1
|
He X, Zhang J, Zhang Y, Li H, Chen Y, Zhang H, Pan J, Zhou Y, Zhang S, Cheng L. L-Kynurenine regulates immune response in ICIs-associated myocarditis via JAK/STAT pathway. Int Immunopharmacol 2025; 156:114676. [PMID: 40267722 DOI: 10.1016/j.intimp.2025.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/24/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Immune checkpoint inhibitor associated myocarditis (ICIAM) is a drug-induced myocarditis characterized by the infiltration of immune cells into cardiac. However, the mechanisms are unknown and effective drug therapies are lacking in clinical practice. This study aims to explore the relationship between plasma metabolites and the treatment of ICIAM. METHODS Human plasma metabolites were analyzed using untargeted metabolomics for characteristic metabolites. For in vivo experiments, Male Balb/c mice were divided into six groups: PBS, L-Kynurenine, cTNI+PD-1 inhibitor (ICIs), ICIs+L-Kynurenine, ICIs+RO8191, ICIs+RO8191+L-Kynurenine. On day 21 post-modeling, echocardiography, ELISA and histopathology were employed to evaluate the therapeutic effect of L-Kynurenine. Flow cytometry was used to determine the proportion of immune cells in the heart and spleen. Bulk-RNAseq was conducted to analyze differential genes, and q-PCR, immunofluorescence and western blot were performed for validation experiments. RESULTS Untargeted metabolomics verified that indoleamine 2,3 dioxygenase-1 (IDO1)-derived L-Kynurenine level was higher in the serum of ICIAM compared to non-ICIAM patients. Meanwhile, in vitro and in vivo experiments showed that L-Kynurenine exhibited a therapeutic ability in ICIAM by inhibiting the pro-inflammatory polarization of immune cells and the secretion of pro-inflammatory cytokines. Mechanistically, L-Kynurenine improved cardiac functions majorly by the inhibition of the JAK1/STAT3 signaling pathway. CONCLUSION L-Kynurenine exhibits significant therapeutic potential in ICIAM. The multi-roles of L-Kynurenine in regulating immune responses make it possible to be used as a targeted drug for ICIAM therapy.
Collapse
Affiliation(s)
- Xiaozhen He
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, China
| | - Jian Zhang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, China
| | - Yerui Zhang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, China
| | - Huishan Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, China
| | - Hui Zhang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, China
| | - Jianan Pan
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, China
| | - Yan Zhou
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shilong Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Leilei Cheng
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
2
|
Guo Y, Liu Z, Wang J, Deng X, He L, Zhang Y, Liu H, Qiu J. Equol neutralizes toxin B to combat Clostridioides difficile infection without disrupting the gut microbiota. Microbiol Res 2025; 298:128219. [PMID: 40378594 DOI: 10.1016/j.micres.2025.128219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
Clostridioides difficile (C. difficile) toxin B (TcdB) is essential for C. difficile pathogenicity. TcdB induces apoptosis in host cells by internalizing and utilizing its glycosyltransferase activity to modify members of the small GTPase protein family through glycosylation. The intestinal environment is critical for the colonization of C. difficile, and the use of broad-spectrum antibiotics disrupts the balance of the gut microbiota, leading to increased susceptibility of the host to C. difficile. At present, the mainstream clinical approach for treating C. difficile infection (CDI) involves antibiotic therapies such as vancomycin, which disrupt the gut microbiota and are associated with a considerable risk of infection recurrence. Therefore, there is an urgent clinical need to develop new strategies to combat CDI. Here, we have identified a natural compound, equol, which inhibits the TcdB-mediated glycosylation of Rac1 through direct interaction, thereby reducing TcdB-induced cell death. Equol functions as an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO), effectively suppressing the conversion of tryptophan to kynurenine in the intestinal tract while preserving the integrity of the gut microbiota. Concurrently, equol exhibits robust antioxidant properties, which markedly reduced TcdB-mediated oxidative damage and subsequent cell death. These findings suggest that equol holds therapeutic potential for the treatment of CDI.
Collapse
Affiliation(s)
- Yan Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liuqing He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yong Zhang
- Center for Pathogen Biology and Infectious Diseases, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China.
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Prajumwongs P, Titapun A, Thanasukarn V, Jareanrat A, Khuntikeo N, Namwat N, Klanrit P, Wangwiwatsin A, Chindaprasirt J, Koonmee S, Sa-Ngiamwibool P, Muangritdech N, Roytrakul S, Loilome W. Identification of serum metabolite biomarkers and metabolic reprogramming mechanisms to predict recurrence in cholangiocarcinoma. Sci Rep 2025; 15:12782. [PMID: 40229491 PMCID: PMC11997029 DOI: 10.1038/s41598-025-97641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
Cholangiocarcinoma (CCA) has high recurrence rates that severely limit long-term survival. Effective tools for accurate recurrence monitoring and diagnosis remain lacking. Metabolic reprogramming, a key driver of CCA growth and recurrence, is underutilized in cancer screening and management. This study aimed to identify metabolite-based biomarkers to evaluate recurrence severity, enhance disease management, and elucidate the molecular mechanisms underlying CCA recurrence. A comprehensive, non-targeted serum metabolomics analysis using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was conducted. Support Vector Machine (SVM) modeling was employed to develop a predictive framework based on metabolite biomarkers. The analysis revealed significant alterations in metabolomics and lipidomics across CCA recurrence subtypes. Notably, changes in metabolites such as amino acids, lipid-derived carnitines, and glycerophospholipids were associated with cancer progression through enhanced energy production and lipid remodeling. The SVM-constructed metabolite-based predictive model demonstrated predictive accuracy comparable to current clinical diagnostic standards. These findings provide novel insights into the metabolic mechanisms underlying CCA recurrence, addressing critical clinical challenges. By advancing early diagnostic approaches, particularly for preoperative detection, this study offers a reliable method for predicting recurrence in CCA patients. This enables effective treatment planning and supports the development of personalized therapeutic strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Piya Prajumwongs
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vasin Thanasukarn
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwat Jareanrat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Natcha Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jarin Chindaprasirt
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supinda Koonmee
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Prakasit Sa-Ngiamwibool
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nattha Muangritdech
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
4
|
Han M, Zhou S, Liao Z, Zishan C, Yi X, Wu C, Zhang D, He Y, Leong KW, Zhong Y. Bimetallic peroxide-based nanotherapeutics for immunometabolic intervention and induction of immunogenic cell death to augment cancer immunotherapy. Biomaterials 2025; 315:122934. [PMID: 39509856 DOI: 10.1016/j.biomaterials.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Immunotherapy has transformed cancer treatment, but its efficacy is often limited by the immunosuppressive characteristics of the tumor microenvironment (TME), which are predominantly influenced by the metabolism of cancer cells. Among these metabolic pathways, the indoleamine 2,3-dioxygenase (IDO) pathway is particularly crucial, as it significantly contributes to TME suppression and influences immune cell activity. Additionally, inducing immunogenic cell death (ICD) in tumor cells can reverse the immunosuppressive TME, thereby enhancing the efficacy of immunotherapy. Herein, we develop CGDMRR, a novel bimetallic peroxide-based nanodrug based on copper-cerium peroxide nanoparticles. These nanotherapeutics are engineered to mitigate tumor hypoxia and deliver therapeutics such as 1-methyltryptophan (1MT), glucose oxidase (GOx), and doxorubicin (Dox) in a targeted manner. The design aims to alleviate tumor hypoxia, reduce the immunosuppressive effects of the IDO pathway, and promote ICD. CGDMRR effectively inhibits the growth of 4T1 tumors and elicits antitumor immune responses by leveraging immunometabolic interventions and therapies that induce ICD. Furthermore, when CGDMRR is combined with a clinically certified anti-PD-L1 antibody, its efficacy in inhibiting tumor growth is enhanced. This improved efficacy extends beyond unilateral tumor models, also affecting bilateral tumors and lung metastases, due to the activation of systemic antitumor immunity. This study underscores CGDMRR's potential to augment the efficacy of PD-L1 blockade in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Min Han
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Shiying Zhou
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Zunde Liao
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chen Zishan
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Xiangting Yi
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chuanbin Wu
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Dongmei Zhang
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Yao He
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States.
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
5
|
Yang C, Zha M, Li L, Qiao J, Kwok LY, Wang D, Chen Y. Bifidobacterium animalis ssp. lactis BX-245-fermented milk alleviates tumor burden in mice with colorectal cancer. J Dairy Sci 2025; 108:1211-1226. [PMID: 39694256 DOI: 10.3168/jds.2024-25614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 12/20/2024]
Abstract
Colorectal cancer (CRC) arises from the accumulation of abnormal mutations in colorectal cells during prolonged inflammation. This study aimed to investigate the potential of probiotic fermented milk containing the probiotic strain, Bifidobacterium animalis ssp. lactis BX-245 (BX-245), in alleviating tumor burden in CRC mice induced by azoxymethane and dextran sodium sulfate. The study monitored changes in tumor size and number, gut microbiota, metabolomics, and inflammation levels before and after the intervention. Our findings indicate that intragastric administration of BX245-fermented milk effectively modulated the intratumor microbiota, as well as the gut microbiota and its metabolism. We also observed a decreased relative abundance of intratumor Akkermansia in the CRC mice, while the intratumor Parabacteroides exhibited a significant positive correlation with tumor number and weight. Moreover, administering BX245-fermented milk significantly reduced gut barrier permeability, alleviated gut barrier damage, and increased serum IL-2 and IFN-γ levels compared with the ordinary fermented milk group. Collectively, our data suggest that administering probiotic fermented milk containing specific functional strains such as BX245 could result in a reduction in tumor burden in CRC mice. Conversely, ordinary fermented milk did not show the same tumor-inhibiting effects. The current results are preliminary, and further confirmation is necessary to establish the causal relationship among probiotic milk, changes in gut microbiota, and disease alleviation.
Collapse
Affiliation(s)
- Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Musu Zha
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lu Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Jiaqi Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Dandan Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
6
|
Chang TH, Ho PC. Interferon-driven Metabolic Reprogramming and Tumor Microenvironment Remodeling. Immune Netw 2025; 25:e8. [PMID: 40078784 PMCID: PMC11896656 DOI: 10.4110/in.2025.25.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
IFNs play a critical role in cancer biology, including impacting tumor cell behavior and instructing the tumor microenvironment (TME). IFNs recently have been shown to reprogram tumor metabolism through distinct mechanisms. Furthermore, IFNs shape the TME by modulating immune cell infiltration and function, contributing to the intricate interaction between the tumor and stromal cells. This review summarizes the effects of IFNs on metabolic reprogramming and their impacts on the function of immune cells within the TME, with a particular focus on the dual roles of IFNs in mediating both anti-tumor and pro-tumor immune responses. Understanding the significance of IFNs-mediated processes aids to advise future therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Tzu-Hsuan Chang
- Department of Fundamental Oncology, University of Lausanne, 1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, 1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
8
|
Santiago-Sánchez GS, Fabian KP, Hodge JW. A landscape of checkpoint blockade resistance in cancer: underlying mechanisms and current strategies to overcome resistance. Cancer Biol Ther 2024; 25:2308097. [PMID: 38306161 PMCID: PMC10841019 DOI: 10.1080/15384047.2024.2308097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The discovery of immune checkpoints and the development of immune checkpoint inhibitors (ICI) have achieved a durable response in advanced-stage cancer patients. However, there is still a high proportion of patients who do not benefit from ICI therapy due to a lack of response when first treated (primary resistance) or detection of disease progression months after objective response is observed (acquired resistance). Here, we review the current FDA-approved ICI for the treatment of certain solid malignancies, evaluate the contrasting responses to checkpoint blockade in different cancer types, explore the known mechanisms associated with checkpoint blockade resistance (CBR), and assess current strategies in the field that seek to overcome these mechanisms. In order to improve current therapies and develop new ones, the immunotherapy field still has an unmet need in identifying other molecules that act as immune checkpoints, and uncovering other mechanisms that promote CBR.
Collapse
Affiliation(s)
- Ginette S. Santiago-Sánchez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kellsye P. Fabian
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Maiti A, Mondal S, Choudhury S, Bandopadhyay A, Mukherjee S, Sikdar N. Oncometabolites in pancreatic cancer: Strategies and its implications. World J Exp Med 2024; 14:96005. [PMID: 39713078 PMCID: PMC11551704 DOI: 10.5493/wjem.v14.i4.96005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 10/31/2024] Open
Abstract
Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor. To survive, grow and proliferate in such tough TME, pancreatic tumor and stromal cells transform their metabolism. Transformed glucose, glutamine, fat, nucleotide metabolism and inter-metabolite communication between tumor and TME in synergism, impart therapy resistance, and immunosuppression in PanCa. Thus, a finer knowledge of altered metabolism would uncover its metabolic susceptibilities. These unique metabolic targets may help to device novel diagnostic/prognostic markers and therapeutic strategies for better management of PanCa. In this review, we sum up reshaped metabolic pathways in PanCa to formulate detection and remedial strategies of this devastating disease.
Collapse
Affiliation(s)
- Arunima Maiti
- Suraksha Diagnostics Pvt Ltd, Newtown, Rajarhat, Kolkata 700156, West Bengal, India
| | - Susmita Mondal
- Department of Zoology, Diamond Harbour Women’s University, Diamond Harbour 743368, West Bengal, India
| | - Sounetra Choudhury
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | - Sanghamitra Mukherjee
- Department of Pathology, RG Kar Medical College and Hospital, Kolkata 700004, West Bengal, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
- Scientist G, Estuarine and Coastal Studies Foundation, Howrah 711101, West Bengal, India
| |
Collapse
|
10
|
Lee S, Lee J, Lyoo KS, Shin Y, Shin DM, Kim JW, Yang JS, Kim KC, Lee JY, Hwang GS. Unraveling metabolic signatures in SARS-CoV-2 variant infections using multiomics analysis. Front Immunol 2024; 15:1473895. [PMID: 39759510 PMCID: PMC11697598 DOI: 10.3389/fimmu.2024.1473895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, notably delta and omicron, has significantly accelerated the global pandemic, worsening conditions worldwide. However, there is a lack of research concerning the molecular mechanisms related to immune responses and metabolism induced by these variants. Methods Here, metabolomics combined with transcriptomics was performed to elucidate the immunometabolic changes in the lung of hamsters infected with delta and omicron variants. Results Both variants caused acute inflammation and lung pathology in intranasally infected hamsters. Principal component analysis uncovered the delta variant significantly altered lung metabolite levels between the pre- and post-infection states. Additionally, metabolic pathways determined by assessment of metabolites and genes in lung revealed significant alterations in arginine biosynthesis, glutathione metabolism, and tryptophan metabolism upon infection with both variants and closely linked to inflammatory cytokines, indicating immune activation and oxidative stress in response to both variants. These metabolic changes were also evident in the serum, validating the presence of systemic alterations corresponding to those identified in lung. Notably, the delta variant induced a more robust metabolic regulation than the omicron variant. Discussion The study suggests that multi-omics is a valuable approach for understanding immunometabolic responses to infectious diseases, and providing insights for effective treatment strategies.
Collapse
Affiliation(s)
- Sunho Lee
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Kwang-Soo Lyoo
- College of Health Sciences, Wonkwang University, Iksan, Republic of Korea
| | - Yourim Shin
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Dong-Min Shin
- Bioinformatics Department, Theragen Bio, Seongnam, Republic of Korea
| | - Jun-Won Kim
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jeong-Sun Yang
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Kyung-Chang Kim
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joo-Yeon Lee
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Li H, Liu J, Wang J, Li Z, Yu J, Huang X, Wan B, Meng X, Zhang X. Improving the Anti-Tumor Effect of Indoleamine 2,3-Dioxygenase Inhibitor CY1-4 by CY1-4 Nano-Skeleton Drug Delivery System. J Funct Biomater 2024; 15:372. [PMID: 39728172 DOI: 10.3390/jfb15120372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Background: CY1-4, 9-nitropyridine [2',3':4,5] pyrimido [1,2-α] indole -5,11- dione, is an indoleamine 2,3-dioxygenase (IDO) inhibitor and a poorly water-soluble substance. It is very important to increase the solubility of CY1-4 to improve its bioavailability and therapeutic effect. In this study, the mesoporous silica nano-skeleton carrier material Sylysia was selected as the carrier to load CY1-4, and then the CY1-4 nano-skeleton drug delivery system (MSNM@CY1-4) was prepared by coating the hydrophilic polymer material Hydroxypropyl methylcellulose (HPMC) and the lipid material Distearoylphosphatidyl-ethanolamine-poly(ethylene glycol)2000 (DSPE-PEG2000) to improve the anti-tumor effect of CY1-4. Methods: The solubility and dissolution of MSNM@CY1-4 were investigated, and its bioavailability, anti-tumor efficacy, IDO inhibitory ability and immune mechanism were evaluated in vivo. Results: CY1-4 was loaded in MSNM@CY1-4 in an amorphous form, and MSNM@CY1-4 could significantly improve the solubility (up to about 200 times) and dissolution rate of CY1-4. In vivo studies showed that the oral bioavailability of CY1-4 in 20 mg/kg MSNM@CY1-4 was about 23.9-fold more than that in 50 mg/kg CY1-4 suspension. In B16F10 tumor-bearing mice, MSNM@CY1-4 significantly inhibited tumor growth, prolonged survival time, significantly inhibited IDO activity in blood and tumor tissues, and reduced Tregs in tumor tissues and tumor-draining lymph nodes to improve anti-tumor efficacy. Conclusions: The nano-skeleton drug delivery system (MSNM@CY1-4) constructed in this study is a potential drug delivery platform for improving the anti-tumor effect of oral poorly water-soluble CY1-4.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junwei Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingru Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuoyue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianming Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xu Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bingchuan Wan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| |
Collapse
|
12
|
Yu H, Li J, Peng S, Liu Q, Chen D, He Z, Xiang J, Wang B. Tumor microenvironment: Nurturing cancer cells for immunoevasion and druggable vulnerabilities for cancer immunotherapy. Cancer Lett 2024; 611:217385. [PMID: 39645024 DOI: 10.1016/j.canlet.2024.217385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tumor microenvironment (TME) is an intricate ecosystem where cancer cells thrive, encompassing a wide array of cellular and non-cellular components. The TME co-evolves with tumor progression in a spatially and temporally dynamic manner, which endows cancer cells with the adaptive capability of evading immune surveillance. To this end, diverse cancer-intrinsic mechanisms were exploited to dampen host immune system, such as upregulating immune checkpoints, impairing antigens presentation and competing for nutrients. In this review, we discuss how cancer immunoevasion is tightly regulated by hypoxia, one of the hallmark biochemical features of the TME. Moreover, we comprehensively summarize how immune evasiveness of cancer cells is facilitated by the extracellular matrix, as well as soluble components of TME, including inflammatory factors, lactate, nutrients and extracellular vesicles. Given their important roles in dictating cancer immunoevasion, various strategies to target TME components are proposed, which holds promising translational potential in developing novel therapeutics to sensitize anti-cancer immunotherapy such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Hongyang Yu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinyang Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Shiyin Peng
- School of Medicine, Chongqing University, Chongqing, China
| | - Qin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Junyu Xiang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China; Institute of Pathology and Southwest Cancer Center, And Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
13
|
Miyamoto K, Sujino T, Kanai T. The tryptophan metabolic pathway of the microbiome and host cells in health and disease. Int Immunol 2024; 36:601-616. [PMID: 38869080 PMCID: PMC11562643 DOI: 10.1093/intimm/dxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The intricate and dynamic tryptophan (Trp) metabolic pathway in both the microbiome and host cells highlights its profound implications for health and disease. This pathway involves complex interactions between host cellular and bacteria processes, producing bioactive compounds such as 5-hydroxytryptamine (5-HT) and kynurenine derivatives. Immune responses to Trp metabolites through specific receptors have been explored, highlighting the role of the aryl hydrocarbon receptor in inflammation modulation. Dysregulation of this pathway is implicated in various diseases, such as Alzheimer's and Parkinson's diseases, mood disorders, neuronal diseases, autoimmune diseases such as multiple sclerosis (MS), and cancer. In this article, we describe the impact of the 5-HT, Trp, indole, and Trp metabolites on health and disease. Furthermore, we review the impact of microbiome-derived Trp metabolites that affect immune responses and contribute to maintaining homeostasis, especially in an experimental autoimmune encephalitis model of MS.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Miyarisan Pharmaceutical Co., Research Laboratory, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
- Keio Global Research Institute, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Zhou J, Hu Z, Wang L, Hu Q, Chen Z, Lin T, Zhou R, Cai Y, Wu Z, Zhang Z, Yang Y, Zhang C, Li G, Zeng L, Su K, Li H, Su Q, Zeng G, Cheng B, Wu T. Tumor-colonized Streptococcus mutans metabolically reprograms tumor microenvironment and promotes oral squamous cell carcinoma. MICROBIOME 2024; 12:193. [PMID: 39369210 PMCID: PMC11452938 DOI: 10.1186/s40168-024-01907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/13/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) remains a major death cause in head and neck cancers, but the exact pathogenesis mechanisms of OSCC are largely unclear. RESULTS Saliva derived from OSCC patients but not healthy controls (HCs) significantly promotes OSCC development and progression in rat models, and metabolomic analyses reveal saliva of OSCC patients but not HCs and OSCC tissues but not adjacent non-tumor tissues contain higher levels of kynurenic acid (KYNA). Furthermore, large amounts of Streptococcus mutans (S. mutans) colonize in OSCC tumor tissues, and such intratumoral S. mutans mediates KYNA overproductions via utilizing its protein antigen c (PAc). KYNA shifts the cellular types in the tumor microenvironment (TME) of OSCC and predominantly expedites the expansions of S100a8highS100a9high neutrophils to produce more interleukin 1β (IL-1β), which further expands neutrophils and induces CD8 + T cell exhaustion in TME and therefore promotes OSCC. Also, KYNA compromises the therapeutic effects of programmed cell death ligand 1 (PD-L1) and IL-1β blockades in oral carcinogenesis model. Moreover, KYNA-mediated immunosuppressive program and aryl hydrocarbon receptor (AHR) expression correlate with impaired anti-tumor immunity and poorer survival of OSCC patients. CONCLUSIONS Thus, aberration of oral microbiota and intratumoral colonization of specific oral bacterium such as S. mutans may increase the production of onco-metabolites, exacerbate the oral mucosal carcinogenesis, reprogram a highly immunosuppressive TME, and promote OSCC, highlighting the potential of interfering with oral microbiota and microbial metabolism for OSCC preventions and therapeutics. Video Abstract.
Collapse
Affiliation(s)
- Jiaying Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China
| | - Zixuan Hu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, China
| | - Lei Wang
- BGI Research, Chongqing, 401329, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI Research, Shenzhen, 518083, China
| | - Qinchao Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China
| | - Zixu Chen
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tao Lin
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rui Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China
| | - Yongjie Cai
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhiying Wu
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhiyi Zhang
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yi Yang
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | | | - Guibo Li
- BGI Research, Chongqing, 401329, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI Research, Shenzhen, 518083, China
| | - Lingchan Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China
| | - Kai Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China
| | - Huan Li
- Department of Intensive Care Unit (ICU), State Key Laboratory of Oncology in South China, CollaborativeInnovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gucheng Zeng
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China.
| | - Tong Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Saad EE, Michel R, Borahay MA. Cholesterol and Immune Microenvironment: Path Towards Tumorigenesis. Curr Nutr Rep 2024; 13:557-565. [PMID: 38696074 DOI: 10.1007/s13668-024-00542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE OF REVIEW Since obesity is a major risk factor for many different types of cancer, examining one of the most closely associated comorbidities, such as hypercholesterolemia, is crucial to understanding how obesity causes cancer. Hypercholesterolemia is usually associated with many cardiovascular complications such as hypertension, angina, and atherosclerosis. In addition, cholesterol may be a major factor in increasing cancer risk. Cancer patients who received statins, an anti-hypercholesteremic medicine, demonstrated improved prognosis possibly through its effect on tumor proliferation, apoptosis, and oxidative stress. Cholesterol could also aid in tumor progression through reprogramming tumor immunological architecture and mediators. This review focuses on the immunomodulatory role of cholesterol on cellular and molecular levels, which may explain its oncogenic driving activity. We look at how cholesterol modulates tumor immune cells like dendritic cells, T cells, Tregs, and neutrophils. Further, this study sheds light on the modification of the expression pattern of the common cancer-related immune mediators in the tumor immune microenvironment, such as programmed cell death 1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), transforming growth factor-beta (TGF-β), interleukin 12 (IL-12), IL-23, and forkhead box protein P3 (FOXP3). RECENT FINDINGS We highlight relevant literature demonstrating cholesterol's immunosuppressive role, leading to a worse cancer prognosis. This review invites further research regarding the pathobiological role of cholesterol in many obesity-related cancers such as uterine fibroids, post-menopausal breast, colorectal, endometrial, kidney, esophageal, pancreatic, liver, and gallbladder cancers. This review suggests that targeting cholesterol synthesis may be a fruitful approach to cancer targeting, in addition to traditional chemotherapeutics.
Collapse
Affiliation(s)
- Eslam E Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Dong Y, Luo J, Pei M, Liu S, Gao Y, Zhou H, Nueraihemaiti Y, Zhan X, Xie T, Yao X, Guan X, Xu Y. Biomimetic Hydrogel-Mediated Mechano-Immunometabolic Therapy for Inhibition of ccRCC Recurrence After Surgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308734. [PMID: 38884220 PMCID: PMC11321661 DOI: 10.1002/advs.202308734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/18/2024] [Indexed: 06/18/2024]
Abstract
The unique physical tumor microenvironment (TME) and aberrant immune metabolic status are two obstacles that must be overcome in cancer immunotherapy to improve clinical outcomes. Here, an in situ mechano-immunometabolic therapy involving the injection of a biomimetic hydrogel is presented with sequential release of the anti-fibrotic agent pirfenidone, which softens the stiff extracellular matrix, and small interfering RNA IDO1, which disrupts kynurenine-mediated immunosuppressive metabolic pathways, together with the multi-kinase inhibitor sorafenib, which induces immunogenic cell death. This combination synergistically augmented tumor immunogenicity and induced anti-tumor immunity. In mouse models of clear cell renal cell carcinoma, a single-dose peritumoral injection of a biomimetic hydrogel facilitated the perioperative TME toward a more immunostimulatory landscape, which prevented tumor relapse post-surgery and prolonged mouse survival. Additionally, the systemic anti-tumor surveillance effect induced by local treatment decreased lung metastasis by inhibiting epithelial-mesenchymal transition conversion. The versatile localized mechano-immunometabolic therapy can serve as a universal strategy for conferring efficient tumoricidal immunity in "cold" tumor postoperative interventions.
Collapse
Affiliation(s)
- Yunze Dong
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jun Luo
- Department of UrologyShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434P. R. China
| | - Mingliang Pei
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Shuai Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Yuchen Gao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Hongmin Zhou
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Yimingniyizi Nueraihemaiti
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Xiangcheng Zhan
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Tiancheng Xie
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Xudong Yao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Xin Guan
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yunfei Xu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| |
Collapse
|
18
|
Louvrou V, Solianik R, Brazaitis M, Erhardt S. Exploring the effect of prolonged fasting on kynurenine pathway metabolites and stress markers in healthy male individuals. Eur J Clin Nutr 2024; 78:677-683. [PMID: 38789718 PMCID: PMC11300305 DOI: 10.1038/s41430-024-01451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND/OBJECTIVES Prolonged fasting triggers a stress response within the human body. Our objective was to investigate the impact of prolonged fasting, in conjunction with stress, on kynurenine pathway metabolites. SUBJECTS/METHODS Healthy males were divided into fasting group (zero-calorie-restriction) for 6 days (FAST, n = 14), and control group (CON, n = 10). Blood and saliva samples were collected at baseline, Day 2, Day 4, Day 6 during fasting period, and 1 week after resuming regular diet. Plasma levels of kynurenine pathway metabolites were measured using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Plasma and salivary samples were analyzed for stress markers. RESULTS A pronounced activation of the kynurenine pathway in individuals on FAST trial was revealed. Concentrations of picolinic acid (PIC), kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) were significantly increased, with peak levels observed on Day 6 (P < 0.0001). Conversely, concentrations of tryptophan (TRP) and quinolinic acid (QUIN) decreased (P < 0.0001), while kynurenine (KYN) and nicotinamide (NAM) levels remained stable. Cortisol and noradrenaline concentrations remained unchanged. However, adrenaline levels significantly increased on Day 4 within FAST compared to CON (P = 0.005). Notably, all deviations in kynurenine pathway metabolite levels returned to baseline values upon resuming regular diet following the 6-day fasting regimen, even when weight and BMI parameters were not restored. CONCLUSIONS Extended fasting over 6 days induces the kynurenine pathway and has minimal effects on stress markers. Restoration of metabolite concentrations upon regular feeding implies rapid adaptation of the kynurenine pathway synthetic enzymes to maintain homeostasis when faced with perturbations.
Collapse
Affiliation(s)
- Varvara Louvrou
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Sophie Erhardt
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Wiśnicki K, Donizy P, Kuriata-Kordek M, Uchmanowicz I, Zachciał J, Hałoń A, Janczak D, Banasik M. Interstitial Foci Expression of Indoleamine 2,3-Dioxygenase 1: A Potential Biomarker for Kidney Transplant Rejection. J Clin Med 2024; 13:4265. [PMID: 39064305 PMCID: PMC11277928 DOI: 10.3390/jcm13144265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Kidney transplantation is the best therapy for patients with end-stage renal disease, but the risk of rejection complicates it. Indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme involved in immune response modulation, has been suggested to play a role in transplant immunological injury. The aim of the study was to explore the expression of IDO1 in the interstitial foci of transplanted kidneys and its potential association with rejection episodes. (2) Methods: This retrospective study analysed kidney transplant biopsies from 121 patients, focusing on IDO1 expression in interstitial foci. Immunohistochemistry was used to detect IDO1, and patients were categorised based on IDO1 presence (IDO1-IF positive or negative). The incidence of rejection was compared between these groups. (3) Results: Patients with IDO1 expression in interstitial foci (IDO1-IF(+)) exhibited higher incidences of rejection 46/80 (57.5%) vs. 10/41 (24.34%) patients compared to IDO1-IF(-) patients, which was statistically significant with p = 0.0005. The analysis of antibody-mediated rejection showed that IDO1-IF(+) patients developed AMR at 12/80 (15%), while only 1 IDO1-IF(-) negative patient did (2,44%), with p = 0.035. T-cell-mediated rejection was also more common in IDO1-IF(+) patients 43/80 (53.75%) than in IDO1-IF(-) patients 7/41 (17.07%), with p = 0.0001. (4) Conclusions: IDO1 expression in interstitial foci of renal transplant biopsies is associated with a higher incidence of rejection, suggesting that IDO1 could serve as a potential biomarker for transplant rejection. These findings highlight the importance of IDO1 in immune regulation and its potential utility in improving the management of kidney transplant recipients.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Magdalena Kuriata-Kordek
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Izabella Uchmanowicz
- Department of Nursing and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.U.); (J.Z.)
| | - Justyna Zachciał
- Department of Nursing and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.U.); (J.Z.)
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
20
|
Aebisher D, Przygórzewska A, Bartusik-Aebisher D. The Latest Look at PDT and Immune Checkpoints. Curr Issues Mol Biol 2024; 46:7239-7257. [PMID: 39057071 PMCID: PMC11275601 DOI: 10.3390/cimb46070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) can not only directly eliminate cancer cells, but can also stimulate antitumor immune responses. It also affects the expression of immune checkpoints. The purpose of this review is to collect, analyze, and summarize recent news about PDT and immune checkpoints, along with their inhibitors, and to identify future research directions that may enhance the effectiveness of this approach. A search for research articles published between January 2023 and March 2024 was conducted in PubMed/MEDLINE. Eligibility criteria were as follows: (1) papers describing PDT and immune checkpoints, (2) only original research papers, (3) only papers describing new reports in the field of PDT and immune checkpoints, and (4) both in vitro and in vivo papers. Exclusion criteria included (1) papers written in a language other than Polish or English, (2) review papers, and (3) papers published before January 2023. 24 papers describing new data on PDT and immune checkpoints have been published since January 2023. These included information on the effects of PDT on immune checkpoints, and attempts to associate PDT with ICI and with other molecules to modulate immune checkpoints, improve the immunosuppressive environment of the tumor, and resolve PDT-related problems. They also focused on the development of new nanoparticles that can improve the delivery of photosensitizers and drugs selectively to the tumor. The effect of PDT on the level of immune checkpoints and the associated activity of the immune system has not been fully elucidated further, and reports in this area are divergent, indicating the complexity of the interaction between PDT and the immune system. PDT-based strategies have been shown to have a beneficial effect on the delivery of ICI to the tumor. The utility of PDT in enhancing the induction of the antitumor response by participating in the triggering of immunogenic cell death, the exposure of tumor antigens, and the release of various alarm signals that together promote the activation of dendritic cells and other components of the immune system has also been demonstrated, with the result that PDT can enhance the antitumor immune response induced by ICI therapy. PDT also enables multifaceted regulation of the tumor's immunosuppressive environment, as a result of which ICI therapy has the potential to achieve better antitumor efficacy. The current review has presented evidence of PDT's ability to modulate the level of immune checkpoints and the effectiveness of the association of PDT with ICIs and other molecules in inducing an effective immune response against cancer cells. However, these studies are at an early stage and many more observations need to be made to confirm their efficacy. The new research directions indicated may contribute to the development of further strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-025 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
21
|
Fan Q, Wen S, Zhang Y, Feng X, Zheng W, Liang X, Lin Y, Zhao S, Xie K, Jiang H, Tang H, Zeng X, Guo Y, Wang F, Yang X. Assessment of circulating proteins in thyroid cancer: Proteome-wide Mendelian randomization and colocalization analysis. iScience 2024; 27:109961. [PMID: 38947504 PMCID: PMC11214373 DOI: 10.1016/j.isci.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
The causality between circulating proteins and thyroid cancer (TC) remains unclear. We employed five large-scale circulating proteomic genome-wide association studies (GWASs) with up to 100,000 participants and a TC meta-GWAS (nCase = 3,418, nControl = 292,703) to conduct proteome-wide Mendelian randomization (MR) and Bayesian colocalization analysis. Protein and gene expressions were validated in thyroid tissue. Through MR analysis, we identified 26 circulating proteins with a putative causal relationship with TCs, among which NANS protein passed multiple corrections (P BH = 3.28e-5, 0.05/1,525). These proteins were involved in amino acids and organic acid synthesis pathways. Colocalization analysis further identified six proteins associated with TCs (VCAM1, LGMN, NPTX1, PLEKHA7, TNFAIP3, and BMP1). Tissue validation confirmed BMP1, LGMN, and PLEKHA7's differential expression between normal and TC tissues. We found limited evidence for linking circulating proteins and the risk of TCs. Our study highlighted the contribution of proteins, particularly those involved in amino acid metabolism, to TCs.
Collapse
Affiliation(s)
- Qinghua Fan
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Shifeng Wen
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Yi Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xiuming Feng
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Wanting Zheng
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Xiaolin Liang
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Yutong Lin
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Shimei Zhao
- The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Kaisheng Xie
- The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Hancheng Jiang
- Liuzhou Workers' Hospital, Liuzhou 545000, Guangxi, China
| | - Haifeng Tang
- The Second People’s Hospital of Yulin, Yulin 537000, Guangxi, China
| | - Xiangtai Zeng
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - You Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Fei Wang
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Xiaobo Yang
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| |
Collapse
|
22
|
Nkandeu DS, Joubert AM, Serem JC, Bipath P, Hlophe YN. An exploratory study on the effect of kynurenine metabolites on sEnd-2 endothelioma cells. Cell Biochem Funct 2024; 42:e4065. [PMID: 38807444 DOI: 10.1002/cbf.4065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Cancer is the second leading cause of mortality worldwide. The development of anticancer therapy plays a crucial role in mitigating tumour progression and metastasis. Epithelioid hemangioendothelioma is a very rare cancer, however, with a high systemic involvement. Kynurenine metabolites which include l-kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid have been shown to inhibit T-cell proliferation resulting in a decrease in cell growth of natural killer cells and T cells. Furthermore, metabolites such as l-kynurenine have been shown to inhibit proliferation of melanoma cells in vitro. Considering these metabolite properties, the present study aimed to explore the in vitro effects of l-kynurenine, quinolinic acid and kynurenic acid on endothelioma sEnd-2 cells and on endothelial (EA. hy926 cells) (control cell line). The in vitro effect at 24, 48, and 72 h exposure to a range of 1-4 mM of the respective kynurenine metabolites on the two cell lines in terms of cell morphology, cell cycle progression and induction of apoptosis was assessed. The half inhibitory concentration (IC50), as determined using nonlinear regression, for l-kynurenine, quinolinic acid and kynurenic acid was 9.17, 15.56, and 535.40 mM, respectively. Optical transmitted light differential interference contrast and hematoxylin and eosin staining revealed cells blocked in metaphase, formation of apoptotic bodies and compromised cell density in l-kynurenine-treated cells. A statistically significant increase in the number of cells present in the sub-G1 phase was observed in l-kynurenine-treated sample. To our knowledge, this was the first in vitro study conducted to investigate the mechanism of action of kynurenine metabolites on endothelioma sEnd-2 cells. It can be concluded that l-kynurenine exerts an antiproliferative effect on the endothelioma sEnd-2 cell line by decreasing cell growth and proliferation as well as a metaphase block. These hallmarks suggest cell death via apoptosis. Further research will be conducted on l-kynurenine to assess the effect on cell adhesion in vitro and in vivo as cell-cell adhesion has been shown to increase metastasis to distant organs therefore, the inhibition of adhesion may lead to a decrease in metastasis.
Collapse
Affiliation(s)
- Danielle Sandra Nkandeu
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Priyesh Bipath
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
Yang Y, Liu X, Liu X, Xie C, Shi J. The role of the kynurenine pathway in cardiovascular disease. Front Cardiovasc Med 2024; 11:1406856. [PMID: 38883986 PMCID: PMC11176437 DOI: 10.3389/fcvm.2024.1406856] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The kynurenine pathway (KP) serves as the primary route for tryptophan metabolism in most mammalian organisms, with its downstream metabolites actively involved in various physiological and pathological processes. Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) serve as the initial and pivotal enzymes of the KP, with IDO playing important and intricate roles in cardiovascular diseases. Multiple metabolites of KP have been observed to exhibit elevated concentrations in plasma across various cardiovascular diseases, such as atherosclerosis, hypertension, and acute myocardial infarction. Multiple studies have indicated that kynurenine (KYN) may serve as a potential biomarker for several adverse cardiovascular events. Furthermore, Kynurenine and its downstream metabolites have complex roles in inflammation, exhibiting both inhibitory and stimulatory effects on inflammatory responses under different conditions. In atherosclerosis, upregulation of IDO stimulates KYN production, mediating aromatic hydrocarbon receptor (AhR)-induced exacerbation of vascular inflammation and promotion of foam cell formation. Conversely, in arterial calcification, this mediation alleviates osteogenic differentiation of vascular smooth muscle cells. Additionally, in cardiac remodeling, KYN-mediated AhR activation exacerbates pathological left ventricular hypertrophy and fibrosis. Interventions targeting components of the KP, such as IDO inhibitors, 3-hydroxyanthranilic acid, and anthranilic acid, demonstrate cardiovascular protective effects. This review outlines the mechanistic roles of KP in coronary atherosclerosis, arterial calcification, and myocardial diseases, highlighting the potential diagnostic, prognostic, and therapeutic value of KP in cardiovascular diseases, thus providing novel insights for the development and application of related drugs in future research.
Collapse
Affiliation(s)
- Yuehang Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chiyang Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Yue X, Stauff E, Boyapati S, Langhans SA, Xu W, Makrogiannis S, Okorie UJ, Okorie AM, Kandula VVR, Kecskemethy HH, Nikam RM, Averill LW, Shaffer TH. PET Imaging of Neurofibromatosis Type 1 with a Fluorine-18 Labeled Tryptophan Radiotracer. Pharmaceuticals (Basel) 2024; 17:685. [PMID: 38931352 PMCID: PMC11206478 DOI: 10.3390/ph17060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder. Plexiform neurofibromas (PNFs) are benign tumors commonly formed in patients with NF1. PNFs have a high incidence of developing into malignant peripheral nerve sheath tumors (MPNSTs) with a 5-year survival rate of only 30%. Therefore, the accurate diagnosis and differentiation of MPNSTs from benign PNFs are critical to patient management. We studied a fluorine-18 labeled tryptophan positron emission tomography (PET) radiotracer, 1-(2-[18F]fluoroethyl)-L-tryptophan (L-[18F]FETrp), to detect NF1-associated tumors in an animal model. An ex vivo biodistribution study of L-[18F]FETrp showed a similar tracer distribution and kinetics between the wild-type and triple mutant mice with the highest uptake in the pancreas. Bone uptake was stable. Brain uptake was low during the 90-min uptake period. Static PET imaging at 60 min post-injection showed L-[18F]FETrp had a comparable tumor uptake with [1⁸F]fluorodeoxyglucose (FDG). However, L-[18F]FETrp showed a significantly higher tumor-to-brain ratio than FDG (n = 4, p < 0.05). Sixty-minute-long dynamic PET scans using the two radiotracers showed similar kidney, liver, and lung kinetics. A dysregulated tryptophan metabolism in NF1 mice was further confirmed using immunohistostaining. L-[18F]FETrp is warranted to further investigate differentiating malignant NF1 tumors from benign PNFs. The study may reveal the tryptophan-kynurenine pathway as a therapeutic target for treating NF1.
Collapse
Affiliation(s)
- Xuyi Yue
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Erik Stauff
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Shriya Boyapati
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Division of Neurology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA
| | - Wenqi Xu
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Sokratis Makrogiannis
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, Dover, DE 19901, USA; (S.M.); (U.J.O.); (A.M.O.)
| | - Uchenna J. Okorie
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, Dover, DE 19901, USA; (S.M.); (U.J.O.); (A.M.O.)
| | - Azubuike M. Okorie
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, Dover, DE 19901, USA; (S.M.); (U.J.O.); (A.M.O.)
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
| | - Heidi H. Kecskemethy
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Rahul M. Nikam
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Lauren W. Averill
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Thomas H. Shaffer
- Nemours Biomedical Research, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| |
Collapse
|
25
|
Herth J, Schmidt F, Basler S, Sievi NA, Kohler M. Exhaled breath analysis in patients with potentially curative lung cancer undergoing surgery: a longitudinal study. J Breath Res 2024; 18:036003. [PMID: 38718786 DOI: 10.1088/1752-7163/ad48a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Exhaled breath analysis has emerged as a non-invasive and promising method for early detection of lung cancer, offering a novel approach for diagnosis through the identification of specific biomarkers present in a patient's breath. For this longitudinal study, 29 treatment-naive patients with lung cancer were evaluated before and after surgery. Secondary electrospray ionization high-resolution mass spectrometry was used for exhaled breath analysis. Volatile organic compounds with absolute log2fold change ⩾1 andq-values ⩾ 0.71 were selected as potentially relevant. Exhaled breath analysis resulted in a total of 3482 features. 515 features showed a substantial difference before and after surgery. The small sample size generated a false positive rate of 0.71, therefore, around 154 of these 515 features were expected to be true changes. Biological identification of the features with the highest consistency (m/z-242.18428 andm/z-117.0539) revealed to potentially be 3-Oxotetradecanoic acid and Indole, respectively. Principal component analysis revealed a primary cluster of patients with a recurrent lung cancer, which remained undetected in the initial diagnostic and surgical procedures. The change of exhaled breath patterns after surgery in lung cancer emphasizes the potential for lung cancer screening and detection.
Collapse
Affiliation(s)
- Jonas Herth
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Felix Schmidt
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Sarah Basler
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Noriane A Sievi
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Malcolm Kohler
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
26
|
Wei X, Liu J, Xu Z, Wang D, Zhu Q, Chen Q, Xu W. Research progress on the pharmacological mechanism, in vivo metabolism and structural modification of Erianin. Biomed Pharmacother 2024; 173:116295. [PMID: 38401517 DOI: 10.1016/j.biopha.2024.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Erianin is an important bibenzyl compound in dendrobium and has a wide spectrum of pharmacological properties. Since Erianin was discovered, abundant results have been achieved in the in vitro synthesis, structural modification, and pharmacological mechanism research. Researchers have developed a series of simple and efficient in vitro synthesis methods to improve the shortcomings of poor water solubility by replacing the chemical structure or coating it in nanomaterials. Erianin has a broad anti-tumor spectrum and significant anti-tumor effects. In addition, Erianin also has pharmacological actions like immune regulation, anti-inflammatory, and anti-angiogenesis. A comprehensive understanding of the synthesis, metabolism, structural modification, and pharmacological action pathways of Erianin is of great value for the utilization of Erianin. Therefore, this review conducts a relatively systematic look back at Erianin from the above four aspects, to give a reference for the evolvement and further appliance of Erianin.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei 230026, PR China; Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230001, PR China.
| |
Collapse
|
27
|
Sun J, Ye T, Chen X, Li B, Wei Y, Zheng H, Piao JG, Li F. A self-assembly active nanomodulator based on berberine for photothermal immunotherapy of breast cancer via dual regulation of immune suppression. Int J Pharm 2024; 653:123898. [PMID: 38346604 DOI: 10.1016/j.ijpharm.2024.123898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
Breast cancer (BC) remains a significant global health concern, especially affecting women, necessitating the development of effective treatment strategies. Photothermal immunotherapy has holds promise for addressing BC by eradicating tumors, preventing metastasis, and reducing recurrence rates. However, the dynamic amplification of indoleamine 2,3-dioxygenase 1 (IDO-1) and programmed cell death-ligand 1 (PD-L1) triggered by photothermal therapy (PTT) poses presents a significant barrier to immune cell infiltration, thus promoting immune evasion. To enhance overall efficiency, a hyaluronic acid (HA)-coated berberine (BBR)-indocyanine green self-assembly active nano modulator (HBI NDs) was successfully developed. This nano modulator aims to reverse immune resistance and further contribute to the synergistic anti-tumor effects. The prepared HBI NDs demonstrated a uniform spherical morphology, high drug loading, and favorable optical properties. The results based on in vitro cell experiments and tumor animal models confirmed that HBI NDs selectively accumulated in tumor tissues, downregulated PD-L1 and IDO-1 protein expression, and induced elevated cell apoptosis. Consequently, these effects result in efficient immune infiltration and positive anti-tumor outcomes. In conclusion, the HBI NDs nanodrug exhibits considerable potential as a novel agent for enhancing anticancer efficacy and promoting immune infiltration.
Collapse
Affiliation(s)
- Jiang Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tingxian Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - XinXin Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
28
|
Pamart G, Gosset P, Le Rouzic O, Pichavant M, Poulain-Godefroy O. Kynurenine Pathway in Respiratory Diseases. Int J Tryptophan Res 2024; 17:11786469241232871. [PMID: 38495475 PMCID: PMC10943758 DOI: 10.1177/11786469241232871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/28/2024] [Indexed: 03/19/2024] Open
Abstract
The kynurenine pathway is the primary route for tryptophan catabolism and has received increasing attention as its association with inflammation and the immune system has become more apparent. This review provides a broad overview of the kynurenine pathway in respiratory diseases, from the initial observations to the characterization of the different cell types involved in the synthesis of kynurenine metabolites and the underlying immunoregulatory mechanisms. With a focus on respiratory infections, the various attempts to characterize the kynurenine/tryptophan (K/T) ratio as an inflammatory marker are reviewed. Its implication in chronic lung inflammation and its exacerbation by respiratory pathogens is also discussed. The emergence of preclinical interventional studies targeting the kynurenine pathway opens the way for the future development of new therapies.
Collapse
Affiliation(s)
- Guillaume Pamart
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Olivier Le Rouzic
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Pichavant
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Odile Poulain-Godefroy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
29
|
Huldani H, Malviya J, Rodrigues P, Hjazi A, Deorari MM, Al-Hetty HRAK, Qasim QA, Alasheqi MQ, Ihsan A. Discovering the strength of immunometabolism in cancer therapy: Employing metabolic pathways to enhance immune responses. Cell Biochem Funct 2024; 42:e3934. [PMID: 38379261 DOI: 10.1002/cbf.3934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Immunometabolism, which studies cellular metabolism and immune cell function, is a possible cancer treatment. Metabolic pathways regulate immune cell activation, differentiation, and effector functions, crucial to tumor identification and elimination. Immune evasion and tumor growth can result from tumor microenvironment metabolic dysregulation. These metabolic pathways can boost antitumor immunity. This overview discusses immune cell metabolism, including glycolysis, oxidative phosphorylation, amino acid, and lipid metabolism. Amino acid and lipid metabolic manipulations may improve immune cell activity and antitumor immunity. Combination therapy using immunometabolism-based strategies may enhance therapeutic efficacy. The complexity of the metabolic network, biomarker development, challenges, and future approaches are all covered, along with a summary of case studies demonstrating the effectiveness of immunometabolism-based therapy. Metabolomics, stable isotope tracing, single-cell analysis, and computational modeling are also reviewed for immunometabolism research. Personalized and combination treatments are considered. This review adds to immunometabolism expertise and sheds light on metabolic treatments' ability to boost cancer treatment immunological response. Also, in this review, we discussed the immune response in cancer treatment and altering metabolic pathways to increase the immune response against malignancies.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
| | - Jitendra Malviya
- Institute of Advance Bioinformatics, Bhopal, Madhya Pradesh, India
| | - Paul Rodrigues
- Department of Computer Engineering, King Khalid University, Al-Faraa, Asir-Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, Prince Sattam bin Abdulaziz University College of Applied Medical Sciences, Al-Kharj, Saudi Arabia
| | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | | | | | - Ali Ihsan
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
30
|
Sun T, Zhou C, Lu F, Dong Z, Gao J, Li B. Adipose-derived stem cells in immune-related skin disease: a review of current research and underlying mechanisms. Stem Cell Res Ther 2024; 15:37. [PMID: 38331803 PMCID: PMC10854049 DOI: 10.1186/s13287-023-03561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/06/2023] [Indexed: 02/10/2024] Open
Abstract
Adipose-derived stem cells (ASCs) are a critical adult stem cell subpopulation and are widely utilized in the fields of regenerative medicine and stem cell research due to their abundance, ease of harvest, and low immunogenicity. ASCs, which are homologous with skin by nature, can treat immune-related skin diseases by promoting skin regeneration and conferring immunosuppressive effects, with the latter being the most important therapeutic mechanism. ASCs regulate the immune response by direct cell-cell communication with immune cells, such as T cells, macrophages, and B cells. In addition to cell-cell interactions, ASCs modulate the immune response indirectly by secreting cytokines, interleukins, growth factors, and extracellular vesicles. The immunomodulatory effects of ASCs have been exploited to treat many immune-related skin diseases with good therapeutic outcomes. This article reviews the mechanisms underlying the immunomodulatory effects of ASCs, as well as progress in research on immune-related skin diseases.
Collapse
Affiliation(s)
- Tianyi Sun
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Cheng Zhou
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jianhua Gao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Bin Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
31
|
Chen J, Cui L, Lu S, Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis 2024; 15:42. [PMID: 38218942 PMCID: PMC10787762 DOI: 10.1038/s41419-024-06435-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Amino acid metabolism plays important roles in tumor biology and tumor therapy. Accumulating evidence has shown that amino acids contribute to tumorigenesis and tumor immunity by acting as nutrients, signaling molecules, and could also regulate gene transcription and epigenetic modification. Therefore, targeting amino acid metabolism will provide new ideas for tumor treatment and become an important therapeutic approach after surgery, radiotherapy, and chemotherapy. In this review, we systematically summarize the recent progress of amino acid metabolism in malignancy and their interaction with signal pathways as well as their effect on tumor microenvironment and epigenetic modification. Collectively, we also highlight the potential therapeutic application and future expectation.
Collapse
Affiliation(s)
- Jie Chen
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
32
|
Abooali M, Yasinska IM, Schlichtner S, Ruggiero S, Berger SM, Cholewa D, Milošević M, Bartenstein A, Fasler-Kan E, Sumbayev VV. Activation of immune evasion machinery is a part of the process of malignant transformation of human cells. Transl Oncol 2024; 39:101805. [PMID: 37844478 PMCID: PMC10587773 DOI: 10.1016/j.tranon.2023.101805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Malignant transformation of human cells is associated with their re-programming which results in uncontrolled proliferation and in the same time biochemical activation of immunosuppressive pathways which form cancer immune evasion machinery. However, there is no conceptual understanding of whether immune evasion machinery pathways and expression of immune checkpoint proteins form a part of the process of malignant transformation or if they are triggered by T lymphocytes and natural killers (NK) attempting to attack cells which are undergoing or already underwent malignant transformation. To address this fundamental question, we performed experimental malignant transformation of BEAS-2B human bronchial epithelium cells and RC-124 non-malignant human kidney epithelial cells using bracken extracts containing carcinogenic alkaloid called ptaquiloside. This transformation led to a significant upregulation of cell proliferation velocity and in the same time led to a significant upregulation in expression of key immune checkpoint proteins - galectin-9, programmed death ligand 1 (PD-L1), indoleamine 2,3-dioxygenase (IDO1). Their increased expression levels were in line with upregulation of the levels and activities of HIF-1 transcription complex and transforming growth factor beta type 1 (TGF-β)-Smad3 signalling pathway. When co-cultured with T cells, transformed epithelial cells displayed much higher and more efficient immune evasion activity compared to original non-transformed cells. Therefore, this work resolved a very important scientific and clinical question and suggested that cancer immune evasion machinery is activated during malignant transformation of human cells regardless the presence of immune cells in microenvironment.
Collapse
Affiliation(s)
- Maryam Abooali
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom; DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ); German Center for Lung Research (DZL), Heidelberg, Germany; Department of Personalized Oncology, Medical Faculty Mannheim, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Dietmar Cholewa
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Milan Milošević
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Andreas Bartenstein
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland.
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.
| |
Collapse
|
33
|
Wiśnicki K, Donizy P, Hałoń A, Wawrzonkowski P, Janczak D, Krajewska M, Banasik M. Indoleamine 2,3-Dioxygenase 1 (IDO1) in Kidney Transplantation: A Guardian against Rejection. J Clin Med 2023; 12:7531. [PMID: 38137602 PMCID: PMC10743959 DOI: 10.3390/jcm12247531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Kidney transplantation is a crucial treatment for end-stage kidney disease, with immunosuppressive drugs helping to reduce acute rejection rates. However, kidney graft longevity remains a concern. This study explores the role of indoleamine 2,3-dioxygenase 1 (IDO1) in kidney transplant immunology. IDO1 breaks down tryptophan, affecting immune cell behavior, primarily T-cells. The research focuses on both cellular and antibody-mediated immune responses, often causing graft damage. The study assessed IDO1 expression in renal transplant biopsies from patients with graft function decline, examining its connection to clinical parameters. A total of 121 biopsy samples were evaluated for IDO1 expression using immunohistochemistry. Patients were categorized as IDO1(+) positive or IDO1(-) negative based on immunoreactivity in tubular epithelium. Results showed a significant link between IDO1 expression and rejection incidence. IDO1(+) positive patients had lower rejection rates (32.9%) compared to IDO1(-) negative ones (62.2%) [p = 0.0017], with substantial differences in antibody-mediated rejection (AMR) (5.2% vs. 20%) [p = 0.0085] and T-cell mediated rejection (TCMR) (31.6% vs. 57.8%). These associations suggest that IDO1 may play a protective role in kidney transplant rejection. IDO1 modulation could offer novel therapeutic avenues to enhance graft survival. The study underscores IDO1 as a potential marker for rejection risk assessment, with its potential applications in personalized interventions and improved patient outcomes. Further research is needed to fully comprehend the mechanisms behind IDO1's immunomodulatory functions and its potential clinical translation.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Patryk Wawrzonkowski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| |
Collapse
|
34
|
Li S, Mok GSP, Dai Y. Lipid bilayer-based biological nanoplatforms for sonodynamic cancer therapy. Adv Drug Deliv Rev 2023; 202:115110. [PMID: 37820981 DOI: 10.1016/j.addr.2023.115110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Sonodynamic therapy (SDT) has been developed as a promising alternative therapeutic modality for cancer treatment, involving the synergetic application of sonosensitizers and low-intensity ultrasound. However, the antitumor efficacy of SDT is significantly limited due to the poor performance of conventional sonosensitizers in vivo and the constrained tumor microenvironment (TME). Recent breakthroughs in lipid bilayer-based nanovesicles (LBBNs), including multifunctional liposomes, exosomes, and isolated cellular membranes, have brought new insights into the advancement of SDT. Despite their distinct sources and preparation methods, the lipid bilayer structure in common allows them to be functionalized in many comparable ways to serve as ideal nanocarriers against challenges arising from the tumor-specific sonosensitizer delivery and the complicated TME. In this review, we provide a comprehensive summary of the recent advances in LBBN-based SDT, with particular attention on how LBBNs can be engineered to improve the delivery efficiency of sonosensitizers and overcome physical, biological, and immune barriers within the TME for enhanced sonodynamic cancer therapy. We anticipate that this review will offer valuable guidance in the construction of LBBN-based nanosonosensitizers and contribute to the development of advanced strategies for next-generation sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Songhao Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
35
|
León-Letelier RA, Dou R, Vykoukal J, Sater AHA, Ostrin E, Hanash S, Fahrmann JF. The kynurenine pathway presents multi-faceted metabolic vulnerabilities in cancer. Front Oncol 2023; 13:1256769. [PMID: 37876966 PMCID: PMC10591110 DOI: 10.3389/fonc.2023.1256769] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The kynurenine pathway (KP) and associated catabolites play key roles in promoting tumor progression and modulating the host anti-tumor immune response. To date, considerable focus has been on the role of indoleamine 2,3-dioxygenase 1 (IDO1) and its catabolite, kynurenine (Kyn). However, increasing evidence has demonstrated that downstream KP enzymes and their associated metabolite products can also elicit tumor-microenvironment immune suppression. These advancements in our understanding of the tumor promotive role of the KP have led to the conception of novel therapeutic strategies to target the KP pathway for anti-cancer effects and reversal of immune escape. This review aims to 1) highlight the known biological functions of key enzymes in the KP, and 2) provide a comprehensive overview of existing and emerging therapies aimed at targeting discrete enzymes in the KP for anti-cancer treatment.
Collapse
Affiliation(s)
- Ricardo A. León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ali Hussein Abdel Sater
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
36
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
37
|
Basson C, Serem JC, Hlophe YN, Bipath P. The tryptophan-kynurenine pathway in immunomodulation and cancer metastasis. Cancer Med 2023; 12:18691-18701. [PMID: 37644823 PMCID: PMC10557908 DOI: 10.1002/cam4.6484] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION The activation of the kynurenine pathway in cancer progression and metastasis through immunomodulatory pathways has drawn attention to the potential for kynurenine pathway inhibition. The activation of the kynurenine pathway, which results in the production of kynurenine metabolites through the degradation of tryptophan, promotes the development of intrinsically malignant properties in cancer cells while facilitating tumour immune escape. In addition, kynurenine metabolites act as biologically active substances to promote cancer development and metastasis. METHODS A literature review was conducted to investigate the role of the tryptophan-kynurenine pathway in immunomodulation and cancer metastasis. RESULTS Evidence suggests that several enzymes and metabolites implicated in the kynurenine pathway are overexpressed in various cancers. As such, the tryptophan pathway represents a promising target for cancer treatment. However, downstream signalling pathways, including aryl hydrocarbon receptor activation, have previously induced diverse biological effects in various malignancies, which resulted in either the promotion or the inhibition of metastasis. CONCLUSION As a result, a thorough investigation of the kynurenine pathway and its regulatory mechanisms is necessary in order to properly comprehend the effects of kynurenine pathway activation involved in cancer development and metastasis.
Collapse
Affiliation(s)
- Charlise Basson
- Department of Physiology, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| | - Priyesh Bipath
- Department of Physiology, School of MedicineUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
38
|
Schlichtner S, Yasinska IM, Klenova E, Abooali M, Lall GS, Berger SM, Ruggiero S, Cholewa D, Milošević M, Gibbs BF, Fasler-Kan E, Sumbayev VV. L-Kynurenine participates in cancer immune evasion by downregulating hypoxic signaling in T lymphocytes. Oncoimmunology 2023; 12:2244330. [PMID: 37577144 PMCID: PMC10416736 DOI: 10.1080/2162402x.2023.2244330] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant tumors often escape anticancer immune surveillance by suppressing the cytotoxic functions of T lymphocytes. While many of these immune evasion networks include checkpoint proteins, small molecular weight compounds, such as the amino acid L-kynurenine (LKU), could also substantially contribute to the suppression of anti-cancer immunity. However, the biochemical mechanisms underlying the suppressive effects of LKU on T-cells remain unclear. Here, we report for the first time that LKU suppresses T cell function as an aryl hydrocarbon receptor (AhR) ligand. The presence of LKU in T cells is associated with AhR activation, which results in competition between AhR and hypoxia-inducible factor 1 alpha (HIF-1α) for the AhR nuclear translocator, ARNT, leading to T cell exhaustion. The expression of indoleamine 2,3-dioxygenase 1 (IDO1, the enzyme that leads to LKU generation) is induced by the TGF-β-Smad-3 pathway. We also show that IDO-negative cancers utilize an alternative route for LKU production via the endogenous inflammatory mediator, the high mobility group box 1 (HMGB-1)-interferon-gamma (IFN-γ) axis. In addition, other IDO-negative tumors (like T-cell lymphomas) trigger IDO1 activation in eosinophils present in the tumor microenvironment (TME). These mechanisms suppress cytotoxic T cell function, and thus support the tumor immune evasion machinery.
Collapse
Affiliation(s)
- Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
- Department of Personalized Medical Oncology, DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ); German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Inna M. Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
| | - Elena Klenova
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Maryam Abooali
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
| | - Gurprit S. Lall
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
| | - Steffen M. Berger
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Dietmar Cholewa
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Milan Milošević
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Bernhard F. Gibbs
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Vadim V. Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK
| |
Collapse
|
39
|
Kudra A, Kaźmierczak-Siedlecka K, Sobocki BK, Muszyński D, Połom J, Carbone L, Marano L, Roviello F, Kalinowski L, Stachowska E. Postbiotics in oncology: science or science fiction? Front Microbiol 2023; 14:1182547. [PMID: 37608943 PMCID: PMC10440707 DOI: 10.3389/fmicb.2023.1182547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023] Open
Abstract
The gut microbiome has been increasingly understood to play a critical role in carcinogenesis and cancer disease progression. The most recent research advancements have shown that different tools of microbiota manipulation contribute to gut microbiome-immune-oncology axis modulation, offering exciting opportunities for targeted interventions aimed at improving the efficacy of established anti-cancer therapy. Postbiotics are a new entry among the biotics showing beneficial effects on human health while not requiring living cells to obtain the health effect and therefore not subjected to food safety rules for live microorganisms. Postbiotics are recently defined as the "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host" and have gradually become the focus of the scientific community. Since the beginning of research on this topic, numerous studies about postbiotics have been proven to strengthen the gut barrier, reduce inflammation, and promote antimicrobial activity. However, research on the potential application of cancer therapy is still at the early stages of its efforts to uncover all the secrets surrounding postbiotics. This review aims to increase our understanding of the anti-cancer effect of postbiotics throughout a "bibliographic journey" on the biological activity of their components, including exopolysaccharides, cell wall fragments, tryptophan metabolites, enzymes, bacterial lysates, extracellular vesicles, and short-chain fatty acids, highlighting their perspective as a new supportive therapeutic method of treatment and identifying the literature gaps where further research is needed.
Collapse
Affiliation(s)
- Anna Kudra
- Scientific Circle of Studies Regarding Personalized Medicine Associated With Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Bartosz Kamil Sobocki
- Scientific Circle of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Damian Muszyński
- Scientific Circle of Studies Regarding Personalized Medicine Associated With Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Połom
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
| | - Ludovico Carbone
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Luigi Marano
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Franco Roviello
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdańsk University of Technology, Gdańsk, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
40
|
El-Aal AEA, Elshafei A, Ismail MY, El-Shafey MM. Identification of miR-106b-5p, miR-601, and miR-760 Expression and Their Clinical Values in Non-Small Cell Lung Cancer (NSCLC) Patients' Serum. Pathol Res Pract 2023; 248:154663. [PMID: 37429174 DOI: 10.1016/j.prp.2023.154663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
AIM to explore the relative quantitative determination of the serum level of three miRNAs (miR-601, 760, and 106b-5p) and determine their expression pattern in non-small cell lung cancer (NSCLC) patients in comparison to controls. Also, to reveal each miRNA's diagnostic and prognostic impact on NSCLC patients. MATERIALS AND METHODS Serum miR-106b-5p, 601, and 760 expression profiles were estimated by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) for 70 NSCLC patients, age-matched with 30 control subjects. The receiver operating characteristic (ROC) curve analysis estimated their diagnostic and prognostic potentials. RESULTS In comparison to the control, the miR-106b-5p expression pattern was upregulated (1.836 ± 0.254, p = 0.0012) while both miR-601 and miR-760 expression patterns were considerably downregulated (-0.586 ± 0.1906, p < 0.0001) and (-1.633 ± 0.152, p < 0.0001), respectively with predominant down-expression for miR-760 among cases. MiR-760 showed the highest diagnostic potential (AUC = 0.943 and 0.864 respectively), whereas miR-601 has a higher prognostic power (AUC = 0.771 and 0.682, respectively) for differentiating early stages (I/II) NSCLC patients from control subjects. Moreover, miR-760 presented the highest prognostic potential for differentiating NSCLC stages. CONCLUSION Both serum miR-760 and miR-601 may be used as potential biomarkers of NSCLC in Egyptian patients with a stronger staging and diagnostic potential for miR-760.
Collapse
Affiliation(s)
- Ahmed E Abd El-Aal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
| | - Maha Y Ismail
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mostafa M El-Shafey
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
41
|
Sun XX, Nosrati Z, Ko J, Lee CM, Bennewith KL, Bally MB. Induced Vascular Normalization-Can One Force Tumors to Surrender to a Better Microenvironment? Pharmaceutics 2023; 15:2022. [PMID: 37631236 PMCID: PMC10458586 DOI: 10.3390/pharmaceutics15082022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy has changed the way many cancers are being treated. Researchers in the field of immunotherapy and tumor immunology are investigating similar questions: How can the positive benefits achieved with immunotherapies be enhanced? Can this be achieved through combinations with other agents and if so, which ones? In our view, there is an urgent need to improve immunotherapy to make further gains in the overall survival for those patients that should benefit from immunotherapy. While numerous different approaches are being considered, our team believes that drug delivery methods along with appropriately selected small-molecule drugs and drug candidates could help reach the goal of doubling the overall survival rate that is seen in some patients that are given immunotherapeutics. This review article is prepared to address how immunotherapies should be combined with a second treatment using an approach that could realize therapeutic gains 10 years from now. For context, an overview of immunotherapy and cancer angiogenesis is provided. The major targets in angiogenesis that have modulatory effects on the tumor microenvironment and immune cells are highlighted. A combination approach that, for us, has the greatest potential for success involves treatments that will normalize the tumor's blood vessel structure and alter the immune microenvironment to support the action of immunotherapeutics. So, this is reviewed as well. Our focus is to provide an insight into some strategies that will engender vascular normalization that may be better than previously described approaches. The potential for drug delivery systems to promote tumor blood vessel normalization is considered.
Collapse
Affiliation(s)
- Xu Xin Sun
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Zeynab Nosrati
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Janell Ko
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
| | - Che-Min Lee
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin L. Bennewith
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
42
|
Anu RI, Shiu KK, Khan KH. The immunomodulatory role of IDO1-Kynurenine-NAD + pathway in switching cold tumor microenvironment in PDAC. Front Oncol 2023; 13:1142838. [PMID: 37456260 PMCID: PMC10348419 DOI: 10.3389/fonc.2023.1142838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common exocrine tumor of the pancreas characterized by late diagnosis, adverse overall 5-year survival, a higher propensity for metastatic disease, and lack of efficacy of systemic therapy options. These adverse outcomes can be partly attributed to complex tumor microenvironment (TME). Over the past decade, immunotherapy has revolutionized the management of certain cancers; thus far, the immunologically 'non-inflamed' tumor microenvironment in PDACs has proven to be challenging. Indolamine 2,3-dioxygenase 1 (IDO1) is the rate-limiting enzyme in the catabolic pathway of L-Tryptophan, an essential amino acid, that gives rise to the immunosuppressive metabolite Kynurenine. IDO1, Indolamine 2,3-dioxygenase 2 (IDO2), and Tryptophan 2,3-dioxygenase (TDO) are the key enzymes in the tryptophan catabolic pathway but we focus on the role of the predominant enzyme form IDO1 in this review. Nicotinamide phosphoribosyl transferase (iNAMPT) regulates the intracellular concentration of NAD and is upregulated in the tumor. In light of the potential role of IDO1 as a driver of hostile TME in PDAC and NAD+ as a key coenzyme in anti-tumor immune response, this review urges focus on extensive research and initiation of clinical trials using IDO1 and NAMPT inhibitors in pancreatic cancer in the future.
Collapse
Affiliation(s)
- R. I. Anu
- Department of Cancer Biology and Therapeutics, Precision Oncology and Multi-Omics Clinic, Genetic Counseling Clinic, Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, Kerala, India
| | - Kai-Keen Shiu
- Gastrointestinal Oncology Service, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Universtiy College London (UCL) Cancer Institute, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
| | - Khurum Hayat Khan
- Gastrointestinal Oncology Service, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Universtiy College London (UCL) Cancer Institute, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Whittington Health, National Health Services (NHS), London, United Kingdom
| |
Collapse
|
43
|
Asghar K, Bashir S, Ali Rana I, Abu Bakar M, Farooq A, Hassan M, Asif Z, Afzal M, Masood I, Ishaq M, Tahseen M, Bilal S, Mehmood S, Kanwal N, Ud Din I, Loya A. PD-L1 is Fascinating but IDO Needs Attention in Non-HCV and Non-HBV-Associated Hepatocellular Carcinoma Patients. J Hepatocell Carcinoma 2023; 10:921-934. [PMID: 37350801 PMCID: PMC10284167 DOI: 10.2147/jhc.s409741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/20/2023] [Indexed: 06/24/2023] Open
Abstract
Background/Aim Hepatocellular carcinoma (HCC) is one of the most common forms of liver cancer that is modulated by the immune system. Programmed cell death ligand-1 (PD-L1) has emerged as a novel therapeutic target in various cancers. Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme that is associated with poor prognoses in various cancer types. The aim of this study was to investigate the PD-L1 expression, and clinicopathological features of non-HCV and non-HBV-associated HCC patients, including IDO expression. Patients and Methods In this study, immunohistochemical analysis was performed to analyze the expression of PD-L1 and IDO. Formalin-fixed paraffin-embedded HCC tumor tissues (n=50) were obtained from the pathology department, at Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC) in Lahore, Pakistan between 2005 and 2022. All the patients were HBV and HCV negative. Furthermore, it was a rare group of patients with no previous history of any viral hepatitis. In addition, for categorical and continuous variables chi-square or Fisher exact test and Mann-Whitney U-test was performed. Results Of 50 tissue specimens, PD-L1+ was observed in 21 [high: 12 (24%), low: 9 (18%)] and PD-L1- was observed in 29 HCC patients. IDO+ was observed in all 50 specimens [high: 42 (84%), low: 8 (16%)]. Additionally, both PD-L1 and IDO had high expression in 11 (22%) patients. While both PD-L1 and IDO had low expression in 2 (4%) patients. Furthermore, in IDO+/PD-L1- group, 20 (69%) out of 29 patients died while in the IDO+/PD-L1+ group, 9 (43%) out of 21 patients died. Conclusion Evaluation of IDO and PD-L1 expression may add therapeutic advantage in non-HCV and non-HBV-associated HCC patients that overexpress IDO. Further validation in a larger cohort is warranted.
Collapse
Affiliation(s)
- Kashif Asghar
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Shaarif Bashir
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Iftikhar Ali Rana
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Abu Bakar
- Department of Cancer Registry and Clinical Data Management, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Asim Farooq
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Hassan
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Zukhruf Asif
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Mahnoor Afzal
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Iqra Masood
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Ishaq
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Tahseen
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Sundus Bilal
- Department of Internal Medicine (Gastroenterology), Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Shafqat Mehmood
- Department of Internal Medicine (Gastroenterology), Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Nosheen Kanwal
- Department of Radiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Islah Ud Din
- Department of Radiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| |
Collapse
|
44
|
Mrštná K, Kujovská Krčmová L, Švec F. Advances in kynurenine analysis. Clin Chim Acta 2023:117441. [PMID: 37321530 DOI: 10.1016/j.cca.2023.117441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Kynurenine, the first product of tryptophan degradation via the kynurenine pathway, has become one of the most frequently mentioned biomarkers in recent years. Its levels in the body indicate the state of the human physiology. Human serum and plasma are the main matrixes used to evaluate kynurenine levels and liquid chromatography is the dominant technique for its determination. However, their concentrations in blood do not always correspond to the levels in other matrixes obtained from the affected individuals. It is therefore important to decide when it is appropriate to analyse kynurenine in alternative matrices. However, liquid chromatography may not be the best option for the analysis. This review presents alternatives that can be used and summarizes the features that need to be considered prior to kynurenine determination. Possible approaches to kynurenine analysis in a variety of human matrixes, their challenges, and limitations are critically discussed.
Collapse
Affiliation(s)
- K Mrštná
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - L Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - F Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
45
|
Xiang D, Han X, Li J, Zhang J, Xiao H, Li T, Zhao X, Xiong H, Xu M, Bi W. Combination of IDO inhibitors and platinum(IV) prodrugs reverses low immune responses to enhance cancer chemotherapy and immunotherapy for osteosarcoma. Mater Today Bio 2023; 20:100675. [PMID: 37304579 PMCID: PMC10250924 DOI: 10.1016/j.mtbio.2023.100675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years, immune checkpoint blockades (ICBs) have made great progress in the treatment of cancer. However, most ICBs have not yet been observed to be satisfactory in the treatment of osteosarcoma. Herein, we designed composite nanoparticles (NP-Pt-IDOi) from a reactive oxygen species (ROS) sensitive amphiphilic polymer (PHPM) with thiol-ketal bonds in the main chain to encapsulate a Pt(IV) prodrug (Pt(IV)-C12) and an indoleamine-(2/3)-dioxygenase (IDO) inhibitor (IDOi, NLG919). Once NP-Pt-IDOi enter the cancer cells, the polymeric nanoparticles could dissociate due to the intracellular ROS, and release Pt(IV)-C12 and NLG919. Pt(IV)-C12 induces DNA damage and activates the cGAS-STING pathway, increasing infiltration of CD8+ T cells in the tumor microenvironment. In addition, NLG919 inhibits tryptophan metabolism and enhances CD8+ T cell activity, ultimately activating anti-tumor immunity and enhancing the anti-tumor effects of platinum-based drugs. NP-Pt-IDOi were shown to have superior anti-cancer activity in vitro and in vivo in mouse models of osteosarcoma, providing a new clinical paradigm for combining chemotherapy with immunotherapy for osteosarcoma.
Collapse
Affiliation(s)
- Dongquan Xiang
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xinli Han
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Medicine, Nankai University, Tianjin, 300074, PR China
| | - Jianxiong Li
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jiabing Zhang
- Xidian University, Xi'an, 710071, PR China
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, 100853, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Ting Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Xuelin Zhao
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Meng Xu
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Wenzhi Bi
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| |
Collapse
|
46
|
Haghshenas R, Aftabi Y, Doaei S, Gholamalizadeh M. Synergistic effect of endurance training and nettle leaf extract on the IDO1-KYN-AHR pathway homeostasis and inhibiting of liver toxicity in rats with STZ-induced diabetes. Front Endocrinol (Lausanne) 2023; 14:1071424. [PMID: 37305057 PMCID: PMC10251405 DOI: 10.3389/fendo.2023.1071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Diabetes adversely affects a number of hepatic molecular pathways, including the kynurenine (KYN) pathway. KYN is produced by indoleamine 2,3-dioxygenase (IDO) and activates the aryl hydrocarbon receptor (AHR). This study evaluated the effect of endurance training (EndTr) and nettle leaf extract (NLE) on the IDO1-KYN-AHR pathway in the livers of rats with streptozotocin-induced diabetes. Methods We divided 48 rats into six groups: controls (Ct), treated with EndTr (EndTr), diabetes-induced (D), D treated with NLE (D + NLE), D treated with EndTr (D + EnTr), and D treated with EndTr and NLE (D + EndTr + NLE). EndTr, D + EnTr, and D + EndTr + NLE groups were subjected to training with running on treadmill for 8 weeks, 5 days per week, 25 min in first session to 59 min at last session with intensity of 55% to 65% VO2max. Using real-time PCR gene (Ahr, Cyp1a1, and Ido1) expressions and ELISA, malondialdehyde (MDA) and protein (IDO1, AHR, and CYP1A1) levels were determined in the liver samples. Results A significant three-way interaction of exercise, nettle, and diabetes was observed on the all variables (P< 0.001). In particular, significant increases in blood glucose level (BGL), in gene and protein expression, and in MDA and KYN levels were observed in the liver samples of the D group versus the Ct group (P< 0.05). BGL and liver MDA levels were significantly lower in the D + EndTr and D + NLE groups than that in the D group. However, the D + EndTr + NLE group showed a more significant decrease in these factors (P< 0.05). In addition, liver KYN levels were significantly lower in the EndTr group compared with that in the Ct group as well as in the D + EndTr + NLE and D + EndTr groups compared with that in the D groups (P< 0.05). Whereas both the EndTr and D + NLE groups showed lower Ahr expression and AHR level compared with the Ct and D groups, respectively (P< 0.05), the D + EndTr + NLE group showed a higher significant reduction in the AHR level than the D group (P< 0.05). The Cyp1a1 expression and IDO1 level significantly decreased only in the D + EndTr + NLE group compared to that in the D group (P< 0.05). Conclusion Overall, this study showed that the combination of EndTr and NLE may synergistically restore the imbalanced IDO1-KYN-AHR pathway in diabetic liver.
Collapse
Affiliation(s)
- Rouhollah Haghshenas
- Department of Sport Sciences, Faculty of Humanities, Semnan University, Semnan, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saied Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Attia AA, Hamad HA, Fawzy MA, Saleh SR. The Prophylactic Effect of Vitamin C and Vitamin B12 against Ultraviolet-C-Induced Hepatotoxicity in Male Rats. Molecules 2023; 28:molecules28114302. [PMID: 37298780 DOI: 10.3390/molecules28114302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Ultraviolet C (UVC) devices are an effective means of disinfecting surfaces and protecting medical tools against various microbes, including coronavirus. Overexposure to UVC can induce oxidative stress, damage the genetic material, and harm biological systems. This study investigated the prophylactic efficacy of vitamin C and B12 against hepatotoxicity in UVC-intoxicated rats. Rats were irradiated with UVC (725.76, 967.68, and 1048.36 J/cm2) for 2 weeks. The rats were pretreated with the aforementioned antioxidants for two months before UVC irradiation. The prophylactic effect of vitamins against UVC hepatotoxicity was evaluated by monitoring the alteration of liver enzyme activities, antioxidant status, apoptotic and inflammatory markers, DNA fragmentation, and histological and ultrastructural alterations. Rats exposed to UVC showed a significant increase in liver enzymes, oxidant-antioxidant balance disruption, and increased hepatic inflammatory markers (TNF-α, IL-1β, iNOS, and IDO-1). Additionally, obvious over-expression of activated caspase-3 protein and DNA fragmentation were detected. Histological and ultrastructural examinations verified the biochemical findings. Co-treatment with vitamins ameliorated the deviated parameters to variable degrees. In conclusion, vitamin C could alleviate UVC-induced hepatotoxicity more than vitamin B12 by diminishing oxidative stress, inflammation, and DNA damage. This study could provide a reference for the clinical practice of vitamin C and B12 as radioprotective for workers in UVC disinfectant areas.
Collapse
Affiliation(s)
- Azza A Attia
- Zoology Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Huda A Hamad
- Zoology Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
- Zoology Department, Faculty of Science, Omar Al-Mukhtar University, Al Bayda 00218, Libya
| | - M Adel Fawzy
- Physics Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| |
Collapse
|
48
|
Li L, Tian Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment. Biomed Pharmacother 2023; 161:114504. [PMID: 37002579 DOI: 10.1016/j.biopha.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Macrophages are potent immune effector cells in innate immunity and exert dual-effects in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) make up a significant portion of TME immune cells. Similar to M1/M2 macrophages, TAMs are also highly plastic, and their functions are regulated by cytokines, chemokines and other factors in the TME. The metabolic changes in TAMs are significantly associated with polarization towards a protumour or antitumour phenotype. The metabolites generated via TAM metabolic reprogramming in turn promote tumor progression and immune tolerance. In this review, we explore the metabolic reprogramming of TAMs in terms of energy, amino acid and fatty acid metabolism and the potential roles of these changes in immune suppression.
Collapse
Affiliation(s)
- Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
49
|
Li J, Cao Y, Zhang X, An M, Zhang J, Liu Y. Simultaneous assaying of NLG919, tryptophan and kynurenine by ultrahigh performance LC-MS in pharmacokinetics and biodistribution studies. Bioanalysis 2023; 15:315-330. [PMID: 37083471 DOI: 10.4155/bio-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Indocyanine2,3-dioxygenase (IDO) is an enzyme that can catalyze the metabolism of tryptophan (Trp) into kynurenine (Kyn), thus inhibiting the tumor immune microenvironment. Method: Based on its inhibitor, NLG919(NLG), the authors developed a new immunomodulatory polymer micelle and established and verified an ultrahigh performance liquid chromatography-mass spectrometry method for the simultaneous determination of NLG, Trp and Kyn in mouse tumors through the ratio determination of Trp/Kyn tissue distribution and pharmacokinetics. The linear range of the method was 0.001-10 μg/ml. Results: Compared with NLG solution, the immunomodulatory polymeric drug-loaded micelles based on polystyrene-arginine showed higher Trp/Kyn ratio, more tumor aggregation and good pharmacokinetics. Conclusion: This method has been successfully applied to the simultaneous determination of Trp/Kyn and NLG in tumor tissues of mice.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yongjing Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| |
Collapse
|
50
|
Cao W, Pan J, Mo K, Wang Z, Wei S, Yin Y, Qin M, Zhang W. Effects of gene silencing of indoleamine 2,3-dioxygenase 1 combined with rosmarinic acid on tumor immune microenvironment in H22 tumor-bearing mice. Int Immunopharmacol 2023; 119:110193. [PMID: 37062258 DOI: 10.1016/j.intimp.2023.110193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Rosmarinic acid (RA) is a natural polyphenolic compound with several pharmacological activities, including immunomodulation and anti-tumor effect. Indoleamine 2,3-dioxygenase-1 (IDO1), the rate-limiting enzyme that metabolizes tryptophan into kynurenine, is an important negative immune regulator. This study aimed to explore the effect of combined action of IDO1 gene silencing and RA on tumor immune microenvironment. H22 tumor-bearing mice were treated with combination therapy with RA and IDO1-shRNA. The percentages and apoptosis of T-cells and subsets of splenic regulatory T-cells (Tregs) were detected by flow cytometry. Levels of tumor necrosis factor (TNF-α), Interferon-γ (IFN-γ), interleukin-2 (IL-2) and interleukin-10 (IL-10) were measured by enzyme linked immunosorbent assay (ELISA). Treatment with RA + IDO1-shRNA significantly increased the percentage of CD4+ T cells, ratio of CD4+/CD8+ and the levels of IFN-γ and IL-2, while decreased CD8+ apoptosis, the proportion of splenic Tregs and the levels of TNF-α and IL-10. The present study demonstrated that combination therapy with RA and IDO1-shRNA had anti-tumor effects on HCC. The mechanism might be related to regulating immune response and immunocytokines, as well as alleviating immunosuppression induced by Tregs in the tumor immune microenvironment.
Collapse
Affiliation(s)
- Wen Cao
- Department of Pharmacy, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi 530200, China.
| | - Jinfeng Pan
- Department of Pharmacy, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi 530200, China
| | - Kai Mo
- Department of Pharmacy, Nanning First People's Hospital, Nanning, Guangxi 530022, China
| | - Zhenning Wang
- Department of Pharmacy, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi 530200, China
| | - Sijun Wei
- Department of Pharmacy, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi 530200, China
| | - Yuan Yin
- Department of Pharmacy, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi 530200, China
| | - Mengyao Qin
- Department of Pharmacy, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi 530200, China
| | - Wenjuan Zhang
- Department of Pharmacy, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi 530200, China
| |
Collapse
|