcripts were upregulated, and 932 (69.1%) were downregulated, compared to controls. The top upregulated genes were involved in inflammation and atherosclerosis (chemokines, interleukin-6, selectin E and low-density lipoprotein cholesterol (LDL-C) receptor), whereas the downregulated genes were involved in cardiac ischaemia and remodelling, platelet function and mitochondrial function (miR-3671, miR-4524a, multimerin, biglycan, tissue factor pathway inhibitor (TFPI), glucuronidases, miR-548, collagen type I, III, IV). Among the top upstream regulators, we identified molecules that have proinflammatory and atherosclerotic features (High Mobility Group Box 2 (HMGB2), platelet-derived growth platelet (PDGF) and evolutionarily conserved signaling intermediate in Toll pathways (ESCIT)). The activated pathway related to DEGs consisted of molecules with well-established role in the pathogenesis of atherosclerosis (TFPI, plasminogen activator, plasminogen activator, urokinase receptor (PLAUR), thrombomodulin). Moreover, we showed that 22 of the altered genes form a pro-atherogenic network. CONCLUSION Altered gene expression in PCAT of CAD patients, with genes upregulation and activation of pathway involved in inflammation and atherosclerosis, may be involved in CAD development and progression.
Collapse
Affiliation(s)
- Michał Konwerski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Gromadka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Arendarczyk
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marta Koblowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Radosław Wilimski
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Czub
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Hendzel
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Opolski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Chen J, Lin S, Zeng Y. An Update on Obstructive Sleep Apnea for Atherosclerosis: Mechanism, Diagnosis, and Treatment. Front Cardiovasc Med 2021; 8:647071. [PMID: 33898538 PMCID: PMC8060459 DOI: 10.3389/fcvm.2021.647071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of atherosclerosis could be influenced by intermittent hypoxia. Obstructive sleep apnea (OSA), characterized by intermittent hypoxia, is world-wide prevalence with increasing morbidity and mortality rates. Researches remain focused on the study of its mechanism and improvement of diagnosis and treatment. However, the underlying mechanism is complex, and the best practice for OSA diagnosis and treatment considering atherosclerosis and related cardiovascular diseases is still debatable. In this review, we provided an update on research in OSA in the last 5 years with regard to atherosclerosis. The processes of inflammation, oxidative stress, autonomic nervous system activation, vascular dysfunction, platelet activation, metabolite dysfunction, small molecule RNA regulation, and the cardioprotective occurrence was discussed. Additionally, improved diagnosis such as, the utilized of portable device, and treatment especially with inconsistent results in continuous positive airway pressure and mandibular advancement devices were illustrated in detail. Therefore, further fundamental and clinical research should be carried out for a better understanding the deep interaction between OSA and atherosclerosis, as well as the suggestion of newer diagnostic and treatment options.
Collapse
Affiliation(s)
- Jin Chen
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yiming Zeng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
31
|
Yamagata K. Prevention of Endothelial Dysfunction and Cardiovascular Disease by n-3 Fatty Acids-Inhibiting Action on Oxidative Stress and Inflammation. Curr Pharm Des 2021; 26:3652-3666. [PMID: 32242776 DOI: 10.2174/1381612826666200403121952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prospective cohort studies and randomized controlled trials have shown the protective effect of n-3 fatty acids against cardiovascular disease (CVD). The effect of n-3 fatty acids on vascular endothelial cells indicates their possible role in CVD prevention. OBJECTIVE Here, we describe the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on endothelial dysfunction-caused by inflammation and oxidative stress-and their role in the development of CVD. METHODS We reviewed epidemiological studies done on n-3 fatty acids in CVD. The effect of DHA and EPA on vascular endothelial cells was examined with regard to changes in various markers, such as arteriosclerosis, inflammation, and oxidative stress, using cell and animal models. RESULTS Epidemiological studies revealed that dietary intake of EPA and DHA was associated with a reduced risk of various CVDs. EPA and DHA inhibited various events involved in arteriosclerosis development by preventing oxidative stress and inflammation associated with endothelial cell damage. In particular, EPA and DHA prevented endothelial cell dysfunction mediated by inflammatory responses and oxidative stress induced by events related to CVD. DHA and EPA also increased eNOS activity and induced nitric oxide production. CONCLUSION The effects of DHA and EPA on vascular endothelial cell damage and dysfunction may involve the induction of nitric oxide, in addition to antioxidant and anti-inflammatory effects. n-3 fatty acids inhibit endothelial dysfunction and prevent arteriosclerosis. Therefore, the intake of n-3 fatty acids may prevent CVDs, like myocardial infarction and stroke.
Collapse
Affiliation(s)
- Kazuo Yamagata
- College of Bioresource Science, Nihon University (UNBS), Kanagawa, Japan
| |
Collapse
|
32
|
Chang R, Mamun A, Dominic A, Le NT. SARS-CoV-2 Mediated Endothelial Dysfunction: The Potential Role of Chronic Oxidative Stress. Front Physiol 2021; 11:605908. [PMID: 33519510 PMCID: PMC7844210 DOI: 10.3389/fphys.2020.605908] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
Endothelial cells have emerged as key players in SARS-CoV-2 infection and COVID-19 inflammatory pathologies. Dysfunctional endothelial cells can promote chronic inflammation and disease processes like thrombosis, atherosclerosis, and lung injury. In endothelial cells, mitochondria regulate these inflammatory pathways via redox signaling, which is primarily achieved through mitochondrial reactive oxygen species (mtROS). Excess mtROS causes oxidative stress that can initiate and exacerbate senescence, a state that promotes inflammation and chronic endothelial dysfunction. Oxidative stress can also activate feedback loops that perpetuate mitochondrial dysfunction, mtROS overproduction, and inflammation. In this review, we provide an overview of phenotypes mediated by mtROS in endothelial cells - such as mitochondrial dysfunction, inflammation, and senescence - as well as how these chronic states may be initiated by SARS-CoV-2 infection of endothelial cells. We also propose that SARS-CoV-2 activates mtROS-mediated feedback loops that cause long-term changes in host redox status and endothelial function, promoting cardiovascular disease and lung injury after recovery from COVID-19. Finally, we discuss the implications of these proposed pathways on long-term vascular health and potential treatments to address these chronic conditions.
Collapse
Affiliation(s)
- Ryan Chang
- College of Arts & Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Abrar Mamun
- Wiess School of Natural Sciences, Rice University, Houston, TX, United States
| | - Abishai Dominic
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
33
|
Guo R, Wang L, Zeng X, Liu M, Zhou P, Lu H, Lin H, Dong M. Aquaporin 7 involved in GINSENOSIDE-RB1-mediated anti-obesity via peroxisome proliferator-activated receptor gamma pathway. Nutr Metab (Lond) 2020; 17:69. [PMID: 32821266 PMCID: PMC7433204 DOI: 10.1186/s12986-020-00490-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background Obesity, characterized by the excessive accumulation of triglycerides in adipocytes and their decreased excretion from adipocytes, is closely related to various health problems. Ginsenoside Rb1 (Rb1), the most active component of the traditional Chinese medicine ginseng, has been reported to have positive effects on lipid metabolism. The aim of the present study was to determine the protective effects of Rb1 on glycolipid metabolism under obesity conditions and its mechanisms and to reveal the signaling pathways involved. Methods In our study, male C57BL/6 mice with obesity induced by a high-fat diet (HFD) and mature 3 T3-L1 adipocytes were used to investigate the role of Rb1 in lipid accumulation and explore its possible molecular mechanism in vivo and in vitro, respectively. Results Rb1 reduced the body weight, fat mass, adipocytes size and serum free fatty acid (FFA) concentration of obese mice. In differentiated 3 T3-L1 adipocytes, Rb1 reduced the accumulation of lipid droplets and stimulated output of triglycerides. Additionally, the expression of peroxisome proliferator-activated receptor gamma (PPARγ), phosphorylated PPARγ (Ser112) and aquaporin 7 (AQP7) was upregulated in adipocytes and adipose tissues upon Rb1 treatment. However, intervention of GW9662, PPARγ antagonist, attenuated Rb1-mediated effects on glycolipid metabolism and AQP7 levels. Conclusions These data indicated that Rb1 reduced body weight and improved glycolipid metabolism by upregulating PPARγ and AQP7 protein levels. Our study indicated a potential role for Rb1 in the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Rong Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China.,Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 Fujian People's Republic of China.,Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, Jiangxi China
| | - Lei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Xianqin Zeng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 Fujian People's Republic of China.,Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, Jiangxi China
| | - Minghao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 People's Republic of China
| | - Peng Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Huili Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 Fujian People's Republic of China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| |
Collapse
|
34
|
Zou F, Su X, Pan P. Toll-Like Receptor-4-Mediated Inflammation is Involved in Intermittent Hypoxia-Induced Lung Injury. Lung 2020; 198:855-862. [PMID: 32785858 DOI: 10.1007/s00408-020-00384-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/31/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Intermittent hypoxia (IH) is a recognized risk factor for multiple organs damage, resulting in lung injury. Its pathophysiology is still poorly understood. Toll-like receptor 4 (TLR4) signaling plays a critical role in host immune response to invading pathogen and non-infectious tissue injury. The role of TLR4-mediated inflammation in IH-induced lung injury was investigated in this study. METHODS Lean adult male TLR4-deficient (TLR4-/-) mice and their controls (C57BL/6 mice) were exposed to either IH (FiO2 6-8% for 25 s, 150 s/cycle, 8 h/day) or air (normoxic mice) for 6 weeks. Animals were sacrificed after 6-week exposure, and the lung tissues were harvested for morphological and inflammatory analyses. The expression of TLR4 and nuclear factor kappa-B (NF-κB) P65 were examined by real-time quantitative polymerase chain reaction and immunohistochemical method. Serum cytokine levels of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were analyzed by enzyme-linked immunosorbent assay. RESULTS IH induced morphological and inflammation changes in the lung. IH for 6 weeks induced higher expression of TLR4 (C57BL/6-N vs C57BL/6-IH, P < 0.05) and resulted in higher release of TNF-α, IL-6 (P < 0.05), and NF-κB P65 (P < 0.05). These alterations were remitted by TLR4 deletion. CONCLUSIONS TLR4-mediated inflammation plays an important role in the development of IH-induced lung injury in mice, possibly through mechanisms involving nuclear factor-κB. Targeting TLR4/NF-κB pathway could represent a further therapeutic option for sleep apnea patients.
Collapse
Affiliation(s)
- Fangfang Zou
- Department of Internal Medicine, Hunan Chest Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Pinhua Pan
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China
| |
Collapse
|
35
|
Lin ZP, Lin HL, Yu XP, Zheng YJ, Cheng SY. TLR4 mediates inflammation and hepatic fibrosis induced by chronic intermittent hypoxia in rats. Mol Med Rep 2020; 22:651-660. [PMID: 32626927 PMCID: PMC7339543 DOI: 10.3892/mmr.2020.11134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common and complex disorder that is associated with liver injury. Moreover, previous studies have revealed that chronic intermittent hypoxia (CIH) is associated with the development of non-alcoholic fatty liver disease and hepatic fibrosis. However, the underlying molecular mechanisms remain largely unknown. The present study aimed to investigate whether chronic intermittent hypoxia induced hepatic fibrosis, in addition to determining its underlying mechanisms, in CIH model rats using immunohistochemistry, western blotting and reverse transcription-quantitative PCR. The present results suggested that CIH caused hepatic fibrosis and increased the expression levels of interleukin (IL)-1β, IL-8, monocyte chemotactic-1, tumor necrosis factor-α, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in the liver; these conditions could be reversed by Toll-like receptor 4 (TLR4) short hairpin RNA lentivirus treatment. Moreover, immunohistochemistry and western blotting results indicated that TLR4 and NF-κB expression levels were significantly increased in the CIH and CIH-TLR4 empty vector lentivirus group. However, protein expression levels of TLR4, NF-κB, inhibitor of NF-κB and phosphorylated-mitogen-activated protein kinase (MAPK)-1 in the hypoxia/reoxygenation group were significantly higher compared with the control group (P<0.05), and these results were reversed by the MAPK inhibitor U0126 in vitro. Collectively, the present preliminary results suggested that inflammation and the TLR4/NF-κB/MAPK signaling pathway may be involved in CIH-induced liver fibrosis.
Collapse
Affiliation(s)
- Zhi-Peng Lin
- Department of Infectious Diseases, The First Quanzhou Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xue-Ping Yu
- Department of Infectious Diseases, The First Quanzhou Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yi-Juan Zheng
- Department of Infectious Diseases, The First Quanzhou Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Si-Yu Cheng
- Department of Infectious Diseases, The First Quanzhou Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
36
|
da Silva IM, Santos MA, Galvão SL, Dorneles GP, Lira FS, Romão PRT, Peres A. Blood flow restriction impairs the inflammatory adaptations of strength training in overweight men: a clinical randomized trial. Appl Physiol Nutr Metab 2019; 45:659-666. [PMID: 31782931 DOI: 10.1139/apnm-2019-0700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the impact of high-intensity strength training (ST) or low-intensity strength training with blood flow restriction (ST-BFR) on monocyte subsets, the expression of C-C chemokine receptor 5 (CCR5), and CD16 on monocytes, and tumor necrosis factor alpha (TNF-α) production of overweight men. Thirty overweight men were randomly assigned to conventional ST or ST-BFR. Both groups performed exercises of knee extension and biceps curl with equal volume (3 sessions/week) over 8 weeks, and the peripheral frequency of monocytes (CD14+CD16-, classical monocytes; CD14+CD16+, intermediate monocytes; CD14-CD16+, nonclassical monocytes), the mean fluorescence intensity (MFI) of CCR5 and CD16 on CD14+ monocytes; and the production of TNF-α by lipopolysaccharide (LPS)-stimulated cells were quantified. Eight weeks of ST increased the frequency of CD14+CD16- monocytes (p = 0.04) and reduced the percentage of CD14-CD16+ (p = 0.02) and the production of TNF-α by LPS-stimulated cells (p = 0.03). The MFI of CD16 on CD14+ monocytes decreased after the ST intervention (p = 0.02). No difference in monocyte subsets, CCR5 or CD16 expression, and TNF-α production were identified after ST-BFR intervention (p > 0.05). The adoption of ST promotes anti-inflammatory effects on monocyte subsets of overweight men, but this effect was lost when BFR was adopted. Novelty High-intensity strength training reduces the production of TNF-α and the peripheral frequency of CD16+ monocytes in overweight men. Blood flow restriction method blunts the strength training adaptations on monocyte subsets and pro-inflammatory TNF-α production in overweight men.
Collapse
Affiliation(s)
- Igor Martins da Silva
- Laboratory of Cellular and Molecular Immunology, Department of Health Basic Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Maeli Andressa Santos
- Laboratory of Cellular and Molecular Immunology, Department of Health Basic Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Simone Lunelli Galvão
- Research Center. Methodist University Center IPA. Porto Alegre, RS 90420-060, Brazil
| | - Gilson P Dorneles
- Laboratory of Cellular and Molecular Immunology, Department of Health Basic Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Motricity Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP 19060-90, Brazil
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Department of Health Basic Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology, Department of Health Basic Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
37
|
Research Progress of Mechanisms and Drug Therapy For Atherosclerosis on Toll-Like Receptor Pathway. J Cardiovasc Pharmacol 2019; 74:379-388. [PMID: 31730559 DOI: 10.1097/fjc.0000000000000738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent reports have established atherosclerosis (AS) as a major factor in the pathogenetic process of cardiovascular diseases such as ischemic stroke and coronary heart disease. Although the possible pathogenesis of AS remains to be elucidated, a large number of investigations strongly suggest that the inhibition of toll-like receptors (TLRs) alleviates the severity of AS to some extent by suppressing vascular inflammation and the formation of atherosclerotic plaques. As pattern recognition receptors, TLRs occupy a vital position in innate immunity, mediating various signaling pathways in infective and sterile inflammation. This review summarizes the available data on the research progress of AS and the latest antiatherosclerotic drugs associated with TLR pathway.
Collapse
|
38
|
Umeda A, Miyagawa K, Mochida A, Takeda H, Takeda K, Okada Y, Gozal D. Intermittent hypoxia, energy expenditure, and visceral adipocyte recovery. Respir Physiol Neurobiol 2019; 273:103332. [PMID: 31628989 DOI: 10.1016/j.resp.2019.103332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Body weight of patients with obstructive sleep apnea after initiation of nasal continuous positive airway pressure appears to increase. We hypothesized that intermittent hypoxia (IH) will decrease energy expenditure (EE), and that normoxic recovery will lead to body weight gains. METHODS C57BL/6 J male mice were exposed to either 12 h/day of mild IH (alternating FIO2-10-11% and 21%; 640 s cycle), or severe IH (FIO2-6-7%-21%; 180 s cycle) or sham IH daily for 4 or 8 weeks. After exposures, EE was evaluated while mice were kept under normoxia for 5 weeks and organ histology was evaluated. RESULTS EE was not decreased by IH. However, visceral white adipocyte size after normoxic recovery was significantly increased in severe IH in an intensity-dependent manner. CONCLUSION Our hypothesis that IH would decrease EE was not corroborated. However, IH and normoxic recovery seem to promote severity-dependent enlargement of visceral adipocytes, likely reflecting altered energy preservation mechanisms induced by IH.
Collapse
Affiliation(s)
- Akira Umeda
- Department of Respiratory Medicine, International University of Health and Welfare (IUHW) Shioya Hospital, Japan.
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Japan
| | - Atsumi Mochida
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Japan
| | - Yasumasa Okada
- Department of Internal Medicine, National Hospital Organization Murayama Medical Center, Japan
| | - David Gozal
- Department of Child Health, MU Women's and Children's Hospital, University of Missouri, USA
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA) is increasing in prevalence. The intermittent hypoxia of OSA has wide-ranging effects on a patient's general health outcomes. However, gold-standard investigations and treatment are expensive and a significant burden on patients. Therefore, OSA research remains focused on improving the means of diagnosing and treating OSA, in high-risk-associated conditions. This review is to provide an update on the advances in the field of OSA. RECENT FINDINGS There has been recent debate about the best practice for diagnosis and treatment of OSA. Further work has been done on conditions associated with OSA including hypertension, atherosclerosis, various types of dementia and intracranial aneurysms. Inflammatory and vascular risk factors associated with OSA increase stroke risk and alter outcomes for recovery. OSA should definitely be considered in patients presenting with nonarteritic anterior ischemic optic neuropathy, and perhaps those with intracranial hypertension. SUMMARY Newer home-based sleep-apnea testing can be implemented via physician clinics, with oversight by a certified sleep physician. Although continuous positive airway pressure (CPAP) is the gold-standard, management should include diet and exercise. It is important to test for, and treat OSA in patients with a range of neurological diseases. However, further studies into the long-term impact of CPAP on health outcomes are still needed.
Collapse
|
40
|
Maguire G. The Safe and Efficacious Use of Secretome From Fibroblasts and Adipose-derived (but not Bone Marrow-derived) Mesenchymal Stem Cells for Skin Therapeutics. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2019; 12:E57-E69. [PMID: 31531174 PMCID: PMC6715117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stem cell-based products are rapidly emerging in the marketplace as topical skin care and wound care products. Confusion is prevalent among healthcare providers and end-users about these products. Adipose-derived stem cells, fibroblasts, platelets, and bone marrow-derived stem cells are the most common cells used for stem cell therapeutic development, medical procedures, and skin care products. In this review, the significant advantages of adipose-derived stem cells and fibroblasts in terms of safety and efficacy are highlighted and compared to relatively risky platelets and bone marrow stem cells.
Collapse
Affiliation(s)
- Greg Maguire
- Dr. Maguire is with NeoGenesis, Inc. in San Diego, California
| |
Collapse
|
41
|
Oscillatory Shear Stress Induces Oxidative Stress via TLR4 Activation in Endothelial Cells. Mediators Inflamm 2019; 2019:7162976. [PMID: 31316302 PMCID: PMC6604343 DOI: 10.1155/2019/7162976] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 01/25/2023] Open
Abstract
Background Oscillatory shear stress (OSS) disrupts endothelial homeostasis and promotes oxidative stress, which can lead to atherosclerosis. In atherosclerotic lesions, Toll-like receptor 4 (TLR4) is highly expressed. However, the molecular mechanism by which TLR4 modulates oxidative changes and the cell signaling transudation upon OSS is yet to be determined. Methods and Results Carotid artery constriction (CAC) surgery and a parallel-plate flow chamber were used to modulate shear stress. The results showed that OSS significantly increased the oxidative burden, and this was partly due to TLR4 activation. OSS activated NOX2 and had no significant influence to NOX1 or NOX4 in endothelial cells (ECs). OSS phosphorylated caveolin-1, promoted its binding with endothelial nitric oxide synthase (eNOS), and resulted in deactivation of eNOS. TLR4 inhibition restored levels of nitric oxide (NO) and superoxide dismutase (SOD) in OSS-exposed cells. Conclusion TLR4 modulates OSS-induced oxidative stress by activating NOX2 and suppressing eNOS.
Collapse
|
42
|
Epigenetics: A Potential Mechanism Involved in the Pathogenesis of Various Adverse Consequences of Obstructive Sleep Apnea. Int J Mol Sci 2019; 20:ijms20122937. [PMID: 31208080 PMCID: PMC6627863 DOI: 10.3390/ijms20122937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Epigenetics is defined as the heritable phenotypic changes which do not involve alterations in the DNA sequence, including histone modifications, non-coding RNAs, and DNA methylation. Recently, much attention has been paid to the role of hypoxia-mediated epigenetic regulation in cancer, pulmonary hypertension, adaptation to high altitude, and cardiorenal disease. In contrast to sustained hypoxia, chronic intermittent hypoxia with re-oxygenation (IHR) plays a major role in the pathogenesis of various adverse consequences of obstructive sleep apnea (OSA), resembling ischemia re-perfusion injury. Nevertheless, the role of epigenetics in the pathogenesis of OSA is currently underexplored. This review proposes that epigenetic processes are involved in the development of various adverse consequences of OSA by influencing adaptive potential and phenotypic variability under conditions of chronic IHR. Improved understanding of the interaction between genetic and environmental factors through epigenetic regulations holds great value to give deeper insight into the mechanisms underlying IHR-related low-grade inflammation, oxidative stress, and sympathetic hyperactivity, and clarify their implications for biomedical research.
Collapse
|
43
|
Alfranca A, Campanero MR, Redondo JM. New Methods for Disease Modeling Using Lentiviral Vectors. Trends Mol Med 2018; 24:825-837. [PMID: 30213701 DOI: 10.1016/j.molmed.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
Lentiviral vectors (LVs) transduce quiescent cells and provide stable integration to maintain transgene expression. Several approaches have been adopted to optimize LV safety profiles. Similarly, LV targeting has been tailored through strategies including the modification of envelope components, the use of specific regulatory elements, and the selection of appropriate administration routes. Models of aortic disease based on a single injection of pleiotropic LVs have been developed that efficiently transduce the three aorta layers in wild type mice. This approach allows the dissection of pathways involved in aortic aneurysm formation and the identification of targets for gene therapy in aortic diseases. LVs provide a fast, efficient, and affordable alternative to genetically modified mice to study disease mechanisms and develop therapeutic tools.
Collapse
Affiliation(s)
- Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa, Madrid, Spain; CIBERCV, Madrid, Spain.
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain; CIBERCV, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBERCV, Madrid, Spain.
| |
Collapse
|
44
|
Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules 2018; 8:biom8030080. [PMID: 30142970 PMCID: PMC6163673 DOI: 10.3390/biom8030080] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease; unstable atherosclerotic plaque rupture, vascular stenosis, or occlusion caused by platelet aggregation and thrombosis lead to acute cardiovascular disease. Atherosclerosis-related inflammation is mediated by proinflammatory cytokines, inflammatory signaling pathways, bioactive lipids, and adhesion molecules. This review discusses the effects of inflammation and the systemic inflammatory signaling pathway on atherosclerosis, the role of related signaling pathways in inflammation, the formation of atherosclerosis plaques, and the prospects of treating atherosclerosis by inhibiting inflammation.
Collapse
|