1
|
Vo DK, Trinh KTL. Molecular Farming for Immunization: Current Advances and Future Prospects in Plant-Produced Vaccines. Vaccines (Basel) 2025; 13:191. [PMID: 40006737 PMCID: PMC11860421 DOI: 10.3390/vaccines13020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Using plants as bioreactors, molecular farming has emerged as a versatile and sustainable platform for producing recombinant vaccines, therapeutic proteins, industrial enzymes, and nutraceuticals. This innovative approach leverages the unique advantages of plants, including scalability, cost-effectiveness, and reduced risk of contamination with human pathogens. Recent advancements in gene editing, transient expression systems, and nanoparticle-based delivery technologies have significantly enhanced the efficiency and versatility of plant-based systems. Particularly in vaccine development, molecular farming has demonstrated its potential with notable successes such as Medicago's Covifenz for COVID-19, illustrating the capacity of plant-based platforms to address global health emergencies rapidly. Furthermore, edible vaccines have opened new avenues in the delivery of vaccines, mainly in settings with low resources where the cold chain used for conventional logistics is a challenge. However, optimization of protein yield and stability, the complexity of purification processes, and regulatory hurdles are some of the challenges that still remain. This review discusses the current status of vaccine development using plant-based expression systems, operational mechanisms for plant expression platforms, major applications in the prevention of infectious diseases, and new developments, such as nanoparticle-mediated delivery and cancer vaccines. The discussion will also touch on ethical considerations, the regulatory framework, and future trends with respect to the transformative capacity of plant-derived vaccines in ensuring greater global accessibility and cost-effectiveness of the vaccination. This field holds great promise for the infectious disease area and, indeed, for applications in personalized medicine and biopharmaceuticals in the near future.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- Bionano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Bharathi JK, Suresh P, Prakash MAS, Muneer S. Exploring recent progress of molecular farming for therapeutic and recombinant molecules in plant systems. Heliyon 2024; 10:e37634. [PMID: 39309966 PMCID: PMC11416299 DOI: 10.1016/j.heliyon.2024.e37634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
An excellent technique for producing pharmaceuticals called "molecular farming" enables the industrial mass production of useful recombinant proteins in genetically modified organisms. Protein-based pharmaceuticals are rising in significance because of a variety of factors, including their bioreactivity, precision, safety, and efficacy rate. Heterologous expression methods for the manufacturing of pharmaceutical products have been previously employed using yeast, bacteria, and animal cells. However, the high cost of mammalian cell system, and production, the chance for product complexity, and contamination, and the hurdles of scaling up to commercial production are the limitations of these traditional expression methods. Plants have been raised as a hopeful replacement system for the expression of biopharmaceutical products due to their potential benefits, which include low production costs, simplicity in scaling up to commercial manufacturing levels, and a lower threat of mammalian toxin contaminations and virus infections. Since plants are widely utilized as a source of therapeutic chemicals, molecular farming offers a unique way to produce molecular medicines such as recombinant antibodies, enzymes, growth factors, plasma proteins, and vaccines whose molecular basis for use in therapy is well established. Biopharming provides more economical and extensive pharmaceutical drug supplies, including vaccines for contagious diseases and pharmaceutical proteins for the treatment of conditions like heart disease and cancer. To assess its technical viability and the efficacy resulting from the adoption of molecular farming products, the following review explores the various methods and methodologies that are currently employed to create commercially valuable molecules in plant systems.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Preethika Suresh
- School of Bioscience and Biotechnology, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| |
Collapse
|
3
|
Shanmugaraj B, Jirarojwattana P, Phoolcharoen W. Molecular Farming Strategy for the Rapid Production of Protein-Based Reagents for Use in Infectious Disease Diagnostics. PLANTA MEDICA 2023; 89:1010-1020. [PMID: 37072112 DOI: 10.1055/a-2076-2034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recombinant proteins are a major breakthrough in biomedical research with a wide range of applications from diagnostics to therapeutics. Strategic construct design, consistent expression platforms, and suitable upstream and downstream techniques are key considerations to produce commercially viable recombinant proteins. The recombinant antigenic protein production for use either as a diagnostic reagent or subunit vaccine formulation is usually carried out in prokaryotic or eukaryotic expression platforms. Microbial and mammalian systems dominate the biopharmaceutical industry for such applications. However, there is no universal expression system that can meet all the requirements for different types of proteins. The adoptability of any expression system is likely based on the quality and quantity of the proteins that can be produced from it. The huge demand of recombinant proteins for different applications requires an inexpensive production platform for rapid development. The molecular farming scientific community has been promoting the plant system for nearly 3 decades as a cost-effective alternative to produce high-quality proteins for research, diagnostic, and therapeutic applications. Here, we discuss how plant biotechnology could offer solutions for the rapid and scalable production of protein antigens as low-cost diagnostic reagents for use in functional assays.
Collapse
Affiliation(s)
| | - Perawat Jirarojwattana
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Blokhina EA, Mardanova ES, Zykova AA, Stepanova LA, Shuklina MA, Tsybalova LM, Ravin NV. Plant-Produced Nanoparticles Based on Artificial Self-Assembling Peptide Bearing the Influenza M2e Epitope. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112228. [PMID: 37299207 DOI: 10.3390/plants12112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Despite advances in vaccine development, influenza remains a persistent global health threat and the search for a broad-spectrum recombinant vaccine against influenza continues. The extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is highly conserved and can be used to develop a universal vaccine. M2e is a poor immunogen by itself, but it becomes highly immunogenic when linked to an appropriate carrier. Here, we report the transient expression of a recombinant protein comprising four tandem copies of M2e fused to an artificial self-assembling peptide (SAP) in plants. The hybrid protein was efficiently expressed in Nicotiana benthamiana using the self-replicating potato virus X-based vector pEff. The protein was purified using metal affinity chromatography under denaturing conditions. The hybrid protein was capable of self-assembly in vitro into spherical particles 15-30 nm in size. The subcutaneous immunization of mice with M2e-carrying nanoparticles induced high levels of M2e-specific IgG antibodies in serum and mucosal secretions. Immunization provided mice with protection against a lethal influenza A virus challenge. SAP-based nanoparticles displaying M2e peptides can be further used to develop a recombinant "universal" vaccine against influenza A produced in plants.
Collapse
Affiliation(s)
- Elena A Blokhina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Eugenia S Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna A Zykova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Liudmila A Stepanova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia
| | - Marina A Shuklina
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia
| | - Liudmila M Tsybalova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
5
|
Adams A, Hendrikse M, Rybicki EP, Hitzeroth II. Optimal size of DNA encapsidated by plant produced human papillomavirus pseudovirions. Virology 2023; 580:88-97. [PMID: 36801669 DOI: 10.1016/j.virol.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
Human papillomaviruses (HPVs) are known to be the cause of anogenital and oropharyngeal cancers as well as genital and common warts. HPV pseudovirions (PsVs) are synthetic viral particles that are made up of the L1 major and L2 minor HPV capsid proteins and up to 8 Kb of encapsidated pseudogenome dsDNA. HPV PsVs are used to test novel neutralising antibodies elicited by vaccines, for studying the virus life cycle, and potentially for the delivery of therapeutic DNA vaccines. HPV PsVs are typically produced in mammalian cells, however, it has recently been shown that Papillomavirus PsVs can be produced in plants, a potentially safer, cheaper and more easily scalable means of production. We analysed the encapsidation frequencies of pseudogenomes expressing EGFP, ranging in size from 4.8 Kb to 7.8 Kb, by plant-made HPV-35 L1/L2 particles. The smaller pseudogenomes were found to be packaged more efficiently into PsVs as higher concentrations of encapsidated DNA and higher levels of EGFP expression were obtained with the 4.8 Kb pseudogenome, compared to the larger 5.8-7.8 Kb pseudogenomes. Thus, smaller pseudogenomes, of 4.8 Kb, should be used for efficient plant production of HPV-35 PsVs.
Collapse
Affiliation(s)
- Ayesha Adams
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Megan Hendrikse
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
6
|
Rozov SM, Zagorskaya AA, Konstantinov YM, Deineko EV. Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins. PLANTS (BASEL, SWITZERLAND) 2022; 12:38. [PMID: 36616166 PMCID: PMC9824153 DOI: 10.3390/plants12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are the most important product of current industrial biotechnology. They are indispensable in medicine (for diagnostics and treatment), food and chemical industries, and research. Plant cells combine advantages of the eukaryotic protein production system with simplicity and efficacy of the bacterial one. The use of plants for the production of recombinant proteins is an economically important and promising area that has emerged as an alternative to traditional approaches. This review discusses advantages of plant systems for the expression of recombinant proteins using nuclear, plastid, and mitochondrial genomes. Possibilities, problems, and prospects of modifications of the three parts of the genome in light of obtaining producer plants are examined. Examples of successful use of the nuclear expression platform for production of various biopharmaceuticals, veterinary drugs, and technologically important proteins are described, as are examples of a high yield of recombinant proteins upon modification of the chloroplast genome. Potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated. Although these opportunities have not yet been exploited, potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated.
Collapse
Affiliation(s)
- Sergey M. Rozov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Alla A. Zagorskaya
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, Lermontova Str. 132, Irkutsk 664033, Russia
| | - Elena V. Deineko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
High-Yield Production of Chimeric Hepatitis E Virus-Like Particles Bearing the M2e Influenza Epitope and Receptor Binding Domain of SARS-CoV-2 in Plants Using Viral Vectors. Int J Mol Sci 2022; 23:ijms232415684. [PMID: 36555326 PMCID: PMC9779006 DOI: 10.3390/ijms232415684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Capsid protein of Hepatitis E virus (HEV) is capable of self-assembly into virus-like particles (VLPs) when expressed in Nicotiana benthamiana plants. Such VLPs could be used as carriers of antigens for vaccine development. In this study, we obtained VLPs based on truncated coat protein of HEV bearing the M2e peptide of Influenza A virus or receptor-binding domain of SARS-CoV-2 spike glycoprotein (RBD). We optimized the immunogenic epitopes' presentation by inserting them into the protruding domain of HEV ORF2 at position Tyr485. The fusion proteins were expressed in Nicotiana benthamiana plants using self-replicating potato virus X (PVX)-based vector. The fusion protein HEV/M2, targeted to the cytosol, was expressed at the level of about 300-400 μg per gram of fresh leaf tissue and appeared to be soluble. The fusion protein was purified using metal affinity chromatography under native conditions with the final yield about 200 μg per gram of fresh leaf tissue. The fusion protein HEV/RBD, targeted to the endoplasmic reticulum, was expressed at about 80-100 μg per gram of fresh leaf tissue; the yield after purification was up to 20 μg per gram of fresh leaf tissue. The recombinant proteins HEV/M2 and HEV/RBD formed nanosized virus-like particles that could be recognized by antibodies against inserted epitopes. The ELISA assay showed that antibodies of COVID-19 patients can bind plant-produced HEV/RBD virus-like particles. This study shows that HEV capsid protein is a promising carrier for presentation of foreign antigen.
Collapse
|
8
|
Bolaños-Martínez OC, Strasser R. Plant-made poliovirus vaccines - Safe alternatives for global vaccination. FRONTIERS IN PLANT SCIENCE 2022; 13:1046346. [PMID: 36340406 PMCID: PMC9630729 DOI: 10.3389/fpls.2022.1046346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Human polioviruses are highly infectious viruses that are spread mainly through the fecal-oral route. Infection of the central nervous system frequently results in irreversible paralysis, a disease called poliomyelitis. Children under five years are mainly affected if they have not acquired immunity through natural infection or via vaccination. Current polio vaccines comprise the injectable inactivated polio vaccine (IPV, also called the Salk vaccine) and the live-attenuated oral polio vaccine (OPV, also called the Sabin vaccine). The main limitations of the IPV are the reduced protection at the intestinal mucosa, the site of virus replication, and the high costs for manufacturing due to use of live viruses. While the OPV is more effective and stimulates mucosal immunity, it is manufactured using live-attenuated strains that can revert into pathogenic viruses resulting in major safety concerns and vaccine-derived outbreaks. During the last fifteen years, plant-based poliovirus vaccines have been explored by several groups as a safe and low-cost alternative, and promising results in protection against challenges with viruses and induction of neutralizing antibodies have been obtained. However, low yields and a high frequency in dose administration highlight the need for improvements in polioviral antigen production. In this review, we provide insights into recent efforts to develop plant-made poliovirus candidates, with an emphasis on strategies to optimize the production of viral antigens.
Collapse
Affiliation(s)
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
9
|
Transient Expression of Flavivirus Structural Proteins in Nicotiana benthamiana. Vaccines (Basel) 2022; 10:vaccines10101667. [PMID: 36298532 PMCID: PMC9610170 DOI: 10.3390/vaccines10101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Flaviviruses are a threat to public health and can cause major disease outbreaks. Tick-borne encephalitis (TBE) is caused by a flavivirus, and it is one of the most important causes of viral encephalitis in Europe and is on the rise in Sweden. As there is no antiviral treatment available, vaccination remains the best protective measure against TBE. Currently available TBE vaccines are based on formalin-inactivated virus produced in cell culture. These vaccines must be delivered by intramuscular injection, have a burdensome immunization schedule, and may exhibit vaccine failure in certain populations. This project aimed to develop an edible TBE vaccine to trigger a stronger immune response through oral delivery of viral antigens to mucosal surfaces. We demonstrated successful expression and post-translational processing of flavivirus structural proteins which then self-assembled to form virus-like particles in Nicotiana benthamiana. We performed oral toxicity tests in mice using various plant species as potential bioreactors and evaluated the immunogenicity of the resulting edible vaccine candidate. Mice immunized with the edible vaccine candidate did not survive challenge with TBE virus. Interestingly, immunization of female mice with a commercial TBE vaccine can protect their offspring against TBE virus infection.
Collapse
|
10
|
Abstract
The idea of producing vaccines in plants originated in the late 1980s. Initially, it was contemplated that this notion could facilitate the concept of edible vaccines, making them more cost effective and easily accessible. Initial studies on edible vaccines focussed on the use of a variety of different transgenic plant host species for the production of vaccine antigens. However, adequate expression levels of antigens, the difficulties predicted with administration of consistent doses, and regulatory rules required for growth of transgenic plants gave way to the development of vaccine candidates that could be purified and administered parenterally. The field has subsequently advanced with improved expression techniques including a shift from using transgenic to transient expression of antigens, refinement of purification protocols, a deeper understanding of the biological processes and a wealth of evidence of immunogenicity and efficacy of plant-produced vaccine candidates, all contributing to the successful practice of what is now known as biopharming or plant molecular farming. The establishment of this technology has resulted in the development of many different types of vaccine candidates including subunit vaccines and various different types of nanoparticle vaccines targeting a wide variety of bacterial and viral diseases. This has brought further acceptance of plants as a suitable platform for vaccine production and in this review, we discuss the most recent advances in the production of vaccines in plants for human use.
Collapse
Affiliation(s)
- Jennifer Stander
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Sandiswa Mbewana
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
| |
Collapse
|
11
|
Brahmi F, Vejux A, Ghzaiel I, Ksila M, Zarrouk A, Ghrairi T, Essadek S, Mandard S, Leoni V, Poli G, Vervandier-Fasseur D, Kharoubi O, El Midaoui A, Atanasov AG, Meziane S, Latruffe N, Nasser B, Bouhaouala-Zahar B, Masmoudi-Kouki O, Madani K, Boulekbache-Makhlouf L, Lizard G. Role of Diet and Nutrients in SARS-CoV-2 Infection: Incidence on Oxidative Stress, Inflammatory Status and Viral Production. Nutrients 2022; 14:2194. [PMID: 35683996 PMCID: PMC9182601 DOI: 10.3390/nu14112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus illness (COVID-19) is an infectious pathology generated by intense severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This infectious disease has emerged in 2019. The COVID-19-associated pandemic has considerably affected the way of life and the economy in the world. It is consequently crucial to find solutions allowing remedying or alleviating the effects of this infectious disease. Natural products have been in perpetual application from immemorial time given that they are attested to be efficient towards several illnesses without major side effects. Various studies have shown that plant extracts or purified molecules have a promising inhibiting impact towards coronavirus. In addition, it is substantial to understand the characteristics, susceptibility and impact of diet on patients infected with COVID-19. In this review, we recapitulate the influence of extracts or pure molecules from medicinal plants on COVID-19. We approach the possibilities of plant treatment/co-treatment and feeding applied to COVID-19. We also show coronavirus susceptibility and complications associated with nutrient deficiencies and then discuss the major food groups efficient on COVID-19 pathogenesis. Then, we covered emerging technologies using plant-based SARS-CoV-2 vaccine. We conclude by giving nutrient and plants curative therapy recommendations which are of potential interest in the COVID-19 infection and could pave the way for pharmacological treatments or co-treatments of COVID-19.
Collapse
Affiliation(s)
- Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Anne Vejux
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Imen Ghzaiel
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
| | - Mohamed Ksila
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Soukena Essadek
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Stéphane Mandard
- Lipness Team and LipSTIC LabEx, UFR Sciences de Santé, INSERM/University of Bourgogne Franche-Comté LNC UMR1231, 21000 Dijon, France;
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Via Mazzini 1, 20833 Desio, Italy;
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, 10043 Orbassano (Turin), Italy;
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran 1 ABB, Oran 31000, Algeria;
| | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, Errachidia 52000, Morocco
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Smail Meziane
- Institut Européen des Antioxydants, 1b Rue Victor de Lespinats, 54230 Neuves-Maison, France;
| | - Norbert Latruffe
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Boubker Nasser
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms and Theranostic Applications, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Khodir Madani
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
- Centre de Recherche en Technologie des Industries Agroalimentaires, Route de Targua Ouzemour, Bejaia 06000, Algeria
| | - Lila Boulekbache-Makhlouf
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Gérard Lizard
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| |
Collapse
|
12
|
Abstract
Coronaviruses have caused devastation in both human and animal populations, affecting both health and the economy. Amidst the emergence and re-emergence of coronaviruses, humans need to surmount the health and economic threat of coronaviruses through science and evidence-based approaches. One of these approaches is through biotechnology, particularly the heterologous production of biopharmaceutical proteins. This review article briefly describes the genome, general virion morphology, and key structural proteins of different coronaviruses affecting animals and humans. In addition, this review paper also presents the different systems in recombinant protein technology such as bacteria, yeasts, plants, mammalian cells, and insect/insect cells systems used to express key structural proteins in the development of countermeasures such as diagnostics, prophylaxis, and therapeutics in the challenging era of coronaviruses.
Collapse
|
13
|
Plant-Derived Recombinant Vaccines against Zoonotic Viruses. Life (Basel) 2022; 12:life12020156. [PMID: 35207444 PMCID: PMC8878793 DOI: 10.3390/life12020156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
Collapse
|
14
|
Abstract
Plant systems have been used as biofactories to produce recombinant proteins since 1983. The huge amount of data, collected so far in this framework, suggests that plants display several key advantages over existing traditional platforms when they are intended for therapeutic uses, including safety, scalability, and the speed in obtaining the final product.Here, we describe a method that could be applied for the expression and production of a candidate subunit vaccine in Nicotiana benthamiana plants by transient expression, defining all the protocols starting from plant cultivation to target recombinant protein purification.
Collapse
Affiliation(s)
- Mattia Santoni
- Department of Biotechnology, University of Verona, Verona, Italy
- Diamante srl, Verona, Italy
| | | | | | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
15
|
Ahn G, Cha JY, Lee JW, Park G, Shin GI, Song SJ, Ryu G, Hwang I, Kim MG, Kim WY. Production of a Bacteria-like Particle Vaccine Targeting Rock Bream ( Oplegnathus fasciatus) Iridovirus Using Nicotiana benthamiana. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2021; 65:21-28. [PMID: 34602836 PMCID: PMC8477727 DOI: 10.1007/s12374-021-09328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Viral diseases are extremely widespread infections that change constantly through mutations. To produce vaccines against viral diseases, transient expression systems are employed, and Nicotiana benthamiana (tobacco) plants are a rapidly expanding platform. In this study, we developed a recombinant protein vaccine targeting the major capsid protein (MCP) of iridovirus fused with the lysine motif (LysM) and coiled-coil domain of coronin 1 (ccCor1) for surface display using Lactococcus lactis. The protein was abundantly produced in N. benthamiana in its N-glycosylated form. Total soluble proteins isolated from infiltrated N. benthamiana leaves were treated sequentially with increasing ammonium sulfate solution, and recombinant MCP mainly precipitated at 40-60%. Additionally, affinity chromatography using Ni-NTA resin was applied for further purification. Native structure analysis using size exclusion chromatography showed that recombinant MCP existed in a large oligomeric form. A minimum OD600 value of 0.4 trichloroacetic acid (TCA)-treated L. lactis was required for efficient recombinant MCP display. Immunogenicity of recombinant MCP was assessed in a mouse model through enzyme-linked immunosorbent assay (ELISA) with serum-injected recombinant MCP-displaying L. lactis. In summary, we developed a plant-based recombinant vaccine production system combined with surface display on L. lactis.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Jeong Won Lee
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Gyeongran Park
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Shi-Jian Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - Gyeongryul Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
16
|
Ortega-Rivera O, Shin MD, Chen A, Beiss V, Moreno-Gonzalez MA, Lopez-Ramirez MA, Reynoso M, Wang H, Hurst BL, Wang J, Pokorski JK, Steinmetz NF. Trivalent Subunit Vaccine Candidates for COVID-19 and Their Delivery Devices. J Am Chem Soc 2021; 143:14748-14765. [PMID: 34490778 PMCID: PMC8442557 DOI: 10.1021/jacs.1c06600] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic highlights the need for platform technologies enabling rapid development of vaccines for emerging viral diseases. The current vaccines target the SARS-CoV-2 spike (S) protein and thus far have shown tremendous efficacy. However, the need for cold-chain distribution, a prime-boost administration schedule, and the emergence of variants of concern (VOCs) call for diligence in novel SARS-CoV-2 vaccine approaches. We studied 13 peptide epitopes from SARS-CoV-2 and identified three neutralizing epitopes that are highly conserved among the VOCs. Monovalent and trivalent COVID-19 vaccine candidates were formulated by chemical conjugation of the peptide epitopes to cowpea mosaic virus (CPMV) nanoparticles and virus-like particles (VLPs) derived from bacteriophage Qβ. Efficacy of this approach was validated first using soluble vaccine candidates as solo or trivalent mixtures and subcutaneous prime-boost injection. The high thermal stability of our vaccine candidates allowed for formulation into single-dose injectable slow-release polymer implants, manufactured by melt extrusion, as well as microneedle (MN) patches, obtained through casting into micromolds, for prime-boost self-administration. Immunization of mice yielded high titers of antibodies against the target epitope and S protein, and data confirms that antibodies block receptor binding and neutralize SARS-CoV and SARS-CoV-2 against infection of human cells. We present a nanotechnology vaccine platform that is stable outside the cold-chain and can be formulated into delivery devices enabling single administration or self-administration. CPMV or Qβ VLPs could be stockpiled, and epitopes exchanged to target new mutants or emergent diseases as the need arises.
Collapse
Affiliation(s)
- Oscar
A. Ortega-Rivera
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Matthew D. Shin
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Angela Chen
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Veronique Beiss
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Miguel A. Moreno-Gonzalez
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Miguel A. Lopez-Ramirez
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Maria Reynoso
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322, United States
| | - Hong Wang
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Brett L. Hurst
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322, United States
| | - Joseph Wang
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Jonathan K. Pokorski
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Nicole F. Steinmetz
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| |
Collapse
|
17
|
Maharjan PM, Choe S. Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines. Vaccines (Basel) 2021; 9:992. [PMID: 34579229 PMCID: PMC8473425 DOI: 10.3390/vaccines9090992] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
The prevalence of the coronavirus disease 2019 (COVID-19) pandemic in its second year has led to massive global human and economic losses. The high transmission rate and the emergence of diverse SARS-CoV-2 variants demand rapid and effective approaches to preventing the spread, diagnosing on time, and treating affected people. Several COVID-19 vaccines are being developed using different production systems, including plants, which promises the production of cheap, safe, stable, and effective vaccines. The potential of a plant-based system for rapid production at a commercial scale and for a quick response to an infectious disease outbreak has been demonstrated by the marketing of carrot-cell-produced taliglucerase alfa (Elelyso) for Gaucher disease and tobacco-produced monoclonal antibodies (ZMapp) for the 2014 Ebola outbreak. Currently, two plant-based COVID-19 vaccine candidates, coronavirus virus-like particle (CoVLP) and Kentucky Bioprocessing (KBP)-201, are in clinical trials, and many more are in the preclinical stage. Interim phase 2 clinical trial results have revealed the high safety and efficacy of the CoVLP vaccine, with 10 times more neutralizing antibody responses compared to those present in a convalescent patient's plasma. The clinical trial of the CoVLP vaccine could be concluded by the end of 2021, and the vaccine could be available for public immunization thereafter. This review encapsulates the efforts made in plant-based COVID-19 vaccine development, the strategies and technologies implemented, and the progress accomplished in clinical trials and preclinical studies so far.
Collapse
Affiliation(s)
- Puna Maya Maharjan
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea;
| | - Sunghwa Choe
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
18
|
Plant-based vaccine research development against viral diseases with emphasis on Ebola virus disease: A review study. Curr Opin Pharmacol 2021; 60:261-267. [PMID: 34481336 DOI: 10.1016/j.coph.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022]
Abstract
Ebola virus infection results in the fast onset of severe acute haemorrhagic fever with high mortality. The Ebola virus is labelled as a category A pathogen. Vaccines against the Ebola virus (EBOV) are essential for everyone, and an expansion in the arena of vaccine synthesis; especially, plant-based vaccine development has drawn attention. To express the heterologous protein for plant-based vectors, both RNA and DNA viruses have been adapted. Among the different approaches of plant-based vaccine technologies, the agroinfiltration method, which was initially established to investigate plant-virus interactions, has been considered an effective method to produce monoclonal antibodies against EBOV. The effectiveness of plants as bioreactors of vaccine/monoclonal antibodies development could be well-thought-out to attend the obligatory mandate. The review confers recent progress in the production of plant-based vaccines and antibody treatments against the Ebola virus disease, thereby alleviating public health alarms associated with EBOV.
Collapse
|
19
|
Citiulo F, Crosatti C, Cattivelli L, Biselli C. Frontiers in the Standardization of the Plant Platform for High Scale Production of Vaccines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1828. [PMID: 34579360 PMCID: PMC8467261 DOI: 10.3390/plants10091828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
The recent COVID-19 pandemic has highlighted the value of technologies that allow a fast setup and production of biopharmaceuticals in emergency situations. The plant factory system can provide a fast response to epidemics/pandemics. Thanks to their scalability and genome plasticity, plants represent advantageous platforms to produce vaccines. Plant systems imply less complicated production processes and quality controls with respect to mammalian and bacterial cells. The expression of vaccines in plants is based on transient or stable transformation systems and the recent progresses in genome editing techniques, based on the CRISPR/Cas method, allow the manipulation of DNA in an efficient, fast, and easy way by introducing specific modifications in specific sites of a genome. Nonetheless, CRISPR/Cas is far away from being fully exploited for vaccine expression in plants. In this review, an overview of the potential conjugation of the renewed vaccine technologies (i.e., virus-like particles-VLPs, and industrialization of the production process) with genome editing to produce vaccines in plants is reported, illustrating the potential advantages in the standardization of the plant platforms, with the overtaking of constancy of large-scale production challenges, facilitating regulatory requirements and expediting the release and commercialization of the vaccine products of genome edited plants.
Collapse
Affiliation(s)
- Francesco Citiulo
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy;
| | - Cristina Crosatti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Chiara Biselli
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy
| |
Collapse
|
20
|
Su H, Yakovlev IA, van Eerde A, Su J, Clarke JL. Plant-Produced Vaccines: Future Applications in Aquaculture. FRONTIERS IN PLANT SCIENCE 2021; 12:718775. [PMID: 34456958 PMCID: PMC8397579 DOI: 10.3389/fpls.2021.718775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 05/19/2023]
Abstract
Aquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases. Such diseases not only cause huge economic losses, but also lead to ecological hazards in terms of pathogen spread to marine ecosystems causing infection of wild fish and polluting the environment. Thus, fish health is essential for the aquaculture industry to be environmentally sustainable and a prerequisite for intensive aquaculture production globally. The wide use of antibiotics and drug residues has caused intensive pollution along with risks for food safety and increasing antimicrobial resistance. Vaccination is the most effective and environmentally friendly approach to battle infectious diseases in aquaculture with minimal ecological impact and is applicable to most species of farmed fish. However, there are only 34 fish vaccines commercially available globally to date, showing the urgent need for further development of fish vaccines to manage fish health and ensure food safety. Plant genetic engineering has been utilized to produce genetically modified crops with desirable characteristics and has also been used for vaccine production, with several advantages including cost-effectiveness, safety when compared with live virus vaccines, and plants being capable of carrying out posttranslational modifications that are similar to naturally occurring systems. So far, plant-derived vaccines, antibodies, and therapeutic proteins have been produced for human and animal health. However, the development of plant-made vaccines for animals, especially fish, is still lagging behind the development of human vaccines. The present review summarizes the development of fish vaccines currently utilized and the suitability of the plant-production platform for fish vaccine and then addresses considerations regarding fish vaccine production in plants. Developing fish vaccines by way of plant biotechnology are significant for the aquaculture industry, fish health management, food safety, and human health.
Collapse
Affiliation(s)
- Hang Su
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jihong Liu Clarke
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
21
|
Fay PC, Mohd Jaafar F, Batten C, Attoui H, Saunders K, Lomonossoff GP, Reid E, Horton D, Maan S, Haig D, Daly JM, Mertens PPC. Serological Cross-Reactions between Expressed VP2 Proteins from Different Bluetongue Virus Serotypes. Viruses 2021; 13:1455. [PMID: 34452321 PMCID: PMC8402635 DOI: 10.3390/v13081455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/26/2023] Open
Abstract
Bluetongue (BT) is a severe and economically important disease of ruminants that is widely distributed around the world, caused by the bluetongue virus (BTV). More than 28 different BTV serotypes have been identified in serum neutralisation tests (SNT), which, along with geographic variants (topotypes) within each serotype, reflect differences in BTV outer-capsid protein VP2. VP2 is the primary target for neutralising antibodies, although the basis for cross-reactions and serological variations between and within BTV serotypes is poorly understood. Recombinant BTV VP2 proteins (rVP2) were expressed in Nicotiana benthamiana, based on sequence data for isolates of thirteen BTV serotypes (primarily from Europe), including three 'novel' serotypes (BTV-25, -26 and -27) and alternative topotypes of four serotypes. Cross-reactions within and between these viruses were explored using rabbit anti-rVP2 sera and post BTV-infection sheep reference-antisera, in I-ELISA (with rVP2 target antigens) and SNT (with reference strains of BTV-1 to -24, -26 and -27). Strong reactions were generally detected with homologous rVP2 proteins or virus strains/serotypes. The sheep antisera were largely serotype-specific in SNT, but more cross-reactive by ELISA. Rabbit antisera were more cross-reactive in SNT, and showed widespread, high titre cross-reactions against homologous and heterologous rVP2 proteins in ELISA. Results were analysed and visualised by antigenic cartography, showing closer relationships in some, but not all cases, between VP2 topotypes within the same serotype, and between serotypes belonging to the same 'VP2 nucleotype'.
Collapse
Affiliation(s)
- Petra C. Fay
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
- The Pirbright Institute, Surrey, Woking GU24 ONF, UK;
| | - Fauziah Mohd Jaafar
- UMR VIROLOGIE 1161, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (F.M.J.); (H.A.)
| | - Carrie Batten
- The Pirbright Institute, Surrey, Woking GU24 ONF, UK;
| | - Houssam Attoui
- UMR VIROLOGIE 1161, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (F.M.J.); (H.A.)
| | - Keith Saunders
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (K.S.); (G.P.L.)
| | - George P. Lomonossoff
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (K.S.); (G.P.L.)
| | - Elizabeth Reid
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| | - Daniel Horton
- Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK;
| | - Sushila Maan
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar 125004, India;
| | - David Haig
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| | - Peter P. C. Mertens
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK; (P.C.F.); (E.R.); (D.H.); (J.M.D.)
| |
Collapse
|
22
|
Producing Vaccines against Enveloped Viruses in Plants: Making the Impossible, Difficult. Vaccines (Basel) 2021; 9:vaccines9070780. [PMID: 34358196 PMCID: PMC8310165 DOI: 10.3390/vaccines9070780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.
Collapse
|
23
|
Venkataraman S, Hefferon K, Makhzoum A, Abouhaidar M. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Vaccines (Basel) 2021; 9:vaccines9070761. [PMID: 34358177 PMCID: PMC8310141 DOI: 10.3390/vaccines9070761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular pharming or the technology of application of plants and plant cell culture to manufacture high-value recombinant proteins has progressed a long way over the last three decades. Whether generated in transgenic plants by stable expression or in plant virus-based transient expression systems, biopharmaceuticals have been produced to combat several human viral diseases that have impacted the world in pandemic proportions. Plants have been variously employed in expressing a host of viral antigens as well as monoclonal antibodies. Many of these biopharmaceuticals have shown great promise in animal models and several of them have performed successfully in clinical trials. The current review elaborates the strategies and successes achieved in generating plant-derived vaccines to target several virus-induced health concerns including highly communicable infectious viral diseases. Importantly, plant-made biopharmaceuticals against hepatitis B virus (HBV), hepatitis C virus (HCV), the cancer-causing virus human papillomavirus (HPV), human immunodeficiency virus (HIV), influenza virus, zika virus, and the emerging respiratory virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been discussed. The use of plant virus-derived nanoparticles (VNPs) and virus-like particles (VLPs) in generating plant-based vaccines are extensively addressed. The review closes with a critical look at the caveats of plant-based molecular pharming and future prospects towards further advancements in this technology. The use of biopharmed viral vaccines in human medicine and as part of emergency response vaccines and therapeutics in humans looks promising for the near future.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
- Correspondence:
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana;
| | - Mounir Abouhaidar
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| |
Collapse
|
24
|
Siriwattananon K, Manopwisedjaroen S, Shanmugaraj B, Prompetchara E, Ketloy C, Buranapraditkun S, Tharakhet K, Kaewpang P, Ruxrungtham K, Thitithanyanont A, Phoolcharoen W. Immunogenicity Studies of Plant-Produced SARS-CoV-2 Receptor Binding Domain-Based Subunit Vaccine Candidate with Different Adjuvant Formulations. Vaccines (Basel) 2021; 9:744. [PMID: 34358160 PMCID: PMC8310282 DOI: 10.3390/vaccines9070744] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 12/23/2022] Open
Abstract
Due to the rapid transmission of the coronavirus disease 2019 (COVID-19) causing serious public health problems and economic burden, the development of effective vaccines is a high priority for controlling the virus spread. Our group has previously demonstrated that the plant-produced receptor-binding domain (RBD) of SARS-CoV-2 fused with Fc of human IgG was capable of eliciting potent neutralizing antibody and cellular immune responses in animal studies, and the immunogenicity could be improved by the addition of an alum adjuvant. Here, we performed a head-to-head comparison of different commercially available adjuvants, including aluminum hydroxide gel (alum), AddaVax (MF59), monophosphoryl lipid A from Salmonella minnesota R595 (mPLA-SM), and polyinosinic-polycytidylic acid (poly(I:C)), in mice by combining them with plant-produced RBD-Fc, and the differences in the immunogenicity of RBD-Fc with different adjuvants were evaluated. The specific antibody responses in terms of total IgG, IgG1, and IgG2a subtypes and neutralizing antibodies, as well as vaccine-specific T-lymphocyte responses, induced by the different tested adjuvants were compared. We observed that all adjuvants tested here induced a high level of total IgG and neutralizing antibodies, but mPLA-SM and poly (I:C) showed the induction of a balanced IgG1 and IgG2a (Th2/Th1) immune response. Further, poly (I:C) significantly increased the frequency of IFN-γ-expressing cells compared with control, whereas no significant difference was observed between the adjuvanted groups. This data revealed the adjuvants' role in enhancing the immune response of RBD-Fc vaccination and the immune profiles elicited by different adjuvants, which could prove helpful for the rational development of next-generation SARS-CoV-2 RBD-Fc subunit vaccines. However, additional research is essential to further investigate the efficacy and safety of this vaccine formulation before clinical trials.
Collapse
Affiliation(s)
- Konlavat Siriwattananon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwimon Manopwisedjaroen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (A.T.)
| | | | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supranee Buranapraditkun
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittipan Tharakhet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
| | - Papatsara Kaewpang
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (E.P.); (C.K.); (S.B.); (K.T.); (P.K.); (K.R.)
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (A.T.)
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Abstract
Any disease that spreads quickly and crossed the geographical barrier is termed as pandemic. After the initial occurrence of Covid-19 from China, World Health Organization had declared novel corona viral outbreak as pandemic on March, 2020. Since then, COVID-19 continued to devastate people all around the world. Human civilization has witnessed one of its greatest crises by facing 180 million of confirmed cases with 38.9 lakh deaths across the world till end of June 2021. India alone contributes 30 million of positive cases and has lost 3.92 lakh valuable lives (data as on 24th of June 2021 from CSSEGIS and Data (http://github.com/CSSEGISandData/COVID-19); (the number increases in each day). Bio-medical experts from all around the world are working tirelessly to limit the disease and find potential cures for this viral infection. Vaccination is the most effective strategy to prevent the spread of any viral disease. Virologists have developed some effective vaccines, but production or supply lags far behind the present demand across the globe. Plant-derived vaccines (PDVs) based on modified virus like particles (VLPs) can be a feasible alternative in this case. A summarized account about the efficacy of the first plant-derived Covid 19 vaccine, CoVLP is discussed. PDVs and VLPs are also reviewed briefly, along with their benefits and drawbacks.
Collapse
|
26
|
Mardanova ES, Ravin NV. Transient expression of recombinant proteins in plants using potato virus X based vectors. Methods Enzymol 2021; 660:205-222. [PMID: 34742389 DOI: 10.1016/bs.mie.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plants become a promising biofactory for the large-scale production of recombinant proteins due to low cost, scalability, and safety. Agroinfiltration of plant leaves with a plant viral vector carrying a gene of interest is a rapid and efficient method for protein production in plants. Currently this method is in use for producing a wide range of proteins for multiple applications, including vaccine antigens, antibodies, and protein nanoparticles such as virus-like particles. A number of pharmaceutical proteins produced by transient expression are currently in clinical development. Here, we describe potato virus X based vector pEff-GFP enabling fast and high-level expression of recombinant proteins in Nicotiana benthamiana plants. The pEff vector provides green fluorescent protein expression levels of up to 30% of total soluble protein (about 1mg per g of fresh leaf tissue) and was successfully applied for the production of the immunogens of potential clinical interest.
Collapse
Affiliation(s)
- Eugenia S Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
27
|
Kumar M, Kumari N, Thakur N, Bhatia SK, Saratale GD, Ghodake G, Mistry BM, Alavilli H, Kishor DS, Du X, Chung SM. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:1213. [PMID: 34203729 PMCID: PMC8232254 DOI: 10.3390/plants10061213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 12/23/2022]
Abstract
Many pathogenic viral pandemics have caused threats to global health; the COVID-19 pandemic is the latest. Its transmission is growing exponentially all around the globe, putting constraints on the health system worldwide. A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causes this pandemic. Many candidate vaccines are available at this time for COVID-19, and there is a massive international race underway to procure as many vaccines as possible for each country. However, due to heavy global demand, there are strains in global vaccine production. The use of a plant biotechnology-based expression system for vaccine production also represents one part of this international effort, which is to develop plant-based heterologous expression systems, virus-like particles (VLPs)-vaccines, antiviral drugs, and a rapid supply of antigen-antibodies for detecting kits and plant origin bioactive compounds that boost the immunity and provide tolerance to fight against the virus infection. This review will look at the plant biotechnology platform that can provide the best fight against this global pandemic.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Nisha Kumari
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Nishant Thakur
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University, Seoul 10326, Korea;
| | - Bhupendra M. Mistry
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - D. S. Kishor
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Xueshi Du
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| |
Collapse
|
28
|
Rahimian N, Miraei HR, Amiri A, Ebrahimi MS, Nahand JS, Tarrahimofrad H, Hamblin MR, Khan H, Mirzaei H. Plant-based vaccines and cancer therapy: Where are we now and where are we going? Pharmacol Res 2021; 169:105655. [PMID: 34004270 DOI: 10.1016/j.phrs.2021.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic vaccines are an effective approach in cancer therapy for treating the disease at later stages. The Food and Drug Administration (FDA) recently approved the first therapeutic cancer vaccine, and further studies are ongoing in clinical trials. These are expected to result in the future development of vaccines with relatively improved efficacy. Several vaccination approaches are being studied in pre-clinical and clinical trials, including the generation of anti-cancer vaccines by plant expression systems.This approach has advantages, such as high safety and low costs, especially for the synthesis of recombinant proteins. Nevertheless, the development of anti-cancer vaccines in plants is faced with some technical obstacles.Herein, we summarize some vaccines that have been used in cancer therapy, with an emphasis on plant-based vaccines.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Reza Miraei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | | | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 20282028, South Africa
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
29
|
Mukherjee S, Chouhan KBS, Tandey R, Yadav N, Dhobi M, Mandal V. A status report with critical analysis of research trends in exploring medicinal plants as antiviral: Let us dig into the history to predict the future. Phytother Res 2021; 35:4284-4296. [PMID: 33793009 DOI: 10.1002/ptr.7093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The review article serves as a mini directory of medicinal plants (662 medicinal plants have been identified) that have been investigated for antiviral property between 2015 and 2019. Data have been extracted from Scopus using specific keywords followed by manual sorting to avoid any duplication. Critical analyses of handpicked data have been presented. Mapping of medicinal plants, followed by critical analysis on the families and plant parts investigated in the said tenure, and its correlation with the participating countries and virus types have been critically analyzed. Interceptive role of phytochemicals in impeding viral replication has also been taken note of. Emphasis on India's exploration of various medicinal plants has also been given. Also presents a tutelage, which is likely to revive the interest in natural products for search of potential antivirals. This review is expected to serve as a rich data bank and as a guiding principle for researchers who are planning to explore medicinal plants in search for potential antiviral. It is time that researchers need to revisit their countries' own history of traditional medicine to predict something worthful in future.
Collapse
Affiliation(s)
- Souvik Mukherjee
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, India
| | | | - Roshni Tandey
- Department of Pharmacognosy, Apollo College of Pharmacy, Durg, India
| | - Neelima Yadav
- Department of Pharmacognosy, Dr. C.V. Raman Institute of Pharmacy, Dr. C.V. Raman University, Bilaspur, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Vivekananda Mandal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, India
| |
Collapse
|
30
|
Uthaya Kumar A, Kadiresen K, Gan WC, Ling APK. Current updates and research on plant-based vaccines for coronavirus disease 2019. Clin Exp Vaccine Res 2021; 10:13-23. [PMID: 33628750 PMCID: PMC7892944 DOI: 10.7774/cevr.2021.10.1.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
The primary outbreak of severe acute respiratory syndrome coronavirus 2, causing pneumonia-like symptoms in patients named coronavirus disease 2019 (COVID-19) had evolved into a global pandemic. COVID-19 has surpassed Middle East respiratory syndrome and severe acute respiratory syndrome in terms of rate and scale causing more than one million deaths. Development of an effective vaccine to fight against the spread of COVID-19 is the main goal of many countries around the world and plant-based vaccines are one of the available methods in vaccine developments. Plant-based vaccine has gained its reputation among researchers for its known effective manufacturing process and cost effectiveness. Many companies around the world are participating in the race to develop an effective vaccine by using the plant system. This review discusses different approaches used as well as highlights the challenges faced by various companies and research groups in developing the plant-based COVID-19 vaccine.
Collapse
Affiliation(s)
- Asqwin Uthaya Kumar
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Kirthikah Kadiresen
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Wen Cong Gan
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Mamedov T, Gurbuzaslan I, Yuksel D, Ilgin M, Mammadova G, Ozkul A, Hasanova G. Soluble Human Angiotensin- Converting Enzyme 2 as a Potential Therapeutic Tool for COVID-19 is Produced at High Levels In Nicotiana benthamiana Plant With Potent Anti-SARS-CoV-2 Activity. FRONTIERS IN PLANT SCIENCE 2021; 12:742875. [PMID: 34938305 PMCID: PMC8685454 DOI: 10.3389/fpls.2021.742875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs a safe, cost-effective SARS-CoV-2 vaccine as well as therapeutic and antiviral drugs to combat COVID-19. Angiotensin-converting enzyme 2 (ACE2), as a key receptor for SARS-CoV-2 infections, has been proposed as a potential therapeutic tool in patients with COVID-19. In this study, we report a high-level production (about ∼0.75 g/kg leaf biomass) of human soluble (truncated) ACE2 in the Nicotiana benthamiana plant. After the Ni-NTA single-step, the purification yields of recombinant plant produced ACE2 protein in glycosylated and deglycosylated forms calculated as ∼0.4 and 0.5 g/kg leaf biomass, respectively. The plant produced recombinant human soluble ACE2s successfully bind to the SARS-CoV-2 spike protein. Importantly, both deglycosylated and glycosylated forms of ACE2 are stable at increased temperatures for extended periods of time and demonstrated strong anti-SARS-CoV-2 activities in vitro. The half maximal inhibitory concentration (IC50) values of glycosylated ACE2 (gACE2) and deglycosylated ACE2 (dACE2) were ∼1.0 and 8.48 μg/ml, respectively, for the pre-entry infection, when incubated with 100TCID50 of SARS-CoV-2. Therefore, plant produced soluble ACE2s are promising cost-effective and safe candidates as a potential therapeutic tool in the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
- *Correspondence: Tarlan Mamedov,
| | - Irem Gurbuzaslan
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Damla Yuksel
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Merve Ilgin
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Gunay Mammadova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Aykut Ozkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Gulnara Hasanova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
32
|
Novel Production of Bovine Papillomavirus Pseudovirions in Tobacco Plants. Pathogens 2020; 9:pathogens9120996. [PMID: 33260725 PMCID: PMC7760623 DOI: 10.3390/pathogens9120996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 11/17/2022] Open
Abstract
Vaccine efficacy requires the production of neutralising antibodies which offer protection against the native virus. The current gold standard for determining the presence of neutralising antibodies is the pseudovirion-based neutralisation assay (PBNA). PBNAs utilise pseudovirions (PsVs), structures which mimic native virus capsids, but contain non-viral nucleic material. PsVs are currently produced in expensive cell culture systems, which limits their production, yet plant expression systems may offer cheaper, safer alternatives. Our aim was to determine whether plants could be used for the production of functional PsVs of bovine papillomavirus 1 (BPV1), an important causative agent of economically damaging bovine papillomas in cattle and equine sarcoids in horses and wild equids. BPV1 capsid proteins, L1 and L2, and a self-replicating reporter plasmid were transiently expressed in Nicotiana benthamiana to produce virus-like particles (VLPs) and PsVs. Strategies to enhance particle yields were investigated and optimised protocols were established. The PsVs' ability to infect mammalian cells and express their encapsidated reporter genes in vitro was confirmed, and their functionality as reagents in PBNAs was demonstrated through their neutralisation by several different antibodies. This is the first report of BPV PsVs expressed in plants and demonstrates the potential for the development of therapeutic veterinary vaccines in planta.
Collapse
|
33
|
Garcia S. Pandemics and Traditional Plant-Based Remedies. A Historical-Botanical Review in the Era of COVID19. FRONTIERS IN PLANT SCIENCE 2020; 11:571042. [PMID: 32983220 PMCID: PMC7485289 DOI: 10.3389/fpls.2020.571042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 05/03/2023]
Abstract
Pandemics are as old as humanity and since ancient times we have turned to plants to find solutions to health-related problems. Traditional medicines based mostly on plants are still the only therapeutic possibility in many developing countries, but even in the richest ones, herbal formulation currently receives increased attention. Plants are natural laboratories whose complex secondary metabolism produces a wealth of chemical compounds, leading to drug discovery - 25% of widespread use drugs are indeed of plant origin. Their therapeutic potential is even bigger: although many plant-based compounds show inhibitory effects against a myriad of pathogens, few reach the stage of clinical trials. Their mechanism of action is often unknown, yet traditional plant-based remedies have the advantage of a long-term experience in their use, usually of hundreds to thousands of years, and thus a precious experience on their safety and effects. Here I am providing a non-systematic historical-botanical review of some of the most devastating pandemics that humanity has faced, with a focus on plant therapeutic uses. I will revisit the Middle Ages black death, in which a plant-based lotion (the four thieves vinegar) showed some effectiveness; the smallpox, a viral disease that lead to the discovery of vaccination but for which the native Americans had a plant ally, an interesting carnivorous plant species; tuberculosis and the use of garlic; the Spanish flu and the widespread recommendation of eating onions, among other plant-based treatments; and malaria, whose first effective treatment, quinine, came from the bark of a Peruvian tree, properties already known by the Quechua people. Synthetic analogues of quinine such as chloroquine or hydroxychloroquine are now being revisited for the treatment of COVID19 symptoms, as they are artemisinin and derivatives, other plant-based compounds effective against malaria. Finally, I will give some hints on another facet of plants to aid us in the prevention of infectious diseases: the production of biotechnological plant-based vaccines. Altogether, my aim is to stress the significant role of plants in global health (past, present and future) and the need of enhancing and protecting the botanical knowledge, from systematics to conservation, from ecology to ethnobotany.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| |
Collapse
|
34
|
Sohrab SS. An edible vaccine development for coronavirus disease 2019: the concept. Clin Exp Vaccine Res 2020; 9:164-168. [PMID: 32864373 PMCID: PMC7445323 DOI: 10.7774/cevr.2020.9.2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022] Open
Abstract
A novel coronavirus was emerged in December 2019 from Wuhan city, China and has now become a global threat to human health. Currently, the coronavirus disease 2019 (COVID-19) has spread to more than 34 countries with 2,445 deaths and 78,811 confirmed cases. Currently, there is no vaccine available against COVID-19. The traditional vaccines development requires more time and high cost and due to this, the disease outbreaks becomes more challenging. Now a days, plants have become more attractive platform for edible vaccine production than the other system. The development of an edible vaccine in a selected plant system has many significant advantages such as; easy and efficient oral delivery, low cost with higher scale production, avoidance of any trained medical personnel for delivery, lack of any pathogenic infection, multicomponent expression in a single plant, and so forth. In this manuscript, the concept, development, and importance of an edible vaccine have been discussed. By using this plant-based platform, an edible vaccines can be produced in many crops like banana, cucumber, carrot, lettuce, and tomato against various diseases. Due to increasing cases globally with COVID-19, there is an urgent requirement to develop an ideal vaccine and antiviral therapy against this virus to control the disease worldwide.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Shanmugaraj B, I. Bulaon CJ, Phoolcharoen W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. PLANTS 2020; 9:plants9070842. [PMID: 32635427 PMCID: PMC7411908 DOI: 10.3390/plants9070842] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline. In this review, we consider the importance of a plant- based production system for recombinant protein production, and its potential to produce biopharmaceuticals is discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: ; Tel.: +66-2-218-8359; Fax: +66-2-218-8357
| |
Collapse
|
36
|
Abstract
Vaccines are biological preparations that improve immunity to particular diseases and form an important innovation of 19th century research. It contains a protein that resembles a disease-causing microorganism and is often made from weak or killed forms of the microbe. Vaccines are agents that stimulate the body’s immune system to recognize the antigen. Now, a new form of vaccine was introduced which will have the power to mask the risk side of conventional vaccines. This type of vaccine was produced from plants which are genetically modified. In the production of edible vaccines, the gene-encoding bacterial or viral disease-causing agent can be incorporated in plants without losing its immunogenic property. The main mechanism of action of edible vaccines is to activate the systemic and mucosal immunity responses against a foreign disease-causing organism. Edible vaccines can be produced by incorporating transgene in to the selected plant cell. At present edible vaccine are developed for veterinary and human use. But the main challenge faced by edible vaccine is its acceptance by the population so that it is necessary to make aware the society about its use and benefits. When compared to other traditional vaccines, edible vaccines are cost effective, efficient and safe. It promises a better prevention option from diseases.
Collapse
Affiliation(s)
- Vrinda M Kurup
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Healthcare, Education & Research, Kochi, Kerala, 682041, India.
| |
Collapse
|
37
|
Shanmugaraj B, Malla A, Phoolcharoen W. Emergence of Novel Coronavirus 2019-nCoV: Need for Rapid Vaccine and Biologics Development. Pathogens 2020; 9:E148. [PMID: 32098302 PMCID: PMC7168632 DOI: 10.3390/pathogens9020148] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Novel Coronavirus (2019-nCoV) is an emerging pathogen that was first identified in Wuhan, China in late December 2019. This virus is responsible for the ongoing outbreak that causes severe respiratory illness and pneumonia-like infection in humans. Due to the increasing number of cases in China and outside China, the WHO declared coronavirus as a global health emergency. Nearly 35,000 cases were reported and at least 24 other countries or territories have reported coronavirus cases as early on as February. Inter-human transmission was reported in a few countries, including the United States. Neither an effective anti-viral nor a vaccine is currently available to treat this infection. As the virus is a newly emerging pathogen, many questions remain unanswered regarding the virus's reservoirs, pathogenesis, transmissibility, and much more is unknown. The collaborative efforts of researchers are needed to fill the knowledge gaps about this new virus, to develop the proper diagnostic tools, and effective treatment to combat this infection. Recent advancements in plant biotechnology proved that plants have the ability to produce vaccines or biopharmaceuticals rapidly in a short time. In this review, the outbreak of 2019-nCoV in China, the need for rapid vaccine development, and the potential of a plant system for biopharmaceutical development are discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ashwini Malla
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranyoo Phoolcharoen
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
38
|
Tremouillaux-Guiller J, Moustafa K, Hefferon K, Gaobotse G, Makhzoum A. Plant-made HIV vaccines and potential candidates. Curr Opin Biotechnol 2020; 61:209-216. [PMID: 32058899 DOI: 10.1016/j.copbio.2020.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Millions of people around the world suffer from heavy social and health burdens related to HIV/AIDS and its associated opportunistic infections. To reduce these burdens, preventive and therapeutic vaccines are required. Effective HIV vaccines have been under investigation for several decades using different animal models. Potential plant-made HIV vaccine candidates have also gained attention in the past few years. In addition to this, broadly neutralizing antibodies produced in plants which can target conserved viral epitopes and neutralize mutating HIV strains have been identified. Numerous epitopes of envelope glycoproteins and capsid proteins of HIV-1 are a part of HIV therapy. Here, we discuss some recent findings aiming to produce anti-HIV-1 recombinant proteins in engineered plants for AIDS prophylactics and therapeutic treatments.
Collapse
Affiliation(s)
| | | | | | - Goabaone Gaobotse
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Botswana
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Botswana.
| |
Collapse
|
39
|
Bamogo PKA, Brugidou C, Sérémé D, Tiendrébéogo F, Djigma FW, Simpore J, Lacombe S. Virus-based pharmaceutical production in plants: an opportunity to reduce health problems in Africa. Virol J 2019; 16:167. [PMID: 31888686 PMCID: PMC6937724 DOI: 10.1186/s12985-019-1263-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Developing African countries face health problems that they struggle to solve. The major causes of this situation are high therapeutic and logistical costs. Plant-made therapeutics are easy to produce due to the lack of the safety considerations associated with traditional fermenter-based expression platforms, such as mammalian cells. Plant biosystems are easy to scale up and inexpensive, and they do not require refrigeration or a sophisticated medical infrastructure. These advantages provide an opportunity for plant-made pharmaceuticals to counteract diseases for which medicines were previously inaccessible to people in countries with few resources. MAIN BODY The techniques needed for plant-based therapeutic production are currently available. Viral expression vectors based on plant viruses have greatly enhanced plant-made therapeutic production and have been exploited to produce a variety of proteins of industrial, pharmaceutical and agribusiness interest. Some neglected tropical diseases occurring exclusively in the developing world have found solutions through plant bioreactor technology. Plant viral expression vectors have been reported in the production of therapeutics against these diseases occurring exclusively in the third world, and some virus-derived antigens produced in plants exhibit appropriate antigenicity and immunogenicity. However, all advances in the use of plants as bioreactors have been made by companies in Europe and America. The developing world is still far from acquiring this technology, although plant viral expression vectors may provide crucial help to overcome neglected diseases. CONCLUSION Today, interest in these tools is rising, and viral amplicons made in and for Africa are in progress. This review describes the biotechnological advances in the field of plant bioreactors, highlights factors restricting access to this technology by those who need it most and proposes a solution to overcome these limitations.
Collapse
Affiliation(s)
- Pingdwende Kader Aziz Bamogo
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Christophe Brugidou
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Drissa Sérémé
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Séverine Lacombe
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France.
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso.
| |
Collapse
|
40
|
Durous L, Rosa-Calatrava M, Petiot E. Advances in influenza virus-like particles bioprocesses. Expert Rev Vaccines 2019; 18:1285-1300. [DOI: 10.1080/14760584.2019.1704262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laurent Durous
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
41
|
Abstract
Cervical cancer is by far the most common HPV-related disease. About 99.7% of cervical cancer cases are caused by persistent genital high-risk human papillomavirus (HPV) infection. Worldwide, cervical cancer is one of the most common cancer in women with an estimated 528,000 new cases reported in 2012. Most HPV infections clear spontaneously but persistent infection with the oncogenic or high-risk types may cause cancer of the oropharynx and anogenital regions. The virus usually infects the mucocutaneous epithelium and produces viral particles in matured epithelial cells and then causes a disruption in normal cell-cycle control and the promotion of uncontrolled cell division leading to the accumulation of genetic damage. There are currently two effective prophylactic vaccines against HPV infection, and these comprise of HPV types 16 and 18, and HPV types 6, 11, 16 and 18 virus-like particles. HPV testing in the secondary prevention of cervical cancer is clinically valuable in triaging low-grade cytological abnormalities and is also more sensitive than cytology as a primary screening. If these prevention strategies can be implemented in both developed and developing countries, many thousands of lives could be saved.
Collapse
Affiliation(s)
- Kehinde Sharafadeen Okunade
- Department of Obstetrics and Gynaecology, College of Medicine, University of Lagos, Lagos University Teaching Hospital, Lagos, Nigeria
| |
Collapse
|
42
|
Le DT, Radukic MT, Müller KM. Adeno-associated virus capsid protein expression in Escherichia coli and chemically defined capsid assembly. Sci Rep 2019; 9:18631. [PMID: 31819093 PMCID: PMC6901487 DOI: 10.1038/s41598-019-54928-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/20/2019] [Indexed: 01/17/2023] Open
Abstract
Research and clinical applications of recombinant adeno-associated virus (rAAV) significantly increased in recent years alongside regulatory approvals of rAAV gene therapy products. To date, all rAAV vectors as well as AAV empty capsids are produced in eukaryotic cells. We explored a new route to generate AAV capsids with the aim to analyze capsid assembly in a chemically defined setting and pave the way for new production methods and applications based on AAV virus-like particles (VLPs). We generated these empty capsids by bacterial expression and subsequent concomitant protein refolding and VLP formation. AAV serotype 2 structural protein VP3 was expressed in Escherichia coli. VLPs formed as demonstrated by dynamic light scattering, atomic force microscopy, and ELISA. Furthermore, VLPs internalized into human HeLa cells. To extend the application range of the VLPs, we tested peptide insertions, at the genetic level, in a surface loop (amino acid position 587) or at the C-terminus of VP3 and these variants also formed VLPs. VLPs developed without assembly-activating protein (AAP), but adding purified recombinant AAP to the refolding process increased capsid yield. Our findings offer a new route to understand AAV assembly biology and open a toolbox for AAV production strategies that might enable capsid display for vaccination and matching of capsids with cargoes at large scale and low cost.
Collapse
Affiliation(s)
- Dinh To Le
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Marco T Radukic
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
43
|
Rutkowska DA, Mokoena NB, Tsekoa TL, Dibakwane VS, O’Kennedy MM. Plant-produced chimeric virus-like particles - a new generation vaccine against African horse sickness. BMC Vet Res 2019; 15:432. [PMID: 31796116 PMCID: PMC6892175 DOI: 10.1186/s12917-019-2184-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.
Collapse
Affiliation(s)
| | - Nobalanda B. Mokoena
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | | - Vusi S. Dibakwane
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | |
Collapse
|
44
|
Dennis SJ, Meyers AE, Hitzeroth II, Rybicki EP. African Horse Sickness: A Review of Current Understanding and Vaccine Development. Viruses 2019; 11:E844. [PMID: 31514299 PMCID: PMC6783979 DOI: 10.3390/v11090844] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
African horse sickness is a devastating disease that causes great suffering and many fatalities amongst horses in sub-Saharan Africa. It is caused by nine different serotypes of the orbivirus African horse sickness virus (AHSV) and it is spread by Culicoid midges. The disease has significant economic consequences for the equine industry both in southern Africa and increasingly further afield as the geographic distribution of the midge vector broadens with global warming and climate change. Live attenuated vaccines (LAV) have been used with relative success for many decades but carry the risk of reversion to virulence and/or genetic re-assortment between outbreak and vaccine strains. Furthermore, the vaccines lack DIVA capacity, the ability to distinguish between vaccine-induced immunity and that induced by natural infection. These concerns have motivated interest in the development of new, more favourable recombinant vaccines that utilize viral vectors or are based on reverse genetics or virus-like particle technologies. This review summarizes the current understanding of AHSV structure and the viral replication cycle and also evaluates existing and potential vaccine strategies that may be applied to prevent or control the disease.
Collapse
Affiliation(s)
- Susan J Dennis
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
45
|
Abstract
Cervical cancer is by far the most common HPV-related disease. About 99.7% of cervical cancer cases are caused by persistent genital high-risk human papillomavirus (HPV) infection. Worldwide, cervical cancer is one of the most common cancers in women with an estimated 528,000 new cases reported in 2012. Most HPV infections clear spontaneously but persistent infection with the oncogenic or high-risk types may cause cancer of the oropharynx and anogenital regions. The virus usually infects the mucocutaneous epithelium and produces viral particles in matured epithelial cells and then causes a disruption in normal cell-cycle control and the promotion of uncontrolled cell division leading to the accumulation of genetic damage. There are currently two effective prophylactic vaccines against HPV infection, and these comprise of HPV types 16 and 18, and HPV types 6, 11, 16 and 18 virus-like particles. HPV testing in the secondary prevention of cervical cancer is clinically valuable in triaging low-grade cytological abnormalities and is also more sensitive than cytology as a primary screening. If these prevention strategies can be implemented in both developed and developing countries, many thousands of lives could be saved.
Collapse
Affiliation(s)
- Kehinde Sharafadeen Okunade
- Department of Obstetrics and Gynaecology, College of Medicine, University of Lagos/Lagos University Teaching Hospital, Lagos, Nigeria
| |
Collapse
|
46
|
Rybicki EP. Plant molecular farming of virus‐like nanoparticles as vaccines and reagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1587. [DOI: 10.1002/wnan.1587] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular & Cell Biology University of Cape Town Cape Town South Africa
| |
Collapse
|
47
|
Dubey KK, Luke GA, Knox C, Kumar P, Pletschke BI, Singh PK, Shukla P. Vaccine and antibody production in plants: developments and computational tools. Brief Funct Genomics 2019; 17:295-307. [PMID: 29982427 DOI: 10.1093/bfgp/ely020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plants as bioreactors have been widely used to express efficient vaccine antigens against viral, bacterial and protozoan infections. To date, many different plant-based expression systems have been analyzed, with a growing preference for transient expression systems. Antibody expression in diverse plant species for therapeutic applications is well known, and this review provides an overview of various aspects of plant-based biopharmaceutical production. Here, we highlight conventional and gene expression technologies in plants along with some illustrative examples. In addition, the portfolio of products that are being produced and how they relate to the success of this field are discussed. Stable and transient gene expression in plants, agrofiltration and virus infection vectors are also reviewed. Further, the present report draws attention to antibody epitope prediction using computational tools, one of the crucial steps of vaccine design. Finally, regulatory issues, biosafety and public perception of this technology are also discussed.
Collapse
Affiliation(s)
- Kashyap Kumar Dubey
- Department of Biotechnology, Central University of Haryana, Jant-Pali Mahendergarh, Haryana, India.,Microbial Process Development Laboratory, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, Scotland
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Punit Kumar
- Microbial Process Development Laboratory, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Brett I Pletschke
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Puneet Kumar Singh
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
48
|
Kopertekh L, Schiemann J. Transient Production of Recombinant Pharmaceutical Proteins in Plants: Evolution and Perspectives. Curr Med Chem 2019; 26:365-380. [DOI: 10.2174/0929867324666170718114724] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
Abstract
During the last two decades, the production of pharmaceutical proteins in plants
evolved from proof of concept to established technology adopted by several biotechnological
companies. This progress is particularly based on intensive research starting stable genetic
transformation and moving to transient expression. Due to its advantages in yield and
speed of protein production transient expression platforms became the leading plant-based
manufacturing technology. Current transient expression methods rely on Agrobacteriummediated
delivery of expression vectors into plant cells. In recent years, great advances have
been made in the improvement of expression vectors, host cell engineering as well as in the
development of commercial manufacturing processes. Several GMP-certified large-scale
production facilities exist around the world to utilize agroinfiltration method. A number of
pharmaceutical proteins produced by transient expression are currently in clinical development.
The great potential of transient expression platform in respect to rapid response to
emerging pandemics was demonstrated by the production of experimental ZMapp antibodies
against Ebola virus as well as influenza vaccines. This review is focused on current design,
status and future perspectives of plant transient expression system for the production
of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| | - Joachim Schiemann
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| |
Collapse
|
49
|
Criscuolo E, Caputo V, Diotti RA, Sautto GA, Kirchenbaum GA, Clementi N. Alternative Methods of Vaccine Delivery: An Overview of Edible and Intradermal Vaccines. J Immunol Res 2019; 2019:8303648. [PMID: 30949518 PMCID: PMC6425294 DOI: 10.1155/2019/8303648] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 01/26/2023] Open
Abstract
Vaccines are recognized worldwide as one of the most important tools for combating infectious diseases. Despite the tremendous value conferred by currently available vaccines toward public health, the implementation of additional vaccine platforms is also of key importance. In fact, currently available vaccines possess shortcomings, such as inefficient triggering of a cell-mediated immune response and the lack of protective mucosal immunity. In this regard, recent work has been focused on vaccine delivery systems, as an alternative to injectable vaccines, to increase antigen stability and improve overall immunogenicity. In particular, novel strategies based on edible or intradermal vaccine formulations have been demonstrated to trigger both a systemic and mucosal immune response. These novel vaccination delivery systems offer several advantages over the injectable preparations including self-administration, reduced cost, stability, and elimination of a cold chain. In this review, the latest findings and accomplishments regarding edible and intradermal vaccines are described in the context of the system used for immunogen expression, their molecular features and capacity to induce a protective systemic and mucosal response.
Collapse
Affiliation(s)
- E. Criscuolo
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
| | - V. Caputo
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
- Pomona Ricerca S.r.l., Turin, Italy
| | - R. A. Diotti
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
- Pomona Ricerca S.r.l., Turin, Italy
| | - G. A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - N. Clementi
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
| |
Collapse
|
50
|
Massa S, Paolini F, Marino C, Franconi R, Venuti A. Bioproduction of a Therapeutic Vaccine Against Human Papillomavirus in Tomato Hairy Root Cultures. FRONTIERS IN PLANT SCIENCE 2019; 10:452. [PMID: 31031788 PMCID: PMC6470201 DOI: 10.3389/fpls.2019.00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/26/2019] [Indexed: 05/17/2023]
Abstract
Human papillomavirus (HPV) tumor disease is a critical public health problem worldwide, especially in the developing countries. The recognized pathogenic function of E5, E6, and E7 oncoproteins offers the opportunity to devise therapeutic vaccines based on engineered recombinant proteins. The potential of plants to manufacture engineered compounds for pharmaceutical purposes, from small to complex protein molecules, allows the expression of HPV antigens and, possibly, the regulation of immune functions to develop very specific therapies as a reinforcement to available nonspecific therapies and preventive vaccination also in developed countries. Among plant-based expression formats, hairy root cultures are a robust platform combining the benefits of eukaryotic plant-based bioreactors, with those typical of cell cultures. In this work, to devise an experimental therapeutic vaccine against HPV, hairy root cultures were used to express a harmless form of the HPV type 16 E7 protein (E7*) fused to SAPKQ, a noncytotoxic form of the saporin protein from Saponaria officinalis, that we had shown to improve E7-specific cell-mediated responses as a fusion E7*-SAPKQ DNA vaccine. Hairy root clones expressing the E7*-SAPKQ candidate vaccine were obtained upon infection of leaf explants of Solanum lycopersicum using a recombinant plant expression vector. Yield was approximately 35.5 μg/g of fresh weight. Mouse immunization with vaccine-containing crude extracts was performed together with immunological and biological tests to investigate immune responses and anticancer activity, respectively. Animals were primed with either E7*-SAPKQ DNA-based vaccine or E7*-SAPKQ root extract-based vaccine and boosted with the same (homologous schedule) or with the other vaccine preparation (heterologous schedule) in the context of TC-1 experimental mouse model of HPV-associated tumor. All the formulations exhibited an immunological response associated to anticancer activity. In particular, DNA as prime and hairy root extract as boost demonstrated the highest efficacy. This work, based on the development of low-cost technologies, highlights the suitability of hairy root cultures as possible biofactories of therapeutic HPV vaccines and underlines the importance of the synergic combination of treatment modalities for future developments in this field.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Biotechnology and Agroindustry Division, Department of Sustainability, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Rome, Italy
- *Correspondence: Silvia Massa,
| | - Francesca Paolini
- Virology Laboratory, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation (RIDAIT), Translational Research Functional Departmental Area, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmela Marino
- Biomedical Technologies Laboratory, Health Technologies Division, Department of Sustainability, ENEA, Rome, Italy
| | - Rosella Franconi
- Biomedical Technologies Laboratory, Health Technologies Division, Department of Sustainability, ENEA, Rome, Italy
| | - Aldo Venuti
- Virology Laboratory, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation (RIDAIT), Translational Research Functional Departmental Area, IRCSS Regina Elena National Cancer Institute, Rome, Italy
- Aldo Venuti,
| |
Collapse
|