1
|
Lee SY, Lee Y, Oh EY, Lee J, Kim JY, Park SI, Park HJ, Park SH, Choi EJ, Ha D, Oh A, Kim A, Ro HJ, Bang YJ, Kwak HW, Park HJ, Kim DH, Kim D, Lee SM, Cho NH, Nam JH. The therapeutic potential of mRNA-encoded SFTSV human monoclonal antibody encapsulated lipid nanoparticle in vivo. J Control Release 2025; 382:113735. [PMID: 40228669 DOI: 10.1016/j.jconrel.2025.113735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), caused by the SFTS virus (SFTSV), has emerged as a significant public health concern in East Asia since 2009. The high mortality rate of SFTS underscores the urgent need for effective preventive and therapeutic interventions. Although a Gn-specific human monoclonal antibody, Ab10, herein referred to as the protein S/A-TEN, has been previously reported, its development has been hindered by the economic challenges and low yields of large-scale production. To address this limitation, we developed an mRNA encapsulated lipid nanoparticle to produce SFTSV-specific human mAbs (mRNA S/A-TEN). This novel approach facilitates small-scale production, potentially enabling direct human application. The mRNA S/A-TEN antibody obtained from the injected-mouse serum showed high neutralizing antibody titers. Furthermore, we found that injecting the mRNA S/A-TEN antibody into mice that were infected with lethal SFTSV resulted in 100 % survival and assisted in a rapid recovery from organ failure. This study provides the first evidence that an mRNA-encoded SFTSV-specific human mAb can provide effective therapeutic protection against SFTSV infection, offering a promising therapeutic approach for the treatment of human SFTS.
Collapse
Affiliation(s)
- Soo-Yeon Lee
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Yebeen Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Eun Young Oh
- College of Veterinary Medicine, Chungbuk National University, Cheongju, -si, Chungcheongbuk-do, Republic of Korea
| | - Jisun Lee
- The Catholic University of Korea, Bucheon, Republic of Korea
| | | | - Sang-In Park
- Department of Biomedical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Hyo-Jung Park
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - So Hyun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, -si, Chungcheongbuk-do, Republic of Korea
| | - Eun-Jin Choi
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Dahyeon Ha
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Ayoung Oh
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Ayeon Kim
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyo-Jin Ro
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | | | | | | | | | - Daegeun Kim
- SML Biopharm, Gwangmyeong, Republic of Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, -si, Chungcheongbuk-do, Republic of Korea.
| | - Nam-Hyuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 13620, Republic of Korea.
| | - Jae-Hwan Nam
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.
| |
Collapse
|
2
|
Bahadir Z, Narayan P, Wolters R, Permar SR, Fouda G, Hessell AJ, Haigwood NL. Monoclonal Antibodies for Pediatric Viral Disease Prevention and Treatment. Pediatrics 2025; 155:e2024068690. [PMID: 40174915 DOI: 10.1542/peds.2024-068690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025] Open
Abstract
Medical advancements over the last century have improved our ability to treat pediatric infectious diseases, significantly reducing associated morbidity and mortality worldwide. Although vaccines have been pivotal in this progress, many viral pathogens still do not currently have effective vaccines. The COVID-19 pandemic highlighted the need for rapid responses to emerging viral pathogens and introduced new tools to combat them. This review addresses human monoclonal antibodies (mAbs) as a strategy for treating and preventing viral infections in pediatric populations. We discuss previously used and currently available mAbs and advancements in mAb discovery. We address the future of mAb therapy by describing novel approaches in drug production and delivery platforms in addition to alternative antibody classes. Finally, we review the challenges and limitations of mAb therapy development for newborns and children.
Collapse
Affiliation(s)
- Zeynep Bahadir
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Priyanka Narayan
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Rachael Wolters
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Genevieve Fouda
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
3
|
Alshehry Y, Liu X, Li W, Wang Q, Cole J, Zhu G. Lipid Nanoparticles for mRNA Delivery in Cancer Immunotherapy. AAPS J 2025; 27:66. [PMID: 40102316 DOI: 10.1208/s12248-025-01051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Cancer immunotherapy is poised to be one of the major modalities for cancer treatment. Messenger RNA (mRNA) has emerged as a versatile and promising platform for the development of effective cancer immunotherapy. Delivery systems for mRNA therapeutics are pivotal for their optimal therapeutic efficacy and minimal adverse side effects. Lipid nanoparticles (LNPs) have demonstrated a great success for mRNA delivery. Numerous LNPs have been designed and optimized to enhance mRNA stability, facilitate transfection, and ensure intracellular delivery for subsequent processing. Nevertheless, challenges remain to, for example, improve the efficiency of endosomal escape and passive targeting. This review highlights key advancements in the development of mRNA LNPs for cancer immunotherapy. We delve into the design of LNPs for mRNA delivery, encompassing the chemical structures, characterization, and structure-activity relationships (SAR) of LNP compositions. We discuss the key factors influencing the transfection efficiency, passive targeting, and tropism of mRNA-loaded LNPs. We also review the preclinical and clinical applications of mRNA LNPs in cancer immunotherapy. This review can enhance our understanding in the design and application of LNPs for mRNA delivery in cancer immunotherapy.
Collapse
Affiliation(s)
- Yasir Alshehry
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Xiang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Wenhua Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Qiyan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Janét Cole
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America.
- Bioinnovations in Brain Cancer, Biointerfaces Institute, Rogel Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, United States of America.
| |
Collapse
|
4
|
Yang L, Li S, Hou C, Wang Z, He W, Zhang W. Recent advances in mRNA-based therapeutics for neurodegenerative diseases and brain tumors. NANOSCALE 2025; 17:3537-3548. [PMID: 39750745 DOI: 10.1039/d4nr04394d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Messenger RNA (mRNA) therapy is an innovative approach that delivers specific protein-coding information. By promoting the ribosomal synthesis of target proteins within cells, it supplements functional or antigenic proteins to treat diseases. Unlike traditional gene therapy, mRNA does not need to enter the cell nucleus, reducing the risks associated with gene integration. Moreover, protein expression levels can be regulated by adjusting the dosage and degradation rates of mRNA. As a new generation gene therapy strategy, mRNA therapy represents the latest advancements and trends in the field. It offers advantages such as precision, safety, and ease of modification. It has been widely used in the prevention of COVID-19. Unlike acute conditions such as cerebral hemorrhage and stroke that often require immediate surgical or interventional treatments, neurodegenerative diseases (NDs) and brain tumors progress relatively slowly and face challenges such as the blood-brain barrier and complex pathogenesis. These characteristics make them particularly suitable for mRNA therapy. With continued research, mRNA-based therapeutics are expected to play a significant role in the prevention and treatment of NDs and brain tumors. This paper reviews the preparation and delivery of mRNA drugs and summarizes the research progress of mRNA gene therapy in treating NDs and brain tumors. It also discusses the current challenges, providing a theoretical basis and reference for future research in this field.
Collapse
Affiliation(s)
- Lizhi Yang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Shuo Li
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Chao Hou
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Helble M, Chu J, Flowers K, Trachtman AR, Huynh A, Kim A, Shupin N, Hojecki CE, Gary EN, Solieva S, Parzych EM, Weiner DB, Kulp DW, Patel A. Structure and sequence engineering approaches to improve in vivo expression of nucleic acid-delivered antibodies. Mol Ther 2025; 33:152-167. [PMID: 39563034 PMCID: PMC11764276 DOI: 10.1016/j.ymthe.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Monoclonal antibodies are an important class of biologics with over 160 Food and Drug Administration/European Union-approved drugs. A significant bottleneck to global accessibility of recombinant monoclonal antibodies stems from complexities related to their production, storage, and distribution. Recently, gene-encoded approaches such as mRNA, DNA, or viral delivery have gained popularity, but ensuring biologically relevant levels of antibody expression in the host remains a critical issue. Using a synthetic DNA platform, we investigated the role of antibody structure and sequence toward in vivo expression. SARS-CoV-2 antibody 2196 was recently engineered as a DNA-encoded monoclonal antibody (DMAb-2196). Utilizing an immunoglobulin heavy and light chain "chain-swap" methodology, we interrogated features of DMAb-2196 that can modulate in vivo expression through rational design and structural modeling. Comparing these results to natural variation of antibody sequences resulted in development of an antibody frequency score that aids in the prediction of expression-improving mutations by leveraging antibody repertoire datasets. We demonstrate that a single amino acid mutation identified through this score increases in vivo expression up to 2-fold and that combinations of mutations can also enhance expression. This analysis has led to a generalized pipeline that can unlock the potential for in vivo delivery of therapeutic antibodies across many indications.
Collapse
Affiliation(s)
- Michaela Helble
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacqueline Chu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kaitlyn Flowers
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Abigail R Trachtman
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Alana Huynh
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Amber Kim
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Nicholas Shupin
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Casey E Hojecki
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ebony N Gary
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Shahlo Solieva
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth M Parzych
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Hangiu O, Navarro R, Frago S, Rubio-Pérez L, Tapia-Galisteo A, Díez-Alonso L, Gómez-Rosel M, Silva-Pilipich N, Vanrell L, Smerdou C, Howard KA, Sanz L, Álvarez-Vallina L, Compte M. Effective cancer immunotherapy combining mRNA-encoded bispecific antibodies that induce polyclonal T cell engagement and PD-L1-dependent 4-1BB costimulation. Front Immunol 2025; 15:1494206. [PMID: 39835115 PMCID: PMC11743637 DOI: 10.3389/fimmu.2024.1494206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Background Immune checkpoint inhibitors have revolutionized cancer therapy, but many patients fail to respond or develop resistance, often due to reduced T cell activity. Costimulation via 4-1BB has emerged as a promising approach to enhance the effector function of antigen-primed T cells. Bispecific T cell-engaging (TCE) antibodies are an effective way to provide tumor-specific T cell receptor-mediated signaling to tumor-infiltrating lymphocytes. mRNA-based delivery of bispecific antibodies, offer a novel approach to enhance tumor-specific immune responses while minimizing adverse effects. Methods Two bispecific antibodies were generated: the EGFR x CD3 TCE antibody (LiTE) and the PD-L1 x 4-1BB costimulatory antibody (LiTCo), which was further fused to a high FcRn albumin variant (Albu-LiTCo). The mRNA encoding these bispecific antibodies contains an N1-methylpseudouridine modified nucleoside and regulatory sequences to ensure proper expression and stability. A series of in vitro assays and cell-based analyses were performed to characterize both antibodies. The in vivo efficacy of the mRNA-encoded bispecific antibodies was evaluated in xenograft tumor models expressing EGFR. Results We investigated the combined effect of two mRNA-encoded Fc-free bispecific antibodies with complementary mechanisms of action: an EGFR-targeting TCE and a half-life extended PD-L1 x 4-1BB costimulatory antibody. The mRNAs encoding both bispecific LiTERNA and Albu-LiTCoRNA, showed similar binding specificity and in vitro function to their protein analogues. Pharmacokinetic studies demonstrated sustained expression of both bispecific antibodies following intravenous administration of the mRNAs formulated using a polymer/lipid-based nanoparticle (LNP) but different pharmacokinetic profiles, shorter for the TCE and longer for the PD-L1 x 4-1BB. When administered as a mRNA-LNP combination (ComboRNA), the growth of EGFR-positive tumors in immunocompetent mice was significantly inhibited, resulting in tumor regression in 20% of cases with no associated toxicity. Histological analysis confirmed increased T cell infiltration in the tumors treated with LITERNA and ComboRNA. Repeated administration resulted in sustained production of bispecific antibodies with different exposure cycles and potent antitumor activity with a favorable safety profile. Conclusions These results highlight the potential of combining two mRNA-encoded bispecific antibodies with different mechanisms of action and programmable half-life for cancer immunotherapy.
Collapse
Affiliation(s)
- Oana Hangiu
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Susana Frago
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Antonio Tapia-Galisteo
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marina Gómez-Rosel
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Noelia Silva-Pilipich
- Division of DNA and RNA Medicine, CIMA Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | | | - Cristian Smerdou
- Division of DNA and RNA Medicine, CIMA Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Kenneth A. Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre (H12O), Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| |
Collapse
|
7
|
Veg E, Hashmi K, Raza S, Joshi S, Rahman Khan A, Khan T. The Role of Nanomaterials in Diagnosis and Targeted Drug Delivery. Chem Biodivers 2025; 22:e202401581. [PMID: 39313849 DOI: 10.1002/cbdv.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanomaterials have evolved into the most useful resources in all spheres of life. Their small size imparts them with unique properties and they can also be designed and engineered according to the specific need. The use of nanoparticles (NPs) in medicine is particularly quite revolutionary as it has opened new therapeutic avenues to diagnose, treat and manage diseases in an efficient and timely manner. The review article presents the biomedical applications of nanomaterials including bioimaging, magnetic hypothermia and photoablation therapy, with a particular focus on disease diagnosis and targeted drug delivery. Nanobiosensors are highly specific and can be delivered into cells to investigate important biomarkers. They are also used for targeted drug delivery and deliver theranostic agents to specific sites of interest. Other than these factors, the review also explores the role of nano-based drug delivery systems for the management and treatment of nervous system disorders, tuberculosis and orthopaedics. The nano-capsulated drugs can be transported by blood to the targeted site for a sustained release over a prolonged period. Some other applications like their role in invasive surgery, photodynamic therapy and quantum dot imaging have also been explored. Despite that, the safety concerns related to nanomedicine are also pertinent to comprehend as well as the biodistribution of NPs in the body and the mechanistic insight.
Collapse
Affiliation(s)
- Ekhlakh Veg
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| |
Collapse
|
8
|
Bai L, Chen X, Li C, Zhou H, Li Y, Xiao J, Zhang F, Cheng H, Zhou M. Mannose/stearyl chloride doubly functionalized polyethylenimine as a nucleic acid vaccine carrier to promote macrophage uptake. Drug Deliv 2024; 31:2427138. [PMID: 39540234 PMCID: PMC11565675 DOI: 10.1080/10717544.2024.2427138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Transmembrane transport remains a significant challenge for nucleic acid vaccine vectors. Promoting the ability of immune cells, such as macrophages, to capture foreign stimuli is also an effective approach to improving cross-presentation. In addition, polyethyleneimine (PEI) has gained attention in the field of nucleic acid vaccine carriers due to its excellent gene transfection efficiency and unique proton buffering effect. However, although high molecular weight PEI exhibits high efficiency, its high-density positive charges make it highly toxic, which limits its application. In this study, mannose/stearyl chloride functionalized polyethylenimine (SA-Man-PEI) was prepared by functionalizing PEI (molecular weight of 25 kDa) with mannose with immunomodulatory and phagocyte targeting effects, and an alkyl hydrophobic chain segment, which could easily promote cell uptake. Moreover, the functionalized-PEI retains a strong proton buffering effect, which helps the carrier escape from the lysosome. The particle sizes of the composite particles formed by SA-Man-PEI and ovalbumin (OVA) were below 200 nm, with good storage stability at both 4 °C and 37 °C. At a drug concentration of 2 μg/mL, the cell survival rate of functionalized-PEI was 19.2% higher than that of unfunctionalized PEI. In vitro macrophage endocytosis experiments showed that SA-Man-PEI could significantly enhance the macrophage uptake of composite particles, compared to unfunctionalized PEI or single-functionalized PEI. This study offers a new approach for developing PEI as a nucleic acid vaccine carrier, which could simultaneously enhance cell targeting and promote cell uptake.
Collapse
Affiliation(s)
- Lu Bai
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Xiaoqi Chen
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Chengyu Li
- School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, China
| | - Haijun Zhou
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Yantao Li
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Jijun Xiao
- School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, China
| | - Fen Zhang
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Hua Cheng
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Mengmeng Zhou
- Shijiazhuang Polymer Composite Technological Innovation Center; Shijiazhuang Key Laboratory of Low Carbon Energy Materials, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
9
|
Laila UE, An W, Xu ZX. Emerging prospects of mRNA cancer vaccines: mechanisms, formulations, and challenges in cancer immunotherapy. Front Immunol 2024; 15:1448489. [PMID: 39654897 PMCID: PMC11625737 DOI: 10.3389/fimmu.2024.1448489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer continues to pose an alarming threat to global health, necessitating the need for the development of efficient therapeutic solutions despite massive advances in the treatment. mRNA cancer vaccines have emerged as a hopeful avenue, propelled by the victory of mRNA technology in COVID-19 vaccines. The article delves into the intricate mechanisms and formulations of cancer vaccines, highlighting the ongoing efforts to strengthen mRNA stability and ensure successful translation inside target cells. Moreover, it discusses the design and mechanism of action of mRNA, showcasing its potential as a useful benchmark for developing efficacious cancer vaccines. The significance of mRNA therapy and selecting appropriate tumor antigens for the personalized development of mRNA vaccines are emphasized, providing insights into the immune mechanism. Additionally, the review explores the integration of mRNA vaccines with other immunotherapies and the utilization of progressive delivery platforms, such as lipid nanoparticles, to improve immune responses and address challenges related to immune evasion and tumor heterogeneity. While underscoring the advantages of mRNA vaccines, the review also addresses the challenges associated with the susceptibility of RNA to degradation and the difficulty in identifying optimum tumor-specific antigens, along with the potential solutions. Furthermore, it provides a comprehensive overview of the ongoing research efforts aimed at addressing these hurdles and enhancing the effectiveness of mRNA-based cancer vaccines. Overall, this review is a focused and inclusive impression of the present state of mRNA cancer vaccines, outlining their possibilities, challenges, and future predictions in the fight against cancer, ultimately aiding in the development of more targeted therapies against cancer.
Collapse
Affiliation(s)
| | | | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
10
|
Zhang Y, Tian C, Yu X, Yu G, Han X, Wang Y, Zhou H, Zhang S, Li M, Yang T, Sun Y, Tai W, Yin Q, Zhao G. Lung-Selective Delivery of mRNA-Encoding Anti-MERS-CoV Nanobody Exhibits Neutralizing Activity Both In Vitro and In Vivo. Vaccines (Basel) 2024; 12:1315. [PMID: 39771977 PMCID: PMC11680347 DOI: 10.3390/vaccines12121315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a highly pathogenic virus causing severe respiratory illness, with limited treatment options that are mostly supportive. The success of mRNA technology in COVID-19 vaccines has opened avenues for antibody development against MERS-CoV. mRNA-based antibodies, expressed in vivo, offer rapid adaptability to viral mutations while minimizing long-term side effects. This study aimed to develop a lung-targeted lipid nanoparticle (LNP) system for mRNA-encoding neutralizing nanobodies against MERS-CoV, proposing a novel therapeutic strategy. Methods: An mRNA-encoding nanobody NbMS10 (mRNA-NbMS10) was engineered for enhanced stability and reduced immunogenicity. This mRNA was encapsulated in lung-selective LNPs using microfluidics to form the LNP-mRNA-NbMS10 system. Efficacy was assessed through in vitro assays and in vivo mouse studies, focusing on antigen-binding, neutralization, and sustained nanobody expression in lung tissues. Results: The LNP-mRNA-NbMS10 system expressed the nanobody in vitro, showing strong antigen-binding and significant MERS-CoV pseudovirus neutralization. In vivo studies confirmed selective lung mRNA delivery, with high nanobody expression sustained for up to 24 h, confirming lung specificity and prolonged antiviral activity. Conclusions: Extensive in vitro and in vivo evaluations demonstrate the LNP-mRNA-NbMS10 system's potential as a scalable, cost-effective, and adaptable alternative to current MERS-CoV therapies. This innovative platform offers a promising solution for preventing and treating respiratory infections, and countering emerging viral threats.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Y.Z.); (H.Z.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
| | - Chongyu Tian
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China;
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030031, China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (G.Y.)
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (G.Y.)
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haisheng Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Y.Z.); (H.Z.)
| | - Shuai Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Tiantian Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yali Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Guangyu Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Y.Z.); (H.Z.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
11
|
Luo F, Xu C, Zhang C, Tan A, Lu D, Luo P, Cheng P, Zhang W, Bai L, Yu C, Sun S, Zeng H, Zou Q. mRNA-based platform for preventing and treating Staphylococcus aureus by targeted staphylococcal enterotoxin B. Front Immunol 2024; 15:1490044. [PMID: 39640268 PMCID: PMC11617584 DOI: 10.3389/fimmu.2024.1490044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Staphylococcus aureus (S. aureus) possesses numerous virulence factors, with the increasing prevalence of drug-resistant strains heightening the threat posed by this pathogen. Staphylococcal enterotoxin B (SEB), a highly conserved toxin secreted by S. aureus, is also recognized as a potential bioweapon with super-antigenic activity. SEB represents a promising target in efforts to combat infections caused by S. aureus. We developed mRNA-based vaccine and antibody targeting SEB for both prophylactic and therapeutic purposes in varying S. aureus infection conditions. The mSEB mRNA vaccine (10 μg per mouse) induces more robust and persistent immune responses, including higher antibody titers and specific cellular immune responses, compared to immunization with 30 μg of mSEB protein adjuvanted with aluminum phosphate. Additionally, the anti-SEB mRNA antibody maintains secretion of anti-SEB monoclonal antibody (mAb) with a dosage that is 10 times lower than purified protein administration. The mRNA-based antibody exhibits superior pharmacokinetic profiles compared to its protein counterparts, efficiently neutralizing SEB and clearing S. aureus from circulation. Both the mRNA vaccine and mRNA antibody demonstrate preventive and therapeutic effects by eliciting specific immune responses and generating high-affinity antibodies in mice. We have laid the groundwork for the development and evaluation of mRNA-based vaccines and antibodies targeting SEB produced by S. aureus. Our studies demonstrate that these approaches are more effective than traditional protein-based vaccines and antibodies in terms of inducing immune responses, pharmacokinetics, and their prophylactic or therapeutic efficacy against S. aureus infections.
Collapse
Affiliation(s)
- Fumei Luo
- School of Pharmacy, University of South China, Hunan, China
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Chuanfei Xu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Chengwen Zhang
- Medical Research Institute, Southwest University, Chongqing, China
| | - Aomo Tan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Lijuan Bai
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Cuiyun Yu
- School of Pharmacy, University of South China, Hunan, China
| | - Si Sun
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther 2024; 9:322. [PMID: 39543114 PMCID: PMC11564800 DOI: 10.1038/s41392-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
In the last decade, messenger ribonucleic acid (mRNA)-based drugs have gained great interest in both immunotherapy and non-immunogenic applications. This surge in interest can be largely attributed to the demonstration of distinct advantages offered by various mRNA molecules, alongside the rapid advancements in nucleic acid delivery systems. It is noteworthy that the immunogenicity of mRNA drugs presents a double-edged sword. In the context of immunotherapy, extra supplementation of adjuvant is generally required for induction of robust immune responses. Conversely, in non-immunotherapeutic scenarios, immune activation is unwanted considering the host tolerability and high expression demand for mRNA-encoded functional proteins. Herein, mainly focused on the linear non-replicating mRNA, we overview the preclinical and clinical progress and prospects of mRNA medicines encompassing vaccines and other therapeutics. We also highlight the importance of focusing on the host-specific variations, including age, gender, pathological condition, and concurrent medication of individual patient, for maximized efficacy and safety upon mRNA administration. Furthermore, we deliberate on the potential challenges that mRNA drugs may encounter in the realm of disease treatment, the current endeavors of improvement, as well as the application prospects for future advancements. Overall, this review aims to present a comprehensive understanding of mRNA-based therapies while illuminating the prospective development and clinical application of mRNA drugs.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Meixing Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, P. R. China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, P. R. China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
13
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Asmani AZA, Zainuddin AFF, Azmi Murad NA, Mohd Darwis NH, Suhaimi NS, Zaini E, Taher M, Susanti D, Khotib J. Immunogenicity of monoclonal antibody: Causes, consequences, and control strategies. Pathol Res Pract 2024; 263:155627. [PMID: 39357185 DOI: 10.1016/j.prp.2024.155627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Antibody-based treatment was first used in 1891 for the treatment of diphtheria. Since then, monoclonal antibodies (mAbs) have been developed to treat many diseases such as cancer and act as vaccines. However, murine-derived therapeutic mAbs were found to be highly immunogenic, and caused anti-drug antibodies (ADAs) reaction, reducing their efficacy and causing severe infusion reactions. Fully human, humanised, and chimeric antibodies were then introduced for better therapeutic efficacy. With the introduction of immune response associated with mAbs immunogenicity. This review explores the immunogenicity of mAbs, its mechanism, contributing factors, and its impact on therapeutic efficacy. It also discusses immunogenicity assessment for preclinical studies and strategies for minimising immunogenicity for effective therapeutic treatment in various diseases. Finally, predicting immunogenicity in drug development is essential for selecting top drug candidates. A lot of methods can be implemented by the researchers and developers to reduce the development of ADAs while simultaneously minimising the immunogenicity reaction of mAbs.
Collapse
Affiliation(s)
- Ahmad Zafran Amin Asmani
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia
| | - Ahmad Faris Fahmi Zainuddin
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia
| | - Nadhirah Ahmad Azmi Murad
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia
| | - Nur Hidayati Mohd Darwis
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia
| | - Nur Suhaida Suhaimi
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia
| | - Erizal Zaini
- Faculty of Pharmacy, Universitas Andalas, Padang 25175, Indonesia
| | - Muhammad Taher
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia.
| | - Deny Susanti
- Department of Chemistry, Faculty of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia.
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia.
| |
Collapse
|
15
|
Roman-Ramos H, Ho PL. Current Technologies in Snake Venom Analysis and Applications. Toxins (Basel) 2024; 16:458. [PMID: 39591213 PMCID: PMC11598588 DOI: 10.3390/toxins16110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This comprehensive review explores the cutting-edge advancements in snake venom research, focusing on the integration of proteomics, genomics, transcriptomics, and bioinformatics. Highlighting the transformative impact of these technologies, the review delves into the genetic and ecological factors driving venom evolution, the complex molecular composition of venoms, and the regulatory mechanisms underlying toxin production. The application of synthetic biology and multi-omics approaches, collectively known as venomics, has revolutionized the field, providing deeper insights into venom function and its therapeutic potential. Despite significant progress, challenges such as the functional characterization of toxins and the development of cost-effective antivenoms remain. This review also discusses the future directions of venom research, emphasizing the need for interdisciplinary collaborations and new technologies (mRNAs, cryo-electron microscopy for structural determinations of toxin complexes, synthetic biology, and other technologies) to fully harness the biomedical potential of venoms and toxins from snakes and other animals.
Collapse
Affiliation(s)
- Henrique Roman-Ramos
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil;
| | - Paulo Lee Ho
- Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
16
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
17
|
Makhmudova U, Steinhagen-Thiessen E, Volpe M, Landmesser U. Advances in nucleic acid-targeted therapies for cardiovascular disease prevention. Cardiovasc Res 2024; 120:1107-1125. [PMID: 38970537 DOI: 10.1093/cvr/cvae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 07/08/2024] Open
Abstract
Nucleic acid-based therapies are being rapidly developed for prevention and management of cardiovascular diseases (CVD). Remarkable advancements have been achieved in the delivery, safety, and effectiveness of these therapeutics in the past decade. These therapies can also modulate therapeutic targets that cannot be sufficiently addressed using traditional drugs or antibodies. Among the nucleic acid-targeted therapeutics under development for CVD prevention are RNA-targeted approaches, including antisense oligonucleotides (ASO), small interfering RNAs (siRNA), and novel genome editing techniques. Genetic studies have identified potential therapeutic targets that are suggested to play a causative role in development and progression of CVD. RNA- and DNA-targeted therapeutics can be particularly well delivered to the liver, where atherogenic lipoproteins and angiotensinogen (AGT) are produced. Current targets in lipid metabolism include proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein A (ApoA), apolipoprotein C3 (ApoC3), angiopoietin-like 3 (ANGPTL3). Several large-scale clinical development programs for nucleic acid-targeted therapies in cardiovascular prevention are under way, which may also be attractive from a therapy adherence point of view, given the long action of these therapeutics. In addition to genome editing, the concept of gene transfer is presently under assessment in preclinical and clinical investigations as a potential approach for addressing low-density lipoprotein receptor deficiency. Furthermore, ongoing research is exploring the use of RNA-targeted therapies to treat arterial hypertension by reducing hepatic angiotensinogen (AGT) production. This review summarizes the rapid translation of siRNA and ASO therapeutics as well as gene editing into clinical studies to treat dyslipidemia and arterial hypertension for CVD prevention. It also outlines potential innovative therapeutic options that are likely relevant to the future of cardiovascular medicine.
Collapse
Affiliation(s)
- Umidakhon Makhmudova
- Department of Cardiology, Angiology, and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
- Department of Endocrinology and Metabolic Diseases, Charite Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, Rome 00189, Italy
- Cardiology Department, IRCCS San Raffaele Roma, Via di Valcannuta 250, Rome 00166, Italy
| | - Ulf Landmesser
- Department of Cardiology, Angiology, and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Cardiovascular Research, DZHK, Partner Site Berlin, Germany
| |
Collapse
|
18
|
Tkaczyk C, Newton M, Patnaik MM, Thom G, Strain M, Gamson A, Daramola O, Murthy A, Douthwaite J, Stepanov O, Boger E, Yang H, Esser MT, Lidwell A, DiGiandomenico A, Santos L, Sellman BR. In vivo mRNA expression of a multi-mechanistic mAb combination protects against Staphylococcus aureus infection. Mol Ther 2024; 32:2505-2518. [PMID: 38822525 PMCID: PMC11405172 DOI: 10.1016/j.ymthe.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Single monoclonal antibodies (mAbs) can be expressed in vivo through gene delivery of their mRNA formulated with lipid nanoparticles (LNPs). However, delivery of a mAb combination could be challenging due to the risk of heavy and light variable chain mispairing. We evaluated the pharmacokinetics of a three mAb combination against Staphylococcus aureus first in single chain variable fragment scFv-Fc and then in immunoglobulin G 1 (IgG1) format in mice. Intravenous delivery of each mRNA/LNP or the trio (1 mg/kg each) induced functional antibody expression after 24 h (10-100 μg/mL) with 64%-78% cognate-chain paired IgG expression after 3 days, and an absence of non-cognate chain pairing for scFv-Fc. We did not observe reduced neutralizing activity for each mAb compared with the level of expression of chain-paired mAbs. Delivery of the trio mRNA protected mice in an S. aureus-induced dermonecrosis model. Intravenous administration of the three mRNA in non-human primates achieved peak serum IgG levels ranging between 2.9 and 13.7 μg/mL with a half-life of 11.8-15.4 days. These results suggest nucleic acid delivery of mAb combinations holds promise and may be a viable option to streamline the development of therapeutic antibodies.
Collapse
Affiliation(s)
- Christine Tkaczyk
- AstraZeneca, Early Vaccines & Immune Therapies, Gaithersburg, MD 20878, USA.
| | - Michael Newton
- AstraZeneca, BioPharmaceutical Development, BioPharmaceuticals R&D, Gaithersburg, MD 20878, USA
| | - Mun Mun Patnaik
- AstraZeneca, Early Vaccines & Immune Therapies, Gaithersburg, MD 20878, USA
| | - George Thom
- AstraZeneca, Discovery Sciences, BioPharmaceuticals R&D, Cambridge CB21 6GH, UK
| | - Martin Strain
- AstraZeneca, Biologics Engineering, BioPharmaceuticals R&D, Cambridge CB216GH, UK
| | - Adam Gamson
- AstraZeneca, Early Vaccines & Immune Therapies, Gaithersburg, MD 20878, USA
| | - Olalekan Daramola
- AstraZeneca, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge CB21 6GH, UK
| | - Andal Murthy
- AstraZeneca, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge CB21 6GH, UK
| | - Julie Douthwaite
- AstraZeneca, Discovery Sciences, BioPharmaceuticals R&D, Cambridge CB21 6GH, UK
| | - Oleg Stepanov
- Clinical Pharmacology and Pharmacometrics, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Elin Boger
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respirator & immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Haitao Yang
- Clinical Pharmacology and Pharmacometrics, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Mark T Esser
- AstraZeneca, Early Vaccines & Immune Therapies, Gaithersburg, MD 20878, USA
| | - Ashley Lidwell
- AstraZeneca, Early Vaccines & Immune Therapies, Gaithersburg, MD 20878, USA
| | | | - Luis Santos
- AstraZeneca, BioPharmaceutical Development, BioPharmaceuticals R&D, Gaithersburg, MD 20878, USA
| | - Bret R Sellman
- AstraZeneca, Early Vaccines & Immune Therapies, Gaithersburg, MD 20878, USA
| |
Collapse
|
19
|
Chaiyawat P, Sangkhathat S, Chiangjong W, Wongtrakoongate P, Hongeng S, Pruksakorn D, Chutipongtanate S. Targeting pediatric solid tumors in the new era of RNA therapeutics. Crit Rev Oncol Hematol 2024; 200:104406. [PMID: 38834094 DOI: 10.1016/j.critrevonc.2024.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Despite substantial progress in pediatric cancer treatment, poor prognosis remained for patients with recurrent or metastatic disease, given the limitations of approved targeted treatments and immunotherapies. RNA therapeutics offer significant potential for addressing a broad spectrum of diseases, including cancer. Advances in manufacturing and delivery systems are paving the way for the rapid development of therapeutic RNAs for clinical applications. This review summarizes therapeutic RNA classifications and the mechanisms of action, highlighting their potential in manipulating major cancer-related pathways and biological effects. We also focus on the pre-clinical investigation of RNA molecules with efficient delivery systems for their therapeutic potential targeting pediatric solid tumors.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Surasak Sangkhathat
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
20
|
Harisa GI, Faris TM, Sherif AY, Alzhrani RF, Alanazi SA, Kohaf NA, Alanazi FK. Coding Therapeutic Nucleic Acids from Recombinant Proteins to Next-Generation Vaccines: Current Uses, Limitations, and Future Horizons. Mol Biotechnol 2024; 66:1853-1871. [PMID: 37578574 DOI: 10.1007/s12033-023-00821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
This study aims to highlight the potential use of cTNAs in therapeutic applications. The COVID-19 pandemic has led to significant use of coding therapeutic nucleic acids (cTNAs) in terms of DNA and mRNA in the development of vaccines. The use of cTNAs resulted in a paradigm shift in the therapeutic field. However, the injection of DNA or mRNA into the human body transforms cells into biological factories to produce the necessary proteins. Despite the success of cTNAs in the production of corona vaccines, they have several limitations such as instability, inability to cross biomembranes, immunogenicity, and the possibility of integration into the human genome. The chemical modification and utilization of smart drug delivery cargoes resolve cTNAs therapeutic problems. The success of cTNAs in corona vaccine production provides perspective for the eradication of influenza viruses, Zika virus, HIV, respiratory syncytial virus, Ebola virus, malaria, and future pandemics by quick vaccine design. Moreover, the progress cTNAs technology is promising for the development of therapy for genetic disease, cancer therapy, and currently incurable diseases.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia.
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
| | - Riyad F Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alanazi
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Science Collage of Pharmacy, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
21
|
Chen B, Yang Y, Wang X, Yang W, Lu Y, Wang D, Zhuo E, Tang Y, Su J, Tang G, Shao S, Gu K. mRNA vaccine development and applications: A special focus on tumors (Review). Int J Oncol 2024; 65:81. [PMID: 38994758 PMCID: PMC11251742 DOI: 10.3892/ijo.2024.5669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wenzhi Yang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - You Lu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Daoyue Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanchao Tang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Junhong Su
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guozheng Tang
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Song Shao
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
22
|
Karahmet Sher E, Alebić M, Marković Boras M, Boškailo E, Karahmet Farhat E, Karahmet A, Pavlović B, Sher F, Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm 2024; 660:124345. [PMID: 38885775 DOI: 10.1016/j.ijpharm.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Mirna Alebić
- Department of Pharmacy, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Marijana Marković Boras
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, Mostar 88000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Boškailo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Bojan Pavlović
- Faculty of Physical Education and Sports, University of East Sarajevo, Lukavica, Republika Srpska 75327, Bosnia and Herzegovina
| | - Farooq Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
| |
Collapse
|
23
|
Duan M, Dev I, Lu A, Ayrapetyan G, You MY, Shapiro MG. SEMPER: Stoichiometric expression of mRNA polycistrons by eukaryotic ribosomes for compact, ratio-tunable multi-gene expression. Cell Syst 2024; 15:597-609.e4. [PMID: 38971149 PMCID: PMC11298409 DOI: 10.1016/j.cels.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/01/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
Here, we present a method for expressing multiple open reading frames (ORFs) from single transcripts using the leaky scanning model of translation initiation. In this approach termed "stoichiometric expression of mRNA polycistrons by eukaryotic ribosomes" (SEMPER), adjacent ORFs are translated from a single mRNA at tunable ratios determined by their order in the sequence and the strength of their translation initiation sites. We validate this approach by expressing up to three fluorescent proteins from one plasmid in two different cell lines. We then use it to encode a stoichiometrically tuned polycistronic construct encoding gas vesicle acoustic reporter genes that enables efficient formation of the multi-protein complex while minimizing cellular toxicity. We also demonstrate that SEMPER enables polycistronic expression of recombinant monoclonal antibodies from plasmid DNA and of two fluorescent proteins from single mRNAs made through in vitro transcription. Finally, we provide a probabilistic model to elucidate the mechanisms underlying SEMPER. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Mengtong Duan
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Ishaan Dev
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA 91125, USA
| | - Andrew Lu
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; UCLA-Caltech Medical Scientist Training Program, UCLA, Los Angeles, CA 90095, USA
| | - Goar Ayrapetyan
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA 91125, USA
| | - Mei Yi You
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA 91125, USA; Andrew and Peggy Cherng Department of Medical Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
24
|
Lin X, Yang F, Yan S, Wu H, Wang P, Zhao Y, Shi D, Yao H, Wu H, Li L. Preparation and characterization of mouse-derived monoclonal antibodies against the hemagglutinin of the H1N1 influenza virus. Virus Res 2024; 345:199402. [PMID: 38772446 PMCID: PMC11156778 DOI: 10.1016/j.virusres.2024.199402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
H1N1 influenza virus is a significant global public health concern. Monoclonal antibodies (mAbs) targeting specific viral proteins such as hemagglutinin (HA) have become an important therapeutic strategy, offering highly specific targeting to block viral transmission and infection. This study focused on the development of mAbs targeting HA of the A/Victoria/2570/2019 (H1N1pdm09, VIC-19) strain by utilizing hybridoma technology to produce two mAbs with high binding capacity. Notably, mAb 2B2 has demonstrated a strong affinity for HA proteins in recent H1N1 influenza vaccine strains. In vitro assessments showed that both mAbs exhibited broad-spectrum hemagglutination inhibition and potent neutralizing effects against various vaccine strains of H1N1pdm09 viruses. 2B2 was also effective in animal models, offering both preventive and therapeutic protection against infections caused by recent H1N1 strains, highlighting its potential for clinical application. By individually co-cultivating each of the aforementioned mAbs with the virus in chicken embryos, four amino acid substitution sites in HA (H138Q, G140R, A141E/V, and D187E) were identified in escape mutants, three in the antigenic site Ca2, and one in Sb. The identification of such mutations is pivotal, as it compels further investigation into how these alterations could undermine the binding efficacy and neutralization capacity of antibodies, thereby impacting the design and optimization of mAb therapies and influenza vaccines. This research highlights the necessity for continuous exploration into the dynamic interaction between viral evolution and antibody response, which is vital for the formulation of robust therapeutic and preventive strategies against influenza.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H1N1 Subtype/immunology
- Antibodies, Monoclonal/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Mice
- Antibodies, Neutralizing/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Mice, Inbred BALB C
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Hemagglutination Inhibition Tests
- Humans
- Chick Embryo
- Female
- Influenza, Human/immunology
- Influenza, Human/virology
- Influenza, Human/prevention & control
Collapse
Affiliation(s)
- Xiantian Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Fan Yang
- Department of Geriatrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Sijing Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Han Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Ping Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Yuxi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China.
| |
Collapse
|
25
|
Yu X, He Q, Kong Q. Multidisciplinary approaches to combat emerging viruses: diagnostics, therapeutic gene and vaccine delivery, and nanotherapeutics. Front Microbiol 2024; 15:1387623. [PMID: 38966392 PMCID: PMC11222566 DOI: 10.3389/fmicb.2024.1387623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 07/06/2024] Open
Abstract
Emerging viruses, such as filoviruses (Ebola, Marburg), SARS and MERS coronaviruses, and Zika, pose significant threats to global public health, particularly for individuals with co-morbidities. To address these challenges, this review article explores multidisciplinary strategies for combatting emerging viruses. We emphasize the importance of developing accurate diagnostics, innovative therapeutic gene and vaccine delivery systems, and long-acting nanotherapeutics. These approaches are designed to enhance the safety and efficacy of treatments against these deadly pathogens. We discuss the collaborative efforts of virologists, geneticists, formulation scientists, clinicians, immunologists, and medicinal chemists in advancing these therapeutic modalities.
Collapse
Affiliation(s)
- Xianqiang Yu
- Medical College of Qingdao University, Qingdao, China
| | - Qing He
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qingming Kong
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
26
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
27
|
Androsavich JR. Frameworks for transformational breakthroughs in RNA-based medicines. Nat Rev Drug Discov 2024; 23:421-444. [PMID: 38740953 DOI: 10.1038/s41573-024-00943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA has sparked a revolution in modern medicine, with the potential to transform the way we treat diseases. Recent regulatory approvals, hundreds of new clinical trials, the emergence of CRISPR gene editing, and the effectiveness of mRNA vaccines in dramatic response to the COVID-19 pandemic have converged to create tremendous momentum and expectation. However, challenges with this relatively new class of drugs persist and require specialized knowledge and expertise to overcome. This Review explores shared strategies for developing RNA drug platforms, including layering technologies, addressing common biases and identifying gaps in understanding. It discusses the potential of RNA-based therapeutics to transform medicine, as well as the challenges associated with improving applicability, efficacy and safety profiles. Insights gained from RNA modalities such as antisense oligonucleotides (ASOs) and small interfering RNAs are used to identify important next steps for mRNA and gene editing technologies.
Collapse
Affiliation(s)
- John R Androsavich
- RNA Accelerator, Pfizer Inc, Cambridge, MA, USA.
- Ginkgo Bioworks, Boston, MA, USA.
| |
Collapse
|
28
|
Ma Y, Chen Y, Li Z, Zhao Y. Rational Design of Lipid-Based Vectors for Advanced Therapeutic Vaccines. Vaccines (Basel) 2024; 12:603. [PMID: 38932332 PMCID: PMC11209477 DOI: 10.3390/vaccines12060603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advancements in vaccine delivery systems have seen the utilization of various materials, including lipids, polymers, peptides, metals, and inorganic substances, for constructing non-viral vectors. Among these, lipid-based nanoparticles, composed of natural, synthetic, or physiological lipid/phospholipid materials, offer significant advantages such as biocompatibility, biodegradability, and safety, making them ideal for vaccine delivery. These lipid-based vectors can protect encapsulated antigens and/or mRNA from degradation, precisely tune chemical and physical properties to mimic viruses, facilitate targeted delivery to specific immune cells, and enable efficient endosomal escape for robust immune activation. Notably, lipid-based vaccines, exemplified by those developed by BioNTech/Pfizer and Moderna against COVID-19, have gained approval for human use. This review highlights rational design strategies for vaccine delivery, emphasizing lymphoid organ targeting and effective endosomal escape. It also discusses the importance of rational formulation design and structure-activity relationships, along with reviewing components and potential applications of lipid-based vectors. Additionally, it addresses current challenges and future prospects in translating lipid-based vaccine therapies for cancer and infectious diseases into clinical practice.
Collapse
Affiliation(s)
- Yufei Ma
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Yiang Chen
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Zilu Li
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
29
|
Fedorovskiy AG, Antropov DN, Dome AS, Puchkov PA, Makarova DM, Konopleva MV, Matveeva AM, Panova EA, Shmendel EV, Maslov MA, Dmitriev SE, Stepanov GA, Markov OV. Novel Efficient Lipid-Based Delivery Systems Enable a Delayed Uptake and Sustained Expression of mRNA in Human Cells and Mouse Tissues. Pharmaceutics 2024; 16:684. [PMID: 38794346 PMCID: PMC11125954 DOI: 10.3390/pharmaceutics16050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Over the past decade, mRNA-based therapy has displayed significant promise in a wide range of clinical applications. The most striking example of the leap in the development of mRNA technologies was the mass vaccination against COVID-19 during the pandemic. The emergence of large-scale technology and positive experience of mRNA immunization sparked the development of antiviral and anti-cancer mRNA vaccines as well as therapeutic mRNA agents for genetic and other diseases. To facilitate mRNA delivery, lipid nanoparticles (LNPs) have been successfully employed. However, the diverse use of mRNA therapeutic approaches requires the development of adaptable LNP delivery systems that can control the kinetics of mRNA uptake and expression in target cells. Here, we report effective mRNA delivery into cultured mammalian cells (HEK293T, HeLa, DC2.4) and living mouse muscle tissues by liposomes containing either 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2X3) or the newly applied 1,30-bis(cholest-5-en-3β-yloxycarbonylamino)-9,13,18,22-tetraaza-3,6,25,28-tetraoxatriacontane tetrahydrochloride (2X7) cationic lipids. Using end-point and real-time monitoring of Fluc mRNA expression, we showed that these LNPs exhibited an unusually delayed (of over 10 h in the case of the 2X7-based system) but had highly efficient and prolonged reporter activity in cells. Accordingly, both LNP formulations decorated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) provided efficient luciferase production in mice, peaking on day 3 after intramuscular injection. Notably, the bioluminescence was observed only at the site of injection in caudal thigh muscles, thereby demonstrating local expression of the model gene of interest. The developed mRNA delivery systems hold promise for prophylactic applications, where sustained synthesis of defensive proteins is required, and open doors to new possibilities in mRNA-based therapies.
Collapse
Affiliation(s)
- Artem G. Fedorovskiy
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Denis N. Antropov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Anton S. Dome
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Pavel A. Puchkov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Daria M. Makarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Maria V. Konopleva
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Anastasiya M. Matveeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Eugenia A. Panova
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
| | - Elena V. Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Mikhail A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| |
Collapse
|
30
|
Jolly KJ, Zhang F. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:247-288. [PMID: 39034054 DOI: 10.1016/bs.apha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the past decade, in vitro transcribed messenger RNAs (IVT-mRNAs) have emerged as promising therapeutic molecules. The clinical success of COVID-19 mRNA vaccines developed by Pfizer-BioNTech and Moderna, have demonstrated that IVT-mRNAs can be safely and successfully used in a clinical setting, and efforts are underway to develop IVT-mRNAs for therapeutic applications. Current applications of mRNA-based therapy have been focused on (1) mRNA vaccines for infectious diseases and cancer treatment; (2) protein replacement therapy; (3) gene editing therapy; and (4) cell-reprogramming therapies. Due to the recent clinical progress of cell-based immunotherapies, the last direction-the use of IVT-mRNAs as a therapeutic approach to program immune cells for the treatment of cancer has received extensive attention from the cancer immunotherapy field. Myeloid cells are important components of our immune system, and they play critical roles in mediating disease progression and regulating immunity against diseases. In this chapter, we discussed the progress of using IVT-mRNAs as a therapeutic approach to program myeloid cells against cancer and other immune-related diseases. Towards this direction, we first reviewed the pharmacology of IVT-mRNAs and the biology of myeloid cells as well as myeloid cell-targeting therapeutics. We then presented a few cases of current IVT-mRNA-based approaches to target and reprogram myeloid cells for disease treatment and discussed the advantages and limitations of these approaches. Finally, we presented our considerations in designing mRNA-based approaches to target myeloid cells for disease treatment.
Collapse
Affiliation(s)
- Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
31
|
Skerritt JH, Tucek-Szabo C, Sutton B, Nolan T. The Platform Technology Approach to mRNA Product Development and Regulation. Vaccines (Basel) 2024; 12:528. [PMID: 38793779 PMCID: PMC11126020 DOI: 10.3390/vaccines12050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
mRNA-lipid nanoparticle (LNP) medicinal products can be considered a platform technology because the development process is similar for different diseases and conditions, with similar noncoding mRNA sequences and lipid nanoparticles and essentially unchanged manufacturing and analytical methods often utilised for different products. It is critical not to lose the momentum built using the platform approach during the development, regulatory approval and rollout of vaccines for SARS-CoV-2 and its variants. This review proposes a set of modifications to existing regulatory requirements for mRNA products, based on a platform perspective for quality, manufacturing, preclinical, and clinical data. For the first time, we address development and potential regulatory requirements when the mRNA sequences and LNP composition vary in different products as well. In addition, we propose considerations for self-amplifying mRNA, individualised oncology mRNA products, and mRNA therapeutics. Providing a predictable development pathway for academic and commercial groups so that they can know in detail what product characterisation and data are required to develop a dossier for regulatory submission has many potential benefits. These include: reduced development and regulatory costs; faster consumer/patient access and more agile development of products in the face of pandemics; and for rare diseases where alternatives may not exist or to increase survival and the quality of life in cancer patients. Therefore, achieving consensus around platform approaches is both urgent and important. This approach with mRNA can be a template for similar platform frameworks for other therapeutics and vaccines to enable more efficient development and regulatory review.
Collapse
Affiliation(s)
- John H. Skerritt
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
| | | | - Brett Sutton
- CSIRO Health and Biosecurity, Research Way, Clayton, VIC 3168, Australia;
| | - Terry Nolan
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
- Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| |
Collapse
|
32
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
33
|
Chi H, Zhao SQ, Chen RY, Suo XX, Zhang RR, Yang WH, Zhou DS, Fang M, Ying B, Deng YQ, Qin CF. Rapid development of double-hit mRNA antibody cocktail against orthopoxviruses. Signal Transduct Target Ther 2024; 9:69. [PMID: 38531869 DOI: 10.1038/s41392-024-01766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/28/2024] Open
Abstract
The Orthopoxvirus genus, especially variola virus (VARV), monkeypox virus (MPXV), remains a significant public health threat worldwide. The development of therapeutic antibodies against orthopoxviruses is largely hampered by the high cost of antibody engineering and manufacturing processes. mRNA-encoded antibodies have emerged as a powerful and universal platform for rapid antibody production. Herein, by using the established lipid nanoparticle (LNP)-encapsulated mRNA platform, we constructed four mRNA combinations that encode monoclonal antibodies with broad neutralization activities against orthopoxviruses. In vivo characterization demonstrated that a single intravenous injection of each LNP-encapsulated mRNA antibody in mice resulted in the rapid production of neutralizing antibodies. More importantly, mRNA antibody treatments showed significant protection from weight loss and mortality in the vaccinia virus (VACV) lethal challenge mouse model, and a unique mRNA antibody cocktail, Mix2a, exhibited superior in vivo protection by targeting both intracellular mature virus (IMV)-form and extracellular enveloped virus (EEV)-form viruses. In summary, our results demonstrate the proof-of-concept production of orthopoxvirus antibodies via the LNP-mRNA platform, highlighting the great potential of tailored mRNA antibody combinations as a universal strategy to combat orthopoxvirus as well as other emerging viruses.
Collapse
Affiliation(s)
- Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Suo-Qun Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Ru-Yi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Xing-Xing Suo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Wen-Hui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Dong-Sheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China
| | - Min Fang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Bo Ying
- Suzhou Abogen Biosciences Co., Ltd, Suzhou, 215123, Jiangsu, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, 100071, Beijing, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, 100071, Beijing, China.
| |
Collapse
|
34
|
Gu X, Qi L, Qi Q, Zhou J, Chen S, Wang L. Monoclonal antibody therapy for Alzheimer's disease focusing on intracerebral targets. Biosci Trends 2024; 18:49-65. [PMID: 38382942 DOI: 10.5582/bst.2023.01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Due to the complexity of the disorder and the presence of the blood-brain barrier (BBB), its drug discovery and development are facing enormous challenges, especially after several failures of monoclonal antibody (mAb) trials. Nevertheless, the Food and Drug Administration's approval of the mAb aducanumab has ushered in a new day. As we better understand the disease's pathogenesis and identify novel intracerebral therapeutic targets, antibody-based therapies have advanced over the past few years. The mAb drugs targeting β-amyloid or hyperphosphorylated tau protein are the focus of the current research. Massive neuronal loss and glial cell-mediated inflammation are also the vital pathological hallmarks of AD, signaling a new direction for research on mAb drugs. We have elucidated the mechanisms by which AD-specific mAbs cross the BBB to bind to targets. In order to investigate therapeutic approaches to treat AD, this review focuses on the promising mAbs targeting intracerebral dysfunction and related strategies to cross the BBB.
Collapse
Affiliation(s)
- Xiaolei Gu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Long Qi
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Song Chen
- Postdoctoral Station of Xiamen University, Fujian, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
35
|
Le ND, Nguyen BL, Patil BR, Chun H, Kim S, Nguyen TOO, Mishra S, Tandukar S, Chang JH, Kim DY, Jin SG, Choi HG, Ku SK, Kim J, Kim JO. Antiangiogenic Therapeutic mRNA Delivery Using Lung-Selective Polymeric Nanomedicine for Lung Cancer Treatment. ACS NANO 2024; 18:8392-8410. [PMID: 38450656 DOI: 10.1021/acsnano.3c13039] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Therapeutic antibodies that block vascular endothelial growth factor (VEGF) show clinical benefits in treating nonsmall cell lung cancers (NSCLCs) by inhibiting tumor angiogenesis. Nonetheless, the therapeutic effects of systemically administered anti-VEGF antibodies are often hindered in NSCLCs because of their limited distribution in the lungs and their adverse effects on normal tissues. These challenges can be overcome by delivering therapeutic antibodies in their mRNA form to lung endothelial cells, a primary target of VEGF-mediated pulmonary angiogenesis, to suppress the NSCLCs. In this study, we synthesized derivatives of poly(β-amino esters) (PBAEs) and prepared nanoparticles to encapsulate the synthetic mRNA encoding bevacizumab, an anti-VEGF antibody used in the clinic. Optimization of nanoparticle formulations resulted in a selective lung transfection after intravenous administration. Notably, the optimized PBAE nanoparticles were distributed in lung endothelial cells, resulting in the secretion of bevacizumab. We analyzed the protein corona on the lung- and spleen-targeting nanoparticles using proteomics and found distinctive features potentially contributing to their organ-selectivity. Lastly, bevacizumab mRNA delivered by the lung-targeting PBAE nanoparticles more significantly inhibited tumor proliferation and angiogenesis than recombinant bevacizumab protein in orthotopic NSCLC mouse models, supporting the therapeutic potential of bevacizumab mRNA therapy and its selective delivery through lung-targeting nanoparticles. Our proof-of-principle results highlight the clinical benefits of nanoparticle-mediated mRNA therapy in anticancer antibody treatment in preclinical models.
Collapse
Affiliation(s)
- Ngoc Duy Le
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Bao Loc Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - HeeSang Chun
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - SiYoon Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sudarshan Tandukar
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Jeonghwan Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
36
|
Deyhimfar R, Izady M, Shoghi M, Kazazi MH, Ghazvini ZF, Nazari H, Fekrirad Z, Arefian E. The clinical impact of mRNA therapeutics in the treatment of cancers, infections, genetic disorders, and autoimmune diseases. Heliyon 2024; 10:e26971. [PMID: 38486748 PMCID: PMC10937594 DOI: 10.1016/j.heliyon.2024.e26971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
mRNA-based therapeutics have revolutionized medicine and the pharmaceutical industry. The recent progress in the optimization and formulation of mRNAs has led to the development of a new therapeutic platform with a broad range of applications. With a growing body of evidence supporting the use of mRNA-based drugs for precision medicine and personalized treatments, including cancer immunotherapy, genetic disorders, and autoimmune diseases, this emerging technology offers a rapidly expanding category of therapeutic options. Furthermore, the development and deployment of mRNA vaccines have facilitated a prompt and flexible response to medical emergencies, exemplified by the COVID-19 outbreak. The establishment of stable and safe mRNA molecules carried by efficient delivery systems is now available through recent advances in molecular biology and nanotechnology. This review aims to elucidate the advancements in the clinical applications of mRNAs for addressing significant health-related challenges such as cancer, autoimmune diseases, genetic disorders, and infections and provide insights into the efficacy and safety of mRNA therapeutics in recent clinical trials.
Collapse
Affiliation(s)
- Roham Deyhimfar
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Urology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izady
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mohammad Hossein Kazazi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, ON, Canada
| | - Zahra Fakhraei Ghazvini
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Xie M, Jia X, Xu X. Control of polymer-protein interactions by tuning the composition and length of polymer chains. Phys Chem Chem Phys 2024; 26:4052-4061. [PMID: 38224136 DOI: 10.1039/d3cp05017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Nanomoduling the 3D shape and chemical functionalities in a synthetic polymer may create recognition cavities for biomacromolecule binding, which serves as an attractive alternative to natural antibodies with much less cost. To obtain fundamental understanding and predict molecular design rules of the polymer antibody, we analyze the complex structure between the biomarker protein epithelial cell adhesion molecule (EpCAM) and a series of polymer ligands via molecular dynamics (MD) simulations. For monomeric ligands, strong enrichment of aromatic residues in protein binding sites is revealed, in line with the reported observations for natural antibodies. Yet, for linear polymers with a growing degree of polymerization, for the first time, a drastic change is revealed on the type of enriched protein residues and the location of protein binding sites, driven by the increasing steric hindrance effect that makes the adsorption of the polymer in the protein exterior feasible. Varying the polymer length and monomeric composition also significantly affects the ligand binding affinity. Here, we have captured three distinct dependences of the ligand binding free energy on the degree of polymerization: for NIPAm based hydrophilic polymers, TBAm dominated hydrophobic polymers and AAc dominated charged polymers. These results can be rationalized by the complex structure and the composition of protein residues at the binding interface. The entire analysis demonstrates unique binding features for polymer ligands and the possibility to modulate their binding sites and affinity by engineering the polymer structure.
Collapse
Affiliation(s)
- Menghan Xie
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China.
| | - Xu Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China.
| | - Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China.
- The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
38
|
Vuong HL, Lan CT, Le HTT. The development and technologies of RNA therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:13-39. [PMID: 38359995 DOI: 10.1016/bs.pmbts.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Since it was discovered for over 20 years ago, the potentiality of siRNAs in gene silencing in vitro and in vivo models has been recognized. Several studies in the new generation, molecular mechanisms, target attachment, and purification of RNA have supported the development of RNA therapeutics for a variety of applications. RNA therapeutics are growing rapidly with various platforms contributing to the standard of personalized medicine and rare disease treatment. Therefore, understanding the development and technologies of RNA therapeutics becomes a crucial point for new drug generation. Here, the primary purpose of this review is to provide a general view of six therapeutic categories that make up RNA-based therapeutic approaches, including RNA-target therapeutics, protein-targeted therapeutics, cellular reprogramming and tissues engineering, RNA-based protein replacement therapeutics, RNA-based genome editing, and RNA-based immunotherapies based on non-coding RNAs and coding RNA. Furthermore, we present an overview of the RNA strategies regarding viral approaches and nonviral approaches in designing a new generation of RNA technologies. The advantages and challenges of using RNA therapeutics are also discussed along with various approaches for RNA delivery. Therefore, this review is designed to provide updated reference evidence of RNA therapeutics in the battle against rare or difficult-to-treat diseases for researchers in this field.
Collapse
Affiliation(s)
- Huong Lan Vuong
- Pharmacy Department, National Hospital for Tropical Diseases, Hanoi, Vietnam
| | - Chu Thanh Lan
- Department of Regenerative Medicine, Institute of Tissue Regeneration, College of Medicine, Soonchunghyang University, South Korea
| | - Hien Thi Thu Le
- Intestinal Signaling and Epigenetics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
39
|
Chen CY, Vander Kooi A, Cavedon A, Cai X, Hoggatt J, Martini PG, Miao CH. Induction of long-term tolerance to a specific antigen using anti-CD3 lipid nanoparticles following gene therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102043. [PMID: 37920545 PMCID: PMC10618827 DOI: 10.1016/j.omtn.2023.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Abstract
Development of factor VIII (FVIII) inhibitors is a serious complication in the treatment of hemophilia A (HemA) patients. In clinical trials, anti-CD3 antibody therapy effectively modulates the immune response of allograft rejection or autoimmune diseases without eliciting major adverse effects. In this study, we delivered mRNA-encapsulated lipid nanoparticles (LNPs) encoding therapeutic anti-CD3 antibody (αCD3 LNPs) to overcome the anti-FVIII immune responses in HemA mice. It was found that αCD3 LNPs encoding the single-chain antibodies (Fc-scFv) can efficiently deplete CD3+ and CD4+ effector T cells, whereas αCD3 LNPs encoding double-chain antibodies cannot. Concomitantly, mice treated with αCD3 (Fc-scFv) LNPs showed an increase in the CD4+CD25+Foxp3+ regulatory T cell percentages, which modulated the anti-FVIII immune responses. All T cells returned to normal levels within 2 months. HemA mice treated with αCD3 LNPs prior to hydrodynamic injection of liver-specific FVIII plasmids achieved persistent FVIII gene expression without formation of FVIII inhibitors. Furthermore, transgene expression was increased and persistent following secondary plasmid challenge, indicating induction of long-term tolerance to FVIII. Moreover, the treated mice maintained their immune competence against other antigens. In conclusion, our study established a potential new strategy to induce long-term antigen-specific tolerance using an αCD3 LNP formulation.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | | | - Xiaohe Cai
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | | | - Carol H. Miao
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
40
|
Tai W, Yang K, Liu Y, Li R, Feng S, Chai B, Zhuang X, Qi S, Shi H, Liu Z, Lei J, Ma E, Wang W, Tian C, Le T, Wang J, Chen Y, Tian M, Xiang Y, Yu G, Cheng G. A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat Commun 2023; 14:8042. [PMID: 38052844 PMCID: PMC10697968 DOI: 10.1038/s41467-023-43798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
The respiratory system, especially the lung, is the key site of pathological injury induced by SARS-CoV-2 infection. Given the low feasibility of targeted delivery of antibodies into the lungs by intravenous administration and the short half-life period of antibodies in the lungs by intranasal or aerosolized immunization, mRNA encoding broadly neutralizing antibodies with lung-targeting capability can perfectly provide high-titer antibodies in lungs to prevent the SARS-CoV-2 infection. Here, we firstly identify a human monoclonal antibody, 8-9D, with broad neutralizing potency against SARS-CoV-2 variants. The neutralization mechanism of this antibody is explained by the structural characteristics of 8-9D Fabs in complex with the Omicron BA.5 spike. In addition, we evaluate the efficacy of 8-9D using a safe and robust mRNA delivery platform and compare the performance of 8-9D when its mRNA is and is not selectively delivered to the lungs. The lung-selective delivery of the 8-9D mRNA enables the expression of neutralizing antibodies in the lungs which blocks the invasion of the virus, thus effectively protecting female K18-hACE2 transgenic mice from challenge with the Beta or Omicron BA.1 variant. Our work underscores the potential application of lung-selective mRNA antibodies in the prevention and treatment of infections caused by circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wanbo Tai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yubin Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ruofan Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Benjie Chai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huicheng Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Enhao Ma
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Weixiao Wang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Chongyu Tian
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ting Le
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jinyong Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yunfeng Chen
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
41
|
Saiding Q, Zhang Z, Chen S, Xiao F, Chen Y, Li Y, Zhen X, Khan MM, Chen W, Koo S, Kong N, Tao W. Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Adv Drug Deliv Rev 2023; 203:115116. [PMID: 37871748 DOI: 10.1016/j.addr.2023.115116] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Upon entering the biological milieu, nanomedicines swiftly interact with the surrounding tissue fluid, subsequently being enveloped by a dynamic interplay of biomacromolecules, such as carbohydrates, nucleic acids, and cellular metabolites, but with predominant serum proteins within the biological corona. A notable consequence of the protein corona phenomenon is the unintentional loss of targeting ligands initially designed to direct nanomedicines toward particular cells or organs within the in vivo environment. mRNA nanomedicine displays high demand for specific cell and tissue-targeted delivery to effectively transport mRNA molecules into target cells, where they can exert their therapeutic effects with utmost efficacy. In this review, focusing on the delivery systems and tissue-specific applications, we aim to update the nanomedicine population with the prevailing and still enigmatic paradigm of nano-bio interactions, a formidable hurdle in the pursuit of targeted mRNA delivery. We also elucidate the current impediments faced in mRNA therapeutics and, by contemplating prospective avenues-either to modulate the corona or to adopt an 'ally from adversary' approach-aim to chart a course for advancing mRNA nanomedicine.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Zhongyang Zhang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shuying Chen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yumeng Chen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Yongjiang Li
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Xueyan Zhen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Muhammad Muzamil Khan
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Wei Chen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
42
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
43
|
Singh R, Chandley P, Rohatgi S. Recent Advances in the Development of Monoclonal Antibodies and Next-Generation Antibodies. Immunohorizons 2023; 7:886-897. [PMID: 38149884 PMCID: PMC10759153 DOI: 10.4049/immunohorizons.2300102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Abstract
mAbs are highly indispensable tools for diagnostic, prophylactic, and therapeutic applications. The first technique, hybridoma technology, was based on fusion of B lymphocytes with myeloma cells, which resulted in generation of single mAbs against a specific Ag. Along with hybridoma technology, several novel and alternative methods have been developed to improve mAb generation, ranging from electrofusion to the discovery of completely novel technologies such as B cell immortalization; phage, yeast, bacterial, ribosome, and mammalian display systems; DNA/RNA encoded Abs; single B cell technology; transgenic animals; and artificial intelligence/machine learning. This commentary outlines the evolution, methodology, advantages, and limitations of various mAb production techniques. Furthermore, with the advent of next-generation Ab technologies such as single-chain variable fragments, nanobodies, bispecific Abs, Fc-engineered Abs, Ab biosimilars, Ab mimetics, and Ab-drug conjugates, the healthcare and pharmaceutical sectors have become resourceful to develop highly specific mAb treatments against various diseases such as cancer and autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Rohit Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| |
Collapse
|
44
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
45
|
Wang JX, Xiao X, He XC, He BD, Liu CM, Teng ZQ. Agomir-331 Suppresses Reactive Gliosis and Neuroinflammation after Traumatic Brain Injury. Cells 2023; 12:2429. [PMID: 37887272 PMCID: PMC10605079 DOI: 10.3390/cells12202429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Traumatic brain injury usually triggers glial scar formation, neuroinflammation, and neurodegeneration. However, the molecular mechanisms underlying these pathological features are largely unknown. Using a mouse model of hippocampal stab injury (HSI), we observed that miR-331, a brain-enriched microRNA, was significantly downregulated in the early stage (0-7 days) of HSI. Intranasal administration of agomir-331, an upgraded product of miR-331 mimics, suppressed reactive gliosis and neuronal apoptosis and improved cognitive function in HSI mice. Finally, we identified IL-1β as a direct downstream target of miR-331, and agomir-331 treatment significantly reduced IL-1β levels in the hippocampus after acute injury. Our findings highlight, for the first time, agomir-331 as a pivotal neuroprotective agent for early rehabilitation of HSI.
Collapse
Affiliation(s)
- Jin-Xing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Xiao Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bao-Dong He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
46
|
Wang YS, Kumari M, Chen GH, Hong MH, Yuan JPY, Tsai JL, Wu HC. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J Biomed Sci 2023; 30:84. [PMID: 37805495 PMCID: PMC10559634 DOI: 10.1186/s12929-023-00977-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023] Open
Abstract
mRNA-based drugs have tremendous potential as clinical treatments, however, a major challenge in realizing this drug class will promise to develop methods for safely delivering the bioactive agents with high efficiency and without activating the immune system. With regard to mRNA vaccines, researchers have modified the mRNA structure to enhance its stability and promote systemic tolerance of antigenic presentation in non-inflammatory contexts. Still, delivery of naked modified mRNAs is inefficient and results in low levels of antigen protein production. As such, lipid nanoparticles have been utilized to improve delivery and protect the mRNA cargo from extracellular degradation. This advance was a major milestone in the development of mRNA vaccines and dispelled skepticism about the potential of this technology to yield clinically approved medicines. Following the resounding success of mRNA vaccines for COVID-19, many other mRNA-based drugs have been proposed for the treatment of a variety of diseases. This review begins with a discussion of mRNA modifications and delivery vehicles, as well as the factors that influence administration routes. Then, we summarize the potential applications of mRNA-based drugs and discuss further key points pertaining to preclinical and clinical development of mRNA drugs targeting a wide range of diseases. Finally, we discuss the latest market trends and future applications of mRNA-based drugs.
Collapse
Affiliation(s)
- Yu-Shiuan Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Joyce Pei-Yi Yuan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Jui-Ling Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan.
| |
Collapse
|
47
|
Zhao Y, Gan L, Ke D, Chen Q, Fu Y. Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. J Transl Med 2023; 21:693. [PMID: 37794448 PMCID: PMC10552228 DOI: 10.1186/s12967-023-04553-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Antibody technology is widely used in the fields of biomedical and clinical therapies. Nonetheless, the complex in vitro expression of recombinant proteins, long production cycles, and harsh storage conditions have limited their applications in medicine, especially in clinical therapies. Recently, this dilemma has been overcome to a certain extent by the development of mRNA delivery systems, in which antibody-encoding mRNAs are enclosed in nanomaterials and delivered to the body. On entering the cytoplasm, the mRNAs immediately bind to ribosomes and undergo translation and post-translational modifications. This process produces monoclonal or bispecific antibodies that act directly on the patient. Additionally, it eliminates the cumbersome process of in vitro protein expression and extends the half-life of short-lived proteins, which significantly reduces the cost and duration of antibody production. This review focuses on the benefits and drawbacks of mRNA antibodies compared with the traditional in vitro expressed antibodies. In addition, it elucidates the progress of mRNA antibodies in the prevention of infectious diseases and oncology therapy.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Linchuan Gan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Dangjin Ke
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China.
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China.
| |
Collapse
|
48
|
Andretto V, Dusi S, Zilio S, Repellin M, Kryza D, Ugel S, Lollo G. Tackling TNF-α in autoinflammatory disorders and autoimmune diseases: From conventional to cutting edge in biologics and RNA- based nanomedicines. Adv Drug Deliv Rev 2023; 201:115080. [PMID: 37660747 DOI: 10.1016/j.addr.2023.115080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Autoinflammatory disorders and autoimmune diseases result from abnormal deviations of innate and adaptive immunity that heterogeneously affect organs and clinical phenotypes. Despite having etiologic and phenotypic differences, these two conditions share the onset of an aberrant inflammatory process. Targeting the main drivers controlling inflammation is useful to treat both autoimmune and autoinflammatory syndromes. TNF-α is a major player in the inflammatory immune response, and anti-TNF-α antibodies have been a revolutionary treatment in many autoimmune disorders. However, production difficulties and high development costs hinder their implementation, and accessibility to their use is still limited. Innovative strategies aimed at overcoming the limitations associated with anti-TNF-α antibodies are being explored, including RNA-based therapies. Here we summarize the central role of TNF-α in immune disorders and how anti-TNF-based immunotherapies changed the therapeutic landscape, albeit with important limitations related to side effects, tolerance, and resistance to therapies. We then outline how nanotechnology has provided the final momentum for the use of nucleic acids in the treatment of autoimmune and autoinflammatory diseases, with a focus on inflammatory bowel diseases (IBDs). The example of IBDs allows the evaluation and discussion of the nucleic acids-based treatments that have been developed, to identify the role that innovative approaches possess in view of the treatment of autoinflammatory disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Silvia Dusi
- Istituto Oncologico Veneto IRCCS, Padova 35128, Italy
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; SATT Ouest Valorisation, 14C Rue du Patis Tatelin 35708, Rennes, France
| | - Mathieu Repellin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; PULSALYS SATT Lyon-Saint Etienne, 47 Boulevard du 11 Novembre 1918, 69625 Villeurbanne, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; Hospices Civils de Lyon, 69437 Lyon, France
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France.
| |
Collapse
|
49
|
Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:365. [PMID: 37726283 PMCID: PMC10509165 DOI: 10.1038/s41392-023-01579-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
mRNA vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases, thanks largely although not totally to their extraordinary performance in recent years against the worldwide plague COVID-19. The huge superiority of mRNA vaccines regarding their efficacy, safety, and large-scale manufacture encourages pharmaceutical industries and biotechnology companies to expand their application to a diverse array of diseases, despite the nonnegligible problems in design, fabrication, and mode of administration. This review delves into the technical underpinnings of mRNA vaccines, covering mRNA design, synthesis, delivery, and adjuvant technologies. Moreover, this review presents a systematic retrospective analysis in a logical and well-organized manner, shedding light on representative mRNA vaccines employed in various diseases. The scope extends across infectious diseases, cancers, immunological diseases, tissue damages, and rare diseases, showcasing the versatility and potential of mRNA vaccines in diverse therapeutic areas. Furthermore, this review engages in a prospective discussion regarding the current challenge and potential direction for the advancement and utilization of mRNA vaccines. Overall, this comprehensive review serves as a valuable resource for researchers, clinicians, and industry professionals, providing a comprehensive understanding of the technical aspects, historical context, and future prospects of mRNA vaccines in the fight against various diseases.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
50
|
Mbatha LS, Akinyelu J, Maiyo F, Kudanga T. Future prospects in mRNA vaccine development. Biomed Mater 2023; 18:052006. [PMID: 37589309 DOI: 10.1088/1748-605x/aceceb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The recent advancements in messenger ribonucleic acid (mRNA) vaccine development have vastly enhanced their use as alternatives to conventional vaccines in the prevention of various infectious diseases and treatment of several types of cancers. This is mainly due to their remarkable ability to stimulate specific immune responses with minimal clinical side effects. This review gives a detailed overview of mRNA vaccines currently in use or at various stages of development, the recent advancements in mRNA vaccine development, and the challenges encountered in their development. Future perspectives on this technology are also discussed.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti state, Nigeria
| | - Fiona Maiyo
- Department of Medical Sciences, Kabarak University, Nairobi, Kenya
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| |
Collapse
|