1
|
Adiguzel Y, Bogdanos DP, Shoenfeld Y. Molecular/antigenic mimicry and immunological cross-reactivity explains SARS-CoV-2-induced autoimmunity. Autoimmun Rev 2025; 24:103811. [PMID: 40209971 DOI: 10.1016/j.autrev.2025.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/12/2025]
Abstract
COVID-19 pandemic is over, but its effects on chronic illnesses remain a challenging issue. Understanding the influence of SARS-COV-2-mediated autoimmunity and overt autoimmune disease is of paramount importance, as it can provide a critical mass of information regarding both infection-mediated (and vaccination-induced) autoimmune phenomena in susceptible individuals during the disease course, and short or long-term post-disease sequelae. The high prevalence of organ and non-organ specific autoantibody positivity in patients with COVID-19 led to studies attempting to delineate the origin and the underlying mechanism responsible for their induction nature, identifying novel autoantigens, and the self-epitope sequences which could be the impetus for the initiating autoreactive responses. Herein, we provide a meticulous review of the studies reporting those mimicking sequences that have been experimentally validated, based on the assumption that molecular mimicry and immunological crossreactivity may account for autoantibody development. Most reports are based on bioinformatics approaches, and only a disproportionally small number of studies currently demonstrate immunological crossreactivity. We took the opportunity to further review and searched for the linear human epitope sequences of human, through the epitopes deposited at the Immune Epitope Database. This included an analysis of autoimmune disease as the disease data to comprehensively understand the subject matter. The critical overview of the findings underscore the urgent and immense need for further research to gain a comprehensive understanding of the mechanisms involved and the anticipated appraisal that molecular mimicry and immunological crossreactivity is indeed central to the loss of immunological tolerance during SARS-COV-2 infection.
Collapse
Affiliation(s)
- Yekbun Adiguzel
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey.
| | - Dimitros P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Yehuda Shoenfeld
- Dina Recanati School of Medicine, Reichman University, Herzliya, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Israel.
| |
Collapse
|
2
|
Borrego-Ruiz A, Borrego JJ. Involvement of virus infections and antiviral agents in schizophrenia. Psychol Med 2025; 55:e73. [PMID: 40059820 PMCID: PMC12055031 DOI: 10.1017/s0033291725000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Schizophrenia is a chronic and complex mental disorder resulting from interactions between cumulative and synergistic genetic and environmental factors. Viral infection during the prenatal stage constitutes one of the most relevant risk factors for the development of schizophrenia later in adulthood. METHODS A narrative review was conducted to explore the link between viral infections and schizophrenia, as well as the neuropsychiatric effects of antiviral drugs, particularly in the context of this specific mental condition. Literature searches were performed using the PubMed, Scopus, and Web of Science databases. RESULTS Several viral infections, such as herpesviruses, influenza virus, Borna disease virus, and coronaviruses, can directly or indirectly disrupt normal fetal brain development by modifying gene expression in the maternal immune system, thereby contributing to the pathophysiological symptoms of schizophrenia. In addition, neuropsychiatric effects caused by antiviral drugs are frequent and represent significant adverse outcomes for viral treatment. CONCLUSIONS Epidemiological evidence suggests a potential relationship between viruses and schizophrenia. Increases in inflammatory cytokine levels and changes in the expression of key genes observed in several viral infections may constitute potential links between these viral infections and schizophrenia. Furthermore, antivirals may affect the central nervous system, although for most drugs, their mechanisms of action are still unclear, and a strong relationship between antivirals and schizophrenia has not yet been established.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
3
|
Jernbom AF, Skoglund L, Pin E, Sjöberg R, Tegel H, Hober S, Rostami E, Rasmusson A, Cunningham JL, Havervall S, Thålin C, Månberg A, Nilsson P. Prevalent and persistent new-onset autoantibodies in mild to severe COVID-19. Nat Commun 2024; 15:8941. [PMID: 39414823 PMCID: PMC11484904 DOI: 10.1038/s41467-024-53356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Autoantibodies have been shown to be implied in COVID-19 but the emerging autoantibody repertoire remains largely unexplored. We investigated the new-onset autoantibody repertoire in 525 healthcare workers and hospitalized COVID-19 patients at five time points over a 16-month period in 2020 and 2021 using proteome-wide and targeted protein and peptide arrays. Our results show that prevalent new-onset autoantibodies against a wide range of antigens emerged following SARS-CoV-2 infection in relation to pre-infectious baseline samples and remained elevated for at least 12 months. We found an increased prevalence of new-onset autoantibodies after severe COVID-19 and demonstrated associations between distinct new-onset autoantibodies and neuropsychiatric symptoms post-COVID-19. Using epitope mapping, we determined the main epitopes of selected new-onset autoantibodies, validated them in independent cohorts of neuro-COVID and pre-pandemic healthy controls, and identified sequence similarities suggestive of molecular mimicry between main epitopes and the conserved fusion peptide of the SARS-CoV-2 Spike glycoprotein. Our work describes the complexity and dynamics of the autoantibody repertoire emerging with COVID-19 and supports the need for continued analysis of the new-onset autoantibody repertoire to elucidate the mechanisms of the post-COVID-19 condition.
Collapse
Affiliation(s)
- August F Jernbom
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Lovisa Skoglund
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ronald Sjöberg
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hanna Tegel
- Division of Protein Technology, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- Division of Protein Technology, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elham Rostami
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Annica Rasmusson
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Sebastian Havervall
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Charlotte Thålin
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
4
|
Yang L, Li J, Zhang D. Acute onset psychiatric diseases after SARS-CoV-2 virus infection among pediatric patients. Front Neurol 2024; 15:1445903. [PMID: 39445192 PMCID: PMC11496280 DOI: 10.3389/fneur.2024.1445903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Background Psychiatric symptoms directly associated with SARS-CoV-2 virus infection have been reported sporadically in children. More cases of new-onset psychosis without severe cardinal symptoms, altered consciousness level, and psychogenic drug usage would offer compelling grounds for the association between the virus infection and psychosis. Methods We collected the clinical data of pediatric patients with new onset psychiatric symptoms after the SARS-CoV-2 virus infection from December 2022 to Feb 2023 and followed up with them for 1 year. These children did not have severe respiratory, cardiovascular, or systemic symptoms. They were not given psychogenic drugs. We also searched Pubmed to identify previously reported acute onset psychiatric cases related to SARS-CoV-2 virus infection in children. We summarized these patients' clinical symptoms, laboratory examination, treatment, and prognosis. Results We reported 11 new cases of psychiatric disease directly related to SARS-CoV-2 virus infection and reviewed 12 previously reported cases among children and adolescents. They had various psychiatric symptoms within 3 weeks after the virus infection. Brain MRI and EEG recording did not reveal remarkable abnormalities. The cerebrospinal fluid analysis (CSF) could find increased protein, immunoglobulin, and IL-8 levels, disrupted blood-brain barrier, and positive oligoclonal band in a minority of the patients. Most of the patients had good outcomes. Conclusion New-onset psychiatric symptoms directly related to SARS-CoV-2 virus infection are not rare phenomena among pediatric patients. CSF tests support the presence of central immune responses in some patients. Although these patients received different treatments, most of them had good prognoses.
Collapse
Affiliation(s)
| | | | - Dongqing Zhang
- Pediatric Department, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
5
|
Santos Guedes de Sa K, Silva J, Bayarri-Olmos R, Brinda R, Alec Rath Constable R, Colom Diaz PA, Kwon DI, Rodrigues G, Wenxue L, Baker C, Bhattacharjee B, Wood J, Tabacof L, Liu Y, Putrino D, Horvath TL, Iwasaki A. A causal link between autoantibodies and neurological symptoms in long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.18.24309100. [PMID: 38947091 PMCID: PMC11213106 DOI: 10.1101/2024.06.18.24309100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Acute SARS-CoV-2 infection triggers the generation of diverse and functional autoantibodies (AABs), even after mild cases. Persistently elevated autoantibodies have been found in some individuals with long COVID (LC). Using a >21,000 human protein array, we identified diverse AAB targets in LC patients that correlated with their symptoms. Elevated AABs to proteins in the nervous system were found in LC patients with neurocognitive and neurological symptoms. Purified Immunoglobulin G (IgG) samples from these individuals reacted with human pons tissue and were cross-reactive with mouse sciatic nerves, spinal cord, and meninges. Antibody reactivity to sciatic nerves and meninges correlated with patient-reported headache and disorientation. Passive transfer of IgG from patients to mice led to increased sensitivity and pain, mirroring patient-reported symptoms. Similarly, mice injected with IgG showed loss of balance and coordination, reflecting donor-reported dizziness. Our findings suggest that targeting AABs could benefit some LC patients.
Collapse
Affiliation(s)
- Keyla Santos Guedes de Sa
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Julio Silva
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Rafael Bayarri-Olmos
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Ryan Brinda
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Robert Alec Rath Constable
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Patricia A. Colom Diaz
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Dong-il Kwon
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gisele Rodrigues
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Li Wenxue
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Christopher Baker
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Bornali Bhattacharjee
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Jamie Wood
- Cohen Center for Recovery from Complex Chronic Illness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Tabacof
- Cohen Center for Recovery from Complex Chronic Illness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yansheng Liu
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - David Putrino
- Cohen Center for Recovery from Complex Chronic Illness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tamas L. Horvath
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Center for Infection and Immunity, New Haven, CT, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
6
|
Nijim W, Morgan J, Montalvo M, McKeon A, McLeod C. Case Presentation of Autoimmune Septin-5 Cerebellar Ataxia. Mov Disord Clin Pract 2024; 11:734-737. [PMID: 38561872 PMCID: PMC11145106 DOI: 10.1002/mdc3.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/28/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
| | - John Morgan
- Neurology DepartmentMedical College of GeorgiaAugustaGAUSA
| | - Mayra Montalvo
- Neurology DepartmentFixel Institute for Neurological Diseases/University of FloridaGainesvilleFLUSA
| | | | - Colin McLeod
- Neurology DepartmentMedical College of GeorgiaAugustaGAUSA
| |
Collapse
|
7
|
Jiang C, Chen Z, Liao W, Zhang R, Chen G, Ma L, Yu H. The Medicinal Species of the Lycium Genus (Goji Berries) in East Asia: A Review of Its Effect on Cell Signal Transduction Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:1531. [PMID: 38891336 PMCID: PMC11174690 DOI: 10.3390/plants13111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Natural plants contain numerous chemical compounds that are beneficial to human health. The berries from the Lycium genus are widely consumed and are highly nutritious. Moreover, their chemical constituents have attracted attention for their health-promoting properties. In East Asia, there are three varieties of the Lycium genus (Lycium barbarum L., Lycium chinense Miller, and L. ruthenicum Murray) that possess medicinal value and are commonly used for treating chronic diseases and improving metabolic disorders. These varieties are locally referred to as "red Goji berries" or "black Goji berries" due to their distinct colors, and they differ in their chemical compositions, primarily in terms of carotenoid and anthocyanin content. The pharmacological functions of these berries include anti-aging, antioxidant, anti-inflammatory, and anti-exercise fatigue effects. This review aims to analyze previous and recent studies on the active ingredients and pharmacological activities of these Lycium varieties, elucidating their signaling pathways and assessing their impact on the gut microbiota. Furthermore, the potential prospects for using these active ingredients in the treatment of COVID-19 are evaluated. This review explores the potential targets of these Lycium varieties in the treatment of relevant diseases, highlighting their potential value in drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Ma
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| | - Haijie Yu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| |
Collapse
|
8
|
Li L, Liao H, Kuang X, Jin K. Clinical characteristics and outcomes of COVID-19-associated encephalopathy in children. J Neurovirol 2024; 30:187-196. [PMID: 38570476 DOI: 10.1007/s13365-024-01202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Apart from the typical respiratory symptoms, coronavirus disease 2019 (COVID-19) also affects the central nervous system, leading to central disorders such as encephalopathy and encephalitis. However, knowledge of pediatric COVID-19-associated encephalopathy is limited, particularly regarding specific subtypes of encephalopathy. This study aimed to assess the features of COVID-19-associated encephalopathy/encephalitis in children. We retrospectively analyzed a single cohort of 13 hospitalized children with COVID-19-associated encephalopathy. The primary outcome was the descriptive analysis of the clinical characteristics, magnetic resonance imaging and electroencephalography findings, treatment progression, and outcomes. Thirteen children among a total of 275 (5%) children with confirmed COVID-19 developed associated encephalopathy/encephalitis (median age, 35 months; range, 3-138 months). Autoimmune encephalitis was present in six patients, acute necrotizing encephalopathy in three, epilepsy in three, and central nervous system small-vessel vasculitis in one patient. Eight (62%) children presented with seizures. Six (46%) children exhibited elevated blood inflammatory indicators, cerebrospinal fluid inflammatory indicators, or both. Two (15%) critically ill children presented with multi-organ damage. The magnetic resonance imaging findings varied according to the type of encephalopathy/encephalitis. Electroencephalography revealed a slow background rhythm in all 13 children, often accompanied by epileptic discharges. Three (23%) children with acute necrotizing encephalopathy had poor prognoses despite immunotherapy and other treatments. Ten (77%) children demonstrated good functional recovery without relapse. This study highlights COVID-19 as a new trigger of encephalopathy/encephalitis in children. Autoimmune encephalitis is common, while acute necrotizing encephalopathy can induce poor outcomes. These findings provide valuable insights into the impact of COVID-19 on children's brains.
Collapse
Affiliation(s)
- Li Li
- Department of Radiology, Hunan Children's Hospital, No. 86 Ziyuan Road, 410007, Changsha, Hunan, China
| | - Hongmei Liao
- Department of Radiology, Hunan Children's Hospital, No. 86 Ziyuan Road, 410007, Changsha, Hunan, China.
- Department of Neurology, Hunan Children's Hospital, No. 86 Ziyuan Road, 410007, Changsha, Hunan, China.
| | - Xiaojun Kuang
- Department of Neurology, Hunan Children's Hospital, No. 86 Ziyuan Road, 410007, Changsha, Hunan, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, No. 86 Ziyuan Road, 410007, Changsha, Hunan, China.
| |
Collapse
|
9
|
Vasilevska V, Guest PC, Szardenings M, Benros ME, Steiner J. Possible temporal relationship between SARS-CoV-2 infection and anti-NMDA receptor encephalitis: a meta-analysis. Transl Psychiatry 2024; 14:139. [PMID: 38459000 PMCID: PMC10923949 DOI: 10.1038/s41398-024-02831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
The global impact of SARS-CoV-2 infection has raised concerns about secondary diseases beyond acute illness. This review explores the significance and potential underlying mechanisms of how SARS-CoV-2 infection might elicit an immune response targeting N-methyl-D-aspartate (NMDA) receptors, and its implications for autoimmune-driven neuropsychiatric manifestations. We identified 19 published case reports of NMDA receptor encephalitis associated with SARS-CoV-2 infection or vaccination by a systematic literature search. The significance of these reports was limited since it is not clear if a coincidental or causal relationship exists between SARS-CoV-2 infection or vaccination and manifestation of NMDA receptor encephalitis. The included studies were hampered by difficulties in establishing if these patients had pre-existing NMDA receptor antibodies which entered the brain by infection- or vaccination-associated transient blood-brain barrier leakage. In addition, four cases had comorbid ovarian teratoma, which is a known trigger for development of NMDA receptor encephalitis. Considering that billions of people have contracted COVID-19 or have been vaccinated against this virus, the publication of only 19 case reports with a possible link to NMDA receptor encephalitis, indicates that it is rare. In conclusion, these findings do not support the case that SARS-CoV-2 infection or vaccination led to an increase of existing or de novo encephalitis mediated by an autoimmune response targeting NMDA receptor function. Nevertheless, this work underscores the importance of ongoing vigilance in monitoring viral outbreaks and their potential impact on the central nervous system through basic, epidemiological and translational research.
Collapse
Affiliation(s)
- Veronika Vasilevska
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Michael Szardenings
- Ligand Development Unit, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany
| | - Michael E Benros
- Copenhagen Research Centre for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany.
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
10
|
Brummer T, Lotz J, Dresel C, Birklein F. Anti-NMDA-receptor encephalitis and concurrent neuroborreliosis misdiagnosed for post-COVID-19-syndrome: a case report. Ther Adv Neurol Disord 2024; 17:17562864231224108. [PMID: 38414722 PMCID: PMC10898214 DOI: 10.1177/17562864231224108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/14/2023] [Indexed: 02/29/2024] Open
Abstract
We present a case of a 42-year-old woman with paraneoplastic anti-N-Methyl-D-Aspartat (NMDA)-receptor encephalitis and concurrent neuroborreliosis that was initially misdiagnosed as post-COVID-19 syndrome. Clinically, the patient presented with a range of chronic and subacute neuropsychiatric symptoms and recalled a tick bite weeks prior to admission. The patient had undergone psychiatric and complementary medical treatments for 1 year before admission and was initially diagnosed with post-COVID-19 syndrome. Admission was performed because of acute worsening with fever, confusion, and unsteady gait. Cerebrospinal fluid (CSF) analysis revealed pleocytosis with elevated borrelia Immunoglobulin M (IgM) and Immunoglobulin M (IgG) CSF/blood antibody indices, indicating acute neuroborreliosis. Anti-NMDA receptor antibodies were identified in the CSF via a cell-based assay and were confirmed by an external laboratory. Other paraneoplastic antibodies were ruled out during in-house examination. Cranial Magnetic resonance imaging (MRI) revealed basal meningitis, rhomb- and limbic encephalitis. A subsequent pelvic Computer tomography (CT) scan identified an ovarian teratoma. The patient's clinical condition improved dramatically with antibiotic treatment and plasmapheresis, the teratoma was surgically removed and she was started on rituximab. Our case highlights that amidst the prevailing focus on COVID-19-related health concerns, other well-established, but rare neurological conditions should not be neglected. Furthermore, our case illustrates that patients may suffer from multiple, concurrent, yet pathophysiologically unrelated neuroinflammatory conditions.
Collapse
Affiliation(s)
- Tobias Brummer
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, Mainz 55131, Germany
| | - Johannes Lotz
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Dresel
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Du BQ, Lai QL, Li EC, Cai MT, Fang GL, Shen CH, Zhang YX, Ding MP. Myelin oligodendrocyte glycoprotein antibody and N-methyl-d-aspartate receptor antibody overlapping syndrome: insights from the recent case reports. Clin Exp Immunol 2024; 215:27-36. [PMID: 37724585 PMCID: PMC10776248 DOI: 10.1093/cei/uxad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
The overlapping of two or more types of neural autoantibodies in one patient has increasingly been documented in recent years. The coexistence of myelin oligodendrocyte glycoprotein (MOG) and N-methyl-d-aspartate receptor (NMDAR) antibodies is most common, which leads to a unique condition known as the MOG antibody and NMDAR antibody overlapping syndrome (MNOS). Here, we have reviewed the pathogenesis, clinical manifestations, paraclinical features, and treatment of MNOS. Forty-nine patients with MNOS were included in this study. They were young males with a median onset age of 23 years. No tumors were observed in the patients, and 24 of them reported prodromal symptoms. The most common clinical presentations were psychiatric symptoms (35/49) and seizures (25/49). Abnormalities on magnetic resonance imaging involved the brainstem (11/49), cerebellum (9/49), and parietal lobe (9/49). Most patients mostly responded to immunotherapy and had a good long-term prognosis. However, the overall recurrence rate of MNOS was higher than that of mono antibody-positive diseases. The existence of concurrent NMDAR antibodies should be suspected in patients with MOG antibody-associated disease having psychiatric symptoms, seizures, movement disorders, or autonomic dysfunction. Similarly, serum MOG antibody testing should be performed when patients with anti-NMDAR encephalitis present with atypical clinical manifestations, such as visual impairment and limb weakness, and neuroradiological findings, such as optic nerve, spinal cord, or infratentorial involvement or meningeal enhancement. Early detection of the syndrome and prompt treatment can be beneficial for these patients, and maintenance immunosuppressive therapy is recommended due to the high overall recurrence rate of the syndrome.
Collapse
Affiliation(s)
- Bing-Qing Du
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Er-Chuang Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meng-Ting Cai
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao-Li Fang
- Department of Neurology, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Chun-Hong Shen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei-Ping Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Sawalha A, Alkilani H, Abdelaziz R. The association between autoimmune encephalitis mediated by N-methyl-ᴅ-aspartate receptor autoantibodies and COVID-19: a systematic review. ENCEPHALITIS 2024; 4:3-10. [PMID: 38126079 PMCID: PMC11007402 DOI: 10.47936/encephalitis.2023.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Neurological complications related to coronavirus disease 2019 (COVID-19) infection have been increasingly reported. One of the most serious neurological complications is encephalitis, which could be due either to direct viral invasion or an immune-mediated inflammatory reaction. In this study, we conducted a systematic review of reported cases of autoimmune encephalitis mediated by N-methyl-ᴅ-aspartate receptor antibodies in conjunction with or after diagnosis of COVID-19 infection.
Collapse
Affiliation(s)
- Ahmad Sawalha
- Department of Neurology, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Huda Alkilani
- Department of Medicine, University of Sharjah, College of Medicine, Sharjah, United Arab Emirates
| | - Rami Abdelaziz
- Department of Child Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Gutman EG, Fernandes RA, Raposo-Vedovi JV, Salvio AL, Duarte LA, Tardim CF, Costa VGC, Pereira VCSR, Bahia PRV, da Silva MM, Fontes-Dantas FL, Alves-Leon SV. Molecular Mimicry between SARS-CoV-2 Proteins and Human Self-Antigens Related with Autoimmune Central Nervous System (CNS) Disorders. Microorganisms 2023; 11:2902. [PMID: 38138047 PMCID: PMC10745528 DOI: 10.3390/microorganisms11122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
SARS-CoV-2 can trigger autoimmune central nervous system (CNS) diseases in genetically susceptible individuals, a mechanism poorly understood. Molecular mimicry (MM) has been identified in other viral diseases as potential triggers of autoimmune CNS events. This study investigated if MM is the process through which SARS-CoV-2 induces the breakdown of immune tolerance. The frequency of autoimmune CNS disorders was evaluated in a prospective cohort with patients admitted to the COVID-19 Intense Care Unity (ICU) in Rio de Janeiro. Then, an in silico analysis was performed to identify the conserved regions that share a high identity between SARS-CoV-2 antigens and human proteins. The sequences with significant identity and antigenic properties were then assessed for their binding capacity to HLA subtypes. Of the 112 patients included, 3 were classified as having an autoimmune disorder. A total of eleven combinations had significant linear and three-dimensional overlap. NMDAR1, MOG, and MPO were the self-antigens with more significant combinations, followed by GAD65. All sequences presented at least one epitope with strong or intermediate binding capacity to the HLA subtypes selected. This study underscores the possibility that CNS autoimmune attacks observed in COVID-19 patients, including those in our population, could be driven by MM in genetically predisposed individuals.
Collapse
Affiliation(s)
- Elisa Gouvea Gutman
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
- Clinical Medicine Post-Graduation Program, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Renan Amphilophio Fernandes
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
| | - Jéssica Vasques Raposo-Vedovi
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
| | - Andreza Lemos Salvio
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
| | - Larissa Araujo Duarte
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
- Clinical Medicine Post-Graduation Program, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Caio Faria Tardim
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (C.F.T.); (V.C.S.R.P.); (M.M.d.S.)
| | | | - Valéria Coelho Santa Rita Pereira
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (C.F.T.); (V.C.S.R.P.); (M.M.d.S.)
| | - Paulo Roberto Valle Bahia
- Department of Radiology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil;
| | - Marcos Martins da Silva
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (C.F.T.); (V.C.S.R.P.); (M.M.d.S.)
| | - Fabrícia Lima Fontes-Dantas
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro 20950-000, RJ, Brazil
| | - Soniza Vieira Alves-Leon
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-030, RJ, Brazil; (E.G.G.); (R.A.F.); (J.V.R.-V.); (A.L.S.); (L.A.D.)
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (C.F.T.); (V.C.S.R.P.); (M.M.d.S.)
| |
Collapse
|
14
|
Rogers JP, Chou MKL, Pollak TA, Eyre M, Krutikov M, Church A, Hart MS, Karim A, Michael S, Vincent A, David AS, Lewis G, Jacob S, Zandi MS. Seasonal variation and temporal relationship to the COVID-19 pandemic of NMDA receptor antibody results. J Neurol 2023; 270:5182-5187. [PMID: 37737893 PMCID: PMC10576721 DOI: 10.1007/s00415-023-11917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Jonathan P Rogers
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, Bloomsbury, London, W1T 7NF, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Michael K L Chou
- Neuroimmunology and CSF Laboratory, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Michael Eyre
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Maria Krutikov
- Institute of Health Informatics, University College London, London, UK
| | - Andrew Church
- Neuroimmunology and CSF Laboratory, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Melanie S Hart
- Neuroimmunology and CSF Laboratory, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
| | - Abid Karim
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sophia Michael
- Department of Neurology, University Hospitals Birmingham, Birmingham, UK
| | - Angela Vincent
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anthony S David
- Institute of Mental Health, University College London, London, UK
| | - Glyn Lewis
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, Bloomsbury, London, W1T 7NF, UK
| | - Saiju Jacob
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham, Birmingham, UK
| | - Michael S Zandi
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Klein HC, Guest PC, Dobrowolny H, Steiner J. Inflammation and viral infection as disease modifiers in schizophrenia. Front Psychiatry 2023; 14:1231750. [PMID: 37850104 PMCID: PMC10577328 DOI: 10.3389/fpsyt.2023.1231750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Numerous studies have now implicated a role for inflammation in schizophrenia. However, many aspects surrounding this aspect of the disease are still controversial. This controversy has been driven by conflicting evidence on the role of both pro-and anti-inflammatory factors and by often contentious findings concerning cytokine and immune cell profiles in the central nervous system and periphery. Current evidence supports the point that interleukin-6 is elevated in CSF, but does not support activation of microglia, resident macrophage-like cells in the brain. Furthermore, the mechanisms involving transit of the peripheral immune system factors across the blood brain barrier to central parenchyma have still not been completely elucidated. This process appears to involve perivascular macrophages and accompanying dendritic cells retained in the parenchyma by the chemokine and cytokine composition of the surrounding milieu. In addition, a number of studies have shown that this can be modulated by infection with viruses such as herpes simplex virus type I which may disrupt antigen presentation in the perivascular space, with long-lasting consequences. In this review article, we discuss the role of inflammation and viral infection as potential disease modifiers in schizophrenia. The primary viral hit may occur in the fetus in utero, transforming the immune response regulatory T-cells or the virus may secondarily remain latent in immune cells or neurons and modify further immune responses in the developing individual. It is hoped that unraveling this pathway further and solidifying our understanding of the pathophysiological mechanisms involved will pave the way for future studies aimed at identification and implementation of new biomarkers and drug targets. This may facilitate the development of more effective personalized therapies for individuals suffering with schizophrenia.
Collapse
Affiliation(s)
- Hans C. Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Research and Education Department Addiction Care Northern Netherlands, Groningen, Netherlands
| | - Paul C. Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany
- German Center for Mental Health (DZPG), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
16
|
Akbari A, Hadizadeh A, Islampanah M, Salavati Nik E, Atkin SL, Sahebkar A. COVID-19, G protein-coupled receptor, and renin-angiotensin system autoantibodies: Systematic review and meta-analysis. Autoimmun Rev 2023; 22:103402. [PMID: 37490975 DOI: 10.1016/j.autrev.2023.103402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION There are an increasing number of reports of autoantibodies (AAbs) against host proteins such as G-protein coupled receptors (GPCRs) and the renin-angiotensin system (RAS) in COVID-19 disease. Here we have undertaken a systematic review and meta-analysis of all reports of AAbs against GPCRs and RAS in COVID-19 patients including those with long-COVID or post-COVID symptoms. METHODS PubMed, Embase, Web of Science, and Scopus databases were searched to find papers on the role of GPCR and RAS AAbs in the presence and severity of COVID-19 or post- COVID symptoms available through March 21, 2023. Data on the prevalence of AngII or ACE, comparing AngII or ACE between COVID-19 and non-COVID-19, or comparing AngII or ACE between COVID-19 patients with different disease stages were pooled and a meta-analysed using random- or fixed-effects models were undertaken. RESULTS The search yielded a total of 1042 articles, of which 68 studies were included in this systematic review and nine in the meta-analysis. Among 18 studies that investigated GPCRs and COVID-19 severity, 18 distinct AAbs were detected. In addition, nine AAbs were found in case reports that assessed post- COVID, and 19 AAbs were found in other studies that assessed post- COVID or long- COVID symptoms. Meta-analysis revealed a significantly higher number of seropositive ACE2 AAbs in COVID-19 patients (odds ratio = 7.766 [2.056, 29.208], p = 0.002) and particularly in severe disease (odds ratio = 11.49 [1.04, 126.86], p = 0.046), whereas AngII-AAbs seropositivity was no different between COVID-19 and control subjects (odds ratio = 2.890 [0.546-15.283], p = 0.21). CONCLUSIONS GPCR and RAS AAbs may play an important role in COVID-19 severity, the development of disease progression, long-term symptoms COVID and post- COVID symptoms.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hadizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ensie Salavati Nik
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, Bahrain, Adliya, PO Box 15503, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Sanchez-Larsen A, Rojas-Bartolomé L, Fernández-Valiente M, Sopelana D. Anti-NMDA-R encephalitis post-COVID-19: Case report and proposed physiopathologic mechanism. Neurologia 2023; 38:513-516. [PMID: 36191810 PMCID: PMC9523900 DOI: 10.1016/j.nrleng.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- A Sanchez-Larsen
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete, Albacete, Spain.
| | - L Rojas-Bartolomé
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - M Fernández-Valiente
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - D Sopelana
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| |
Collapse
|
18
|
Brown RL, Benjamin L, Lunn MP, Bharucha T, Zandi MS, Hoskote C, McNamara P, Manji H. Pathophysiology, diagnosis, and management of neuroinflammation in covid-19. BMJ 2023; 382:e073923. [PMID: 37595965 DOI: 10.1136/bmj-2022-073923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Although neurological complications of SARS-CoV-2 infection are relatively rare, their potential long term morbidity and mortality have a significant impact, given the large numbers of infected patients. Covid-19 is now in the differential diagnosis of a number of common neurological syndromes including encephalopathy, encephalitis, acute demyelinating encephalomyelitis, stroke, and Guillain-Barré syndrome. Physicians should be aware of the pathophysiology underlying these presentations to diagnose and treat patients rapidly and appropriately. Although good evidence has been found for neurovirulence, the neuroinvasive and neurotropic potential of SARS-CoV-2 is limited. The pathophysiology of most complications is immune mediated and vascular, or both. A significant proportion of patients have developed long covid, which can include neuropsychiatric presentations. The mechanisms of long covid remain unclear. The longer term consequences of infection with covid-19 on the brain, particularly in terms of neurodegeneration, will only become apparent with time and long term follow-up.
Collapse
Affiliation(s)
- Rachel L Brown
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Institute of Immunity and Transplantation, London, UK
| | - Laura Benjamin
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Laboratory of Molecular and Cell Biology, London, UK
| | - Michael P Lunn
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Tehmina Bharucha
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Department of Biochemistry, University of Oxford, UK
| | - Michael S Zandi
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Chandrashekar Hoskote
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Patricia McNamara
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hadi Manji
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
19
|
Hansen N. Psychiatric Symptoms in Acute and Persisting Forms of COVID-19 Associated with Neural Autoantibodies. Antibodies (Basel) 2023; 12:49. [PMID: 37606433 PMCID: PMC10443296 DOI: 10.3390/antib12030049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
(1) Background: In this narrative review, we focus on neural autoantibodies in patients with coronavirus disease 2019 (COVID-19) as a consequence of severe acute respiratory syndrome coronavirus type 2 infection and persisting symptoms of post-COVID-19 syndrome with a psychiatric presentation. (2) Methods: Our methods include using the PubMed database to search for appropriate articles. (3) Results: We first describe the phenomenon of the psychiatric manifestation of COVID-19 in acute and persistent forms, associated with neural autoantibodies, often attributable to encephalopathy or encephalitis. We discuss the spectrum of neural autoantibodies in neuropsychiatric patients affected by COVID-19 and post-COVID-19 syndrome. Evidence from our research suggests that it is highly likely that neural autoantibody production is facilitated by SARS-CoV-2 infection, and that more neuropsychiatric patients than control subjects will present neural autoantibodies. (4) Conclusions: These observations support the hypothesis that acute and persisting forms of COVID-19 promote autoimmune diseases. Our patients therefore require comprehensive evaluation to avoid overlooking such autoantibody-associated psychiatric disorders associated with COVID-19.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany
| |
Collapse
|
20
|
Kowalski K, Misiak B. Schizophrenia and the COVID-19 pandemic: A narrative review from the biomedical perspective. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2023:S1888-9891(23)00015-0. [PMID: 37544807 DOI: 10.1016/j.rpsm.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 08/08/2023]
Abstract
The outbreak of the Coronavirus Disease 2019 (COVID-19) pandemic in 2020 caused a rapid worsening of global mental health. Patients with severe mental disorders, including schizophrenia, are at higher risk of being infected. The neuroinvasive potential of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has been confirmed. The aim of this article was to present a narrative and comprehensive review of multidimensional associations between schizophrenia and COVID-19 with special emphasis on common biological pathways. Online searches were performed in the PubMed database and covered the publication period until September 17, 2022. Search terms included "psychosis", "schizophrenia", "inflammation" and "COVID-19". Viewed as a neuroinflammatory state, schizophrenia shares several neurobiological mechanisms with the COVID-19. Environmental stress, common comorbidities of schizophrenia and adverse effects of antipsychotic treatment are associated with the higher severity and mortality of the COVID-19. Additionally, more frequent relapses of psychosis have been observed, and might be related to lower treatment adherence. In the context of clinical manifestation, higher level of negative symptoms has been identified among patients with schizophrenia during the pandemic. Improvements in mental health care policy and treatment adjustment are necessary to protect people with schizophrenia who are the population that is particularly vulnerable to the consequences of the COVID-19 pandemic. Future research will show if prenatal infection with the SARS-CoV-2 increases a risk of psychosis.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland.
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| |
Collapse
|
21
|
Vargas-Schaffer G. Pharmacological Proposal Approach to Managing Chronic Pain Associated with COVID-19. Biomedicines 2023; 11:1812. [PMID: 37509450 PMCID: PMC10376228 DOI: 10.3390/biomedicines11071812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Post-COVID syndrome is widespread and chronic pain associated with this syndrome is increasingly being seen in pain clinics. Understanding and managing Chronic Post-COVID Pain (CPCoP) is essential in improving the quality of life of patients. Relevant sections: Identify the types of pain associated with post-COVID syndrome and look for ways to treat them. RESULTS AND DISCUSSION Based on our experience, we have identified five groups within CPCoP: (1) chronic pain post-hospitalization in intensive care or long hospitalizations, (2) pain associated with rehabilitation, (3) exacerbation of existing chronic pain pre-COVID-19 infection, (4) central and peripheral neuropathic pain post-COVID-19 infection, (5) chronic pain post vaccination. To fight against misinformation, we created an information capsule for doctors, nurses, and other health workers at a conference via the ECHO* program, delivered 2-3 times a year. CONCLUSIONS In pandemic and post-pandemic periods, it is important to determine the sequelae that a disease can leave in the general population, and to understand and treat them. The model proposed may serve as an inspiration to other pain centers to treat the increasing number of patients with CPCoP.
Collapse
Affiliation(s)
- Grisell Vargas-Schaffer
- Pain Center, Centre Hospitalier de l'Universitaire de l'Université de Montréal (CHUM), Montréal, QC H2X 3E4, Canada
| |
Collapse
|
22
|
Sandweiss AJ, Erickson TA, Jiang Y, Kannan V, Yarimi JM, Levine JM, Fisher K, Muscal E, Demmler-Harrison G, Murray KO, Ronca SE. Infectious profiles in pediatric anti-N-methyl-d-aspartate receptor encephalitis. J Neuroimmunol 2023; 381:578139. [PMID: 37364517 DOI: 10.1016/j.jneuroim.2023.578139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Anti-N-methyl-d-aspartate receptor autoimmune encephalitis (NMDAR AE) is an antibody-mediated neurological disorder that may be caused by post-herpes simplex virus-1 meningoencephalitis (HSV ME) and ovarian teratomas, although most pediatric cases are idiopathic. We sought to evaluate if other infections precede NMDAR AE by conducting a single-center, retrospective, case-control study of 86 pediatric cases presenting to Texas Children's Hospital between 2006 and 2022. HSV ME (HSV-1 and HSV-2) was a significantly more common preceding infection in the experimental group compared to control patients with idiopathic intracranial hypertension, while there was no difference in remote HSV infection between the two groups. Recent Epstein-Barr virus infection was evident in 8/42 (19%) tested experimental patients in comparison to 1/25 (4%) tested control patients which provided evidence for a genuine measure of effect but was not statistically significant due to small sample size (p = 0.07). The other 25 infectious etiologies were not different among the two groups and not all variables were clinically indicated or obtained in every subject, highlighting the need for future standardized, multi-institutional studies on underlying infectious precursors of autoimmune encephalitis.
Collapse
Affiliation(s)
- Alexander J Sandweiss
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine and Texas Children's Hospital, United States of America; Department of Pediatrics, Section of Pediatric Tropical Medicine, Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, United States of America
| | - Timothy A Erickson
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, United States of America
| | - Yike Jiang
- Department of Pediatrics, Division of Pediatric Rheumatology, Duke University School of Medicine, United States of America
| | - Varun Kannan
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine and Texas Children's Hospital, United States of America
| | - Jonathan M Yarimi
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine and Texas Children's Hospital, United States of America
| | - Jesse M Levine
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine and Texas Children's Hospital, United States of America
| | - Kristen Fisher
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine and Texas Children's Hospital, United States of America
| | - Eyal Muscal
- Department of Pediatrics, Section of Rheumatology, Baylor College of Medicine and Texas Children's Hospital, United States of America
| | - Gail Demmler-Harrison
- Department of Pediatrics, Division of Infectious Disease, Baylor College of Medicine and Texas Children's Hospital, United States of America
| | - Kristy O Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, United States of America
| | - Shannon E Ronca
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, United States of America; Department of Molecular Virology and Microbiology, Baylor College of Medicine, United States of America.
| |
Collapse
|
23
|
Yiannopoulou K, Vakrakou AG, Anastasiou A, Nikolopoulou G, Sourdi A, Tzartos JS, Kilidireas C, Dimitrakopoulos A. Cerebrospinal Fluid Anti-Neuronal Autoantibodies in COVID-19-Associated Limbic Encephalitis with Acute Cerebellar Ataxia and Myoclonus Syndrome: Case Report and Literature Review. Diagnostics (Basel) 2023; 13:2055. [PMID: 37370950 DOI: 10.3390/diagnostics13122055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Since the outbreak of coronavirus (COVID-19) in 2019, various rare movement disorders and cognitive changes have been recognized as potential neurological complications. The early treatment of some of these allows rapid recovery; therefore, we must diagnose these manifestations in a timely way. We describe the case of a 76-year-old man infected with severe acute respiratory syndrome coronavirus-2 who presented with confusion and hallucinations and was admitted to our hospital 14 days after the onset of symptoms. One day later, he developed generalized myoclonus, dysarthria and ataxia, and tonic clonic seizures and was admitted to the intensive care unit. A diagnosis of COVID-19-associated autoimmune encephalitis with characteristics of limbic encephalitis and immune-mediated acute cerebellar ataxia and myoclonus syndrome was supported by alterations in the limbic system shown in magnetic resonance imaging, lateralized discharges shown in electroencephalography, a slightly elevated protein level in the cerebrospinal fluid (CSF), and indirect immunofluorescence in the CSF with autoantibody binding to anatomical structures of the cerebellum and hippocampus. The patient improved with 2 weeks of corticosteroid treatment and four sessions of plasmapheresis. Our current case study describes a rare case of COVID-19-related limbic encephalitis with immune-mediated acute cerebellar ataxia and myoclonus syndrome (ACAM syndrome) and strengthens the need for tissue-based assays (TBAs) to screen the serum and/or CSF of patients highly suspected to have autoimmune encephalitis. We believe that the timely diagnosis and targeted aggressive immunotherapy were mainly responsible for the patient's total recovery.
Collapse
Affiliation(s)
| | - Aigli G Vakrakou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
| | - Aikaterini Anastasiou
- REHAB Basel, Clinic for Neurorehabilitation and Paraplegiology, 4055 Basel, Switzerland
| | - Georgia Nikolopoulou
- Second Neurological Department, Henry Dunant Hospital Center, 115 26 Athens, Greece
| | - Athina Sourdi
- Third Department of Internal Medicine, Henry Dunant Hospital Center, 115 26 Athens, Greece
| | - John S Tzartos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Constantinos Kilidireas
- Second Neurological Department, Henry Dunant Hospital Center, 115 26 Athens, Greece
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This is an expert overview on recent literature about the complex relationship between coronavirus disease 2019 (COVID-19) and headache. RECENT FINDINGS Long COVID is a clinical syndrome characterized by the presence of persistent symptoms following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Headache is one of the most common symptoms and is described most often as throbbing pain, associated with photo and phonofobia and worsening with physical exercise. In acute COVID-19, headache is usually described as moderate or severe, diffuse and oppressive although sometimes it has been described with a migraine-like phenotype, especially in patients with a previous history of migraine. Headache intensity during acute phase seems to be the most important predictor of duration of headache over time. Some COVID-19 cases can be associated with cerebrovascular complications, and red flags of secondary headaches (e.g. new worsening or unresponsive headache, or new onset of neurological focal signs) should be urgently investigated with imaging. Treatment goals are the reduction of number and intensity of headache crises, and the prevention of chronic forms. SUMMARY This review can help clinicians to approach patients with headache and infection from SARS-CoV-2, with particular attention to persistent headache in long COVID.
Collapse
Affiliation(s)
- Claudio Tana
- Center of Excellence on Headache, Geriatrics and COVID-19 Clinic, SS Annunziata Hospital of Chieti, Chieti
| | - Maria Adele Giamberardino
- Center of Excellence on Headache, Geriatrics and COVID-19 Clinic, SS Annunziata Hospital of Chieti, Chieti
- Department of Medicine and Science of Aging and CAST, G. D'Annunzio University of Chieti
| | - Paolo Martelletti
- Internal Medicine and Emergency Medicine, Sant' Andrea Hospital, Sapienza University, Rome, Italy
| |
Collapse
|
25
|
Social interaction, psychotic disorders and inflammation: A triangle of interest. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110697. [PMID: 36521587 DOI: 10.1016/j.pnpbp.2022.110697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Social interaction difficulties are a hallmark of psychotic disorders, which in some cases can be definitely traced back to autoimmunological causes. Interestingly, systemic and intrathecal inflammation have been shown to significantly influence social processing by increasing sensitivity to threatening social stimuli, which bears some resemblance to psychosis. In this article, we review evidence for the involvement of systemic and intrathecal inflammatory processes in psychotic disorders and how this might help to explain some of the social impairments associated with this group of disorders. Vice versa, we also discuss evidence for the immunomodulatory function of social interactions and their potential role for therapeutic interventions in psychotic disorders.
Collapse
|
26
|
Velichkovsky BB, Razvaliaeva AY, Khlebnikova AA, Manukyan PA, Kasatkin VN. Attention and memory after COVID-19 as measured by neuropsychological tests: Systematic review and meta-analysis. Acta Psychol (Amst) 2023; 233:103838. [PMID: 36657196 PMCID: PMC9834202 DOI: 10.1016/j.actpsy.2023.103838] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
COVID-19 is associated with a range of sequelae, including cognitive dysfunctions as long-standing symptoms. Considering that the number of people infected worldwide keeps growing, it is important to understand specific domains of impairments to further organize appropriate rehabilitation procedures. In this study we conducted a meta-analysis to investigate specific cognitive functions impacted by COVID-19. A literature search was conducted in Web of Science, Scopus, PubMed, Academic Search Premier, Health Source: Nursing/Academic Edition, and preprint databases (OSF and PsyArXiv via OSF Preprints, medRxiv, bioRxiv, Research Square). We included the studies that compared cognitive functioning in COVID-19 reconvalescents and healthy controls, and used at least one validated neuropsychological test. Our findings show that short-term memory in the verbal domain, and possibly, visual short-term memory and attention, are at risk in COVID-19 reconvalescents. The impact of COVID-19 on cognitive functioning has yet to be studied in detail. In the future more controlled studies with validated computerized tests might help deepen our understanding of the issue. PSYCINFO CLASSIFICATION: 3360 Health Psychology & Medicine.
Collapse
Affiliation(s)
- Boris B Velichkovsky
- Research Institute for Brain Development and Peak Performance, RUDN University (Peoples' Friendship University of Russia), 117198, 11A Miklukho-Maklaya str., Moscow, Russia; Lomonosov Moscow State University, 125009, 11 Mokhovaya str., Moscow, Russia
| | - Anna Yu Razvaliaeva
- Institute of Psychology, Russian Academy of Sciences, 129366, 13 Yaroslavskaya str., Moscow, Russia.
| | - Alena A Khlebnikova
- Lomonosov Moscow State University, 125009, 11 Mokhovaya str., Moscow, Russia
| | - Piruza A Manukyan
- Research Institute for Brain Development and Peak Performance, RUDN University (Peoples' Friendship University of Russia), 117198, 11A Miklukho-Maklaya str., Moscow, Russia; Lomonosov Moscow State University, 125009, 11 Mokhovaya str., Moscow, Russia
| | - Vladimir N Kasatkin
- Research Institute for Brain Development and Peak Performance, RUDN University (Peoples' Friendship University of Russia), 117198, 11A Miklukho-Maklaya str., Moscow, Russia
| |
Collapse
|
27
|
Lavi Y, Vojdani A, Halpert G, Sharif K, Ostrinski Y, Zyskind I, Lattin MT, Zimmerman J, Silverberg JI, Rosenberg AZ, Shoenfeld Y, Amital H. Dysregulated Levels of Circulating Autoantibodies against Neuronal and Nervous System Autoantigens in COVID-19 Patients. Diagnostics (Basel) 2023; 13:diagnostics13040687. [PMID: 36832180 PMCID: PMC9955917 DOI: 10.3390/diagnostics13040687] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND COVID-19 is a heterogenous disease resulting in long-term sequela in predisposed individuals. It is not uncommon that recovering patients endure non-respiratory ill-defined manifestations, including anosmia, and neurological and cognitive deficit persisting beyond recovery-a constellation of conditions that are grouped under the umbrella of long-term COVID-19 syndrome. Association between COVID-19 and autoimmune responses in predisposed individuals was shown in several studies. AIM AND METHODS To investigate autoimmune responses against neuronal and CNS autoantigens in SARS-CoV-2-infected patients, we performed a cross-sectional study with 246 participants, including 169 COVID-19 patients and 77 controls. Levels of antibodies against the acetylcholine receptor, glutamate receptor, amyloid β peptide, alpha-synucleins, dopamine 1 receptor, dopamine 2 receptor, tau protein, GAD-65, N-methyl D-aspartate (NMDA) receptor, BDNF, cerebellar, ganglioside, myelin basic protein, myelin oligodendrocyte glycoprotein, S100-B, glial fibrillary acidic protein, and enteric nerve were measured using an Enzyme-Linked Immunosorbent Assay (ELISA). Circulating levels of autoantibodies were compared between healthy controls and COVID-19 patients and then classified by disease severity (mild [n = 74], severe [n = 65], and requiring supplemental oxygen [n = 32]). RESULTS COVID-19 patients were found to have dysregulated autoantibody levels correlating with the disease severity, e.g., IgG to dopamine 1 receptor, NMDA receptors, brain-derived neurotrophic factor, and myelin oligodendrocyte glycoprotein. Elevated levels of IgA autoantibodies against amyloid β peptide, acetylcholine receptor, dopamine 2 receptor, myelin basic protein, and α-synuclein were detected in COVID-19 patients compared with healthy controls. Lower IgA autoantibody levels against NMDA receptors, and IgG autoantibodies against glutamic acid decarboxylase 65, amyloid β peptide, tau protein, enteric nerve, and S100-B were detected in COVID-19 patients versus healthy controls. Some of these antibodies have known clinical correlations with symptoms commonly reported in the long COVID-19 syndrome. CONCLUSIONS Overall, our study shows a widespread dysregulation in the titer of various autoantibodies against neuronal and CNS-related autoantigens in convalescent COVID-19 patients. Further research is needed to provide insight into the association between these neuronal autoantibodies and the enigmatic neurological and psychological symptoms reported in COVID-19 patients.
Collapse
Affiliation(s)
- Yael Lavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| | - Gilad Halpert
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
- Correspondence: ; Tel.: +972-3-5303361; Fax: +972-3-5304796
| | - Kassem Sharif
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Yuri Ostrinski
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Israel Zyskind
- Department of Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
- Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Miriam T Lattin
- Department of Biology, Yeshiva University, New York, NY 10461, USA
| | | | - Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Howard Amital
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| |
Collapse
|
28
|
Duda E. How much (evil) intelligence can be encoded by 30 kb? Biol Futur 2023:10.1007/s42977-023-00153-8. [PMID: 36752964 PMCID: PMC9907195 DOI: 10.1007/s42977-023-00153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Genomes of most RNA viruses are rarely larger than the size of an average human gene (10-15 kb) and still code for a number of biologically active polypeptides that modify the immune system and metabolism of the host organism in an amazingly complex way. Prolonged coevolution developed tricks by which viruses can dodge many protective mechanisms of the host and lead to the formation of molecular mimicry patterns. Some viruses inhibit the interferon response, interfere with the membrane destroying effects of the activated complement cascade. They can replicate in cellular compartments formed by inner membranes of the cell hiding their characteristic features from diverse pattern recognition receptors. In many cases-and in this respect, the new coronavirus is a champion-they can exploit our own defensive mechanisms to cause serious harm, severe symptoms and frequently deadly disease.
Collapse
Affiliation(s)
- Ernő Duda
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
| |
Collapse
|
29
|
Vera-Lastra O, Ordinola Navarro A, Medina G, Cruz-Domínguez MP, Jara LJ. The effect of COVID-19 on patients with preexisting autoimmune diseases. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:495-528. [DOI: 10.1016/b978-0-443-18566-3.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Guest PC, Neyazi A, Braun-Dullaeus RC, Müller P, Schreiber J, Haghikia A, Vasilevska V, Steiner J. A Molecular Biomarker-Based Triage Approach for Targeted Treatment of Post-COVID-19 Syndrome Patients with Persistent Neurological or Neuropsychiatric Symptoms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:97-115. [PMID: 37378763 DOI: 10.1007/978-3-031-28012-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Approximately 30% of COVID-19 cases may experience chronic symptoms, known as post-COVID-19 syndrome (PCS). Common PCS symptoms can include fatigue, cognitive impairment, and persistent physical, neurological, and neuropsychiatric complaints. To improve healthcare and management of the current and future pandemics, we highlight the need for establishing interdisciplinary post-viral outpatient clinics comprised of specialists in fields such as psychiatry, psychotherapy, neurology, cardiology, pneumology, and immunology. In this way, PCS patients with a high health burden can receive modern diagnostics and targeted therapeutic recommendations. A key objective is to distinguish the "sick recovered" from the "healthy recovered." Our hypothesis is that there is a PCS subgroup with autoimmune-mediated systemic and brain-vascular dysregulation, which may lead to circulatory disorders, fatigue, cognitive impairment, depression, and anxiety. This can be clarified using a combination of specific antibody diagnostics and precise clinical, psychological, and apparative testing.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Translational Psychiatry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexandra Neyazi
- Laboratory of Translational Psychiatry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Rüdiger C Braun-Dullaeus
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, Otto-von-Guericke University, Magdeburg, Germany
| | - Patrick Müller
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Jens Schreiber
- Department of Pneumology, Otto von Guericke University, Magdeburg, Germany
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Veronika Vasilevska
- Laboratory of Translational Psychiatry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Laboratory of Translational Psychiatry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany.
| |
Collapse
|
31
|
Sizemore G, Lucke-Wold B, Small C. Review of SARS-COV-2 Systemic Impact: Building the Case for Sepsis via Virus in the Circulatory System. SM JOURNAL OF NEUROLOGICAL DISORDERS AND STROKE 2022; 6:7. [PMID: 36780255 PMCID: PMC9910055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
SARS-COV-2 can contribute to long term consequences associated with sepsis and circulatory dysfunction. In this insightful paper, we highlight the emerging pathophysiology utilizing two case examples. Both systemic and organ specific features are discussed. In addition, a novel laboratory assay is presented that identified SARS-COV-2 in the circulation using conserved SARS ion channels rather than the spike protein. The presentation is linked to the pathophysiology with the emphasis for early recognition and continued research. This paper will serve as a catalyst for continued discovery.
Collapse
Affiliation(s)
- Gina Sizemore
- West Virginia University School of Medicine Morgantown, WV
| | | | - Coulter Small
- Department of Neurosurgery, University of Florida, Gainesville, FL
| |
Collapse
|
32
|
Samim MM, Dhar D, Goyal S, Dey T, Parvin N, Shah RD, Singh V, Chowdhury S, Lal BM, Varghese N, Gohel A, Chowdhury A, Chatterjee A, Siddiqui S. AI-CoV Study: Autoimmune Encephalitis Associated With COVID-19 and Its Vaccines-A Systematic Review. J Clin Neurol 2022; 18:692-710. [PMID: 36367067 PMCID: PMC9669562 DOI: 10.3988/jcn.2022.18.6.692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Autoimmune encephalitis (AIE) following coronavirus disease 2019 (COVID-19) is an underexplored condition. This study aims to systematically review the clinico-investigational and pathophysiologic aspects of COVID-19 and its vaccines in association with AIE, and identify the factors predicting neurological severity and outcomes. METHODS Relevant data sources were searched using appropriate search terms on January 15, 2022. Studies meeting the criteria for AIE having a temporal association with COVID-19 or its vaccines were included. RESULTS Out of 1,894 citations, we included 61 articles comprising 88 cases: 71 of COVID-19-associated AIE, 3 of possible Bickerstaff encephalitis, and 14 of vaccine-associated AIE.There were 23 definite and 48 possible seronegative AIE cases. Anti-NMDAR (N-methyl-D-aspartate receptor; n=12, 16.9%) was the most common definite AIE. Males were more commonly affected (sex ratio=1.63) in the AIE subgroup. The neurological symptoms included alteredmental state (n=53, 74.6%), movement disorders (n=28, 39.4%), seizures (n=24, 33.8%), behavioural (n=25, 35.2%), and speech disturbances (n=17, 23.9%). The median latency to AIE diagnosis was 14 days (interquartile range=4-22 days). Female sex and ICU admission had higherrisks of sequelae, with odds ratio (OR) of 2.925 (95% confidence interval [CI]=1.005-8.516)and 3.515 (95% CI=1.160-10.650), respectively. Good immunotherapy response was seen in42/48 (87.5%) and 13/13 (100%) of COVID-19-associated and vaccine-associated AIE patients, respectively. Sequelae were reported in 22/60 (36.7%) COVID-19 associated and 10/13 (76.9%) vaccine-associated cases. CONCLUSIONS The study has revealed diagnostic, therapeutic, and pathophysiological aspects of AIE associated with COVID-19 and its vaccines, and its differences from postinfectious AIE. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42021299215.
Collapse
Affiliation(s)
- M M Samim
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Debjyoti Dhar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| | - Sheetal Goyal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Treshita Dey
- Department of Radiation Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naznin Parvin
- Department of Pediatrics, Lady Hardinge Medical College and Hospital, New Delhi, India
| | - Rutul D Shah
- Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Vikram Singh
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Sampurna Chowdhury
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhavesh Mohan Lal
- Department of General Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Nibu Varghese
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Abhishek Gohel
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Abhishek Chowdhury
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Aritra Chatterjee
- Centre For Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Shahyan Siddiqui
- Consultant Neuroradiologist, Department of Neuroimaging and Interventional Radiology, STAT Institute of Neurosciences, Hyderabad, India
| |
Collapse
|
33
|
MOLECULAR MIMICRY OF SARS-COV-2 SPIKE PROTEIN IN THE NERVOUS SYSTEM: A BIOINFORMATICS APPROACH. Comput Struct Biotechnol J 2022; 20:6041-6054. [PMID: 36317085 PMCID: PMC9605789 DOI: 10.1016/j.csbj.2022.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in record time to cope with the ongoing coronavirus disease 2019 (COVID-19) pandemic has led to uncertainty about their use and the appearance of adverse neurological reactions. The SARS-CoV-2 spike protein (SP) is used to produce neutralizing antibodies and stimulate innate immunity. However, considering the alterations in the nervous system (NS) caused by COVID- 19, cross-reactions are plausible. Objective To identify peptides in Homo sapiens SP-like proteins involved in myelin and axon homeostasis that may be affected due to molecular mimicry by antibodies and T cells induced by interaction with SP. Materials and methods A bioinformatics approach was used. To select the H. sapiens proteins to be studied, related biological processes categorized based on gene ontology were extracted through the construction of a protein–protein interaction network. Peripheral myelin protein 22, a major component of myelin in the peripheral nervous system, was used as the query protein. The extracellular domains and regions susceptible to recognition by antibodies were extracted from UniProt. In the study of T cells, linear sequence similarity between H. sapiens proteins and SP was assessed using BLASTp. This study considered the similarity in terms of biochemical groups per residue and affinity to the human major histocompatibility complex (human leukocyte antigen I), which were evaluated using Needle and NetMHCpan 4.1, respectively. Results A large number of shared pentapeptides between SP and H. sapiens proteins were identified. However, only a small group of 39 proteins was linked to axon and myelin homeostasis. In particular, some proteins, such as phosphacan, attractin, and teneurin-4, were susceptible targets of B and T cells. Other proteins closely related to myelin components in the NS, such as myelin-associated glycoprotein, were found to share at least one pentamer with SP in extracellular domains. Conclusion Proteins involved in the maintenance of nerve conduction in the central and peripheral NS were identified in H. sapiens. Based on these findings, re-evaluation of the vaccine composition is recommended to prevent possible neurological side effects.
Collapse
|
34
|
Sanchez-Larsen A, Rojas-Bartolomé L, Fernández-Valiente M, Sopelana D. ["Anti-NMDA-R encephalitis post-COVID-19: case report and proposed physiopathologic mechanism"]. Neurologia 2022; 38:S0213-4853(22)00097-4. [PMID: 36128041 PMCID: PMC9477958 DOI: 10.1016/j.nrl.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Alvaro Sanchez-Larsen
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete. Albacete, España
| | - Laura Rojas-Bartolomé
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete. Albacete, España
| | | | - David Sopelana
- Servicio de Neurología, Complejo Hospitalario Universitario de Albacete. Albacete, España
| |
Collapse
|
35
|
Lee H, Jeon JH, Choi H, Koh SH, Lee KY, Lee YJ, Kwon HS. Anti-N-methyl-D-aspartate receptor encephalitis after coronavirus disease 2019: A case report and literature review. Medicine (Baltimore) 2022; 101:e30464. [PMID: 36107550 PMCID: PMC9439623 DOI: 10.1097/md.0000000000030464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RATIONALE Coronavirus disease 2019 (COVID-19) has become a global pandemic and COVID-19-associated anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis may occur through an immune-mediated pathomechanism. PATIENT CONCERNS A 21-year-old woman with a history of COVID-19 presented to our hospital with memory decline and psychiatric symptoms. DIAGNOSIS The patient was diagnosed with anti-NMDAR encephalitis. INTERVENTION Intravenous methylprednisolone (1 g/day over 5 days) followed by immunoglobulin (0.4 g/kg/day over 5 days) were administered. The patient underwent laparoscopic salpingo-oophorectomy to remove an ovarian teratoma. OUTCOMES The patient was discharged with sequelae of short-term memory impairment, without other neuropsychiatric symptoms. LESSONS Cases of previously reported anti-NMDAR encephalitis with COVID-19 were reviewed and compared with the present case. Clinicians should be aware of the occurrence of anti-NMDAR encephalitis in patients who present with neuropsychiatric complaints during or after exposure to COVID-19. Further studies are required to determine the causal relationship between the 2 diseases and predict the prognosis of anti-NMDAR encephalitis after COVID-19 exposure.
Collapse
Affiliation(s)
- Hyesun Lee
- Department of Neurology, Hanyang University College of Medicine, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Jong Hyun Jeon
- Department of Neurology, Hanyang University College of Medicine, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University College of Medicine, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University College of Medicine, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Hanyang University Guri Hospital, Guri, Republic of Korea
- *Correspondence: Hyuk Sung Kwon, Department of Neurology, Hanyang University College of Medicine, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, Republic of Korea (e-mail: )
| |
Collapse
|
36
|
Graham EL, Koralnik IJ, Liotta EM. Therapeutic Approaches to the Neurologic Manifestations of COVID-19. Neurotherapeutics 2022; 19:1435-1466. [PMID: 35861926 PMCID: PMC9302225 DOI: 10.1007/s13311-022-01267-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
As of May 2022, there have been more than 527 million infections with severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) and over 6.2 million deaths from Coronavirus Disease 2019 (COVID-19) worldwide. COVID-19 is a multisystem illness with important neurologic consequences that impact long-term morbidity and mortality. In the acutely ill, the neurologic manifestations of COVID-19 can include distressing but relatively benign symptoms such as headache, myalgias, and anosmia; however, entities such as encephalopathy, stroke, seizures, encephalitis, and Guillain-Barre Syndrome can cause neurologic injury and resulting disability that persists long after the acute pulmonary illness. Furthermore, as many as one-third of patients may experience persistent neurologic symptoms as part of a Post-Acute Sequelae of SARS-CoV-2 infection (Neuro-PASC) syndrome. This Neuro-PASC syndrome can affect patients who required hospitalization for COVID-19 or patients who did not require hospitalization and who may have had minor or no pulmonary symptoms. Given the large number of individuals affected and the ability of neurologic complications to impair quality of life and productivity, the neurologic manifestations of COVID-19 are likely to have major and long-lasting personal, public health, and economic consequences. While knowledge of disease mechanisms and therapies acquired prior to the pandemic can inform us on how to manage patients with the neurologic manifestations of COVID-19, there is a critical need for improved understanding of specific COVID-19 disease mechanisms and development of therapies that target the neurologic morbidities of COVID-19. This current perspective reviews evidence for proposed disease mechanisms as they inform the neurologic management of COVID-19 in adult patients while also identifying areas in need of further research.
Collapse
Affiliation(s)
- Edith L Graham
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave Suite 1150, Chicago, IL, 60611, USA
| | - Igor J Koralnik
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave Suite 1150, Chicago, IL, 60611, USA
| | - Eric M Liotta
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave Suite 1150, Chicago, IL, 60611, USA.
| |
Collapse
|
37
|
Carneiro VCDS, Alves-Leon SV, Sarmento DJDS, Coelho WLDCNP, Moreira ODC, Salvio AL, Ramos CHF, Ramos Filho CHF, Marques CAB, da Costa Gonçalves JP, Leon LAA, de Paula VS. Herpesvirus and neurological manifestations in patients with severe coronavirus disease. Virol J 2022; 19:101. [PMID: 35676707 PMCID: PMC9174631 DOI: 10.1186/s12985-022-01828-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Background Certain clinical manifestations of coronavirus disease (COVID-19) mimic those associated with human herpesvirus (HHV) infection. In this study, we estimated the prevalence of herpesvirus in patients with COVID-19 and determined if coinfection is associated with poorer outcomes and neurological symptoms. Methods We analyzed samples of 53 patients diagnosed with COVID-19. The samples were evaluated for the presence of alphaherpesviruses, betaherpesviruses, and gammaherpesviruses, and the viral loads were quantified using quantitative polymerase chain reaction (qPCR) method. Results Among the patients, in 79.2% had detection at least one type of herpesvirus. HHV-6 (47.2%), cytomegalovirus (43.3%), and HHV-7 (39.6%) showed the highest detection rates. Patients with a high severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) load were more likely to show herpes simplex virus 1 detection (p = 0.037). Among patients coinfected with SARS-CoV-2 and HHVs, 26.4% showed central nervous system-associated neurological symptoms and herpetic manifestations. A statistically significant association was observed between neurological changes and HHV-6 detection (p = 0.034). Conclusions The findings showed a high prevalence of herpesvirus in patients with COVID-19. Furthermore, even though SARS-CoV-2 and HHV coinfection was not associated with poorer outcomes, the findings demonstrated the association between neurological symptoms and HHV-6 detection. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01828-9.
Collapse
|
38
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had an enormous impact on the world, affecting people's lifestyle, economy, and livelihood. Recently, with the development of vaccines, the number of infected cases has decreased. Many case reports have revealed that COVID-19 may induce other serious comorbidities such as anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis. Anti-NMDA receptor encephalitis is an acute autoimmune disease that occurs more commonly in women than in men. To explore the association between COVID-19 and anti-NMDA receptor encephalitis, the microRNA (miRNA) biomarkers of COVID-19, anti-NMDA receptor encephalitis, and other related diseases from the literature are reviewed; then on the basis of these miRNA biomarkers, the relationship between COVID-19 and anti-NMDA receptor encephalitis is discussed. miRNAs are small non-coding RNAs that play important roles in cell differentiation, development, cell-cycle regulation, and apoptosis. miRNAs have been used as biological biomarkers for many diseases. The results in this study reveal that the relationship between anti-NMDA receptor encephalitis and COVID-19 infection or COVID-19 vaccination cannot be excluded; however, the risk that COVID-19 triggers the anti-NMDA receptor encephalitis is not high.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
39
|
Steiner J, Vasilevska V. Inflammation und psychische Erkrankung. INFO NEUROLOGIE + PSYCHIATRIE 2021. [PMCID: PMC8601778 DOI: 10.1007/s15005-021-2121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Johann Steiner
- Universitätsklinikum Magdeburg, Klinik für Psychiatrie und Psychotherapie & Labor für Translationale Psychiatrie, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Veronika Vasilevska
- Universitätsklinikum Magdeburg, Klinik für Psychiatrie und Psychotherapie & Labor für Translationale Psychiatrie, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|