1
|
Zhao J, Zhang Y, Xia Y, Zhou J, Geng Y, Hua H. miR-16-5p Regulates Proliferation and Apoptosis in High Glucose-Treated Human Retinal Microvascular Endothelial Cells by Targeting VEGFA and TGFBR1. J Ophthalmol 2025; 2025:3082206. [PMID: 40166052 PMCID: PMC11957861 DOI: 10.1155/joph/3082206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 04/02/2025] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and the main cause of vision loss in the middle-aged and elderly people. miRNAs play vital roles in the development of DR. This study aimed to explore the effects of miR-16-5p on high glucose (HG)-stimulated human retinal microvascular endothelial cells (HRECs) by modulating vascular endothelial growth factor A (VEGFA) and transforming growth factor beta receptor 1 (TGFBR1). HRECs were treated with 5 mM, 10 mM, 20 mM, and 30 mM of HG to induce the DR cell model. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-16-5p and mRNAs of VEGFA and TGFBR1. Western blot was used to examine VEGFA and TGFBR1 protein levels. The 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay was conducted to test cell proliferation. Flow cytometry with Annexin V-FITC/PI double staining was carried out to assess cell apoptosis ratio. Dual-luciferase assay was used to identify the target relationship between miR-16-5p and VEGFA and TGFBR1. Results found that the expression of miR-16-5p in HG-treated HRECs was reduced, and VEGFA and TGFBR1 expressions were upregulated. Knockdown of miR-16-5p increased VEGFA and TGFBR1 mRNA and protein levels, promoted cell proliferation, and inhibited apoptosis in HG-treated HRECs. VEGFA and TGFBR1 inhibition reversed the effect of knocking down miR-16-5p on HRECs. Dual-luciferase reporter assay revealed that VEGFA and TGFBR1 were the target of miR-16-5p. Overall, knockdown of miR-16-5p enhances proliferation and inhibits apoptosis of HRECs by upregulating VEGFA and TGFBR1 expression.
Collapse
Affiliation(s)
- JianFeng Zhao
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - YanFei Zhang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yuan Xia
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jie Zhou
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yu Geng
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - HaiRong Hua
- Department of Pathology, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
2
|
Zhong Y, Xia J, Liao L, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review. Int J Biol Macromol 2024; 259:128182. [PMID: 37977468 DOI: 10.1016/j.ijbiomac.2023.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes, having extensive and resilient effects on those who suffer from it. As yet, the underlying cell mechanisms of this microvascular disorder are largely unclear. Recently, growing evidence suggests that epigenetic mechanisms can be responsible for gene deregulation leading to the alteration of key processes in the development and progression of DR, in addition to the widely recognized pathological mechanisms. It is noteworthy that seemingly unending epigenetic modifications, caused by a prolonged period of hyperglycemia, may be a prominent factor that leads to metabolic memory, and brings epigenetic entities such as non-coding RNA into the equation. Consequently, further investigation is necessary to truly understand this mechanism. Exosomes are responsible for carrying signals from cells close to the vasculature that are participating in abnormal signal transduction to faraway organs and cells by sailing through the bloodstream. These signs indicate metabolic disorders. With the aid of their encased structure, they can store diverse signaling molecules, which then can be dispersed into the blood, urine, and tears. Herein, we summarized various non-coding RNAs (ncRNAs) that are related to DR pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in this disease.
Collapse
Affiliation(s)
- Yuhong Zhong
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Juan Xia
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Li Liao
- Department of Respiratory and Critical Care Medicine 3, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China.
| | - Mohammad Reza Momeni
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Masoudikabir P, Shirazy M, Taghizadeh FS, Gheydari ME, Hamidpour M. Platelet-enriched microRNAs as novel biomarkers in atherosclerotic and cardiovascular disease patients. ARYA ATHEROSCLEROSIS 2024; 20:47-67. [PMID: 39717424 PMCID: PMC11663285 DOI: 10.48305/arya.2024.41664.2898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/26/2023] [Indexed: 12/25/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a global health challenge. Various studies have shown that genetic and environmental factors play roles in the development and progression of CVD. Small non-coding RNAs, namely microRNAs (miRs), regulate gene expression and have key roles in essential cellular processes such as apoptosis, cell cycle, differentiation, and proliferation. Currently, clinical studies highlight the critical role of platelets and miRs in coronary thrombosis, atherosclerosis, and CVD. METHODS Using search engines such as PubMed and Scopus, articles studying platelet miRs and their effects on atherosclerosis and cardiovascular disease were reviewed. RESULTS This article presents a comprehensive analysis of the association of platelet-related miRs as prognostic, diagnostic, and therapeutic biomarkers with the pathogenesis of atherosclerosis and cardiovascular disease. CONCLUSION Taken together, data show that platelet-related miRs not only play important roles in the initial development of atherosclerosis and cardiovascular disease (CVD), but they are also considered prognostic and diagnostic biomarkers in CVD.
Collapse
Affiliation(s)
- Parisa Masoudikabir
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shirazy
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohamad Esmail Gheydari
- Department of Cardiology, Taleghani General Hospital. School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Hematopoietic stem cell Research Centre- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Gao J, Gao Z. The regulatory role and mechanism of USP14 in endothelial cell pyroptosis induced by coronary heart disease. Clin Hemorheol Microcirc 2024; 86:495-508. [PMID: 38073382 DOI: 10.3233/ch-232003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE The present study probes into the role and mechanism of ubiquitin specific peptidase 14 (USP14) in coronary heart disease (CHD)-triggered endothelial cell pyroptosis. METHODS An in vitro CHD model was established by inducing human coronary artery endothelial cells (HCAECs) with oxidized low-density lipoprotein (ox-LDL). HCAECs were transfected with si-USP14, followed by evaluation of cell viability by CCK-8 assay, detection of lactate dehydrogenase (LDH) activity by assay kit, detection of USP14, miR-15b-5p, NLRP3, GSDMD-N, and Cleaved-Caspase-1 expressions by qRT-PCR or Western blot, as well as IL-1β and IL-18 concentrations by ELISA. Co-IP confirmed the binding between USP14 and NLRP3. The ubiquitination level of NLRP3 in cells was measured after protease inhibitor MG132 treatment. Dual-luciferase reporter assay verified the targeting relationship between miR-15b-5p and USP14. RESULTS USP14 and NLRP3 were highly expressed but miR-15b-5p was poorly expressed in ox-LDL-exposed HCAECs. USP14 silencing strengthened the viability of ox-LDL-exposed HCAECs, reduced the intracellular LDH activity, and diminished the NLRP3, GSDMD-N, Cleaved-Caspase-1, IL-1β, and IL-18 expressions. USP14 bound to NLRP3 protein and curbed its ubiquitination. Repression of NLRP3 ubiquitination counteracted the inhibitory effect of USP14 silencing on HCAEC pyroptosis. miR-15b-5p restrained USP14 transcription and protein expression. miR-15b-5p overexpression alleviated HCAEC pyroptosis by suppressing USP14/NLRP3. CONCLUSION USP14 stabilizes NLRP3 protein expression through deubiquitination, thereby facilitating endothelial cell pyroptosis in CHD. miR-15b-5p restrains endothelial cell pyroptosis by targeting USP14 expression.
Collapse
Affiliation(s)
- Jie Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Zhao Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| |
Collapse
|
5
|
Li J, Chen K, Li X, Zhang X, Zhang L, Yang Q, Xia Y, Xie C, Wang X, Tong J, Shen Y. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy. Cell Death Discov 2023; 9:418. [PMID: 37978169 PMCID: PMC10656479 DOI: 10.1038/s41420-023-01717-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In the early stages of diabetic retinopathy (DR), diabetes-related hyperglycemia directly inhibits the AKT signaling pathway by increasing oxidative stress or inhibiting growth factor expression, which leads to retinal cell apoptosis, nerve proliferation and fundus microvascular disease. However, due to compensatory vascular hyperplasia in the late stage of DR, the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3 kinase (PI3K)/AKT cascade is activated, resulting in opposite levels of AKT regulation compared with the early stage. Studies have shown that many factors, including insulin, insulin-like growth factor-1 (IGF-1), VEGF and others, can regulate the AKT pathway. Disruption of the insulin pathway decreases AKT activation. IGF-1 downregulation decreases the activation of AKT in DR, which abrogates the neuroprotective effect, upregulates VEGF expression and thus induces neovascularization. Although inhibiting VEGF is the main treatment for neovascularization in DR, excessive inhibition may lead to apoptosis in inner retinal neurons. AKT pathway substrates, including mammalian target of rapamycin (mTOR), forkhead box O (FOXO), glycogen synthase kinase-3 (GSK-3)/nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-κB), are a research focus. mTOR inhibitors can delay or prevent retinal microangiopathy, whereas low mTOR activity can decrease retinal protein synthesis. Inactivated AKT fails to inhibit FOXO and thus causes apoptosis. The GSK-3/Nrf2 cascade regulates oxidation and inflammation in DR. NF-κB is activated in diabetic retinas and is involved in inflammation and apoptosis. Many pathways or vital activities, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathways, interact with the AKT pathway to influence DR development. Numerous regulatory methods can simultaneously impact the AKT pathway and other pathways, and it is essential to consider both the connections and interactions between these pathways. In this review, we summarize changes in the AKT signaling pathway in DR and targeted drugs based on these potential sites.
Collapse
Affiliation(s)
- Jiayuan Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Martino E, D'Onofrio N, Balestrieri A, Mele L, Sardu C, Marfella R, Campanile G, Balestrieri ML. MiR-15b-5p and PCSK9 inhibition reduces lipopolysaccharide-induced endothelial dysfunction by targeting SIRT4. Cell Mol Biol Lett 2023; 28:66. [PMID: 37587410 PMCID: PMC10428548 DOI: 10.1186/s11658-023-00482-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Endothelial dysfunction and deregulated microRNAs (miRNAs) participate in the development of sepsis and are associated with septic organ failure and death. Here, we explored the role of miR-15b-5p on inflammatory pathways in lipopolysaccharide (LPS)-treated human endothelial cells, HUVEC and TeloHAEC. METHODS The miR-15b-5p levels were evaluated in LPS-stimulated HUVEC and TeloHAEC cells by quantitative real-time PCR (qRT-PCR). Functional experiments using cell counting kit-8 (CCK-8), transfection with antagomir, and enzyme-linked immunosorbent assays (ELISA) were conducted, along with investigation of pyroptosis, apoptosis, autophagy, and mitochondrial reactive oxygen species (ROS) by cytofluorometric analysis and verified by fluorescence microscopy. Sirtuin 4 (SIRT4) levels were detected by ELISA and immunoblotting, while proprotein convertase subtilisin-kexin type 9 (PCSK9) expression was determined by flow cytometry (FACS) and immunofluorescence analyses. Dual-luciferase reporter evaluation was performed to confirm the miR-15b-5p-SIRT4 interaction. RESULTS The results showed a correlation among miR-15b-5p, PCSK9, and SIRT4 levels in septic HUVEC and TeloHAEC. Inhibition of miR-15b-5p upregulated SIRT4 content, alleviated sepsis-related inflammatory pathways, attenuated mitochondrial stress, and prevented apoptosis, pyroptosis, and autophagic mechanisms. Finally, a PCSK9 inhibitor (i-PCSK9) was used to analyze the involvement of PCSK9 in septic endothelial injury. i-PCSK9 treatment increased SIRT4 protein levels, opposed the septic inflammatory cascade leading to pyroptosis and autophagy, and strengthened the protective role of miR-15b-5p inhibition. Increased luciferase signal validated the miR-15b-5p-SIRT4 binding. CONCLUSIONS Our in vitro findings suggested the miR-15b-5p-SIRT4 axis as a suitable target for LPS-induced inflammatory pathways occurring in sepsis, and provide additional knowledge on the beneficial effect of i-PCSK9 in preventing vascular damage by targeting SIRT4.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137, Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
7
|
Elhag DA, Al Khodor S. Exploring the potential of microRNA as a diagnostic tool for gestational diabetes. J Transl Med 2023; 21:392. [PMID: 37330548 PMCID: PMC10276491 DOI: 10.1186/s12967-023-04269-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating host gene expression. Recent studies have indicated a role of miRNAs in the pathogenesis of gestational diabetes mellitus (GDM), a common pregnancy-related disorder characterized by impaired glucose metabolism. Aberrant expression of miRNAs has been observed in the placenta and/or maternal blood of GDM patients, suggesting their potential use as biomarkers for early diagnosis and prognosis. Additionally, several miRNAs have been shown to modulate key signaling pathways involved in glucose homeostasis, insulin sensitivity, and inflammation, providing insights into the pathophysiology of GDM. This review summarizes the current knowledge on the dynamics of miRNA in pregnancy, their role in GDM as well as their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
8
|
Behrooz M, Hajjarzadeh S, Kahroba H, Ostadrahimi A, Bastami M. Expression pattern of miR-193a, miR122, miR155, miR-15a, and miR146a in peripheral blood mononuclear cells of children with obesity and their relation to some metabolic and inflammatory biomarkers. BMC Pediatr 2023; 23:95. [PMID: 36859176 PMCID: PMC9976520 DOI: 10.1186/s12887-023-03867-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The widespread presence of childhood obesity has increased considerably over three decades. The present study was designed to investigate expression patterns of miR-146a, miR-155, miR-15a, miR-193a, and miR-122 in peripheral blood mononuclear cells (PBMCs) in children who are obese along with their association with metabolic and inflammatory biomarkers. METHODS Ninety test subjects were admitted. The profile of blood pressure, resting energy expenditure (REE), anthropometric measures, body composition, dietary intakes, physical activity levels, insulin, and lipid profile, fasting blood glucose (FBG), high-sensitivity C-reactive protein (hs-CRP), and pubertal stage have been measured. Total RNA (including small RNAs) was extracted from PBMCs. The expression levels of miRNAs were measured by stem-loop RT-qPCR. RESULTS The miR-155a expression level was significantly lower in obese children, children with high hs-CRP, and children with high-fat mass. Obese girls had significantly higher PBMC levels of miR-122. MiR-155a had a significant negative association with fasting insulin, HOMA-IR, and hs-CRP. There were significant positive associations between miR-193a and miR-122 expression levels and fasting insulin, HOMA-IR, and TG. MiR-15a was positively correlated with fasting insulin and HOMA-IR. Children with metabolic syndrome, insulin resistance, and high-fat mass had higher PBMC levels of miR-122 and miR-193a. Higher miR-193a and miR-122 levels were also detected in PBMCs of children with fast REE, compared to those with slow REE, and the subjects with high hs-CRP, respectively. CONCLUSION lower level of miR-155 expression in obese subjects and significant associations unfolds the need for more studies to detect the possible underlying mechanisms.
Collapse
Affiliation(s)
- Maryam Behrooz
- Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Pediatric Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hajjarzadeh
- Student of Nutrition Sciences. Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Houman Kahroba
- Department of Toxicogenomics, GROW School of Oncology and Development Biology, Maastricht University, Maastricht, Netherlands.,Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Milad Bastami
- Department of Medical Genetics, Tabriz University of Medical Sciences, Golgasht St, Attar Neyshabouri Av, Tabriz, Iran.
| |
Collapse
|
9
|
Bertelli PM, Pedrini E, Hughes D, McDonnell S, Pathak V, Peixoto E, Guduric-Fuchs J, Stitt AW, Medina RJ. Long term high glucose exposure induces premature senescence in retinal endothelial cells. Front Physiol 2022; 13:929118. [PMID: 36091370 PMCID: PMC9459081 DOI: 10.3389/fphys.2022.929118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
Purpose: Features of cellular senescence have been described in diabetic retinal vasculature. The aim of this study was to investigate how the high glucose microenvironment impacts on the senescence program of retinal endothelial cells. Methods: Human retinal microvascular endothelial cells were cultured under control and high glucose conditions of 5 mM and 25 mM D-glucose, respectively. Isomeric l-glucose was used as the osmotic control. Cells were counted using CASY technology until they reached their Hayflick limit. Senescence-associated β-Galactosidase was used to identify senescent cells. Endothelial cell functionality was evaluated by the clonogenic, 3D tube formation, and barrier formation assays. Cell metabolism was characterized using the Seahorse Bioanalyzer. Gene expression analysis was performed by bulk RNA sequencing. Retinal tissues from db/db and db/+ mice were evaluated for the presence of senescent cells. Publicly available scRNA-sequencing data for retinas from Akimba and control mice was used for gene set enrichment analysis. Results: Long term exposure to 25 mM D-Glucose accelerated the establishment of cellular senescence in human retinal endothelial cells when compared to 5 mM D-glucose and osmotic controls. This was shown from 4 weeks, by a significant slower growth, higher percentages of cells positive for senescence-associated β-galactosidase, an increase in cell size, and lower expression of pRb and HMGB2. These senescence features were associated with decreased clonogenic capacity, diminished tubulogenicity, and impaired barrier function. Long term high glucose-cultured cells exhibited diminished glycolysis, with lower protein expression of GLUT1, GLUT3, and PFKFB3. Transcriptomic analysis, after 4 weeks of culture, identified downregulation of ALDOC, PFKL, and TPI1, in cells cultured with 25 mM D-glucose when compared to controls. The retina from db/db mice showed a significant increase in acellular capillaries associated with a significant decrease in vascular density in the intermediate and deep retinal plexuses, when compared to db/+ mice. Senescent endothelial cells within the db/db retinal vasculature were identified by senescence-associated β-galactosidase staining. Analysis of single cell transcriptomics data for the Akimba mouse retina highlighted an enrichment of senescence and senescence-associated secretory phenotype gene signatures when compared to control mice. Conclusion: A diabetic-like microenvironment of 25 mM D-glucose was sufficient to accelerate the establishment of cellular senescence in human retinal microvascular endothelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Reinhold J. Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Faculty of Medicine, Health, and Life Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Eyileten C, Wicik Z, Keshwani D, Aziz F, Aberer F, Pferschy PN, Tripolt NJ, Sourij C, Prietl B, Prüller F, von Lewinski D, De Rosa S, Siller-Matula JM, Postula M, Sourij H. Alteration of circulating platelet-related and diabetes-related microRNAs in individuals with type 2 diabetes mellitus: a stepwise hypoglycaemic clamp study. Cardiovasc Diabetol 2022; 21:79. [PMID: 35596173 PMCID: PMC9123651 DOI: 10.1186/s12933-022-01517-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In patients with type 2 diabetes mellitus (T2DM) an association between severe hypoglycaemic episodes and the risk of cardiovascular (CV) morbidity and mortality has been previously established. METHODS We aimed to investigate the influence of hypoglycaemia on several diabetes-related and platelet-related miRNAs selected based on bioinformatic analysis and literature search, including hsa-miR-16, hsa-miR-34a, hsa-miR-129-2, hsa-miR-15a, hsa-miR-15b, hsa-miR-106a, miR-223, miR-126. Selected miRNAs were validated by qRT-PCR in 14 patients with T2DM on metformin monotherapy, without established CV disease and antiplatelet therapy during a stepwise hypoglycaemic clamp experiment and a follow-up 7 days after the clamp event. In order to identify which pathways and phenotypes are associated with validated miRNAs we performed target prediction on genes expressed with high confidence in platelets. RESULTS Circulating levels of miR-106a-5p, miR-15b, miR-15a, miR-16-5p, miR-223 and miR-126 were increased after euglycaemic clamp followed by hypoglycaemic clamp, each with its distinctive time trend. On the contrary, miR-129-2-3p, miR-92a-3p and miR-34a-3p remained unchanged. MiR-16-5p was negatively correlated with interleukin (IL)-6, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) (p = 0.002, p < 0.001, p = 0.016, respectively), whereas miR-126 was positively correlated with VCAM (p < 0.001). There were negative correlations between miR-16-5p, miR-126 and coagulation factors, including factor VIII and von Willebrand factor (vWF). Among all studied miRNAs, miR-126, miR-129-2-3p and miR-15b showed correlation with platelet function. Bioinformatic analysis of platelet-related targets of analyzed miRNAs showed strong enrichment of IL-2 signaling. We also observed significant enrichment of pathways and diseases related to cancer, CV diseases, hyperglycemia, and neurological diseases. CONCLUSIONS Hypoglycaemia can significantly influence the expression of platelet-enriched miRNAs, with a time trend paralleling the time course of platelet activation. This suggests miRNAs could be exploited as biomarkers for platelet activation in response to hypoglycaemia, as they are probably released by platelets upon activation by hypoglycaemic episodes. Should they hold their promise in clinical endpoint studies, platelet-derived miRNAs might become helpful markers of CV risk in subjects with diabetes. Trial registration The study was registered at clinical trials.gov; Impact of Hypoglycaemia in Patients With DIAbetes Mellitus Type 2 on PLATElet Activation (Diaplate), trial number: NCT03460899.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.,Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland
| | - Disha Keshwani
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland
| | - Faisal Aziz
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Felix Aberer
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Norbert J Tripolt
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Caren Sourij
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Prietl
- Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Analysis of Multifactor-Driven Myopia Disease Modules to Guide Personalized Treatment and Drug Development. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5262259. [PMID: 35586671 PMCID: PMC9110184 DOI: 10.1155/2022/5262259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Myopia is recognized as a multifactor, multicascade complex disease. However, people still know little about the pathogenesis of myopia. Therefore, we aim to guide the personalized treatment, drug research, and development of myopia. Here, based on the interaction network of myopia-related genes, this study constructed a multifactor-driven myopia disease module map. We first identified differentially expressed (DE) miRNAs in myopia. Then, we constructed a myopia-related protein interaction network targeted by these DE miRNAs. Further, we clustered the network into modules and identified module-driven factors, including ncRNAs and transcription factors. Especially, miR-16-5p and miR-34b-5p significantly differentially expressed drive the pathogenic module to influence the progression of myopia. At the same time, transcription factors were involved in myopia-related functions and pathways by regulating the expression of genes in modules, such as Ctnnb1, Myc, and Notch1. In addition, we identified 43 genes in modules that played key roles in the development and progression of myopia such as Vamp2, Egfr, and Wasl. Finally, we constructed a comprehensive multifactor-driven myopia pathogenic module landscape and predicted potential drug and drug targets for myopia. In general, our work not only provided candidates for biological experiments which laid the foundation for the in-depth study of myopia but also has a high reference value for the personalized treatment of myopia and drug development.
Collapse
|
12
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Jamal HH, Taheri M, Hajiesmaeili M. A Comprehensive Review on Function of miR-15b-5p in Malignant and Non-Malignant Disorders. Front Oncol 2022; 12:870996. [PMID: 35586497 PMCID: PMC9108330 DOI: 10.3389/fonc.2022.870996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
miR-15b-5p is encoded by MIR15B gene. This gene is located on cytogenetic band 3q25.33. This miRNA participates in the pathogenesis of several cancers as well as non-malignant conditions, such as abdominal aortic aneurysm, Alzheimer’s and Parkinson’s diseases, cerebral ischemia reperfusion injury, coronary artery disease, dexamethasone induced steatosis, diabetic complications and doxorubicin-induced cardiotoxicity. In malignant conditions, both oncogenic and tumor suppressor impacts have been described for miR-15b-5p. Dysregulation of miR-15b-5p in clinical samples has been associated with poor outcome in different kinds of cancers. In this review, we discuss the role of miR-15b-5p in malignant and non-malignant conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Hazha Hadayat Jamal
- Department of Biology, College of Education, Salahaddin University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammadreza Hajiesmaeili,
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Critical Care Fellowship, Department of Anesthesiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammadreza Hajiesmaeili,
| |
Collapse
|
13
|
Zhao T, Jin Q, Kong L, Zhang D, Teng Y, Lin L, Yao X, Jin Y, Li M. microRNA-15b-5p shuttled by mesenchymal stem cell-derived extracellular vesicles protects podocytes from diabetic nephropathy via downregulation of VEGF/PDK4 axis. J Bioenerg Biomembr 2021; 54:17-30. [PMID: 34806156 DOI: 10.1007/s10863-021-09919-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes lethal for end-stage renal disease, with less treatment methodologies and uncertain pathogenesis. In the current study, we determined the role of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) containing microRNA (miR)-15b-5p in DN. After extraction and identification of MSC-derived EVs, mouse podocyte line MPC5 was selected to establish an in vitro high-glucose (HG) cell model, where expression of miR-15b-5p, pyruvate dehydrogenase kinase 4 (PDK4) and VEGFA expression in tissues and cells were determined. The loss- and gain- function assays were conducted to determine the roles of miR-15b-5p, PDK4 and VEGFA. MPC5 cells were then co-cultured with MSC-derived EVs and their biological behaviors were detected by Western blot, CCK-8 assay, and flow cytometry. The binding relationship between miR-15b-5p and PDK43 by dual luciferase reporter gene assay. The expression of miR-15b-5p was downregulated in podocytes under HG environment, but highly expressed in mouse MSCs-derived EVs. EVs-derived miR-15b-5p could protect MPC5 cell apoptosis and inflammation. miR-15b-5p inhibited the expression of PDK4 by directly bound to the 3'UTR region of PDK4 gene. miR-15b-5p inhibits VEGF expression by binding to PDK4. Inhibition of PDK4 decreased VEGFA expression and reduced apoptosis and inflammation. Collectively, miR-15b-5p shuttled by MSC-derived EV can play protective roles in HG-induced mouse podocyte injury, possibly by targeting PDK4 and decreasing the VEGFA expression.
Collapse
Affiliation(s)
- Tiantian Zhao
- Department of Endocrinology and Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong Province, China
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Qingsong Jin
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Lili Kong
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Dongdong Zhang
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yaqin Teng
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Liangyan Lin
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Xiaoyan Yao
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yongjun Jin
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Minglong Li
- Department of Endocrinology and Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong Province, China.
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250062, China.
| |
Collapse
|
14
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
15
|
Pao SI, Lin LT, Chen YH, Chen CL, Chen JT. Repression of Smad4 by MicroRNA-1285 moderates TGF-β-induced epithelial-mesenchymal transition in proliferative vitreoretinopathy. PLoS One 2021; 16:e0254873. [PMID: 34383767 PMCID: PMC8360606 DOI: 10.1371/journal.pone.0254873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to assess whether microRNA (miR)-1285 can suppress the epithelial-mesenchymal transition (EMT) in retinal pigment epithelial cells. Expression of miR-1285 was evaluated using quantitative real-time polymerase chain reaction (RT-qPCR). The features of EMT were assessed using Western blotting, immunocytochemical staining, scratch wound healing tests, modified Boyden chamber assay, and collagen gel contraction assay. A rabbit model of proliferative vitreoretinopathy (PVR) was used for in vivo testing, which involved the induction of PVR by injection of transfected ARPE cells into the vitreous chamber. Luciferase reporter assay was performed to identify the putative target of miR-1285. The expression of miR-1285 was downregulated in ARPE-19 cells treated with transforming growth factor (TGF)-β. Overexpression of miR-1285 led to upregulation of zonula occludens-1, downregulation of α-smooth muscle actin and vimentin, cell migration and cell contractility-all EMT features-in the TGF-β2-treated ARPE-19 cells. The reporter assay indicated that the 3' untranslated region of Smad4 was the direct target of miR1285. PVR progression was alleviated in the miR-1285 transfected rabbits. In conclusion, overexpression of miR-1285 attenuates TGF-β2-induced EMT in a rabbit model of PVR, and the effect of miR-1285 in PVR is dependent on Smad4. Further research is warranted to develop a feasible therapeutic approach for the prevention and treatment of PVR.
Collapse
Affiliation(s)
- Shu-I Pao
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Le-Tien Lin
- Department of Ophthalmology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ching-Long Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
16
|
Wang F, Zhang M. Circ_001209 aggravates diabetic retinal vascular dysfunction through regulating miR-15b-5p/COL12A1. J Transl Med 2021; 19:294. [PMID: 34233716 PMCID: PMC8265106 DOI: 10.1186/s12967-021-02949-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Diabetic retinopathy, a common complication of diabetes mellitus and a major cause of blindness. circRNAs spongs target miRNA and thus influencing mRNA expression in DR. We investigated the mechanism of circ_001209 in regulating diabetic retinal vascular dysfunction. METHODS QRT-PCR analysis was performed to detect the expression of miR-15b-5p, COL12A1 and circ_001209 in human retinal vascular endothelial cells (HRVECs) under high glucose conditions. Western blot assay, wound healing assay, transwell assay and tube formation were used to explore the roles of circ_001209/miR-15b-5p/COL12A1 in retinal vascular dysfunction. Bioinformatics analysis and luciferase reporter, RNA-FISH, and overexpression assays were performed to reveal the mechanisms of the circ_001209/miR-15b-5p/COL12A1 interaction. TUNEL staining and H&E staining were used to evaluate the pathological changes in streptozotocin (STZ)-induced DR in rats. RESULTS Downregulation of miR-15b-5p under HG conditions promoted proliferation, migration, and tube formation of HRVECs. QRT-PCR and western blot results revealed that miR-15b-5p affected the HRVECs function through targeting COL12A1. Under HG conditions, circ_001209, which acts as a sponge of miR-15b-5p, is upregulated. Besides, overexpression of circ_001209 can affect HRVEC function and aggravate retinal injury in diabetic rats. CONCLUSION Upregulation of circ_001209 contributes to vascular dysfunction in diabetic retinas through regulating miR-15b-5p and COL12A1, providing a potential treatment strategy for diabetic retinopathy.
Collapse
Affiliation(s)
- Fang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Lam B, Nwadozi E, Haas TL, Birot O, Roudier E. High Glucose Treatment Limits Drosha Protein Expression and Alters AngiomiR Maturation in Microvascular Primary Endothelial Cells via an Mdm2-dependent Mechanism. Cells 2021; 10:742. [PMID: 33801773 PMCID: PMC8065922 DOI: 10.3390/cells10040742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes promotes an angiostatic phenotype in the microvascular endothelium of skeletal muscle and skin. Angiogenesis-related microRNAs (angiomiRs) regulate angiogenesis through the translational repression of pro- and anti-angiogenic genes. The maturation of micro-RNA (miRs), including angiomiRs, requires the action of DROSHA and DICER proteins. While hyperglycemia modifies the expression of angiomiRs, it is unknown whether high glucose conditions alter the maturation process of angiomiRs in dermal and skeletal muscle microvascular endothelial cells (MECs). Compared to 5 mM of glucose, high glucose condition (30 mM, 6-24 h) decreased DROSHA protein expression, without changing DROSHA mRNA, DICER mRNA, or DICER protein in primary dermal MECs. Despite DROSHA decreasing, high glucose enhanced the maturation and expression of one angiomiR, miR-15a, and downregulated an miR-15a target: Vascular Endothelial Growth Factor-A (VEGF-A). The high glucose condition increased Murine Double Minute-2 (MDM2) expression and MDM2-binding to DROSHA. Inhibition of MDM2 prevented the effects evoked by high glucose on DROSHA protein and miR-15a maturation in dermal MECs. In db/db mice, blood glucose was negatively correlated with the expression of skeletal muscle DROSHA protein, and high glucose decreased DROSHA protein in skeletal muscle MECs. Altogether, our results suggest that high glucose reduces DROSHA protein and enhances the maturation of the angiostatic miR-15a through a mechanism that requires MDM2 activity.
Collapse
|
18
|
Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem Soc Trans 2021; 49:313-325. [PMID: 33522573 DOI: 10.1042/bst20200611] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.
Collapse
|
19
|
Differential miRNA Expression in Human Macrophage-Like Cells Infected with Histoplasma capsulatum Yeasts Cultured in Planktonic and Biofilm Forms. J Fungi (Basel) 2021; 7:jof7010060. [PMID: 33477397 PMCID: PMC7830537 DOI: 10.3390/jof7010060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Histoplasma capsulatum affects healthy and immunocompromised individuals, sometimes causing a severe disease. This fungus has two morphotypes, the mycelial (infective) and the yeast (parasitic) phases. MicroRNAs (miRNAs) are small RNAs involved in the regulation of several cellular processes, and their differential expression has been associated with many disease states. To investigate miRNA expression in host cells during H. capsulatum infection, we studied the changes in the miRNA profiles of differentiated human macrophages infected with yeasts from two fungal strains with different virulence, EH-315 (high virulence) and 60I (low virulence) grown in planktonic cultures, and EH-315 grown in biofilm form. MiRNA profiles were evaluated by means of reverse transcription-quantitative polymerase chain reaction using a commercial human miRNome panel. The target genes of the differentially expressed miRNAs and their corresponding signaling pathways were predicted using bioinformatics analyses. Here, we confirmed biofilm structures were present in the EH-315 culture whose conditions facilitated producing insoluble exopolysaccharide and intracellular polysaccharides. In infected macrophages, bioinformatics analyses revealed especially increased (hsa-miR-99b-3p) or decreased (hsa-miR-342-3p) miRNAs expression levels in response to infection with biofilms or both growth forms of H. capsulatum yeasts, respectively. The results of miRNAs suggested that infection by H. capsulatum can affect important biological pathways of the host cell, targeting two genes: one encoding a protein that is important in the cortical cytoskeleton; the other, a protein involved in the formation of stress granules. Expressed miRNAs in the host’s response could be proposed as new therapeutic and/or diagnostic tools for histoplasmosis.
Collapse
|
20
|
Tjandra I, Soeharso P, Artini W, Siregar NC, Victor AA. Ganglion cells apoptosis in diabetic rats as early prediction of glaucoma: a study of Brn3b gene expression and association with change of quantity of NO, caspase-3, NF-κB, and TNF-α. Int J Ophthalmol 2020; 13:1872-1879. [PMID: 33344184 PMCID: PMC7708361 DOI: 10.18240/ijo.2020.12.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To find a new concept to show whether or not apoptosis of retinal ganglion cells (RGCs) can be determined in the histology of acute hyperglycemia in the role of expressed Brn3b gene related to nitric oxide (NO), caspase-3, nuclear factor kappa-B (NF-κB), and tumor necrosis factor-α (TNF-α) as an early predictor of primary open angle glaucoma (POAG) eyes and their associations. METHODS Experimental in vivo study was carried out using adult male, white Sprague-Dawley rats aged ≥2mo, weighing 150-200 g. The animals were divided into two groups, one group receiving intraperitoneal injection of streptozotociz 50 mg/kg in 0.01 mol/L citric buffer and pH 4.5 and a comparison made with the control group. Retinal tissue was divided into two parts (both experimental and control groups respectively): a) right retina for immunohistochemistry (IHC; caspase-3 and TNF-α); b) left retina was divided into two parts for the purpose of real-time polymerase chain reaction (PCR) test (RNA extraction for Brn3b gene expression analysis) and ELISA test (NO and NF-κB). RESULTS The experimental group showed a decrease in Brn3b gene expression compared to the control group (1.3-fold lower in 2nd month; 1.1-fold lower in 4th month and 2.5-fold lower in 6th month). However, there was a decrease of NO, caspase-3, and an increase of NF-κB and TNF-α quantity. CONCLUSION The expression of mRNA Brn3b gene is inversely proportional to apoptosis in RGCs. The quantity of NO, caspase-3, NF-κB and TNF-α is influential in expression of Brn3b in RGCs caused by hyperglycemia in diabetic rats.
Collapse
Affiliation(s)
- Irwan Tjandra
- Department of Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta 12930, Indonesia
| | - Purnomo Soeharso
- Department of Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 12930, Indonesia
| | - Widya Artini
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Jakarta 12930, Indonesia
| | - Nurjati Chairani Siregar
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta 12930, Indonesia
| | - Andi Arus Victor
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Jakarta 12930, Indonesia
| |
Collapse
|
21
|
Zhang Y, Qu H. Expression and clinical significance of aquaporin-1, vascular endothelial growth factor and microvessel density in gastric cancer. Medicine (Baltimore) 2020; 99:e21883. [PMID: 32899018 PMCID: PMC7478653 DOI: 10.1097/md.0000000000021883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To investigate the expression and clinical significance of aquaporin-1 (AQP1), vascular endothelial growth factor (VEGF) and microvessel density (MVD) in gastric cancer.A total of 79 gastric cancer patients who were admitted into Beijing Chao-Yang Hospital from January, 2018 to December, 2019 were involved in this study. Tumor specimens and para-cancerous normal tissues (> 2 cm away from the tumor) of all the enrolled patients were collected. Immunohistochemistry were performed to identify the expression of AQP1, VEGF, and MVD and the correlation between AQP1, VEGF, MVD, and clinicopathological parameters was analyzed.The expression of AQP1, VEGF and MVD in gastric cancer tissue was increased significantly compared with those in para-cancerous tissue (P < .05). AQP1, VEGF, and MVD were closely correlated with gastric cancer differentiation, lymph node metastasis, vascular tumor thrombosis and clinical stage (P < .05). Spearman correlation analysis showed that AQP1 was positively associated with VEGF expression (r = 0.497, P < .05). MVD was enhanced in VEGF or AQP1 positive cancer tissues compared with that in VEGF or AQP1 negative tissue (P < .05).Synergistic effect among AQP1, VEGF, and MVD is involved in occurrence and development of gastric cancer.
Collapse
|
22
|
Martins B, Amorim M, Reis F, Ambrósio AF, Fernandes R. Extracellular Vesicles and MicroRNA: Putative Role in Diagnosis and Treatment of Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:E705. [PMID: 32759750 PMCID: PMC7463887 DOI: 10.3390/antiox9080705] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a complex, progressive, and heterogenous retinal degenerative disease associated with diabetes duration. It is characterized by glial, neural, and microvascular dysfunction, being the blood-retinal barrier (BRB) breakdown a hallmark of the early stages. In advanced stages, there is formation of new blood vessels, which are fragile and prone to leaking. This disease, if left untreated, may result in severe vision loss and eventually legal blindness. Although there are some available treatment options for DR, most of them are targeted to the advanced stages of the disease, have some adverse effects, and many patients do not adequately respond to the treatment, which demands further research. Oxidative stress and low-grade inflammation are closely associated processes that play a critical role in the development of DR. Retinal cells communicate with each other or with another one, using cell junctions, adhesion contacts, and secreted soluble factors that can act in neighboring or long-distance cells. Another mechanism of cell communication is via secreted extracellular vesicles (EVs), through exchange of material. Here, we review the current knowledge on deregulation of cell-to-cell communication through EVs, discussing the changes in miRNA expression profiling in body fluids and their role in the development of DR. Thereafter, current and promising therapeutic agents for preventing the progression of DR will be discussed.
Collapse
Affiliation(s)
- Beatriz Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Madania Amorim
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| |
Collapse
|
23
|
Guo X, Sun W, Xu G, Hou D, Zhang Z, Wu L, Liu T. RNA-Seq Analysis of the Liver Transcriptome Reveals the Networks Regulating Treatment of Sitagliptin Phosphate plus Fuzhujiangtang Granule in the Zucker Diabetic Fatty Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8463858. [PMID: 32351607 PMCID: PMC7174946 DOI: 10.1155/2020/8463858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/12/2020] [Indexed: 11/26/2022]
Abstract
Diabetes is one of the most serious chronic diseases. Numerous drugs including oral agents and traditional Chinese medicines, such as sitagliptin phosphate (SP) and Fuzhujiangtang granules (FJG), have been discovered to treat diabetes and used in combination in clinical practice. However, the exact effect and underlying mechanism of using combined medicine is not clear. In this study, we compared the antidiabetic effect of SP, FJG, and SP plus FJG (SP-FJG) using forty 8-week-old Zucker diabetic fatty (ZDF) rats and 10 age-matched Zucker lean rats as the normal control group. ZDF rats were treated with different therapies, respectively, for 6 weeks. The study showed that the fast blood glucose, random blood glucose (RBG), oral glucose tolerance test (OGTT), insulin tolerance test (ITT), homeostasis model of assessment-insulin resistance index, triglyceride (TC), superoxide dismutase, and malondialdehyde of each treatment group were improved when compared with the diabetes mellitus (DM) control group. Using SP-FJG in combination had better improvements in OGTT, fast serum insulin levels, TNF-α, and IL-6 compared with using SP individually. Besides, the increased LDL and TC caused by using SP was attenuated by using FJG in combination. Meanwhile, compared with the DM group, 1781 differentially expressed genes (DEGs) (including 1248 mRNA, 211 ncRNA, 202 cirRNA, and 120 miRNA) were enriched in 58 pathways. Through analysis of ceRNA networks, we found that rno-miR-326-3p, rno-miR-423-5p, rno-miR-15b-5p, rno-let-7c-5p, and rno-let-7b-5p were related to pharmacodynamics in different groups. By analyzing the protein-protein interaction (PPI) and coexpression networks of the transcriptomes of different groups, it is inferred that Lrrk2 and Irak3 may be pharmacodynamic genes for type 2 diabetes mellitus (T2DM). Our research compared the treatment of SP, FJG, and SP-FJG and acquainted the PPI network, coexpression network, mutations, and pharmacodynamics genes, which reveals the new mechanisms of pathogenesis of T2DM.
Collapse
Affiliation(s)
- Xuan Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen Sun
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guangyuan Xu
- Department of Traditional Chinese Medicine, Fu Xing Hospital of Capital Medical University, Beijing 100045, China
| | - Dan Hou
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuo Zhang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tonghua Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| |
Collapse
|
24
|
Cho H, Hwang M, Hong EH, Yu H, Park HH, Koh SH, Shin YU. Micro-RNAs in the aqueous humour of patients with diabetic macular oedema. Clin Exp Ophthalmol 2020; 48:624-635. [PMID: 32173975 DOI: 10.1111/ceo.13750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
IMPORTANCE Micro-RNAs (miRNAs) have been studied as new biomarkers or mediators in various diseases, but the value of aqueous humour (AH) miRNAs in diabetic macular oedema (DMO) is still not known. BACKGROUND To compare AH miRNAs and related cytokine expression in DMO patients and healthy controls. DESIGN Prospective cross-sectional study. PARTICIPANTS Twenty naïve DMO patients and 13 control subjects, who were scheduled for intravitreal injection and cataract surgery, respectively. METHODS AH samples were collected at the beginning of each procedure and analysed using a miRNA polymerase chain reaction (PCR) array composed of 84 miRNAs, reverse transcripase-quantitative PCR (qPCR) for verifying selected differentially expressed miRNAs, and a cytokine assay, the results of which were compared with bioinformatics conducted to find out genes associated with DMO-related miRNAs. MAIN OUTCOMES MEASURES AH expression of miRNAs and cytokines and the bioinformatics results. RESULTS Five miRNAs (hsa-miR-185-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-15b-5p and hsa-miR-15a-5p) showing a fold change greater than -50 in log2 values in the miRNA PCR array were selected, all significantly down-regulated in the DMO group compared to the control group (P < .05), and showed a direct relationship with tumour necrosis factor, nuclear factor kappa B subunit 1 and interleukin-6 (IL-6) in bioinformatics analysis, all of which were related to vascular endothelial growth factor (VEGF). In the cytokine assay, the aqueous concentrations of VEGF, placental growth factor, IL-6 and IL-8 were significantly higher in the DMO group compared to the control group. CONCLUSIONS AND RELEVANCE This study is the first to perform miRNA profiling of the AH of DMO patients. We identified differentially expressed miRNAs in DMO AH, which may be used as potential biomarkers or novel therapeutic targets for DMO.
Collapse
Affiliation(s)
- Heeyoon Cho
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Mina Hwang
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Eun H Hong
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyoseon Yu
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea.,Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Korea
| | - Yong U Shin
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Xing X, Jiang Y, Wang H, Zhang Y, Niu T, Qu Y, Wang C, Wang H, Liu K. Identification of novel differentially expressed genes in retinas of STZ-induced long-term diabetic rats through RNA sequencing. Mol Genet Genomic Med 2020; 8:e1115. [PMID: 31958216 PMCID: PMC7057111 DOI: 10.1002/mgg3.1115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/08/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this research was to investigate the retinal transcriptome changes in long-term streptozotocin (STZ)-induced rats' retinas using RNA sequencing (RNA-seq), to explore the molecular mechanisms of diabetic retinopathy (DR), and to identify novel targets for the treatment of DR by comparing the gene expression profile we obtained. METHODS In this study, 6 healthy male SD rats were randomly divided into wild-type (WT) group and streptozotocin (STZ)-induced group, 3 rats each group. After 6 months, 3 normal retina samples and 3 DM retina samples (2 retinas from the same rat were considered as 1 sample) were tested and differentially expressed genes (DEGs) were measured by RNA-seq technology. Then, we did Gene Ontology (GO) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis and validated the results of RNA-seq through qRT-PCR. RESULTS A total of 118 DEGs were identified, of which 72 were up-regulated and 46 were down-regulated. The enriched GO terms showed that 3 most significant enrichment terms were binding (molecular function), cell part (cellular component), and biological regulation (biological process). The results of the KEGG pathway analysis revealed a significant enrichment in cell adhesion molecules, PI3K-Akt signaling pathway, and allograft rejection, etc. CONCLUSION: Our research has identified specific DEGs and also speculated their potential functions, which will provide novel targets to explore the molecular mechanisms of DR.
Collapse
Affiliation(s)
- Xindan Xing
- Department of OphthalmologyShanghai General HospitalNational Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Jiang
- Department of OphthalmologyShanghai General HospitalNational Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hanying Wang
- Department of OphthalmologyShanghai General HospitalNational Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan Zhang
- Department of OphthalmologyShanghai General HospitalNational Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tian Niu
- Department of OphthalmologyShanghai General HospitalNational Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan Qu
- Department of OphthalmologyShanghai General HospitalNational Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chingyi Wang
- Department of OphthalmologyShanghai General HospitalNational Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Wang
- Department of OphthalmologyShanghai General HospitalNational Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kun Liu
- Department of OphthalmologyShanghai General HospitalNational Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
26
|
Yao K, Yu Y, Zhang H. Construction for Long Non-Coding RNA (lncRNA)-Associated Competing Endogenous RNA (ceRNA) Network in Human Retinal Detachment (RD) with Proliferative Vitreoretinopathy (PVR). Med Sci Monit 2020; 26:e919871. [PMID: 32103829 PMCID: PMC7061588 DOI: 10.12659/msm.919871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to analyze the long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network in human retinal tissues following detachment with proliferative vitreoretinopathy (PVR). Material/Methods Expression data of 19 human detached retinas with PVR and 19 normal retinas from postmortem donors were downloaded from Gene Expression Omnibust (GEO) database (GSE28133). The R package “limma” was utilized to discriminate the dysregulated lncRNA and mRNA profiles. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of differentially expressed mRNAs were performed using R packages “Clusterprofiler.” The ceRNA network of dysregulated genes was constructed by using mircode, miRDB, miRTarBase and TargetScan databases, and was visualized by Cytoscape v3.6.1. Results A total of 23 lncRNAs and 994 mRNAs were identified significantly expressed between the human detached retinas with PVR and the normal retina tissues, with thresholds of |log2FoldChange| >1.0 and adjusted P-value <0.05. The constructed ceRNA network (lncRNA-miRNA-mRNA regulatory axis) included 9 PVR-specific lncRNAs, as well as 27 miRNAs and 73 mRNAs. Conclusions We demonstrated the differential lncRNA expression profile and constructed a lncRNA-associated ceRNA network in human detached retinas with PVR. This may ferret out an unknown ceRNA regulatory network in human retinal detachment with PVR.
Collapse
Affiliation(s)
- Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Yixian Yu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
27
|
Wei S, Peng L, Yang J, Sang H, Jin D, Li X, Chen M, Zhang W, Dang Y, Zhang G. Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:32. [PMID: 32039741 PMCID: PMC7011526 DOI: 10.1186/s13046-019-1511-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/17/2019] [Indexed: 02/10/2023]
Abstract
Background Exosomes are essential for tumor growth, metastasis, and are used as novel signaling molecules in targeted therapies. Therefore, exosomal miRNAs can be used in new diagnostic and therapeutic approaches due to their involvement in the development of cancers. However, the detailed biological function, potential molecular mechanism and clinical application of exo-miR-15b-3p in gastric cancer (GC) remains unclear. Methods miR-15b-3p mRNA levels in tissues, serum, cells and exosomes were analyzed using qRT-PCR assays. qRT-PCR, immunohistochemical and western blotting analyses were utilized for the determination of DYNLT1 expression. The interrelationship connecting miR-15b-3p with DYNLT1 was verified using Dual-luciferase report, western blotting and qRT-PCR assays. Fluorescent PKH-26 or GFP-Lv-CD63 labeled exosomes, as well as Cy3-miR-15b-3p, were utilized to determine the efficacy of the transfer of exo-miR-15b-3p between BGC-823 and recipient cells. Several in vitro assays and xenograft tumor models were conducted to determine exo-miR-15b-3p impact on GC progression. Results This is the first study to confirm high miR-15b-3p expression in GC cell lines, tissues and serum. Exosomes obtained from 108 GC patient serum samples and GC cell-conditioned medium were found to show upregulation of exo-miR-15b-3p, with the area under the ROC curve (AUC) being 0.820 [0.763–0.876], which is superior to the AUC of tissues and serum miR-15b-3p (0.674 [0.600–0.748] and 0.642 [0.499–0.786], respectively). In addition, high exo-miR-15b-3p expression in serum was found to accurately predict worse overall survival. SGC-7901 and GES-1 cells are capable of internalizing BGC-823 cell-derived exosomes, allowing the transfer of miR-15b-3p. Migration, invasion, proliferation and inhibition of apoptosis in vitro and in vivo were enhanced by exo-miR-15b-3p, by restraining DYNLT1, Cleaved Caspase-9 and Caspase-3 expression. Conclusions This study identified a previously unknown regulatory pathway, exo-miR-15b-3p/DYNLT1/Caspase-3/Caspase-9, which promotes GC development and GES-1 cell malignant transformation. Therefore, serum exo-miR-15b-3p may be a potential GC diagnosis and prognosis biomarker, which can be used in precise targeted GC therapy.
Collapse
Affiliation(s)
- Shuchun Wei
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lei Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiajia Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huaiming Sang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Duochen Jin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Meihong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
28
|
Gong Q, Li F, Xie J, Su G. Upregulated VEGF and Robo4 correlate with the reduction of miR-15a in the development of diabetic retinopathy. Endocrine 2019; 65:35-45. [PMID: 30980286 PMCID: PMC6606763 DOI: 10.1007/s12020-019-01921-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Vascular endothelial growth factor (VEGF) plays implicated roles in diabetic retinopathy (DR). The role of roundabout 4 (Robo 4) in angiogenesis and vasculogenesis is controversial; however, the interdependent relationship between these two factors has not been studied in DR. This study determined the colocalization of VEGF and Robo4 in fibrovascular membranes (FVM) from patients with proliferative diabetic retinopathy (PDR). MicroRNA (miRNA)-mediated modulation of VEGF and Robo4 was explored in diabetic rats and ARPE-19 tissue culture cells under hyperglycemia. METHODS VEGF and Robo4 co-expression in the FVM was analyzed using immunofluorescence. VEGF and Robo4 levels were determined in diabetic retinas and ARPE-19 tissue culture cells under high glucose using western blotting and RT-qPCR. MicroRNA agomir was intraocularly injected to increase miR-15a expression and downregulate VEGF and Robo4 levels in diabetic retinas. RESULTS VEGF and Robo4 colocalization in FVM vessels was observed. Increased VEGF levels were consistent in diabetic retinas and ARPE-19 tissue culture cells cultured under hyperglycemia. Robo4 decreased in ARPE-19 tissue culture cells exposed to hyperglycemia for 72 h, whereas it increased in diabetic rat retinas. Several miRNAs were differentially expressed during DR progression. Furthermore, miR-15a agomir injection inhibited high levels of VEGF and Robo4 in diabetic retinas. CONCLUSIONS VEGF and Robo4 were co-expressed in FVMs from PDR patients. In the early stages of DR, VEGF was upregulated and contributed to DR development, whereas, in the late stage of DR, VEGF and Robo4 worked together to aggravate DR progression. However, miR-15a could downregulate VEGF and Robo4 to ameliorate DR development.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, 130021, Changchun, Jilin, China
- Department of Ophthalmology, Shanghai General Hospital, #100 Haining Road, 200080, Shanghai, China
| | - Fuqiang Li
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, 130021, Changchun, Jilin, China
| | - Jia'nan Xie
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, 130021, Changchun, Jilin, China
| | - Guanfang Su
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, 130021, Changchun, Jilin, China.
| |
Collapse
|
29
|
Fu Y, Wang C, Zhang D, Chu X, Zhang Y, Li J. miR-15b-5p ameliorated high glucose-induced podocyte injury through repressing apoptosis, oxidative stress, and inflammatory responses by targeting Sema3A. J Cell Physiol 2019; 234:20869-20878. [PMID: 31025335 DOI: 10.1002/jcp.28691] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Podocyte damage is a hallmark of diabetic nephropathy (DN). Accumulating evidence indicates that microRNAs play important roles in the DN pathogenesis. This study aimed to explore the possible roles and underlying mechanisms of miR-15b-5p on high glucose (HG)-triggered podocyte injury. We observed that miR-15b-5p declined dramatically in a time-dependent manner in podocytes exposed to HG. In addition, miR-15b-5p restored cell proliferation in HG-induced podocytes. Meanwhile, forced expression of miR-15b-5p apparently restrained HG-triggered apoptosis of podocytes, concomitant with downregulated in the proapoptotic protein markers Bax and cleavage caspase-3, and upregulated the antiapoptotic protein Bcl-2. Simultaneously, introduction of miR-15b-5p repressed HG-induced oxidative stress damage in HG-treated podocytes, as evidenced by reduced MDA content, NOX4 expression, and enhanced activities of superoxide dismutase and catalase. Moreover, enforced expression of miR-15b-5p remarkably restrained the HG-stimulated inflammatory response, as reflected by attenuated the level of the cytokines IL-1β, TNF-α, and IL-6. More important, we also identified Sema3A as a direct target of miR-15b-5p. Reverse transcription polymerase chain reaction and western blot subsequently confirmed that miR-15b-5p negatively modulated the level of Sema3A. Mechanically, overexpression of Sema3A impeded the beneficial effects of miR-15b-5p on HG-mediated apoptosis, oxidative stress, and inflammatory response. Altogether, these findings manifested that miR-15b-5p protectively antagonized HG-triggered podocyte damage through relieving HG-induced apoptosis, oxidative stress, and inflammatory process in podocytes by targeting Sema3A, suggesting that miR-15b-5p might be a new therapeutic agent to improve management of DN.
Collapse
Affiliation(s)
- Yanqin Fu
- Department of Endocrinology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chongxian Wang
- Department of Endocrinology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dongming Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaojing Chu
- Department of Endocrinology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuanyuan Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jun Li
- Department of Endocrinology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
30
|
Shafabakhsh R, Aghadavod E, Mobini M, Heidari-Soureshjani R, Asemi Z. Association between microRNAs expression and signaling pathways of inflammatory markers in diabetic retinopathy. J Cell Physiol 2018; 234:7781-7787. [PMID: 30478931 DOI: 10.1002/jcp.27685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Diabetic retinopathy is one of the common and serious microvascular complications of diabetes mellitus, as hyperglycemia has metabolic effects on the retina. Hyperglycemia induces increased oxidative stress, which stimulates inflammation pathways and promotes vascular dysfunction of the retina that leads to increased capillary permeability and vascular leakage. One of the main factors involving diabetic retinopathy is the inflammation signaling pathways. In contemporary times, microRNAs (miRNAs) are identified as functional biomarkers for early detection and treatment of numerous diseases specifically diabetic retinopathy. MiRNAs can modulate gene expression through regulation of transcriptional and posttranscriptional of target genes. With that, miRNAs can regulate almost every cellular and developmental process, including the regulation of instinct immune responses and inflammation. The aim of this study is to investigate the role of miRNAs in inflammation pathways and the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Mobini
- Department of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Zhang HN, Xu QQ, Thakur A, Alfred MO, Chakraborty M, Ghosh A, Yu XB. Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sci 2018; 213:258-268. [PMID: 30342074 DOI: 10.1016/j.lfs.2018.10.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
The vascular endothelium acts as a barrier between the blood flow and the inner lining of the vessel wall, and it functions as a filtering machinery to filter out any unwanted transfer of materials from both sides (i.e. the blood and the surrounding tissues). It is evident that diseases such as diabetes, obesity, and hypertension disturb the normal endothelial functions in humans and lead to endothelial dysfunction, which may further precede to the development of atherosclerosis. Long non-coding RNAs and micro RNAs both are types of non-coding RNAs which, in the recent years, have increasingly been studied in the pathophysiology of many diseases including diabetes, obesity, cardiovascular diseases, neurological diseases, and others. Recent findings have pointed out important aspects on their relevance to endothelial function as well as dysfunction of the system which may arise from presence of diseases such as diabetes and hypertension. Diabetes or hypertension-mediated endothelial dysfunction show characteristics such as reduced nitric oxide synthesis through suppression of endothelial nitric oxide synthase activity in endothelial cells, reduced sensitivity of nitric oxide in smooth muscle cells, and inflammation - all of which have been either shown to be directly caused by gene regulatory mechanisms of non-coding RNAs or shown to be having a correlation with them. In this review, we aim to discuss such findings on the role of these non-coding RNAs in diabetes or hypertension-associated endothelial dysfunction and the related mechanisms that may pave the way for alleviating endothelial dysfunction and its related complications such as atherosclerosis.
Collapse
Affiliation(s)
- Hai-Na Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiao-Qiao Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Abhimanyu Thakur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Martin Omondi Alfred
- Institute of Primate Research, Nairobi, Kenya; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Manas Chakraborty
- Department of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Arunima Ghosh
- Department of Medical Coding Analysis - Emblem Health, Cognizant Technology Solutions India Pvt Ltd., Bangalore, India
| | - Xu-Ben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
32
|
|
33
|
Jia X, Hu X, Han S, Miao X, Liu H, Li X, Lin Z, Wang Z, Gong W. Increased M1 macrophages in young miR-15a/16−/−
mice with tumour grafts or dextran sulphate sodium-induced colitis. Scand J Immunol 2018; 88:e12703. [DOI: 10.1111/sji.12703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoqin Jia
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Xiangyu Hu
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Sen Han
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Xin Miao
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Hao Liu
- Department of General Surgery; Subei People's Hospital of Jiangsu Province; Yangzhou University; Yangzhou China
| | - Xiaomin Li
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Zhijie Lin
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Zoonosis; Yangzhou University; Yangzhou China
| | - Zhengbing Wang
- Department of General Surgery; Subei People's Hospital of Jiangsu Province; Yangzhou University; Yangzhou China
| | - Weijuan Gong
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
- Department of General Surgery; Subei People's Hospital of Jiangsu Province; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Zoonosis; Yangzhou University; Yangzhou China
| |
Collapse
|
34
|
Malek G, Busik J, Grant MB, Choudhary M. Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 2018; 13:359-377. [PMID: 29382242 DOI: 10.1080/17460441.2018.1430136] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The impact of vision debilitating diseases is a global public health concern, which will continue until effective preventative and management protocols are developed. Two retinal diseases responsible for the majority of vision loss in the working age adults and elderly populations are diabetic retinopathy (DR) and age-related macular degeneration (AMD), respectively. Model systems, which recapitulate aspects of human pathology, are valid experimental modalities that have contributed to the identification of signaling pathways involved in disease development and consequently potential therapies. Areas covered: The pathology of DR and AMD, which serve as the basis for designing appropriate models of disease, is discussed. The authors also review in vitro and in vivo models of DR and AMD and evaluate the utility of these models in exploratory and pre-clinical studies. Expert opinion: The complex nature of non-Mendelian diseases such as DR and AMD has made identification of effective therapeutic treatments challenging. However, the authors believe that while in vivo models are often criticized for not being a 'perfect' recapitulation of disease, they have been valuable experimentally when used with consideration of the strengths and limitations of the experimental model selected and have a place in the drug discovery process.
Collapse
Affiliation(s)
- Goldis Malek
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pathology , Duke University School of Medicine , Durham , NC , USA
| | - Julia Busik
- c Department of Physiology , Michigan State University , East Lansing , MI , USA
| | - Maria B Grant
- d Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , Al , USA
| | - Mayur Choudhary
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
35
|
Jiang Y, Liu L, Steinle JJ. miRNA15a regulates insulin signal transduction in the retinal vasculature. Cell Signal 2018; 44:28-32. [PMID: 29339083 DOI: 10.1016/j.cellsig.2018.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
We previously reported that tumor necrosis factor alpha (TNFα) could inhibit insulin signal transduction in retinal cells. We recently found that miR15a/16 also reduced TNFα in retinal endothelial cells (REC) and in vascular specific miR15a/16 knockout mice. Since in silico programs suggested that miR15a could directly bind the insulin receptor, we wanted to determine whether miR15a altered insulin signal transduction. We used a luciferase-based binding assay to determine whether miR15a directly bound the insulin receptor. We then used Western blotting, ELISA, and qPCR to investigate whether miR15a altered insulin signaling proteins in REC and in both miR15a/16 endothelial cell knockout and overexpressing mice. We also treated some REC with resveratrol to determine if resveratrol could increase miR15a expression, since resveratrol is protective to the diabetic retina. We found that miR15a directly bound the 3'UTR of the insulin receptor. Treatment with resveratrol increased miR15a expression in REC grown in high glucose. While total insulin receptor levels were not altered, insulin signal transduction was reduced in REC grown in high glucose and was restored with treatment with resveratrol. miR15a knockout mice had reduced insulin receptor phosphorylation and Akt2 levels, with increased insulin receptor substrate 1 (IRS-1) phosphorylation on serine 307, a site known to inhibit insulin signaling. In contrast, overexpression of miR15a increased insulin signal transduction. Taken together, these data suggest that miR15a binds the insulin receptor and indirectly regulates insulin receptor actions. It also offers an additional mechanism by which resveratrol is protective to the diabetic retina.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Li Liu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
36
|
Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep 2017; 37:BSR20171157. [PMID: 29074557 PMCID: PMC5705777 DOI: 10.1042/bsr20171157] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults across the world. The pathogenesis of DR is multifactorial and the molecular mechanisms are still not fully understood. Accumulating evidence has demonstrated that noncoding RNAs (ncRNAs) may be aberrantly expressed and may play vital roles in the development of DR. Amongst ncRNAs, miRNAs and long ncRNAs (lncRNAs) are known for their regulatory functions. Here, we summarize the functions and mechanisms of known aberrantly expressed miRNAs and lncRNAs in DR. Additionally, a novel lncRNA–mRNA–miRNA network is included in this review. We highlight original studies that provide detailed data about the mechanisms of miRNAs and lncRNAs, their applications as diagnostic or prognostic biomarkers, and their potential therapeutic targets. In conclusion, this review will help us gain a better understanding of the molecular mechanisms by which miRNAs and lncRNAs perform their functions in DR, and provide general strategies and directions for future research.
Collapse
|
37
|
Circulating MicroRNA Profiles Differ between Hyperglycemia and Euglycemia in Coronary Heart Disease Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9192575. [PMID: 29214180 PMCID: PMC5682890 DOI: 10.1155/2017/9192575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/25/2017] [Accepted: 10/01/2017] [Indexed: 01/14/2023]
Abstract
Coronary heart disease (CHD) has become one of the leading causes of death and functional impairment in the world. Hyperglycemia is associated with an increased risk of cardiovascular disease. It was speculated that miRNAs in peripheral blood were a primary parameter in discriminating CHD. The biological characteristics of coronary heart disease with hyperglycemia (HCHD) and coronary heart disease with euglycemia (ECHD) were investigated in the study. Circulating miRNAs from 26 HCHD patients and 42 ECHD patients were identified by microarrays. Compared with the healthy patients, 15 and 20 differentially expressed miRNAs were identified in HCHD and ECHD groups, respectively. Gene ontology analysis was carried out by DAVID and functional annotations of the miRNA targets related to ATP binding, cellular components, protein binding, RNA binding, DNA binding, and so on. KEGG database was used for pathway analysis. Eleven pathways were identified in both HCHD and ECHD groups. Furthermore, 13 and 3 pathways were only identified in HCHD or ECHD group, respectively. And then, miRNA-gene regulatory networks were constructed to study the relationship between differentially expressed miRNAs and genes. This suggested that hsa-let-7c-5p and hsa-miR-24-3p might have the most important function for hyperglycemia in coronary heart disease patients.
Collapse
|
38
|
Ye EA, Liu L, Steinle JJ. miR-15a/16 inhibits TGF-beta3/VEGF signaling and increases retinal endothelial cell barrier proteins. Vision Res 2017; 139:23-29. [PMID: 28774775 DOI: 10.1016/j.visres.2017.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 01/28/2023]
Abstract
Hyperglycemia is a significant risk factor for diabetic retinopathy and induces multiple biochemical changes, including inflammation and endothelial dysfunction in the retina. Alterations in microRNA expression have been implicated in the pathological responses of diabetic retinopathy and the manipulation of microRNA may provide powerful strategy for therapeutics. Among the predicted targets of miR-15a and -16 are TGF-beta3, SMAD2/3, and VEGF, all of which are known to play a role in vascular endothelial functions. The purpose of this study was to investigate the hypothesis that miR-15a/16 inhibits TGF-beta3/VEGF signaling to maintain retinal endothelial cell barrier protein levels. Human primary retinal endothelial cells (REC) were maintained in normal (5mM) glucose or transferred to high glucose medium (25mM) for 3days. REC were transfected with miRNA mimics (hsa-miR-15a-5p and -16-5p). Retinal lysates from miR-15a-transgenic mice were also analyzed. We demonstrated that overexpression of miR-15a/16 resulted in decreased TGF-beta3 signaling and VEGF levels in cultured REC grown in high glucose conditions. In addition, the levels of tight junction proteins, zonula occludens-1 (ZO-1) and occludin, were elevated in REC following overexpression of miR-15a and -16. Overexpression of miR-15a and -16 played a role in reducing cellular permeability through inhibition of VEGF signaling in REC cultured under high glucose conditions. Using miR-15a-transgenic mice, we demonstrated the regulatory role of miR-15a on TGF-beta3 signaling and tight junction proteins in vivo. Our outcomes suggest that miR-15a/16 maintain the retinal endothelial cell barrier by reducing TGFbeta3/VEGF signaling and increasing levels of key tight junction proteins.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
| | - Li Liu
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA; Department of Ophthalmology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
39
|
Kim D, Mecham RP, Trackman PC, Roy S. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis. Invest Ophthalmol Vis Sci 2017; 58:2725-2731. [PMID: 28538980 PMCID: PMC5444550 DOI: 10.1167/iovs.16-21340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Methods Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. Results WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Conclusions Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States 2Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Philip C Trackman
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States 2Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
40
|
Kaneko H, Terasaki H. Biological Involvement of MicroRNAs in Proliferative Vitreoretinopathy. Transl Vis Sci Technol 2017; 6:5. [PMID: 28706757 PMCID: PMC5505124 DOI: 10.1167/tvst.6.4.5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Even with a high surgical success rate for retinal detachment and proliferative vitreoretinopathy (PVR) supported by the robust improvement in vitrectomy surgery and its related devices, certain questions still remain for the pathogenesis and treatment of PVR. One of the important biological events in PVR is epithelial–mesenchymal transition (EMT) of the retinal pigment epithelial (RPE) cells. MicroRNAs are noncoding, small, single-strand RNAs that posttranscriptionally regulate gene expression and have essential roles in homeostasis and pathogenesis in many diseases. Recently, microRNAs also had a critical role in EMT in many tissues and cells. One main purpose of this brief review is to describe the knowledge obtained from microRNA research, especially concerning vitreoretinal diseases. In addition, the potential role of microRNAs in prevention of PVR by regulating EMT in RPE cells is described. Understanding microRNA involvement in PVR could be helpful for developing new biological markers or therapeutic targets and reducing the rate of visual disability due to PVR.
Collapse
Affiliation(s)
- Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya Japan
| |
Collapse
|
41
|
Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res 2017; 139:15-22. [PMID: 28433754 DOI: 10.1016/j.visres.2017.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023]
Abstract
microRNA (miRNA) play critical roles in the pathological processes of diabetic retinopathy, including inflammatory responses, insulin signaling, and angiogenesis. In addition to their regulatory functions on gene expression, miRNA is considered as a potential therapeutic target, as well as a diagnostic marker for many diseases. Our understanding on the pathological mechanisms underlying diabetic retinopathy is still incomplete and additional investigations are required to develop novel therapeutic strategies. The aim of this study was to investigate our hypothesis that miR-146a plays a role in suppressing pro-inflammatory pathways, involving STAT3 and VEGF, through regulating IL-6 signaling to reduce apoptosis of human retinal endothelial cells (REC) in high glucose conditions. Human REC were cultured in normal (5mM) glucose or high glucose medium (25mM) for 3days. We performed transfections on REC with miRNA mimics (hsa-miR-146a-5p). Overexpression of miR-146a reduced IL-6 levels, STAT3 phosphorylation, and VEGF levels in REC cultured in high glucose. Cellular apoptosis was decreased in REC overexpressing miR-146a, as demonstrated by the inhibition of DNA fragmentation. More importantly, we demonstrated that the regulatory role of miR-146a on STAT3/VEGF and apoptosis was mediated by IL-6 receptor signaling in REC. Overall, we report that miR-146a suppressed IL-6 signaling, leading to reduced levels of STAT3 and VEGF in REC in high glucose conditions, leading to decreased apoptosis. The outcome suggests that miR-146a is a potential molecular target for inhibiting inflammation and apoptosis in the diabetic retina through the suppression of the IL-6-mediated STAT3/VEGF pathway.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States; Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
42
|
Correlation between miR-148 Expression in Vitreous and Severity of Rhegmatogenous Retinal Detachment. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3427319. [PMID: 28261609 PMCID: PMC5316437 DOI: 10.1155/2017/3427319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022]
Abstract
Purpose. We had earlier reported positive hsa-miR-148a-3p expression in eyes with rhegmatogenous retinal detachment (RRD) and its involvement in the epithelial-mesenchymal transition of retinal pigment epithelium in vitro. Here we investigated the association of hsa-miR-148a-3p expression levels in the vitreous fluid of patients with RRD with severity of RRD. Methods. The hsa-miR-148a-3p expression levels in the vitreous fluid, range (degree) of retinal detachment (RD), and pixels of retinal break were measured in 27 eyes with RRD. The association of hsa-miR-148a-3p expression levels with other factors was evaluated by multiple regression analysis. Results. The hsa-miR-148a-3p expression levels, time from onset of RRD to vitrectomy, range of RD, and pixels of retinal breaks were 23.68 ± 43.00, 12.07 ± 15.36 days, 155.85 ± 86.67 degrees, and 37000 ± 67100 pixels, respectively. Five eyes with RRD had vitreous hemorrhage preoperatively. The hsa-miR-148a-3p expression levels were significantly associated with pixels of retinal breaks (β = 0.699) and the time from onset of RRD to vitrectomy (β = 0.358) but not with the range of RD or presence of vitreous hemorrhage. Conclusion. The hsa-miR-148a-3p expression levels in the vitreous fluid were significantly associated with the size of retinal break and disease duration.
Collapse
|
43
|
Sharma S, Mathew AB, Chugh J. miRNAs: Nanomachines That Micromanage the Pathophysiology of Diabetes Mellitus. Adv Clin Chem 2017; 82:199-264. [PMID: 28939211 DOI: 10.1016/bs.acc.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) refers to a combination of heterogeneous complex metabolic disorders that are associated with episodes of hyperglycemia and glucose intolerance occurring as a result of defects in insulin secretion, action, or both. The prevalence of DM is increasing at an alarming rate, and there exists a need to develop better therapeutics and prognostic markers for earlier detection and diagnosis. In this review, after giving a brief introduction of diabetes mellitus and microRNA (miRNA) biogenesis pathway, we first describe various in vitro and animal model systems that have been developed to study diabetes. Further, we elaborate on the significant roles played by miRNAs as regulators of gene expression in the context of development of diabetes and its secondary complications. The different approaches to quantify miRNAs and their potential to be used as therapeutic targets for alleviation of diabetes have also been discussed.
Collapse
|
44
|
Ye EA, Steinle JJ. Regulatory role of microRNA on inflammatory responses of diabetic retinopathy. Neural Regen Res 2017; 12:580-581. [PMID: 28553335 PMCID: PMC5436353 DOI: 10.4103/1673-5374.205095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA.,Department of Ophthalmology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
45
|
Ye EA, Liu L, Jiang Y, Jan J, Gaddipati S, Suvas S, Steinle JJ. miR-15a/16 reduces retinal leukostasis through decreased pro-inflammatory signaling. J Neuroinflammation 2016; 13:305. [PMID: 27931222 PMCID: PMC5146897 DOI: 10.1186/s12974-016-0771-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/02/2016] [Indexed: 11/24/2022] Open
Abstract
Background Hyperglycemia is a significant risk factor for diabetic retinopathy and induces increased inflammatory responses and retinal leukostasis, as well as vascular damage. Although there is an increasing amount of evidence that miRNA may be involved in the regulation in the pathology of diabetic retinopathy, the mechanisms by which miRNA mediate cellular responses to control onset and progression of diabetic retinopathy are still unclear. The purpose of our study was to investigate the hypothesis that miR-15a/16 inhibit pro-inflammatory signaling to reduce retinal leukostasis. Methods We generated conditional knockout mice in which miR-15a/16 are eliminated in vascular endothelial cells. For the in vitro work, human retinal endothelial cells (REC) were cultured in normal (5 mM) glucose or transferred to high glucose medium (25 mM) for 3 days. Transfection was performed on REC in high glucose with miRNA mimic (hsa-miR-15a-5p, hsa-miR-16-5p). Statistical analyses were done using unpaired Student t test with two-tailed p value. p < 0.05 was considered significant. Data are presented as mean ± SEM. Results We demonstrated that high glucose conditions decreased expression of miR-15a/16 in cultured REC. Overexpression of miR-15a/16 with the mimic significantly decreased pro-inflammatory signaling of IL-1β, TNFα, and NF-κB in REC. In vivo data demonstrated that the loss of miR-15a/16 in vascular cells led to increased retinal leukostasis and CD45 levels, together with upregulated levels of IL-1β, TNFα, and NF-κB. Conclusions The data indicate that miR-15a/16 play significant roles in reducing retinal leukostasis, potentially through inhibition of inflammatory cellular signaling. Therefore, we suggest that miR-15a/16 offer a novel potential target for the inhibition of inflammatory mediators in diabetic retinopathy. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0771-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Li Liu
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Jenny Jan
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Subhash Gaddipati
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA
| | - Susmit Suvas
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA.,Ophthalmology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA.,Immunology and Microbiology, Wayne State University, Detroit, MI, USA
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA. .,Ophthalmology, Wayne State University, 9314 Scott Hall, Detroit, MI, 48202, USA.
| |
Collapse
|
46
|
Fluitt MB, Kumari N, Nunlee-Bland G, Nekhai S, Gambhir KK. miRNA-15a, miRNA-15b, and miRNA-499 are Reduced in Erythrocytes of Pre-Diabetic African-American Adults. JACOBS JOURNAL OF DIABETES AND ENDOCRINOLOGY 2016; 2:014. [PMID: 29399662 PMCID: PMC5792081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
AIMS The use of circulatory miRNAs as biomarkers and therapeutic targets for T2DM is an explosive area of study. However, no study has investigated circulatory miRNA expression exclusively in African-American adults. The aim of this study was to identify the expression of nine selected miRNAs in erythrocytes of pre-diabetic and type 2 diabetic African-American adults. MAIN METHODS Patients were recruited from the Howard University Hospital Diabetes Treatment Center following an 8 to 10 hour overnight fast. Expression of the nine selected miRNAs (miRNA-499, miRNA-146, miRNA-126, miRNA-223, miRNA-15a, miRNA-15b, miRNA-224, miRNA-326, and miRNA-375) was evaluated using quantitative real time PCR. KEY FINDINGS miRNA-15a, miRNA-15b, and miRNA-499 were significantly reduced in erythrocytes of pre-diabetic African-American adults. In the T2DM group, we found significant correlations between miRNA-15a and BMI (r=0.59, p=0.04), miRNA-15a and weight (r=0.52, p=0.01), and miRNA-15b and diastolic blood pressure (r=-0.52, p=0.02). In the pre-diabetic group, we found significant correlations between miRNA-15b and weight (r=0.90, p=0.02) and miRNA-499 and HbA1c (r=-0.89, p=0.01). SIGNIFICANCE To our knowledge, this is the first study investigating miRNA expression in erythrocytes of non-diabetic high-risk obese--pre-diabetic and type 2 diabetic African-American adults. The findings of this study are consistent with previous reports of reduced expression of miRNA-15a, miRNA-15b, and miRNA-499 in human plasma or serum and in animal models. The current findings support the use of circulating miRNA-15a, miRNA-15b, and miRNA-499 as potential biomarkers for T2DM in African-American adults.
Collapse
Affiliation(s)
- Maurice B. Fluitt
- Genetics and Human Genetics, Howard University College of Medicine, Washington, DC 20059, USA
- Molecular Endocrinology Laboratory, Department of Medicine, Howard University College of Medicine, 2041 Georgia Ave, NW, Suite 5C02, Washington, DC 20060, USA
| | - Namita Kumari
- The Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA
| | - Gail Nunlee-Bland
- Genetics and Human Genetics, Howard University College of Medicine, Washington, DC 20059, USA
- Molecular Endocrinology Laboratory, Department of Medicine, Howard University College of Medicine, 2041 Georgia Ave, NW, Suite 5C02, Washington, DC 20060, USA
- Howard University Diabetes Treatment Center, 2041 Georgia Ave, NW First Floor, Suite 1-OP-97, Washington, DC 20060, USA
| | - Sergei Nekhai
- The Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA
- Department of Medicine, Howard University College of Medicine, Howard University, Washington, DC 20059, USA
| | - Kanwal K. Gambhir
- Genetics and Human Genetics, Howard University College of Medicine, Washington, DC 20059, USA
- Molecular Endocrinology Laboratory, Department of Medicine, Howard University College of Medicine, 2041 Georgia Ave, NW, Suite 5C02, Washington, DC 20060, USA
- Howard University Diabetes Treatment Center, 2041 Georgia Ave, NW First Floor, Suite 1-OP-97, Washington, DC 20060, USA
- Department of Medicine, Howard University College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
47
|
Eissa S, Matboli M, Aboushahba R, Bekhet MM, Soliman Y. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J Diabetes Complications 2016; 30:1585-1592. [PMID: 27475263 DOI: 10.1016/j.jdiacomp.2016.07.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/03/2016] [Accepted: 07/10/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND A potential approach adopted in the current study is to design a panel based on in silico retrieval of novel miRNAs related to diabetic kidney disease and to evaluate its usefulness in disease diagnosis. PATIENT AND METHODS In the current study, we measured the differential expression of a 6 miRNA panel in urine pellet and exosome in an initial screening group using syber green-based PCR array. Also, we performed pathway enrichment analysis of the key target genes of these miRNAs. Finally, we selected the most significantly up-regulated miRNAs in DKD, exosomal miR-15b, miR-34a and miR-636, that were measured by real-time PCR in a larger independent set of 180 participants to evaluate their usefulness as novel urine biomarkers for diagnosis diabetic kidney disease. RESULTS PCR array analysis showed that miR-15b, miR-34a, and miR-636 were upregulated in both urine pellet and exosome of type 2DKD patients. qRT-PCR validation in the larger independent set of participants confirmed the significant up-regulation of these urinary exosomal miRs (P<0.001). Notably, a positive correlation was found between these miRs, serum creatinine and urinary protein creatinine ratio. The sensitivity of this miRs based panel in urine exosomes reached 100% in diagnosis of DKD. CONCLUSION We identified urinary exosomal miR-15b, miR-34a, and miR-636 as a novel diagnostic panel and a major contributor in the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Sanaa Eissa
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of Medicine, Ain Shams University, P.O. box 11381, Abbassia, Cairo, Egypt.
| | - Marwa Matboli
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of Medicine, Ain Shams University, P.O. box 11381, Abbassia, Cairo, Egypt
| | - Rowaida Aboushahba
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of Medicine, Ain Shams University, P.O. box 11381, Abbassia, Cairo, Egypt
| | - Miram M Bekhet
- Diabetes and endocrinology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasser Soliman
- Nephrology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
48
|
Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy. EBioMedicine 2016; 11:138-150. [PMID: 27531575 PMCID: PMC5049929 DOI: 10.1016/j.ebiom.2016.08.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/26/2016] [Accepted: 08/06/2016] [Indexed: 11/22/2022] Open
Abstract
Activation of pro-inflammatory and pro-angiogenic pathways in the retina and the bone marrow contributes to pathogenesis of diabetic retinopathy. We identified miR-15a as key regulator of both pro-inflammatory and pro-angiogenic pathways through direct binding and inhibition of the central enzyme in the sphingolipid metabolism, ASM, and the pro-angiogenic growth factor, VEGF-A. miR-15a was downregulated in diabetic retina and bone marrow cells. Over-expression of miR-15a downregulated, and inhibition of miR-15a upregulated ASM and VEGF-A expression in retinal cells. In addition to retinal effects, migration and retinal vascular repair function was impaired in miR-15a inhibitor-treated circulating angiogenic cells (CAC). Diabetic mice overexpressing miR-15a under Tie-2 promoter had normalized retinal permeability compared to wild type littermates. Importantly, miR-15a overexpression led to modulation toward nondiabetic levels, rather than complete inhibition of ASM and VEGF-A providing therapeutic effect without detrimental consequences of ASM and VEGF-A deficiencies.
Collapse
|
49
|
Jayaram H, Cepurna WO, Johnson EC, Morrison JC. MicroRNA Expression in the Glaucomatous Retina. Invest Ophthalmol Vis Sci 2016; 56:7971-82. [PMID: 26720444 DOI: 10.1167/iovs.15-18088] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE MicroRNAs are small, endogenous noncoding RNAs that modulate posttranscriptional gene expression. Although the contribution of microRNAs to the pathogenesis of glaucomatous damage is unknown, supporting evidence from central nervous system (CNS) research suggests they may play a role. It was therefore hypothesized that microRNAs known to be altered in CNS injury are also altered in experimental glaucoma. METHODS Intraocular pressure (IOP) was elevated in rats by unilateral injection of hypertonic saline and IOP monitored for 5 weeks. After rats were killed, retrobulbar optic nerve sections were graded for damage. MicroRNA was extracted from whole retinae of eyes with advanced nerve damage (n = 8) and from normal, noninjected control eyes (n = 8). Quantitative PCRs were performed using a panel of 17 microRNAs, reported from CNS research to be implicated in mechanisms also linked to glaucomatous damage. Computationally and experimentally derived gene targets were identified for the differentially expressed microRNAs. These were then integrated with existing gene array data. Functional interpretation was performed using the Molecular Signatures Database and DAVID Functional Annotation Clustering. RESULTS Eight microRNAs were significantly downregulated in glaucomatous retinae compared with controls (miR-181c, miR-497, miR-204, let-7a, miR-29b, miR-16, miR106b, and miR-25); miR-27a was significantly upregulated. Enrichment of targets associated with extracellular matrix/cell proliferation, immune system, and regulation of apoptosis were observed. Cholesterol homeostasis and mTORC-1 pathways showed reduced expression. CONCLUSIONS MicroRNAs are differentially expressed in retinae of eyes with advanced glaucomatous damage compared with normal controls. Integrating microRNA with gene expression data may improve understanding of the complex biological responses produced by chronically elevated IOP.
Collapse
|
50
|
miR-146a Attenuates Inflammatory Pathways Mediated by TLR4/NF-κB and TNFα to Protect Primary Human Retinal Microvascular Endothelial Cells Grown in High Glucose. Mediators Inflamm 2016; 2016:3958453. [PMID: 26997759 PMCID: PMC4779539 DOI: 10.1155/2016/3958453] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 12/21/2022] Open
Abstract
Pathological mechanisms underlying diabetic retinopathy are still not completely understood. Increased understanding of potential cellular pathways responsive to hyperglycemia is essential to develop novel therapeutic strategies for diabetic retinopathy. A growing body of evidence shows that microRNA (miRNA) play important roles in pathological mechanisms involved in diabetic retinopathy, as well as possessing potential as novel therapeutic targets. The hypothesis of this study was that miR-146a plays a key role in attenuating hyperglycemia-induced inflammatory pathways through reduced TLR4/NF-κB and TNFα signaling in primary human retinal microvascular endothelial cells (REC). We cultured human REC in normal (5 mM) glucose or transferred to high glucose medium (25 mM) for 3 days. Transfection was performed on REC with miRNA mimic (hsa-miR-146a-5p). Our results demonstrate that miR-146a expression was decreased in human REC cultured in high glucose. Overexpression of miR-146a using mimics reduced the levels of TLR4/NF-κB and TNFα in REC cultured in high glucose. Both MyD88-dependent and -independent signaling were decreased by miR-146a overexpression in REC in high glucose conditions. The results suggest that miR-146a is a potential therapeutic target for reducing inflammation in REC through inhibition of TLR4/NF-κB and TNFα. Our study will contribute to understanding of diabetic retinal pathology, as well as providing important clues to develop therapeutics for clinical applications.
Collapse
|