1
|
Degl'Innocenti E, Poloni TE, Medici V, Olimpico F, Finamore F, Profka X, Bascarane K, Morrone C, Pastore A, Escartin C, McDonnell LA, Dell'Anno MT. Astrocytic centrin-2 expression in entorhinal cortex correlates with Alzheimer's disease severity. Glia 2024; 72:2158-2177. [PMID: 39145525 DOI: 10.1002/glia.24603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.
Collapse
Affiliation(s)
- Elisa Degl'Innocenti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | | | | | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Karouna Bascarane
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Castrese Morrone
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Aldo Pastore
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Carole Escartin
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | | |
Collapse
|
2
|
Scholefield M, Church SJ, Philbert S, Xu J, Patassini S, Cooper GJS. Human dementia with Lewy bodies brain shows widespread urea elevations. Parkinsonism Relat Disord 2024; 124:107017. [PMID: 38788611 DOI: 10.1016/j.parkreldis.2024.107017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/25/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Several recent studies have uncovered the presence of widespread urea elevations in multiple neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease dementia (PDD), vascular dementia (VaD), and Huntington's disease (HD). However, it is currently unknown whether dementia with Lewy bodies also shows these alterations in urea. This study aimed to investigate if and where urea is perturbed in the DLB brain. METHODS Tissues from ten brain regions were obtained from 20 diagnosed cases of DLB and 19 controls. Urea concentrations were measured using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Case-control differences were assessed by nonparametric Mann-Whitney U tests, and s-values, E-values, effect sizes, and risk ratios were determined for each brain region. The results were compared to those previously obtained for AD, PDD, VaD, and HD. RESULTS As with other previously investigated dementia diseases, DLB shows widespread urea elevations, affecting all ten regions investigated in the current study; the degree of these elevations is lower than that seen in AD or PDD, similar to that seen in HD, and higher than that observed in VaD. The highest urea fold-change was observed in the pons and the lowest in the primary visual cortex. CONCLUSION Urea elevations appear to be a shared alterations across at least five neurodegenerative diseases, despite their many differences in clinical and neuropathological presentation. The cause and effects of this perturbation should be the focus of future studies, for its possible contributions to the pathology of these conditions.
Collapse
Affiliation(s)
- Melissa Scholefield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, UK.
| | - Stephanie J Church
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, UK.
| | - Sasha Philbert
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, UK.
| | - Jingshu Xu
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland, 1142, New Zealand.
| | - Stefano Patassini
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland, 1142, New Zealand.
| | - Garth J S Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, UK; School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland, 1142, New Zealand.
| |
Collapse
|
3
|
Quigley EB, DeVore SB, Khan SA, Geisterfer ZM, Rothfuss HM, Sequoia AO, Thompson PR, Gatlin JC, Cherrington BD, Navratil AM. GnRH Induces Citrullination of the Cytoskeleton in Murine Gonadotrope Cells. Int J Mol Sci 2024; 25:3181. [PMID: 38542155 PMCID: PMC10970285 DOI: 10.3390/ijms25063181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Peptidylarginine deiminases (PADs or PADIs) catalyze the conversion of positively charged arginine to neutral citrulline, which alters target protein structure and function. Our previous work established that gonadotropin-releasing hormone agonist (GnRHa) stimulates PAD2-catalyzed histone citrullination to epigenetically regulate gonadotropin gene expression in the gonadotrope-derived LβT2 cell line. However, PADs are also found in the cytoplasm. Given this, we used mass spectrometry (MS) to identify additional non-histone proteins that are citrullinated following GnRHa stimulation and characterized the temporal dynamics of this modification. Our results show that actin and tubulin are citrullinated, which led us to hypothesize that GnRHa might induce their citrullination to modulate cytoskeletal dynamics and architecture. The data show that 10 nM GnRHa induces the citrullination of β-actin, with elevated levels occurring at 10 min. The level of β-actin citrullination is reduced in the presence of the pan-PAD inhibitor biphenyl-benzimidazole-Cl-amidine (BB-ClA), which also prevents GnRHa-induced actin reorganization in dispersed murine gonadotrope cells. GnRHa induces the citrullination of β-tubulin, with elevated levels occurring at 30 min, and this response is attenuated in the presence of PAD inhibition. To examine the functional consequence of β-tubulin citrullination, we utilized fluorescently tagged end binding protein 1 (EB1-GFP) to track the growing plus end of microtubules (MT) in real time in transfected LβT2 cells. Time-lapse confocal microscopy of EB1-GFP reveals that the MT average lifetime increases following 30 min of GnRHa treatment, but this increase is attenuated by PAD inhibition. Taken together, our data suggest that GnRHa-induced citrullination alters actin reorganization and MT lifetime in gonadotrope cells.
Collapse
Affiliation(s)
- Elizabeth B. Quigley
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (E.B.Q.); (A.O.S.); (A.M.N.)
| | - Stanley B. DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | | | - Zachary M. Geisterfer
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Heather M. Rothfuss
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (E.B.Q.); (A.O.S.); (A.M.N.)
| | - Ari O. Sequoia
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (E.B.Q.); (A.O.S.); (A.M.N.)
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Jesse C. Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA;
| | - Brian D. Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (E.B.Q.); (A.O.S.); (A.M.N.)
| | - Amy M. Navratil
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (E.B.Q.); (A.O.S.); (A.M.N.)
| |
Collapse
|
4
|
Grabrucker S, Marizzoni M, Silajdžić E, Lopizzo N, Mombelli E, Nicolas S, Dohm-Hansen S, Scassellati C, Moretti DV, Rosa M, Hoffmann K, Cryan JF, O’Leary OF, English JA, Lavelle A, O’Neill C, Thuret S, Cattaneo A, Nolan YM. Microbiota from Alzheimer's patients induce deficits in cognition and hippocampal neurogenesis. Brain 2023; 146:4916-4934. [PMID: 37849234 PMCID: PMC10689930 DOI: 10.1093/brain/awad303] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/29/2023] [Accepted: 08/19/2023] [Indexed: 10/19/2023] Open
Abstract
Alzheimer's disease is a complex neurodegenerative disorder leading to a decline in cognitive function and mental health. Recent research has positioned the gut microbiota as an important susceptibility factor in Alzheimer's disease by showing specific alterations in the gut microbiome composition of Alzheimer's patients and in rodent models. However, it is unknown whether gut microbiota alterations are causal in the manifestation of Alzheimer's symptoms. To understand the involvement of Alzheimer's patient gut microbiota in host physiology and behaviour, we transplanted faecal microbiota from Alzheimer's patients and age-matched healthy controls into microbiota-depleted young adult rats. We found impairments in behaviours reliant on adult hippocampal neurogenesis, an essential process for certain memory functions and mood, resulting from Alzheimer's patient transplants. Notably, the severity of impairments correlated with clinical cognitive scores in donor patients. Discrete changes in the rat caecal and hippocampal metabolome were also evident. As hippocampal neurogenesis cannot be measured in living humans but is modulated by the circulatory systemic environment, we assessed the impact of the Alzheimer's systemic environment on proxy neurogenesis readouts. Serum from Alzheimer's patients decreased neurogenesis in human cells in vitro and were associated with cognitive scores and key microbial genera. Our findings reveal for the first time, that Alzheimer's symptoms can be transferred to a healthy young organism via the gut microbiota, confirming a causal role of gut microbiota in Alzheimer's disease, and highlight hippocampal neurogenesis as a converging central cellular process regulating systemic circulatory and gut-mediated factors in Alzheimer's.
Collapse
Affiliation(s)
- Stefanie Grabrucker
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Laboratory of Neuroimaging and Alzheimer’s Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Edina Silajdžić
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - Nicola Lopizzo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Mombelli
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
| | - Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Sebastian Dohm-Hansen
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | | | | | - Melissa Rosa
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
| | - Karina Hoffmann
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O’Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Jane A English
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Cora O’Neill
- APC Microbiome Ireland, University College Cork, Ireland
- School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, T12 YT20 Cork, Ireland
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
5
|
Zeleznik OA, Welling DB, Stankovic K, Frueh L, Balasubramanian R, Curhan GC, Curhan SG. Association of Plasma Metabolomic Biomarkers With Persistent Tinnitus: A Population-Based Case-Control Study. JAMA Otolaryngol Head Neck Surg 2023; 149:404-415. [PMID: 36928544 PMCID: PMC10020935 DOI: 10.1001/jamaoto.2023.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/17/2023] [Indexed: 03/18/2023]
Abstract
Importance Persistent tinnitus is common, disabling, and difficult to treat. Objective To evaluate the association between circulating metabolites and persistent tinnitus. Design, Setting, and Participants This was a population-based case-control study of 6477 women who were participants in the Nurses' Health Study (NHS) and NHS II with metabolomic profiles and tinnitus data. Information on tinnitus onset and frequency was collected on biennial questionnaires (2009-2017). For cases, metabolomic profiles were measured (2015-2021) in blood samples collected after the date of the participant's first report of persistent tinnitus (NHS, 1989-1999 and 2010-2012; NHS II, 1996-1999). Data analyses were performed from January 24, 2022, to January 14, 2023. Exposures In total, 466 plasma metabolites from 488 cases of persistent tinnitus and 5989 controls were profiled using 3 complementary liquid chromatography tandem mass spectrometry approaches. Main Outcomes and Measures Logistic regression was used to estimate odds ratios (ORs) of persistent tinnitus (per 1 SD increase in metabolite values) and 95% CIs for each individual metabolite. Metabolite set enrichment analysis was used to identify metabolite classes enriched for associations with tinnitus. Results Of the 6477 study participants (mean [SD] age, 52 [9] years; 6477 [100%] female; 6121 [95%] White individuals) who were registered nurses, 488 reported experiencing daily persistent (≥5 minutes) tinnitus. Compared with participants with no tinnitus (5989 controls), those with persistent tinnitus were slightly older (53.0 vs 51.8 years) and more likely to be postmenopausal, using oral postmenopausal hormone therapy, and have type 2 diabetes, hypertension, and/or hearing loss at baseline. Compared with controls, homocitrulline (OR, 1.32; (95% CI, 1.16-1.50); C38:6 phosphatidylethanolamine (PE; OR, 1.24; 95% CIs, 1.12-1.38), C52:6 triglyceride (TAG; OR, 1.22; 95% CIs, 1.10-1.36), C36:4 PE (OR, 1.22; 95% CIs, 1.10-1.35), C40:6 PE (OR, 1.22; 95% CIs, 1.09-1.35), and C56:7 TAG (OR, 1.21; 95% CIs, 1.09-1.34) were positively associated, whereas α-keto-β-methylvalerate (OR, 0.68; 95% CIs, 0.56-0.82) and levulinate (OR, 0.60; 95% CIs, 0.46-0.79) were inversely associated with persistent tinnitus. Among metabolite classes, TAGs (normalized enrichment score [NES], 2.68), PEs (NES, 2.48), and diglycerides (NES, 1.65) were positively associated, whereas phosphatidylcholine plasmalogens (NES, -1.91), lysophosphatidylcholines (NES, -2.23), and cholesteryl esters (NES,-2.31) were inversely associated with persistent tinnitus. Conclusions and Relevance This population-based case-control study of metabolomic profiles and tinnitus identified novel plasma metabolites and metabolite classes that were significantly associated with persistent tinnitus, suggesting that metabolomic studies may help improve understanding of tinnitus pathophysiology and identify therapeutic targets for this challenging disorder.
Collapse
Affiliation(s)
- Oana A. Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - D. Bradley Welling
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear, Boston
| | - Konstantina Stankovic
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Palo Alto, California
| | - Lisa Frueh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst
| | - Gary C. Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sharon G. Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Prakash A, García-Seisdedos D, Wang S, Kundu DJ, Collins A, George N, Moreno P, Papatheodorou I, Jones AR, Vizcaíno JA. Integrated View of Baseline Protein Expression in Human Tissues. J Proteome Res 2023; 22:729-742. [PMID: 36577097 PMCID: PMC9990129 DOI: 10.1021/acs.jproteome.2c00406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The availability of proteomics datasets in the public domain, and in the PRIDE database, in particular, has increased dramatically in recent years. This unprecedented large-scale availability of data provides an opportunity for combined analyses of datasets to get organism-wide protein abundance data in a consistent manner. We have reanalyzed 24 public proteomics datasets from healthy human individuals to assess baseline protein abundance in 31 organs. We defined tissue as a distinct functional or structural region within an organ. Overall, the aggregated dataset contains 67 healthy tissues, corresponding to 3,119 mass spectrometry runs covering 498 samples from 489 individuals. We compared protein abundances between different organs and studied the distribution of proteins across these organs. We also compared the results with data generated in analogous studies. Additionally, we performed gene ontology and pathway-enrichment analyses to identify organ-specific enriched biological processes and pathways. As a key point, we have integrated the protein abundance results into the resource Expression Atlas, where they can be accessed and visualized either individually or together with gene expression data coming from transcriptomics datasets. We believe this is a good mechanism to make proteomics data more accessible for life scientists.
Collapse
Affiliation(s)
- Ananth Prakash
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom.,Open Targets, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - David García-Seisdedos
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Shengbo Wang
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Deepti Jaiswal Kundu
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Andrew Collins
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Pablo Moreno
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom.,Open Targets, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Andrew R Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom.,Open Targets, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| |
Collapse
|
7
|
Roy R, Lorca C, Mulet M, Sánchez Milán JA, Baratas A, de la Casa M, Espinet C, Serra A, Gallart-Palau X. Altered ureido protein modification profiles in seminal plasma extracellular vesicles of non-normozoospermic men. Front Endocrinol (Lausanne) 2023; 14:1113824. [PMID: 37033249 PMCID: PMC10073716 DOI: 10.3389/fendo.2023.1113824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION Extracellular vesicles (EVs) have been recognized as key players in numerous physiological functions. These vesicles alter their compositions attuned to the health and disease states of the organism. In men, significant changes in the proteomic composition(s) of seminal plasma EVs (sEVs) have already been found to be related to infertility. METHODS Methods: In this study, we analyze the posttranslational configuration of sEV proteomes from normozoospermic (NZ) men and non-normozoospermic (non-NZ) men diagnosed with teratozoospermia and/or asthenozoospermia by unbiased, discovery-driven proteomics and advanced bioinformatics, specifically focusing on citrulline (Cit) and homocitrulline (hCit) posttranscriptional residues, both considered product of ureido protein modifications. RESULTS AND DISCUSSION Significant increase in the proteome-wide cumulative presence of hCit together with downregulation of Cit in specific proteins related to decisive molecular functions have been encountered in sEVs of non-NZ subjects. These findings identify novel culprits with a higher chance of affecting fundamental aspects of sperm functional quality and define potential specific diagnostic and prognostic non-invasive markers for male infertility.
Collapse
Affiliation(s)
- Rosa Roy
- Department of Biology, Genetics Unit, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Cristina Lorca
- Biomedical Research Institute of Lleida (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), Lleida, Spain
- IMDEA-Food Research Institute, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - María Mulet
- Biomedical Research Institute of Lleida (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), Lleida, Spain
- IMDEA-Food Research Institute, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - José Antonio Sánchez Milán
- Biomedical Research Institute of Lleida (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), Lleida, Spain
| | - Alejandro Baratas
- Department of Biology, Genetics Unit, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Moisés de la Casa
- Department of Biology, Genetics Unit, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- GINEFIV, Assisted Reproduction Centre, Madrid, Spain
| | - Carme Espinet
- Department of Medical Basic Sciences, University of Lleida (UdL), Lleida, Spain
| | - Aida Serra
- Biomedical Research Institute of Lleida (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), Lleida, Spain
- IMDEA-Food Research Institute, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, Madrid, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), Lleida, Spain
- *Correspondence: Aida Serra, ; Xavier Gallart-Palau,
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), Lleida, Spain
- Department of Psychology, University of Lleida (UdL), Lleida, Spain
- *Correspondence: Aida Serra, ; Xavier Gallart-Palau,
| |
Collapse
|
8
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
9
|
Verbruggen L, Ates G, Lara O, De Munck J, Villers A, De Pauw L, Ottestad-Hansen S, Kobayashi S, Beckers P, Janssen P, Sato H, Zhou Y, Hermans E, Njemini R, Arckens L, Danbolt NC, De Bundel D, Aerts JL, Barbé K, Guillaume B, Ris L, Bentea E, Massie A. Lifespan extension with preservation of hippocampal function in aged system x c--deficient male mice. Mol Psychiatry 2022; 27:2355-2368. [PMID: 35181756 PMCID: PMC9126817 DOI: 10.1038/s41380-022-01470-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
The cystine/glutamate antiporter system xc- has been identified as the major source of extracellular glutamate in several brain regions as well as a modulator of neuroinflammation, and genetic deletion of its specific subunit xCT (xCT-/-) is protective in mouse models for age-related neurological disorders. However, the previously observed oxidative shift in the plasma cystine/cysteine ratio of adult xCT-/- mice led to the hypothesis that system xc- deletion would negatively affect life- and healthspan. Still, till now the role of system xc- in physiological aging remains unexplored. We therefore studied the effect of xCT deletion on the aging process of mice, with a particular focus on the immune system, hippocampal function, and cognitive aging. We observed that male xCT-/- mice have an extended lifespan, despite an even more increased plasma cystine/cysteine ratio in aged compared to adult mice. This oxidative shift does not negatively impact the general health status of the mice. On the contrary, the age-related priming of the innate immune system, that manifested as increased LPS-induced cytokine levels and hypothermia in xCT+/+ mice, was attenuated in xCT-/- mice. While this was associated with only a very moderate shift towards a more anti-inflammatory state of the aged hippocampus, we observed changes in the hippocampal metabolome that were associated with a preserved hippocampal function and the retention of hippocampus-dependent memory in male aged xCT-/- mice. Targeting system xc- is thus not only a promising strategy to prevent cognitive decline, but also to promote healthy aging.
Collapse
Affiliation(s)
- Lise Verbruggen
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Gamze Ates
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Olaya Lara
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jolien De Munck
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Agnès Villers
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Université de Mons (UMONS), Mons, Belgium
| | - Laura De Pauw
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sigrid Ottestad-Hansen
- grid.5510.10000 0004 1936 8921Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sho Kobayashi
- grid.268394.20000 0001 0674 7277Department of Food, Life and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Pauline Beckers
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Pauline Janssen
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hideyo Sato
- grid.260975.f0000 0001 0671 5144Department of Medical Technology, Niigata University, Niigata, Japan
| | - Yun Zhou
- grid.5510.10000 0004 1936 8921Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Emmanuel Hermans
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Rose Njemini
- grid.8767.e0000 0001 2290 8069Frailty in Ageing research Department, VUB, Brussels, Belgium
| | - Lutgarde Arckens
- grid.5596.f0000 0001 0668 7884Laboratory of Neuroplasticity and Neuroproteomics, and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
| | - Niels C. Danbolt
- grid.5510.10000 0004 1936 8921Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Dimitri De Bundel
- grid.8767.e0000 0001 2290 8069Pharmaceutical Chemistry, Drug Analysis and Drug Information, C4N, VUB, Brussels, Belgium
| | - Joeri L. Aerts
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kurt Barbé
- grid.8767.e0000 0001 2290 8069The Biostatistics and Medical Informatics Department, VUB, Brussels, Belgium
| | | | - Laurence Ris
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Université de Mons (UMONS), Mons, Belgium
| | - Eduard Bentea
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
10
|
Wang L, Chen H, Tang J, Guo Z, Wang Y. Peptidylarginine Deiminase and Alzheimer's Disease. J Alzheimers Dis 2021; 85:473-484. [PMID: 34842193 DOI: 10.3233/jad-215302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptidylarginine deiminases (PADs) are indispensable enzymes for post-translational modification of proteins, which can convert Arg residues on the surface of proteins to citrulline residues. The PAD family has five isozymes, PAD1, 2, 3, 4, and 6, which have been found in multiple tissues and organs. PAD2 and PAD4 were detected in cerebral cortex and hippocampus from human and rodent brain. In the central nervous system, abnormal expression and activation of PADs are involved in the pathological changes and pathogenesis of Alzheimer's disease (AD). This article reviews the classification, distribution, and function of PADs, with an emphasis on the relationship between the abnormal activation of PADs and AD pathogenesis, diagnosis, and the therapeutic potential of PADs as drug targets for AD.
Collapse
Affiliation(s)
- Lai Wang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Hongyang Chen
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Jing Tang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Zhengwei Guo
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Yanming Wang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| |
Collapse
|
11
|
Scholefield M, Church SJ, Xu J, Patassini S, Roncaroli F, Hooper NM, Unwin RD, Cooper GJS. Severe and Regionally Widespread Increases in Tissue Urea in the Human Brain Represent a Novel Finding of Pathogenic Potential in Parkinson's Disease Dementia. Front Mol Neurosci 2021; 14:711396. [PMID: 34751215 PMCID: PMC8571017 DOI: 10.3389/fnmol.2021.711396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
Widespread elevations in brain urea have, in recent years, been reported in certain types of age-related dementia, notably Alzheimer’s disease (AD) and Huntington’s disease (HD). Urea increases in these diseases are substantive, and approximate in magnitude to levels present in uraemic encephalopathy. In AD and HD, elevated urea levels are widespread, and not only in regions heavily affected by neurodegeneration. However, measurements of brain urea have not hitherto been reported in Parkinson’s disease dementia (PDD), a condition which shares neuropathological and symptomatic overlap with both AD and HD. Here we report measurements of tissue urea from nine neuropathologically confirmed regions of the brain in PDD and post-mortem delay (PMD)-matched controls, in regions including the cerebellum, motor cortex (MCX), sensory cortex, hippocampus (HP), substantia nigra (SN), middle temporal gyrus (MTG), medulla oblongata (MED), cingulate gyrus, and pons, by applying ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Urea concentrations were found to be substantively elevated in all nine regions, with average increases of 3–4-fold. Urea concentrations were remarkably consistent across regions in both cases and controls, with no clear distinction between regions heavily affected or less severely affected by neuronal loss in PDD. These urea elevations mirror those found in uraemic encephalopathy, where equivalent levels are generally considered to be pathogenic, and those previously reported in AD and HD. Increased urea is a widespread metabolic perturbation in brain metabolism common to PDD, AD, and HD, at levels equal to those seen in uremic encephalopathy. This presents a novel pathogenic mechanism in PDD, which is shared with two other neurodegenerative diseases.
Collapse
Affiliation(s)
- Melissa Scholefield
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stephanie J Church
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jingshu Xu
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Faculty of Science, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Stefano Patassini
- Faculty of Science, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, The University of Manchester, Manchester, United Kingdom
| | - Nigel M Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Richard D Unwin
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Stoller Biomarker Discovery Centre & Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Garth J S Cooper
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Faculty of Science, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Mukherjee S, Perez KA, Dubois C, Nisbet RM, Li QX, Varghese S, Jin L, Birchall I, Streltsov VA, Vella LJ, McLean C, Barham KJ, Roberts BR, Masters CL. Citrullination of Amyloid-β Peptides in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:3719-3732. [PMID: 34519476 DOI: 10.1021/acschemneuro.1c00474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein citrullination (deimination of arginine residue) is a well-known biomarker of inflammation. Elevated protein citrullination has been shown to colocalize with extracellular amyloid plaques in postmortem AD patient brains. Amyloid-β (Aβ) peptides which aggregate and accumulate in the plaques of Alzheimer's disease (AD) have sequential N-terminal truncations and multiple post-translational modifications (PTM) such as isomerization, pyroglutamate formation, phosphorylation, nitration, and dityrosine cross-linking. However, no conclusive biochemical evidence exists whether citrullinated Aβ is present in AD brains. In this study, using high-resolution mass spectrometry, we have identified citrullination of Aβ in sporadic and familial AD brains by characterizing the tandem mass spectra of endogenous N-truncated citrullinated Aβ peptides. Our quantitative estimations demonstrate that ∼ 35% of pyroglutamate3-Aβ pool was citrullinated in plaques in the sporadic AD temporal cortex and ∼ 22% in the detergent-insoluble frontal cortex fractions. Similarly, hypercitrullinated pyroglutamate3-Aβ (∼ 30%) was observed in both the detergent-soluble as well as insoluble Aβ pool in familial AD cases. Our results indicate that a common mechanism for citrullination of Aβ exists in both the sporadic and familial AD. We establish that citrullination of Aβ is a remarkably common PTM, closely associated with pyroglutamate3-Aβ formation and its accumulation in AD. This may have implications for Aβ toxicity, autoantigenicity of Aβ, and may be relevant for the design of diagnostic assays and therapeutic targeting.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Keyla A. Perez
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Celine Dubois
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Rebecca M. Nisbet
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Qiao-Xin Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Shiji Varghese
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ian Birchall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Victor A. Streltsov
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Laura J. Vella
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Catriona McLean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia
| | - Kevin J. Barham
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Colin L. Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
13
|
Merighi S, Poloni TE, Terrazzan A, Moretti E, Gessi S, Ferrari D. Alzheimer and Purinergic Signaling: Just a Matter of Inflammation? Cells 2021; 10:cells10051267. [PMID: 34065393 PMCID: PMC8161210 DOI: 10.3390/cells10051267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a widespread neurodegenerative pathology responsible for about 70% of all cases of dementia. Adenosine is an endogenous nucleoside that affects neurodegeneration by activating four membrane G protein-coupled receptor subtypes, namely P1 receptors. One of them, the A2A subtype, is particularly expressed in the brain at the striatal and hippocampal levels and appears as the most promising target to counteract neurological damage and adenosine-dependent neuroinflammation. Extracellular nucleotides (ATP, ADP, UTP, UDP, etc.) are also released from the cell or are synthesized extracellularly. They activate P2X and P2Y membrane receptors, eliciting a variety of physiological but also pathological responses. Among the latter, the chronic inflammation underlying AD is mainly caused by the P2X7 receptor subtype. In this review we offer an overview of the scientific evidence linking P1 and P2 mediated purinergic signaling to AD development. We will also discuss potential strategies to exploit this knowledge for drug development.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (S.M.); (A.T.); (E.M.)
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, 20081 Milan, Italy;
| | - Anna Terrazzan
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (S.M.); (A.T.); (E.M.)
| | - Eva Moretti
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (S.M.); (A.T.); (E.M.)
| | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (S.M.); (A.T.); (E.M.)
- Correspondence: (S.G.); (D.F.)
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
- Correspondence: (S.G.); (D.F.)
| |
Collapse
|
14
|
Park JE, JebaMercy G, Pazhanchamy K, Guo X, Ngan SC, Liou KCK, Lynn SE, Ng SS, Meng W, Lim SC, Leow MKS, Richards AM, Pennington DJ, de Kleijn DPV, Sorokin V, Ho HH, McCarthy NE, Sze SK. Aging-induced isoDGR-modified fibronectin activates monocytic and endothelial cells to promote atherosclerosis. Atherosclerosis 2021; 324:58-68. [PMID: 33831670 DOI: 10.1016/j.atherosclerosis.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Aging is the primary risk factor for cardiovascular disease (CVD), but the mechanisms underlying age-linked atherosclerosis remain unclear. We previously observed that long-lived vascular matrix proteins can acquire 'gain-of-function' isoDGR motifs that might play a role in atherosclerotic pathology. METHODS IsoDGR-specific mAb were generated and used for ELISA-based measurement of motif levels in plasma samples from patients with coronary artery diseases (CAD) and non-CAD controls. Functional consequences of isoDGR accumulation in age-damaged fibronectin were determined by bioassay for capacity to activate monocytes, macrophages, and endothelial cells (signalling activity, pro-inflammatory cytokine expression, and recruitment/adhesion potential). Mice deficient in the isoDGR repair enzyme PCMT1 were used to assess motif distribution and macrophage localisation in vivo. RESULTS IsoDGR-modified fibronectin and fibrinogen levels in patient plasma were significantly enhanced in CAD and further associated with smoking status. Functional assays demonstrated that isoDGR-modified fibronectin activated both monocytes and macrophages via integrin receptor 'outside in' signalling, triggering an ERK:AP-1 cascade and expression of pro-inflammatory cytokines MCP-1 and TNFα to drive additional recruitment of circulating leukocytes. IsoDGR-modified fibronectin also induced endothelial cell expression of integrin β1 to further enhance cellular adhesion and matrix deposition. Analysis of murine aortic tissues confirmed accumulation of isoDGR-modified proteins co-localised with CD68+ macrophages in vivo. CONCLUSIONS Age-damaged fibronectin features isoDGR motifs that increase binding to integrins on the surface of monocytes, macrophages, and endothelial cells. Subsequent activation of 'outside-in' signalling elicits a range of potent cytokines and chemokines that drive additional leukocyte recruitment to the developing atherosclerotic matrix.
Collapse
Affiliation(s)
- Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Gnanasekaran JebaMercy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Kalailingam Pazhanchamy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Xue Guo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - SoFong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Ken Cheng Kang Liou
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Soe EinSi Lynn
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Ser Sue Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Wei Meng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Su Chi Lim
- Diabetes Center, Khoo Teck Puat Hospital, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, NTU, Singapore; Department of Endocrinology, Tan Tock Seng Hospital, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, 119228; Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, 8140, New Zealand
| | - Daniel J Pennington
- Centre for Immunobiology, The Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Health System, Singapore, 119228
| | - Hee Hwa Ho
- Department of Cardiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551.
| |
Collapse
|
15
|
Chi H, Hao W, Qi X, Zhang T, Dong Y, Gao H, Wei C, Shi W. A proteomic approach towards understanding the pathogenesis of Mooren's ulcer. Exp Eye Res 2021; 205:108509. [PMID: 33647271 DOI: 10.1016/j.exer.2021.108509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 01/16/2023]
Abstract
Mooren's ulcer (MU) is a refractory autoimmune corneal ulcer with a high recurrence rate. So far, its molecular profiles and pathomechanisms remain largely unknown. Therefore, we aim to characterize the protein profiles of MU specimens by data-independent-acquisition (DIA) mass spectrometry (MS), and to define the functions of differentially-expressed proteins (DEPs). Through LC-MS/MS, 550 DEPs were identified between MU biopsies and age-matched controls (Ctrl). KEGG analysis revealed that the significantly enriched pathways of the up-regulated proteins mainly covered lysosomes, antigen processing and presentation, and phagosomes. We subsequently validated the expressions of the selected candidates using parallel-reaction-monitoring (PRM)-based MS and immunohistochemistry (IHC), including cathepsins, TIMP3, MMP-10, MYOC, PIGR, CD74, CAT, SOD2, and SOD3. Moreover, immunoglobulin (Ig) components and B lymphocytes associated proteins MZB1, HSPA5, and LAP3 in MU were significantly increased and validated by PRM-based MS and IHC. The remarkable enrichment of neutrophil extracellular traps (NETs) components in MU samples was also identified and determined. The up-regulated Ig components and NETs components suggested that B lymphocytes and neutrophils participated in the immunopathology of MU. Importantly, we also identified and validated much more expression of peptidyl arginine deiminase 4 (PADI4) in MU samples. The double-immunofluorescence staining showed the co-localization of citrulline residues with MPO, NE, and IgG in MU samples. These results indicated the presences of PADI4-mediated citrullination modification and anti-citrullinated protein antibodies (ACPAs) in MU samples. Our findings, for the first time, provide a global proteomic signature of MU, which may open a new avenue towards disease pathology and therapeutics.
Collapse
Affiliation(s)
- Hao Chi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Wenpei Hao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ting Zhang
- Eye Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Yanling Dong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Hua Gao
- Eye Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Eye Hospital of Shandong First Medical University, Jinan, Shandong Province, China.
| |
Collapse
|
16
|
Gallart-Palau X, Serra A, Sze SK. System-wide molecular dynamics of endothelial dysfunction in Gram-negative sepsis. BMC Biol 2020; 18:175. [PMID: 33234129 PMCID: PMC7687804 DOI: 10.1186/s12915-020-00914-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
Background Inflammation affecting whole organism vascular networks plays a central role in the progression and establishment of several human diseases, including Gram-negative sepsis. Although the molecular mechanisms that control inflammation of specific vascular beds have been partially defined, knowledge lacks on the impact of these on the molecular dynamics of whole organism vascular beds. In this study, we have generated an in vivo model by coupling administration of lipopolysaccharide with stable isotope labeling in mammals to mimic vascular beds inflammation in Gram-negative sepsis and to evaluate its effects on the proteome molecular dynamics. Proteome molecular dynamics of individual vascular layers (glycocalyx (GC), endothelial cells (EC), and smooth muscle cells (SMC)) were then evaluated by coupling differential systemic decellularization in vivo with unbiased systems biology proteomics. Results Our data confirmed the presence of sepsis-induced disruption of the glycocalyx, and we show for the first time the downregulation of essential molecular maintenance processes in endothelial cells affecting this apical vascular coating. Similarly, a novel catabolic phenotype was identified in the newly synthesized EC proteomes that involved the impairment of protein synthesis, which affected multiple cellular mechanisms, including oxidative stress, the immune system, and exacerbated EC-specific protein turnover. In addition, several endogenous molecular protective mechanisms involving the synthesis of novel antithrombotic and anti-inflammatory proteins were also identified as active in EC. The molecular dynamics of smooth muscle cells in whole organism vascular beds revealed similar patterns of impairment as those identified in EC, although this was observed to a lesser extent. Furthermore, the dynamics of protein posttranslational modifications showed disease-specific phosphorylation sites in the EC proteomes. Conclusions Together, the novel findings reported here provide a broader picture of the molecular dynamics that take place in whole organism vascular beds in Gram-negative sepsis inflammation. Similarly, the obtained data can pave the way for future therapeutic strategies aimed at intervening in specific protein synthesis mechanisms of the vascular unit during acute inflammatory processes.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,University Hospital Institut Pere Mata, Reus, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Reus, Tarragona, Spain.,Centro de investigación Biomédica en Salud Mental CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food & Health Sciences Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain.,Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aida Serra
- IMDEA Food & Health Sciences Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain. .,Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
17
|
Sze SK, JebaMercy G, Ngan SC. Profiling the 'deamidome' of complex biosamples using mixed-mode chromatography-coupled tandem mass spectrometry. Methods 2020; 200:31-41. [PMID: 32418626 DOI: 10.1016/j.ymeth.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/26/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Deamidation is a spontaneous degenerative protein modification (DPM) that disrupts the structure and function of both endogenous proteins and various therapeutic agents. While deamidation has long been recognized as a critical event in human aging and multiple degenerative diseases, research progress in this field has been restricted by the technical challenges associated with studying this DPM in complex biological samples. Asparagine (Asn) deamidation generates L-aspartic acid (L-Asp), D-aspartic acid (D-Asp), L-isoaspartic acid (L-isoAsp) or D-isoaspartic acid (D-isoAsp) residues at the same position of Asn in the affected protein, but each of these amino acids displays similar hydrophobicity and cannot be effectively separated by reverse phase liquid chromatography. The Asp and isoAsp isoforms are also difficult to resolve using mass spectrometry since they have the same mass and fragmentation pattern in MS/MS. Moreover, the 13C peaks of the amidated peptide are often misassigned as monoisotopic peaks of the corresponding deamidated peptides in protein database searches. Furthermore, typical protein isolation and proteomic sample preparation methods induce artificial deamidation that cannot be distinguished from the physiological forms. To better understand the role of deamidation in biological aging and degenerative pathologies, new technologies are now being developed to address these analytical challenges, including mixed mode electrostatic-interaction modified hydrophilic interaction liquid chromatography (emHILIC). When coupled to high resolution, high accuracy tandem mass spectrometry this technology enables unprecedented, proteome-wide study of the 'deamidome' of complex samples. The current article therefore reviews recent advances in sample preparation methods, emHILIC-MS/MS technology, and MS instrumentation / data processing approaches to achieving accurate and reliable characterization of protein deamidation in complex biological and clinical samples.
Collapse
Affiliation(s)
- Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Gnanasekaran JebaMercy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - SoFong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
18
|
Gallart-Palau X, Guo X, Serra A, Sze SK. Alzheimer's disease progression characterized by alterations in the molecular profiles and biogenesis of brain extracellular vesicles. Alzheimers Res Ther 2020; 12:54. [PMID: 32384937 PMCID: PMC7210691 DOI: 10.1186/s13195-020-00623-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The contributions of brain intercellular communication mechanisms, specifically extracellular vesicles (EV), to the progression of Alzheimer's disease (AD) remain poorly understood. METHODS Here, we investigated the role(s) of brain EV in the progressive course of AD through unbiased proteome-wide analyses of temporal lobe-derived EV and proteome-label quantitation of complementary remaining brain portions. Furthermore, relevant proteins identified were further screened by multiple reaction monitoring. RESULTS Our data indicate that EV biogenesis was altered during preclinical AD with the genesis of a specific population of EV containing MHC class-type markers. The significant presence of the prion protein PrP was also manifested in these brain vesicles during preclinical AD. Similarly, sequestration of amyloid protein APP in brain EV coincided with the observed PrP patterns. In contrast, active incorporation of the mitophagy protein GABARAP in these brain vesicles was disrupted as AD progressed. Likewise, disrupted incorporation of LAMP1 in brain EV was evident from the initial manifestation of AD clinical symptoms, although the levels of the protein remained significantly upregulated in the temporal lobe of diseased brains. CONCLUSIONS Our findings indicate that impaired autophagy in preclinical AD coincides with the appearance of proinflammatory and neuropathological features in brain extracellular vesicles, facts that moderately remain throughout the entire AD progression. Thus, these data highlight the significance of brain EV in the establishment of AD neuropathology and represent a further leap toward therapeutic interventions with these vesicles in human dementias.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Institut Pere Mata, Reus, Tarragona, Spain
| | - Xue Guo
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Aida Serra
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain.
| | - Siu Kwan Sze
- Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
19
|
Serum albumin cysteine trioxidation is a potential oxidative stress biomarker of type 2 diabetes mellitus. Sci Rep 2020; 10:6475. [PMID: 32296090 PMCID: PMC7160123 DOI: 10.1038/s41598-020-62341-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/11/2020] [Indexed: 01/24/2023] Open
Abstract
Metabolic disorders in T2DM generate multiple sources of free radicals and oxidative stress that accelerate nonenzymatic degenerative protein modifications (DPMs) such as protein oxidation, disrupt redox signaling and physiological function, and remain a major risk factor for clinical diabetic vascular complications. In order to identify potential oxidative biomarkers in the blood plasma of patients with T2DM, we used LC-MS/MS-based proteomics to profile plasma samples from patients with T2DM and healthy controls. The results showed that human serum albumin (HSA) is damaged by irreversible cysteine trioxidation, which can be a potential oxidative stress biomarker for the early diagnosis of T2DM. The quantitative detection of site-specific thiol trioxidation is technically challenging; thus, we developed a sensitive and selective LC-MS/MS workflow that has been used to discover and quantify three unique thiol-trioxidized HSA peptides, ALVLIAFAQYLQQC(SO3H)PFEDHVK (m/z 1241.13), YIC(SO3H)ENQDSISSK (m/z 717.80) and RPC(SO3H)FSALEVDETYVPK (m/z 951.45), in 16 individual samples of healthy controls (n = 8) and individuals with diabetes (n = 8). Targeted quantitative analysis using multiple reaction monitoring mass spectrometry revealed impairment of the peptides with m/z 1241.13, m/z 717.80 and m/z 951.45, with significance (P < 0.02, P < 0.002 and P < 0.03), in individuals with diabetes. The results demonstrated that a set of three HSA thiol-trioxidized peptides, which are irreversibly oxidatively damaged in HSA in the plasma of patients with T2DM, can be important indicators and potential biomarkers of oxidative stress in T2DM.
Collapse
|
20
|
Yanar K, Atayik MC, Simsek B, Çakatay U. Novel biomarkers for the evaluation of aging-induced proteinopathies. Biogerontology 2020; 21:531-548. [PMID: 32274599 DOI: 10.1007/s10522-020-09878-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Proteinopathies are characterized by aging related accumulation of misfolded protein aggregates. Irreversible covalent modifications of aging proteins may significantly affect the native three dimentional conformation of proteins, alter their function and lead to accumulation of misfolded protein as dysfunctional aggregates. Protein misfolding and accumulation of aberrant proteins are known to be associated with aging-induced proteinopathies such as amyloid ß and tau proteins in Alzheimer's disease, α-synuclein in Parkinson's disease and islet amyloid polypeptides in Type 2 diabetes mellitus. Protein oxidation processes such as S-nitrosylation, dityrosine formation and some of the newly elucidated processes such as carbamylation and citrullination recently drew the attention of researchers in the field of Gerontology. Studying over these processes and illuminating their relations between proteinopathies may help to diagnose early and even to treat age related disorders. Therefore, we have chosen to concentrate on aging-induced proteinopathic nature of these novel protein modifications in this review.
Collapse
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Can Atayik
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Simsek
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
21
|
Adav SS, Sze SK. Hypoxia-Induced Degenerative Protein Modifications Associated with Aging and Age-Associated Disorders. Aging Dis 2020; 11:341-364. [PMID: 32257546 PMCID: PMC7069466 DOI: 10.14336/ad.2019.0604] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Aging is an inevitable time-dependent decline of various physiological functions that finally leads to death. Progressive protein damage and aggregation have been proposed as the root cause of imbalance in regulatory processes and risk factors for aging and neurodegenerative diseases. Oxygen is a modulator of aging. The oxygen-deprived conditions (hypoxia) leads to oxidative stress, cellular damage and protein modifications. Despite unambiguous evidence of the critical role of spontaneous non-enzymatic Degenerative Protein Modifications (DPMs) such as oxidation, glycation, carbonylation, carbamylation, and deamidation, that impart deleterious structural and functional protein alterations during aging and age-associated disorders, the mechanism that mediates these modifications is poorly understood. This review summarizes up-to-date information and recent developments that correlate DPMs, aging, hypoxia, and age-associated neurodegenerative diseases. Despite numerous advances in the study of the molecular hallmark of aging, hypoxia, and degenerative protein modifications during aging and age-associated pathologies, a major challenge remains there to dissect the relative contribution of different DPMs in aging (either natural or hypoxia-induced) and age-associated neurodegeneration.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
22
|
Denver P, D’Adamo H, Hu S, Zuo X, Zhu C, Okuma C, Kim P, Castro D, Jones MR, Leal C, Mekkittikul M, Ghadishah E, Teter B, Vinters HV, Cole GM, Frautschy SA. A Novel Model of Mixed Vascular Dementia Incorporating Hypertension in a Rat Model of Alzheimer's Disease. Front Physiol 2019; 10:1269. [PMID: 31708792 PMCID: PMC6821690 DOI: 10.3389/fphys.2019.01269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) and mixed dementia (MxD) comprise the majority of dementia cases in the growing global aging population. MxD describes the coexistence of AD pathology with vascular pathology, including cerebral small vessel disease (SVD). Cardiovascular disease increases risk for AD and MxD, but mechanistic synergisms between the coexisting pathologies affecting dementia risk, progression and the ultimate clinical manifestations remain elusive. To explore the additive or synergistic interactions between AD and chronic hypertension, we developed a rat model of MxD, produced by breeding APPswe/PS1ΔE9 transgenes into the stroke-prone spontaneously hypertensive rat (SHRSP) background, resulting in the SHRSP/FAD model and three control groups (FAD, SHRSP and non-hypertensive WKY rats, n = 8-11, both sexes, 16-18 months of age). After behavioral testing, rats were euthanized, and tissue assessed for vascular, neuroinflammatory and AD pathology. Hypertension was preserved in the SHRSP/FAD cross. Results showed that SHRSP increased FAD-dependent neuroinflammation (microglia and astrocytes) and tau pathology, but plaque pathology changes were subtle, including fewer plaques with compact cores and slightly reduced plaque burden. Evidence for vascular pathology included a change in the distribution of astrocytic end-foot protein aquaporin-4, normally distributed in microvessels, but in SHRSP/FAD rats largely dissociated from vessels, appearing disorganized or redistributed into neuropil. Other evidence of SVD-like pathology included increased collagen IV staining in cerebral vessels and PECAM1 levels. We identified a plasma biomarker in SHRSP/FAD rats that was the only group to show increased Aqp-4 in plasma exosomes. Evidence of neuron damage in SHRSP/FAD rats included increased caspase-cleaved actin, loss of myelin and reduced calbindin staining in neurons. Further, there were mitochondrial deficits specific to SHRSP/FAD, notably the loss of complex II, accompanying FAD-dependent loss of mitochondrial complex I. Cognitive deficits exhibited by FAD rats were not exacerbated by the introduction of the SHRSP phenotype, nor was the hyperactivity phenotype associated with SHRSP altered by the FAD transgene. This novel rat model of MxD, encompassing an amyloidogenic transgene with a hypertensive phenotype, exhibits several features associated with human vascular or "mixed" dementia and may be a useful tool in delineating the pathophysiology of MxD and development of therapeutics.
Collapse
Affiliation(s)
- Paul Denver
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather D’Adamo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shuxin Hu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Xiaohong Zuo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Cansheng Zhu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Chihiro Okuma
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Peter Kim
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Daniel Castro
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Mychica R. Jones
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Carmen Leal
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Marisa Mekkittikul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Elham Ghadishah
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Teter
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Harry V. Vinters
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Gregory Michael Cole
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Sally A. Frautschy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
23
|
Serra A, Gallart-Palau X, Park JE, Lim GGY, Lim KL, Ho HH, Tam JP, Sze SK. Vascular Bed Molecular Profiling by Differential Systemic Decellularization In Vivo. Arterioscler Thromb Vasc Biol 2019; 38:2396-2409. [PMID: 30354219 DOI: 10.1161/atvbaha.118.311552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective- Vascular endothelial dysfunction is a key component of several major human diseases, but the molecular basis of this complex disorder has been difficult to determine in vivo. Previous attempts to identify key mediators of vascular endothelial dysfunction in experimental models have been limited by the lack of suitable methods for system-wide analyses of vascular bed biology. Here, we aimed to develop a novel method for investigating vascular endothelial dysfunction pathogenesis that enables system-wide analyses of molecular interactions between endothelial glycocalyx, endothelial cells, and smooth muscle cells in murine. Approach and Results- We developed a new technique using whole-body differential perfusion with increasing concentrations of detergent buffer to selectively solubilize distinct layers of vascular bed tissue in rodents. When combined with proteomics techniques, our novel approach of differential systemic decellularization in vivo enabled quantitative profiling of vascular beds throughout the body. Initial perfusion with phosphate buffer was used to obtain the endothelial glycocalyx, followed by subsequent extraction of endothelial cell components, and finally by smooth muscle cell constituents with increasing concentrations of detergent. Differential systemic decellularization in vivo has also been successfully applied to characterize molecular events in the vascular bed pathology of lipopolysaccharide-challenged mice. Conclusions- Together, these data indicate that differential systemic decellularization in vivo permits system-wide molecular characterization of vascular bed proteomes in rodent models and can be used to advance our current understanding of vascular endothelial dysfunction pathogenesis and progression in a wide range of disease settings.
Collapse
Affiliation(s)
- Aida Serra
- From the School of Biological Sciences, Nanyang Technological University, Singapore (A.S., X.G.-P., J.E.P., J.P.T., S.K.S.)
| | - Xavier Gallart-Palau
- From the School of Biological Sciences, Nanyang Technological University, Singapore (A.S., X.G.-P., J.E.P., J.P.T., S.K.S.)
| | - Jung Eun Park
- From the School of Biological Sciences, Nanyang Technological University, Singapore (A.S., X.G.-P., J.E.P., J.P.T., S.K.S.)
| | - Grace Gui Yin Lim
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore (G.G.Y.L., K.L.L.)
| | - Kah Leong Lim
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore (G.G.Y.L., K.L.L.)
- Department of Physiology, National University of Singapore (K.L.L.)
| | - Hee Hwa Ho
- Department of Cardiology, Tan Tock Seng Hospital, Singapore (H.H.H.)
| | - James P Tam
- From the School of Biological Sciences, Nanyang Technological University, Singapore (A.S., X.G.-P., J.E.P., J.P.T., S.K.S.)
| | - Siu Kwan Sze
- From the School of Biological Sciences, Nanyang Technological University, Singapore (A.S., X.G.-P., J.E.P., J.P.T., S.K.S.)
| |
Collapse
|
24
|
Gallart-Palau X, Tan LM, Serra A, Gao Y, Ho HH, Richards AM, Kandiah N, Chen CP, Kalaria RN, Sze SK. Degenerative protein modifications in the aging vasculature and central nervous system: A problem shared is not always halved. Ageing Res Rev 2019; 53:100909. [PMID: 31116994 DOI: 10.1016/j.arr.2019.100909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Aging influences the pathogenesis and progression of several major diseases affecting both the cardiovascular system (CVS) and central nervous system (CNS). Defining the common molecular features that underpin these disorders in these crucial body systems will likely lead to increased quality of life and improved 'health-span' in the global aging population. Degenerative protein modifications (DPMs) have been strongly implicated in the molecular pathogenesis of several age-related diseases affecting the CVS and CNS, including atherosclerosis, heart disease, dementia syndromes, and stroke. However, these isolated findings have yet to be integrated into a wider framework, which considers the possibility that, despite their distinct features, CVS and CNS disorders may in fact be closely related phenomena. In this work, we review the current literature describing molecular roles of the major age-associated DPMs thought to significantly impact on human health, including carbamylation, citrullination and deamidation. In particular, we focus on data indicating that specific DPMs are shared between multiple age-related diseases in both CVS and CNS settings. By contextualizing these data, we aim to assist future studies in defining the universal mechanisms that underpin both vascular and neurological manifestations of age-related protein degeneration.
Collapse
|
25
|
Serra A, Gallart-Palau X, Koh WY, Chua ZJY, Guo X, Chow CJJ, Chen WM, Park JE, Li T, Tam JP, Sze SK. Prooxidant modifications in the cryptome of beef jerky, the deleterious post-digestion composition of processed meat snacks. Food Res Int 2019; 125:108569. [PMID: 31554040 DOI: 10.1016/j.foodres.2019.108569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023]
Abstract
Snacking has traditionally been associated with consumption of foods rich in fats and carbohydrates. However, new dietary trends switched to consumption of protein-rich foods. This study investigates the impact of food processing on the cryptome of one of the most widely consumed meat snacks, beef jerky. We have performed discovery-driven proteome-wide analyses, which identified a significantly elevated presence of reactive prooxidant post-translational modifications in jerky. We also found that these protein decorations impact an important subset of in-silico predicted DNA binding cryptides. Furthermore, we observed cell-dependent reduction in cell viability after prolonged treatments with endogenous-like jerky digests. Collectively these findings uncover the presence of prooxidant modifications in processed dried beef snacks and associate their presence with cytotoxicity. Thus, the findings reported here can pave the way for future studies aimed to establish appropriate dietary recommendations on snacking trends.
Collapse
Affiliation(s)
- Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; IMDEA-Food Research Institute, Campus of International Excellence UAM+CSIC, 8 Crta. Canto Blanco, Madrid, 28049, Spain
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; IMDEA-Food Research Institute, Campus of International Excellence UAM+CSIC, 8 Crta. Canto Blanco, Madrid, 28049, Spain
| | - Wei Yi Koh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Zoey Jia Yu Chua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xue Guo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Chase Jia Jing Chow
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Wei Meng Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Tianhu Li
- School of Physical & Mathematical Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
26
|
Rebenkova MS, Gombozhapova AE, Rogovskaya YV, Ryabov VV, Kzhyshkowska YG, Kim BE, Prohorova YA. [Dynamics of brain CD68+ and stabilin-1+ macrophage infiltration in patients with myocardial infarction]. ACTA ACUST UNITED AC 2019; 59:44-50. [PMID: 31131759 DOI: 10.18087/cardio.2584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/18/2022]
Abstract
Te aim of the study was to evaluate the temporal dynamics of brain CD68+ and stabilin-1+ macrophage infltration in patients with fatal myocardial infarction (MI) type 1. MATERIALS AND METHODS Te study included 31 patients with fatal MI type I. Te control group comprised 10 patients of 18-40 age group who died from injuries incompatible with life. Patients with MI were divided into two groups. Group 1 comprised patients who died during the frst 72 hours of MI, group 2 comprised patients who died on days 4‒28. Macrophage infltration in the brain was assessed by immunohistochemical analysis. We used CD68 as a marker for the cells of the macrophage lineage and stabilin-1 as an M2-like macrophage biomarker. RESULTS In group 1 the number of brain CD68+ macrophages was signifcantly higher than in the control group. In group 2 the intensity of brain CD68+ cells infltration was lower than in group 1 and higher than in the control group. Tere was a small amount of stabilin-1+ macrophages in the brain of healthy people, as well as of patients who died from MI. Tere were no signifcant differences in the number of stabilin-1+ cells between group 1 and group 2. Correlation analysis revealed the presence of positive correlation between the number of CD68 + macrophages in the infarct, peri-infarct, and non-infarct areas of the myocardium and the number of CD68+ macrophages in the brain in patients with MI. Tere were not correlations between the number of CD68 + and stabilin-1+ cells and the presence of diabetes mellitus, history of stroke, history of MI, and pre-infarction angina. CONCLUSION Te number of brain CD68+ macrophages signifcantly increased during the frst three days of MI. Te number of brain stabilin-1+ macrophages did not increase and did not differ from the control values. We observed a positive correlation between the number of CD68+ macrophages in the brain and myocardium.
Collapse
Affiliation(s)
- M S Rebenkova
- Tomsk National Research Medical Center of the Russian Academy of Science; National Research Tomsk State University
| | - A E Gombozhapova
- Tomsk National Research Medical Center of the Russian Academy of Science; National Research Tomsk State University
| | - Yu V Rogovskaya
- Tomsk National Research Medical Center of the Russian Academy of Science; National Research Tomsk State University
| | - V V Ryabov
- Tomsk National Research Medical Center of the Russian Academy of Science; National Research Tomsk State University; Siberian State Medical University
| | | | - B E Kim
- National Research Tomsk State University
| | | |
Collapse
|
27
|
Hase Y, Polvikoski TM, Ihara M, Hase M, Zafar R, Stevenson W, Allan LM, Ennaceur A, Horsburgh K, Gallart‐Palau X, Sze SK, Kalaria RN. Carotid artery disease in post‐stroke survivors and effects of enriched environment on stroke pathology in a mouse model of carotid artery stenosis. Neuropathol Appl Neurobiol 2019; 45:681-697. [DOI: 10.1111/nan.12550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/19/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Y. Hase
- Neurovascular Research Group Institute of Neuroscience Newcastle University Newcastle upon Tyne UK
| | - T. M. Polvikoski
- Neurovascular Research Group Institute of Neuroscience Newcastle University Newcastle upon Tyne UK
| | - M. Ihara
- Department of Stroke and Cerebrovascular Diseases National Cerebral and Cardiovascular Centre Osaka Japan
| | - M. Hase
- Neurovascular Research Group Institute of Neuroscience Newcastle University Newcastle upon Tyne UK
| | - R. Zafar
- Neurovascular Research Group Institute of Neuroscience Newcastle University Newcastle upon Tyne UK
| | - W. Stevenson
- Neurovascular Research Group Institute of Neuroscience Newcastle University Newcastle upon Tyne UK
| | - L. M. Allan
- Neurovascular Research Group Institute of Neuroscience Newcastle University Newcastle upon Tyne UK
| | - A. Ennaceur
- Department of Pharmacy Sunderland Pharmacy School University of Sunderland Sunderland UK
| | - K. Horsburgh
- Centre for Neuroregeneration University of Edinburgh Edinburgh UK
| | - X. Gallart‐Palau
- School of Biological Sciences Nanyang Technological University Singapore
| | - S. K. Sze
- School of Biological Sciences Nanyang Technological University Singapore
| | - R. N. Kalaria
- Neurovascular Research Group Institute of Neuroscience Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
28
|
Gallart-Palau X, Serra A, Hase Y, Tan CF, Chen CP, Kalaria RN, Sze SK. Brain-derived and circulating vesicle profiles indicate neurovascular unit dysfunction in early Alzheimer's disease. Brain Pathol 2019; 29:593-605. [PMID: 30629763 DOI: 10.1111/bpa.12699] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Vascular factors that reduce blood flow to the brain are involved in apparition and progression of dementia. We hypothesized that cerebral hypoperfusion (CH) might alter the molecular compositions of brain intercellular communication mechanisms while affecting the neurovascular unit in preclinical and clinical human dementias. To test that hypothesis, mice were subjected to bilateral common carotid stenosis (BCAS) and the molecular compositions of brain-derived and circulating extracellular vesicles (EVs) were assessed. Murine brain vesicle profiles were then analyzed in parallel with brain EVs from post-mortem subjects affected by preclinical Alzheimer's Disease (AD) and mixed dementias. Brain EVs were identified with molecular mediators of hypoxia responses, neuroprotection and neurotoxicity in BCAS mice, patterns also partially resembled by subjects with preclinical AD and mixed dementias. Together these findings indicate that brain EVs represent a promising source of therapeutic targets and circulating markers of neurovascular insult in idiopathic dementias. Furthermore, the results obtained generate novel and compelling hypotheses about the molecular involvement of the vascular component in the etiology of human dementias.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yoshiki Hase
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Chee Fan Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Christopher P Chen
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raj N Kalaria
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
29
|
Mao XW, Sandberg LB, Gridley DS, Herrmann EC, Zhang G, Raghavan R, Zubarev RA, Zhang B, Stodieck LS, Ferguson VL, Bateman TA, Pecaut MJ. Proteomic Analysis of Mouse Brain Subjected to Spaceflight. Int J Mol Sci 2018; 20:ijms20010007. [PMID: 30577490 PMCID: PMC6337482 DOI: 10.3390/ijms20010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
There is evidence that spaceflight poses acute and late risks to the central nervous system. To explore possible mechanisms, the proteomic changes following spaceflight in mouse brain were characterized. Space Shuttle Atlantis (STS-135) was launched from the Kennedy Space Center (KSC) on a 13-day mission. Within 3–5 h after landing, brain tissue was collected to evaluate protein expression profiles using quantitative proteomic analysis. Our results showed that there were 26 proteins that were significantly altered after spaceflight in the gray and/or white matter. While there was no overlap between the white and gray matter in terms of individual proteins, there was overlap in terms of function, synaptic plasticity, vesical activity, protein/organelle transport, and metabolism. Our data demonstrate that exposure to the spaceflight environment induces significant changes in protein expression related to neuronal structure and metabolic function. This might lead to a significant impact on brain structural and functional integrity that could affect the outcome of space missions.
Collapse
Affiliation(s)
- Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Lawrence B Sandberg
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Daila S Gridley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - E Clifford Herrmann
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Guangyu Zhang
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Ravi Raghavan
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, SE 17177 Stockholm, Sweden.
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Bo Zhang
- Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, SE 17177 Stockholm, Sweden.
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Louis S Stodieck
- BioServe Space Technologies, University of Colorado at Boulder, Boulder, CO 80303, USA.
| | - Virginia L Ferguson
- BioServe Space Technologies, University of Colorado at Boulder, Boulder, CO 80303, USA.
| | - Ted A Bateman
- Department of Bioengineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
30
|
Identification of Arenin, a Novel Kunitz-Like Polypeptide from the Skin Secretions of Dryophytes arenicolor. Int J Mol Sci 2018; 19:ijms19113644. [PMID: 30463246 PMCID: PMC6274936 DOI: 10.3390/ijms19113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 11/17/2022] Open
Abstract
Amphibian skin secretions are enriched with complex cocktails of bioactive molecules such as proteins, peptides, biogenic amines, alkaloids guanidine derivatives, steroids and other minor components spanning a wide spectrum of pharmacological actions exploited for centuries in folk medicine. This study presents evidence on the protein profile of the skin secretions of the canyon tree frog, Dryophytes arenicolor. At the same time, it presents the reverse-phase liquid chromatography isolation, mass spectrometry characterization and identification at mRNA level of a novel 58 amino acids Kunitz-like polypeptide from the skin secretions of Dryophytes arenicolor, arenin. Cell viability assays performed on HDFa, CaCo2 and MCF7 cells cultured with different concentrations of arenin showed a discrete effect at low concentrations (2, 4, 8 and 16 µg/mL) suggesting a multi-target interaction in a hormetic-like dose-response. Further work is required to investigate the mechanisms underlying the variable effect on cell viability produced by different concentrations of arenin.
Collapse
|
31
|
Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front Pharmacol 2018; 9:52. [PMID: 29467654 PMCID: PMC5808178 DOI: 10.3389/fphar.2018.00052] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors-P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases.
Collapse
Affiliation(s)
- Luiz E B Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Cleide Gonçalves da Silva
- Division of Vascular Surgery, Department of Surgery, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|