1
|
Zhang X, Yan F, He XJ, Chen Y, Gu R, Dong X, Wei Y, Bai L, Bai J. Thioredoxin-1 Downregulation in the SNpc Exacerbates the Cognitive Impairment Induced by MPTP. Antioxid Redox Signal 2025. [PMID: 40135707 DOI: 10.1089/ars.2024.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aims: Parkinson's disease (PD) is characterized by dopaminergic (DAergic) neuron degeneration in the substantia nigra pars compacta (SNpc). Thioredoxin-1 (Trx-1) is a redox protein that protects neurons from various injuries. Our study revealed that Trx-1 overexpression improved the learning and memory impairments induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the role of the specific transmission of signals from the SNpc to the hippocampus regulated by Trx-1 in cognition deficits associated with PD is still unknown. Results: We observed that Trx-1 downregulation in the SNpc aggravated cognitive dysfunction induced by MPTP. Importantly, we observed that the SNpc directly projects to the hippocampus. We found that the loss of DAergic neurons in the SNpc induced by MPTP resulted in a decrease in dopamine D1 receptor (D1R) expression in the hippocampus, which was promoted by Trx-1 downregulation in the SNpc. The levels of phosphorylated extracellular signal-regulated kinase (p-ERK1/2), phosphorylated cAMP-response element binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and postsynaptic density protein 95 (PSD95) in the hippocampus were decreased by MPTP and further decreased by Trx-1 downregulation in the SNpc. Finally, the number of synapses in the hippocampus was decreased by MPTP in the hippocampus and further reduced by Trx-1 downregulation in the SNpc. Innovation: Trx-1 downregulation accelerated the loss of DAergic neurons in the SNpc, leading to a decrease in the number dopaminergic projections to the hippocampus, subsequently inhibiting the D1R-ERK1/2-CREB-BDNF pathway in the hippocampus, and ultimately impairing hippocampus-dependent cognition. Conclusions: These results indicate that a decrease in Trx-1 level in the SNpc plays a critical regulatory role in cognitive dysfunction in individuals with PD by decreasing the hippocampal D1R signaling pathway. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Xianwen Zhang
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Jie He
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yali Chen
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Rou Gu
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Xianghuan Dong
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yonghang Wei
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
2
|
Tomasso MR, Mehetre PD, Nagarajan P, Ravi R, Byrnett J, Brinckman E, Magliozzi J, Goode BL, Padrick SB. Cdc42EP3-bound septin scaffolds promote actin polymerization. J Biol Chem 2025; 301:108325. [PMID: 39971161 PMCID: PMC11952830 DOI: 10.1016/j.jbc.2025.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Septins are cytoskeletal filament-forming proteins that typically associate with membranes and perform critical functions in a variety of cellular processes. Septins often colocalize with actin and microtubule structures, yet our understanding of all the ways that septins contribute mechanistically to actin- and microtubule-based functions is incomplete. The Cdc42 effector protein Cdc42EP3 (also known as BORG2) promotes septin localization to actin structures in vivo, but little else is known about how Cdc42EP3 influences the interactions of septins and F-actin. Here, using purified components, we show that Cdc42EP3 binds directly to septins, actin filaments, and actin monomers. Moreover, septin-bound Cdc42EP3 accelerates actin filament polymerization. Thus, Cdc42EP3 is not merely a factor that crosslinks septins and F-actin, but one that promotes the formation of actin polymers along septin scaffolds.
Collapse
Affiliation(s)
- Meagan R Tomasso
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Prajakta D Mehetre
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Priyashree Nagarajan
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Roshni Ravi
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jennifer Byrnett
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Eric Brinckman
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Joseph Magliozzi
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Zhao X, Wang Y, Yi X. Proteomic evidence for seed odor modifying olfaction and spatial memory in a scatter-hoarding animal. Behav Brain Res 2025; 477:115282. [PMID: 39369826 DOI: 10.1016/j.bbr.2024.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Seed odor plays a crucial role in affecting the scatter-hoarding behavior of small rodents that rely on spatial memory and olfaction to cache and recover. However, evidence of how seed odor modifies olfaction function and spatial memory is still lacking. Here, we coated seeds with waterproof glue to test how seed odor intensity alters the proteome of both the olfactory bulbs and hippocampus of a dominant scatter-hoarding rodent, Leopoldamys edwardsi, in Southwest China. We showed that animals repeatedly caching and recovering weak odor seeds exhibited greater olfactory ability and spatial memory, as indicated by alterations in the protein profiles of the olfactory bulbs and hippocampus. The upregulation of proteins closely related to neural connections between the olfactory bulb and hippocampus is highly responsible for improved olfactory function and spatial memory. Our study provides new insights into how scatter-hoarding rodents manage and respond to cached seeds differing in odor intensity from a neurobiological perspective, which is of significant importance for better understanding the parallel evolution of the olfactory and hippocampal systems.
Collapse
Affiliation(s)
- Xiangyu Zhao
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yingnan Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
4
|
Das A, Kunwar A. Septins: Structural Insights, Functional Dynamics, and Implications in Health and Disease. J Cell Biochem 2025; 126:e30660. [PMID: 39324363 DOI: 10.1002/jcb.30660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Septins are a class of proteins with diverse and vital roles in cell biology. Structurally, they form hetero-oligomeric complexes and assemble into filaments, contributing to the organization of cells. These filaments act as scaffolds, aiding in processes like membrane remodeling, cytokinesis, and cell motility. Functionally, septins are essential to cell division, playing essential roles in cytokinetic furrow formation and maintaining the structural integrity of the contractile ring. They also regulate membrane trafficking and help organize intracellular organelles. In terms of physiology, septins facilitate cell migration, phagocytosis, and immune responses by maintaining membrane integrity and influencing cytoskeletal dynamics. Septin dysfunction is associated with pathophysiological conditions. Mutations in septin genes have been linked to neurodegenerative diseases, such as hereditary spastic paraplegias, underscoring their significance in neuronal function. Septins also play a role in cancer and infectious diseases, making them potential targets for therapeutic interventions. Septins serve as pivotal components of intracellular signaling networks, engaging with diverse proteins like kinases and phosphatases. By modulating the activity of these molecules, septins regulate vital cellular pathways. This integral role in signaling makes septins central to orchestrating cellular responses to environmental stimuli. This review mainly focuses on the human septins, their structural composition, regulatory functions, and implication in pathophysiological conditions underscores their importance in fundamental cellular biology. Moreover, their potential as therapeutic targets across various diseases further emphasizes their significance.
Collapse
Affiliation(s)
- Aurosikha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Berger C, Charlotte Kreß JK, Helmprobst F. Sept10 and sept12 are expressed in specific proliferating cells in zebrafish brain. Gene Expr Patterns 2024; 55:119387. [PMID: 39672481 DOI: 10.1016/j.gep.2024.119387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Septins are a group of cytoskeletal GTP binding proteins which are involved in different cellular processes, like cell division, exocytosis and axon growth. Their function, especially in the nervous system, is not clear. In zebrafish 16 different septins are described and for some of them the expression in the brain is described. Interestingly, the expression pattern of several of them is highly specific. Here we describe the expression of sept10 and sept12 in the developing zebrafish brain and found that these show a very defined expression pattern. Interestingly, they show an overlap with a group, but not all proliferating PCNA positive cells in nervous tissue.
Collapse
Affiliation(s)
- Constantin Berger
- University of Würzburg, Imaging Core Facility of the Biocenter, Theodor-Boveri-Institut, Am Hubland, 97074 Würzburg, Germany; University Hospital Würzburg, Chair for Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97074 Würzburg, Germany
| | - Julia Katharina Charlotte Kreß
- University of Würzburg, Imaging Core Facility of the Biocenter, Theodor-Boveri-Institut, Am Hubland, 97074 Würzburg, Germany; University of Würzburg, Institute of Pathology, 97080 Würzburg, Germany
| | - Frederik Helmprobst
- University of Würzburg, Imaging Core Facility of the Biocenter, Theodor-Boveri-Institut, Am Hubland, 97074 Würzburg, Germany; Phillips-University of Marburg, Institute for Neuropathology, Baldingerstraße, 35043 Marburg, Germany.
| |
Collapse
|
6
|
Al-Ali H, Baig A, Alkhanjari RR, Murtaza ZF, Alhajeri MM, Elbahrawi R, Abdukadir A, Bhamidimarri PM, Kashir J, Hamdan H. Septins as key players in spermatogenesis, fertilisation and pre-implantation embryogenic cytoplasmic dynamics. Cell Commun Signal 2024; 22:523. [PMID: 39468561 PMCID: PMC11514797 DOI: 10.1186/s12964-024-01889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Septins are a family of cytokinesis-related proteins involved in regulating cytoskeletal design, cell morphology, and tissue morphogenesis. Apart from cytokinesis, as a fourth component of cytoskeleton, septins aid in forming scaffolds, vesicle sorting and membrane stability. They are also known to be involved in the regulation of intracellular calcium (Ca2+) via the STIM/Orai complex. Infertility affects ~ 15% of couples globally, while male infertility affects ~ 7% of men. Global pregnancy and live birth rates following fertility treatment remain relatively low, while there has been an observable decline in male fertility parameters over the past 60 years. Low fertility treatment success can be attributed to poor embryonic development, poor sperm parameters and fertilisation defects. While studies from the past few years have provided evidence for the role of septins in fertility related processes, the functional role of septins and its related complexes in cellular processes such as oocyte activation, fertilization, and sperm maturation are not completely understood. This review summarizes the available knowledge on the role of septins in spermatogenesis and oocyte activation via Ca2+ regulation, and cytoskeletal dynamics throughout pre-implantation embryonic development. We aim to identify the currently less known mechanisms by which septins regulate these immensely important mechanisms with a view of identifying areas of investigation that would benefit our understanding of cell and reproductive biology, but also provide potential avenues to improve current methods of fertility treatment.
Collapse
Affiliation(s)
- Hana Al-Ali
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Amna Baig
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Rayyah R Alkhanjari
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Zoha F Murtaza
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Maitha M Alhajeri
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Rawdah Elbahrawi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Azhar Abdukadir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Junaid Kashir
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
- Center for Biotechnology, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| |
Collapse
|
7
|
Dai Z, Pang X, Chen N, Fan X, Liu W, Liu J, Chen Z, Fang S, Cai C, Fang J. Network Medicine Approach Unravels Endophenotype Signature in Alzheimer's Disease through Large-Scale Comparative Proteomics Analysis: Vascular Dysfunction as a Prime Example. J Chem Inf Model 2024; 64:7758-7771. [PMID: 39322987 DOI: 10.1021/acs.jcim.4c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease burdening public health. We proposed a network-based infrastructure to identify protein signatures for five AD pathological endophenotypes: amyloidosis, tauopathy, vascular dysfunction, lysosomal dysfunction, and neuroinflammation. We analyzed 23 proteomic data sets from AD patients and transgenic mouse models, using network proximity to measure associations between endophenotype modules and differentially expressed proteins (DEPs) in the integrated AD proteome. We focused on the vascular dysfunction signature with 21 DEPs by integrating RNA-seq, single-cell transcriptomics, GWAS, and literature. Experiments on APP/PS1 and MCAO models highlighted three proteins (SEPT5, SNAP25, STXBP1) as novel AD biomarker candidates. This study demonstrates a network medicine framework for deciphering endophenotype signatures in AD.
Collapse
Affiliation(s)
- Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Nan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhuang Chen
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
8
|
Choi ES, Hnath B, Sha CM, Dokholyan NV. Unveiling the double-edged sword: SOD1 trimers possess tissue-selective toxicity and bind septin-7 in motor neuron-like cells. Structure 2024; 32:1776-1792.e5. [PMID: 39208794 PMCID: PMC11455619 DOI: 10.1016/j.str.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Misfolded species of superoxide dismutase 1 (SOD1) are associated with increased death in amyotrophic lateral sclerosis (ALS) models compared to insoluble protein aggregates. The mechanism by which structurally independent SOD1 trimers cause cellular toxicity is unknown but may drive disease pathology. Here, we uncovered the SOD1 trimer interactome-a map of potential tissue-selective protein-binding partners in the brain, spinal cord, and skeletal muscle. We identified binding partners and key pathways associated with SOD1 trimers and found that trimers may affect normal cellular functions such as dendritic spine morphogenesis and synaptic function in the central nervous system and cellular metabolism in skeletal muscle. We discovered SOD1 trimer-selective enrichment of genes. We performed detailed computational and biochemical characterization of SOD1 trimer protein binding for septin-7. Our investigation highlights key proteins and pathways within distinct tissues, revealing a plausible intersection of genetic and pathophysiological mechanisms in ALS through interactions involving SOD1 trimers.
Collapse
Affiliation(s)
- Esther Sue Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA; Department of Chemistry, Penn State University, University Park, PA, USA.
| |
Collapse
|
9
|
Hochbaum DR, Hulshof L, Urke A, Wang W, Dubinsky AC, Farnsworth HC, Hakim R, Lin S, Kleinberg G, Robertson K, Park C, Solberg A, Yang Y, Baynard C, Nadaf NM, Beron CC, Girasole AE, Chantranupong L, Cortopassi MD, Prouty S, Geistlinger L, Banks AS, Scanlan TS, Datta SR, Greenberg ME, Boulting GL, Macosko EZ, Sabatini BL. Thyroid hormone remodels cortex to coordinate body-wide metabolism and exploration. Cell 2024; 187:5679-5697.e23. [PMID: 39178853 PMCID: PMC11455614 DOI: 10.1016/j.cell.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
Animals adapt to environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here, we find that thyroid hormone-a regulator of metabolism in many peripheral organs-directly activates cell-type-specific transcriptional programs in the frontal cortex of adult male mice. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulatory genes in both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread plasticity of cortical circuits. Indeed, whole-cell electrophysiology revealed that thyroid hormone alters excitatory and inhibitory synaptic transmission, an effect that requires thyroid hormone-induced gene regulatory programs in presynaptic neurons. Furthermore, thyroid hormone action in the frontal cortex regulates innate exploratory behaviors and causally promotes exploratory decision-making. Thus, thyroid hormone acts directly on the cerebral cortex in males to coordinate exploratory behaviors with whole-body metabolic state.
Collapse
Affiliation(s)
- Daniel R Hochbaum
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Lauren Hulshof
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Urke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra C Dubinsky
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah C Farnsworth
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Hakim
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Giona Kleinberg
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keiramarie Robertson
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Canaria Park
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alyssa Solberg
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yechan Yang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Baynard
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Naeem M Nadaf
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celia C Beron
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Allison E Girasole
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lynne Chantranupong
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Marissa D Cortopassi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shannon Prouty
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02215, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Thomas S Scanlan
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | - Gabriella L Boulting
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Evan Z Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Verma H, Kaur S, Kaur S, Gangwar P, Dhiman M, Mantha AK. Role of Cytoskeletal Elements in Regulation of Synaptic Functions: Implications Toward Alzheimer's Disease and Phytochemicals-Based Interventions. Mol Neurobiol 2024; 61:8320-8343. [PMID: 38491338 DOI: 10.1007/s12035-024-04053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD), a multifactorial disease, is characterized by the accumulation of neurofibrillary tangles (NFTs) and amyloid beta (Aβ) plaques. AD is triggered via several factors like alteration in cytoskeletal proteins, a mutation in presenilin 1 (PSEN1), presenilin 2 (PSEN2), amyloid precursor protein (APP), and post-translational modifications (PTMs) in the cytoskeletal elements. Owing to the major structural and functional role of cytoskeletal elements, like the organization of axon initial segmentation, dendritic spines, synaptic regulation, and delivery of cargo at the synapse; modulation of these elements plays an important role in AD pathogenesis; like Tau is a microtubule-associated protein that stabilizes the microtubules, and it also causes inhibition of nucleo-cytoplasmic transportation by disrupting the integrity of nuclear pore complex. One of the major cytoskeletal elements, actin and its dynamics, regulate the dendritic spine structure and functions; impairments have been documented towards learning and memory defects. The second major constituent of these cytoskeletal elements, microtubules, are necessary for the delivery of the cargo, like ion channels and receptors at the synaptic membranes, whereas actin-binding protein, i.e., Cofilin's activation form rod-like structures, is involved in the formation of paired helical filaments (PHFs) observed in AD. Also, the glial cells rely on their cytoskeleton to maintain synaptic functionality. Thus, making cytoskeletal elements and their regulation in synaptic structure and function as an important aspect to be focused for better management and targeting AD pathology. This review advocates exploring phytochemicals and Ayurvedic plant extracts against AD by elucidating their neuroprotective mechanisms involving cytoskeletal modulation and enhancing synaptic plasticity. However, challenges include their limited bioavailability due to the poor solubility and the limited potential to cross the blood-brain barrier (BBB), emphasizing the need for targeted strategies to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
11
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
12
|
Jędrzejczak P, Saramowicz K, Kuś J, Barczuk J, Rozpędek-Kamińska W, Siwecka N, Galita G, Wiese W, Majsterek I. SEPT9_i1 and Septin Dynamics in Oncogenesis and Cancer Treatment. Biomolecules 2024; 14:1194. [PMID: 39334960 PMCID: PMC11430720 DOI: 10.3390/biom14091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Despite significant advancements in the field of oncology, cancers still pose one of the greatest challenges of modern healthcare. Given the cytoskeleton's pivotal role in regulating mechanisms critical to cancer development, further studies of the cytoskeletal elements could yield new practical applications. Septins represent a group of relatively well-conserved GTP-binding proteins that constitute the fourth component of the cytoskeleton. Septin 9 (SEPT9) has been linked to a diverse spectrum of malignancies and appears to be the most notable septin member in that category. SEPT9 constitutes a biomarker of colorectal cancer (CRC) and has been positively correlated with a high clinical stage in breast cancer, cervical cancer, and head and neck squamous cell carcinoma. SEPT9_i1 represents the most extensively studied isoform of SEPT9, which substantially contributes to carcinogenesis, metastasis, and treatment resistance. Nevertheless, the mechanistic basis of SEPT9_i1 oncogenicity remains to be fully elucidated. In this review, we highlight SEPT9's and SEPT9_i1's structures and interactions with Hypoxia Inducible Factor α (HIF-1 α) and C-Jun N-Terminal Kinase (JNK), as well as discuss SEPT9_i1's contribution to aneuploidy, cell invasiveness, and taxane resistance-key phenomena in the progression of malignancies. Finally, we emphasize forchlorfenuron and other septin inhibitors as potential chemotherapeutics and migrastatics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (P.J.); (K.S.); (J.K.); (J.B.); (W.R.-K.); (N.S.); (G.G.); (W.W.)
| |
Collapse
|
13
|
Wang W, Zhang X, Gui P, Zou Q, Nie Y, Ma S, Zhang S. SEPT9: From pan-cancer to lung squamous cell carcinoma. BMC Cancer 2024; 24:1105. [PMID: 39237897 PMCID: PMC11375884 DOI: 10.1186/s12885-024-12877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND SEPT9 is a pivotal cytoskeletal GTPase that regulates diverse biological processes encompassing mitosis and cytokinesis. While previous studies have implicated SEPT9 in tumorigenesis and development; comprehensive pan-cancer analyses have not been performed. This study aims to systematically explore its role in cancer screening, prognosis, and treatment, addressing this critical gap. METHODS Gene and protein expression data containing clinical information were obtained from public databases for pan-cancer analyses. Additionally, clinical samples from 90 patients with lung squamous cell carcinoma (LUSC) were used to further experimentally validate the clinical significance of SEPT9. In addition, the molecular docking tool was used to analyze the affinities between SEPT9 protein and drugs. RESULTS SEPT9 is highly expressed in various cancers, and its aberrant expression correlates with genetic alternations and epigenetic modifications, leading to adverse clinical outcomes. Take LUSC as an example, additional dataset analyses and immunohistochemical experiments further confirm the diagnostic and prognostic values as well as the clinical relevance of the SEPT9 gene and protein. Functional enrichment, single-cell expression, and immune infiltration analyses revealed that SEPT9 promotes malignant tumor progression and modulates the immune microenvironments, enabling patients to benefit from immunotherapy. Moreover, drug sensitivity and molecular docking analyses showed that SEPT9 is associated with the sensitivity and resistance of multiple drugs and has stable binding activity with them, including Vorinostat and OTS-964. To harness its prognostic and therapeutic potential in LUSC, a mitotic spindle-associated prognostic model including SEPT9, HSF1, ARAP3, KIF20B, FAM83D, TUBB8, and several clinical characteristics, was developed. This model not only improves clinical outcome predictions but also reshapes the immune microenvironment, making immunotherapy more effective for LUSC patients. CONCLUSION This is the first study to systematically analyze the role of SEPT9 in cancers and innovatively apply the mitotic spindle-associated model to LUSC, fully demonstrating its potential as a valuable biomarker for cancer screening and prognosis, and highlighting its application value in promoting immunotherapy and chemotherapy, particularly for LUSC.
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Ping Gui
- Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Qizhen Zou
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yuzhou Nie
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Shenglin Ma
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310006, Zhejiang, China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
14
|
Zhao H, Zhou Y, Wang Z, Zhang X, Chen L, Hong Z. Plasma proteins and psoriatic arthritis: a proteome-wide Mendelian randomization study. Front Immunol 2024; 15:1417564. [PMID: 39026678 PMCID: PMC11254630 DOI: 10.3389/fimmu.2024.1417564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Background Previous epidemiological studies have identified a correlation between serum protein levels and Psoriatic Arthritis (PsA). However, the precise nature of this relationship remains uncertain. Therefore, our objective was to assess whether circulating levels of 2,923 plasma proteins are associated with the risk of PsA, utilizing the Mendelian randomization (MR) approach. Methods Two-sample MR analysis was performed to assess the causal impact of proteins on PsA risk. Exposure data for plasma proteins were sourced from a genome-wide association study (GWAS) conducted within the UK Biobank Pharma Proteomics Project, which encompassed 2,923 unique plasma proteins. The outcome data for PsA were sourced from the FinnGen study, a large-scale genomics initiative, comprising 3,537 cases and 262,844 controls. Additionally, colocalization analysis, Phenome-wide MR analysis, and candidate drug prediction were employed to identify potential causal circulating proteins and novel drug targets. Results We thoroughly assessed the association between 1,837 plasma proteins and PsA risk, identifying seven proteins associated with PsA risk. An inverse association of Interleukin-10 (IL-10) with PsA risk was observed [odds ratio (OR)=0.45, 95% confidence interval (CI), 0.28 to 0.70, P FDR=0.072]. Additionally, Apolipoprotein F (APOF) has a positive effect on PsA risk (OR=2.08, 95% CI, 1.51 to 2.86, P FDR=0.005). Subsequently, we found strong evidence indicating that IL-10 and APOF were colocalized with PsA associations (PP.H4 = 0.834 for IL-10 and PP.H4 = 0.900 for APOF). Phenome-wide association analysis suggested that these two proteins may have dual effects on other clinical traits (P FDR<0.1). Conclusion This study identified 7 plasma proteins associated with PsA risk, particularly IL-10 and APOF, which offer new insights into its etiology. Further studies are needed to assess the utility and effectiveness of these candidate proteins.
Collapse
Affiliation(s)
- Heran Zhao
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Third Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Zhou
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyan Wang
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Zhang
- College of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, China
| | - Leilei Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Third Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhinan Hong
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Third Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Stjepić V, Nakamura M, Hui J, Parkhurst SM. Two Septin complexes mediate actin dynamics during cell wound repair. Cell Rep 2024; 43:114215. [PMID: 38728140 PMCID: PMC11203717 DOI: 10.1016/j.celrep.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1/Sep2/Pnut and Sep4/Sep5/Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side by side to discretely regulate actomyosin ring dynamics during cell wound repair.
Collapse
Affiliation(s)
- Viktor Stjepić
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
16
|
Li D, Yu SF, Lin L, Guo JR, Huang SM, Wu XL, You HL, Cheng XJ, Zhang QY, Zeng YQ, Pan XD. Deficiency of leucine-rich repeat kinase 2 aggravates thioacetamide-induced acute liver failure and hepatic encephalopathy in mice. J Neuroinflammation 2024; 21:123. [PMID: 38725082 PMCID: PMC11084037 DOI: 10.1186/s12974-024-03125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) is closely associated with inflammatory responses. However, as a crucial regulator of the immune and inflammatory responses, the role of leucine-rich repeat kinase 2 (LRRK2) in the pathogenesis of HE remains unraveled. Herein, we investigated this issue in thioacetamide (TAA)-induced HE following acute liver failure (ALF). METHODS TAA-induced HE mouse models of LRRK2 wild type (WT), LRRK2 G2019S mutation (Lrrk2G2019S) and LRRK2 knockout (Lrrk2-/-) were established. A battery of neurobehavioral experiments was conducted. The biochemical indexes and pro-inflammatory cytokines were detected. The prefrontal cortex (PFC), striatum (STR), hippocampus (HIP), and liver were examined by pathology and electron microscopy. The changes of autophagy-lysosomal pathway and activity of critical Rab GTPases were analyzed. RESULTS The Lrrk2-/--HE model reported a significantly lower survival rate than the other two models (24% vs. 48%, respectively, p < 0.05), with no difference found between the WT-HE and Lrrk2G2019S-HE groups. Compared with the other groups, after the TAA injection, the Lrrk2-/- group displayed a significant increase in ammonium and pro-inflammatory cytokines, aggravated hepatic inflammation/necrosis, decreased autophagy, and abnormal phosphorylation of lysosomal Rab10. All three models reported microglial activation, neuronal loss, disordered vesicle transmission, and damaged myelin structure. The Lrrk2-/--HE mice presented no severer neuronal injury than the other genotypes. CONCLUSIONS LRRK2 deficiency may exacerbate TAA-induced ALF and HE in mice, in which inflammatory response is evident in the brain and aggravated in the liver. These novel findings indicate a need of sufficient clinical awareness of the adverse effects of LRRK2 inhibitors on the liver.
Collapse
Affiliation(s)
- Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China.
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fujian, 350001, China.
| | - Shu-Fang Yu
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Lin Lin
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Jie-Ru Guo
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Si-Mei Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Xi-Lin Wu
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Han-Lin You
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Juan Cheng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Qiu-Yang Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yu-Qi Zeng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Dong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
- Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, 350001, China.
| |
Collapse
|
17
|
Liu H, Tan R, Tong J, Wen S, Wu C, Rao M, Zhu J, Qi S, Kong E. Palmitoylation is required for Sept8-204 and Sept5 to form vesicle-like structure and colocalize with synaptophysin. J Cell Biochem 2024; 125:e30529. [PMID: 38308620 DOI: 10.1002/jcb.30529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Sept8 is a vesicle associated protein and there are two typical transcriptional variants (Sept8-204 and Sept8-201) expressed in mice brain. Interestingly, the coexpression of Sept8-204/Sept5 induces the formation of small sized vesicle-like structure, while that of the Sept8-201/Sept5 produces large puncta. Sept8 is previously shown to be palmitoylated. Here it was further revealed that protein palmitoylation is required for Sept8-204/Sept5 to maintain small sized vesicle-like structure and colocalize with synaptophysin, since either the expression of nonpalmitoylated Sept8-204 mutant (Sept8-204-3CA) or inhibiting Sept8-204 palmitoylation by 2-BP with Sept5 produces large puncta, which barely colocalizes with synaptophysin (SYP). Moreover, it was shown that the dynamic palmitoylation of Sept8-204 is controlled by ZDHHC17 and PPT1, loss of ZDHHC17 decreases Sept8-204 palmitoylation and induces large puncta, while loss of PPT1 increases Sept8-204 palmitoylation and induces small sized vesicle-like structure. Together, these findings suggest that palmitoylation is essential for the maintenance of the small sized vesicle-like structure for Sept8-204/Sept5, and may hint their important roles in synaptic functions.
Collapse
Affiliation(s)
- Huicong Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Rong Tan
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Jia Tong
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Shuo Wen
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Can Wu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Muding Rao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Jiangli Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Urology, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Shiqian Qi
- State Key Laboratory of Biotherapy and Cancer Center, Department of Urology, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Eryan Kong
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
18
|
Kim YK, Jo D, Arjunan A, Ryu Y, Lim YH, Choi SY, Kim HK, Song J. Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer's Disease Mice via Transcriptomic and Cellular Analysis. Int J Mol Sci 2024; 25:2567. [PMID: 38473814 DOI: 10.3390/ijms25052567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer's disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer's disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer's disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeongseo Ryu
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeong-Hwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Seo Yoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Hee Kyung Kim
- Department of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| |
Collapse
|
19
|
Guo Z, Hong X, Wang X, Chen W, Guo Z. Association of reduced cerebrospinal fluid NPTX2 levels with postoperative delirium in patients undergoing knee/hip replacement: a prospective cohort study. Aging Clin Exp Res 2024; 36:42. [PMID: 38367123 PMCID: PMC10874313 DOI: 10.1007/s40520-023-02670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 02/19/2024]
Abstract
BACKGROUND Postoperative delirium (POD) is a common complication with poor prognosis in the elderly, but its mechanism has not been fully elucidated. There is evidence that the changes in synaptic activity in the brain are closely related to the occurrence of POD. And neuronal pentraxin 2 (NPTX2) can regulate synaptic activity in vivo. AIMS This study aims to explore whether decreased NPTX2 levels affects POD and whether the cerebrospinal fluid (CSF) biomarkers of POD mediate this association. METHODS In this prospective cohort study, we interviewed patients with knee/hip replacement 1 day before surgery to collect patient information and assess their cognitive function. CSF was extracted for measuring the CSF levels of NPTX2 and other POD biomarkers on the day of surgery. And postoperative follow-up visits were performed 1-7 days after surgery. RESULTS Finally, 560 patients were included in the study. The patients were divided into POD group and NPOD (non-POD) group. The POD group had a median age of 80 years, a female proportion of 45%, a median BMI of 24.1 kg/m2, and a median years of education of 9 years. The Mann-Whitney U test showed that CSF NPTX2 levels were significantly lower in POD group, compared with the NPOD group (P < 0.05). Univariate binary logistic regression analysis showed that reduced CSF levels of NPTX2 protected against POD (crude OR = 0.994, 95% CI 0.993-0.995, P < 0.001). The receiver-operating characteristic (ROC) curve indicated that CSF NPTX2 level had high predictive value for POD. Mediation analyses showed that CSF T-tau (mediating proportion = 21%) and P-tau (mediating proportion = 29%) had significant mediating effects on the association between CSF NPTX2 and POD. CONCLUSION CSF NPTX2 levels were associated with the occurrence of POD. Low CSF NPTX2 levels may be an independent protective factor for POD. CSF T-tau and P-tau could mediate the association between CSF NPTX2 and POD occurrence. CLINICAL TRIAL REGISTRATION The trial registration number (TRN): ChiCTR2200064740, Date of Registration: 2022-10-15.
Collapse
Affiliation(s)
- Zongxiao Guo
- Department of Orthopedic Surgery, Hai'an People's Hospital, Haian, China
| | - Xiaoli Hong
- Department of Orthopedic Surgery, Hai'an People's Hospital, Haian, China
| | - Xiang Wang
- Department of Anesthesiology, Hai'an People's Hospital, Haian, China
| | - Weiguo Chen
- Department of Anesthesiology, Hai'an People's Hospital, Haian, China
| | - Zongfeng Guo
- Department of Anesthesiology, Hai'an People's Hospital, Haian, China.
| |
Collapse
|
20
|
Liu H, Yan P, Wu C, Rao M, Zhu J, Lv L, Li W, Liang Y, Qi S, Lu K, Kong E. Palmitoylated Sept8-204 modulates learning and anxiety by regulating filopodia arborization and actin dynamics. Sci Signal 2023; 16:eadi8645. [PMID: 38051778 DOI: 10.1126/scisignal.adi8645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Septin proteins are involved in diverse physiological functions, including the formation of specialized cytoskeletal structures. Septin 8 (Sept8) is implicated in spine morphogenesis and dendritic branching through palmitoylation. We explored the role and regulation of a Sept8 variant in human neural-like cells and in the mouse brain. We identified Sept8-204 as a brain-specific variant of Sept8 that was abundant in neurons and modified by palmitoylation, specifically at Cys469, Cys470, and Cys472. Sept8-204 palmitoylation was mediated by the palmitoyltransferase ZDHHC7 and was removed by the depalmitoylase PPT1. Palmitoylation of Sept8-204 bound to F-actin and induced cytoskeletal dynamics to promote the outgrowth of filopodia in N2a cells and the arborization of neurites in hippocampal neurons. In contrast, a Sept8-204 variant that could not be palmitoylated because of mutation of all three Cys residues (Sept8-204-3CA) lost its ability to bind F-actin, and expression of this mutant did not promote morphological changes. Genetic deletion of Sept8, Sept8-204, or Zdhhc7 caused deficits in learning and memory and promoted anxiety-like behaviors in mice. Our findings provide greater insight into the regulation of Sept8-204 by palmitoylation and its role in neuronal morphology and function in relation to cognition.
Collapse
Affiliation(s)
- Huicong Liu
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| | - Peipei Yan
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| | - Can Wu
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| | - Muding Rao
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiangli Zhu
- Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
| | - Luxian Lv
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Wenqiang Li
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
| | - Kefeng Lu
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Eryan Kong
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
21
|
Markitantova Y, Fokin A, Boguslavsky D, Simirskii V, Kulikov A. Molecular Signatures Integral to Natural Reprogramming in the Pigment Epithelium Cells after Retinal Detachment in Pleurodeles waltl. Int J Mol Sci 2023; 24:16940. [PMID: 38069262 PMCID: PMC10707686 DOI: 10.3390/ijms242316940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The reprogramming of retinal pigment epithelium (RPE) cells into retinal cells (transdifferentiation) lies in the bases of retinal regeneration in several Urodela. The identification of the key genes involved in this process helps with looking for approaches to the prevention and treatment of RPE-related degenerative diseases of the human retina. The purpose of our study was to examine the transcriptome changes at initial stages of RPE cell reprogramming in adult newt Pleurodeles waltl. RPE was isolated from the eye samples of day 0, 4, and 7 after experimental surgical detachment of the neural retina and was used for a de novo transcriptome assembly through the RNA-Seq method. A total of 1019 transcripts corresponding to the differently expressed genes have been revealed in silico: the 83 increased the expression at an early stage, and 168 increased the expression at a late stage of RPE reprogramming. We have identified up-regulation of classical early response genes, chaperones and co-chaperones, genes involved in the regulation of protein biosynthesis, suppressors of oncogenes, and EMT-related genes. We revealed the growth in the proportion of down-regulated ribosomal and translation-associated genes. Our findings contribute to revealing the molecular mechanism of RPE reprogramming in Urodela.
Collapse
Affiliation(s)
| | | | | | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Y.M.); (A.K.)
| | | |
Collapse
|
22
|
Stjepić V, Nakamura M, Hui J, Parkhurst SM. Two Septin Complexes Mediate Actin Dynamics During Cell Wound Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567084. [PMID: 38014090 PMCID: PMC10680708 DOI: 10.1101/2023.11.14.567084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1-Sep2-Pnut and Sep4-Sep5-Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side-by-side to discretely regulate actomyosin ring dynamics during cell wound repair.
Collapse
Affiliation(s)
- Viktor Stjepić
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
23
|
Gautam D, Naik UP, Naik MU, Yadav SK, Chaurasia RN, Dash D. Glutamate Receptor Dysregulation and Platelet Glutamate Dynamics in Alzheimer's and Parkinson's Diseases: Insights into Current Medications. Biomolecules 2023; 13:1609. [PMID: 38002291 PMCID: PMC10669830 DOI: 10.3390/biom13111609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Two of the most prevalent neurodegenerative disorders (NDDs), Alzheimer's disease (AD) and Parkinson's disease (PD), present significant challenges to healthcare systems worldwide. While the etiologies of AD and PD differ, both diseases share commonalities in synaptic dysfunction, thereby focusing attention on the role of neurotransmitters. The possible functions that platelets may play in neurodegenerative illnesses including PD and AD are becoming more acknowledged. In AD, platelets have been investigated for their ability to generate amyloid-ß (Aß) peptides, contributing to the formation of neurotoxic plaques. Moreover, platelets are considered biomarkers for early AD diagnosis. In PD, platelets have been studied for their involvement in oxidative stress and mitochondrial dysfunction, which are key factors in the disease's pathogenesis. Emerging research shows that platelets, which release glutamate upon activation, also play a role in these disorders. Decreased glutamate uptake in platelets has been observed in Alzheimer's and Parkinson's patients, pointing to a systemic dysfunction in glutamate handling. This paper aims to elucidate the critical role that glutamate receptors play in the pathophysiology of both AD and PD. Utilizing data from clinical trials, animal models, and cellular studies, we reviewed how glutamate receptors dysfunction contributes to neurodegenerative (ND) processes such as excitotoxicity, synaptic loss, and cognitive impairment. The paper also reviews all current medications including glutamate receptor antagonists for AD and PD, highlighting their mode of action and limitations. A deeper understanding of glutamate receptor involvement including its systemic regulation by platelets could open new avenues for more effective treatments, potentially slowing disease progression and improving patient outcomes.
Collapse
Affiliation(s)
- Deepa Gautam
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Ulhas P. Naik
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Meghna U. Naik
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Santosh K. Yadav
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Rameshwar Nath Chaurasia
- The Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
24
|
Nakazawa K, Chauvin B, Mangenot S, Bertin A. Reconstituted in vitro systems to reveal the roles and functions of septins. J Cell Sci 2023; 136:jcs259448. [PMID: 37815088 DOI: 10.1242/jcs.259448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Septins are essential cytoskeletal proteins involved in key cellular processes and have also been implicated in diseases from cancers to neurodegenerative pathologies. However, they have not been as thoroughly studied as other cytoskeletal proteins. In vivo, septins interact with other cytoskeletal proteins and with the inner plasma membrane. Hence, bottom-up in vitro cell-free assays are well suited to dissect the roles and behavior of septins in a controlled environment. Specifically, in vitro studies have been invaluable in describing the self-assembly of septins into a large diversity of ultrastructures. Given that septins interact specifically with membrane, the details of these septin-membrane interactions have been analyzed using reconstituted lipid systems. In particular, at a membrane, septins are often localized at curvatures of micrometer scale. In that context, in vitro assays have been performed with substrates of varying curvatures (spheres, cylinders or undulated substrates) to probe the sensitivity of septins to membrane curvature. This Review will first present the structural properties of septins in solution and describe the interplay of septins with cytoskeletal partners. We will then discuss how septins interact with biomimetic membranes and induce their reshaping. Finally, we will highlight the curvature sensitivity of septins and how they alter the mechanical properties of membranes.
Collapse
Affiliation(s)
- Koyomi Nakazawa
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Brieuc Chauvin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Stéphanie Mangenot
- Laboratoire Matière et Systèmes Complexes , Université de Paris Cité, CNRS UMR 7057, 45 Rue des Saint Pères, 75006 Paris, France
| | - Aurélie Bertin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| |
Collapse
|
25
|
Hochbaum DR, Dubinsky AC, Farnsworth HC, Hulshof L, Kleinberg G, Urke A, Wang W, Hakim R, Robertson K, Park C, Solberg A, Yang Y, Baynard C, Nadaf NM, Beron CC, Girasole AE, Chantranupong L, Cortopassi M, Prouty S, Geistlinger L, Banks A, Scanlan T, Greenberg ME, Boulting GL, Macosko EZ, Sabatini BL. Thyroid hormone rewires cortical circuits to coordinate body-wide metabolism and exploratory drive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552874. [PMID: 37609206 PMCID: PMC10441422 DOI: 10.1101/2023.08.10.552874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Animals adapt to varying environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here we find that thyroid hormone- a prominent regulator of metabolism in many peripheral organs- activates cell-type specific transcriptional programs in anterior regions of cortex of adult mice via direct activation of thyroid hormone receptors. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulators across both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread remodeling of cortical circuits. Indeed, whole-cell electrophysiology recordings revealed that thyroid hormone induces local transcriptional programs that rewire cortical neural circuits via pre-synaptic mechanisms, resulting in increased excitatory drive with a concomitant sensitization of recruited inhibition. We find that thyroid hormone bidirectionally regulates innate exploratory behaviors and that the transcriptionally mediated circuit changes in anterior cortex causally promote exploratory decision-making. Thus, thyroid hormone acts directly on adult cerebral cortex to coordinate exploratory behaviors with whole-body metabolic state.
Collapse
|
26
|
Gabbert AM, Campanale JP, Mondo JA, Mitchell NP, Myers A, Streichan SJ, Miolane N, Montell DJ. Septins regulate border cell surface geometry, shape, and motility downstream of Rho in Drosophila. Dev Cell 2023; 58:1399-1413.e5. [PMID: 37329886 PMCID: PMC10519140 DOI: 10.1016/j.devcel.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/14/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023]
Abstract
Septins self-assemble into polymers that bind and deform membranes in vitro and regulate diverse cell behaviors in vivo. How their in vitro properties relate to their in vivo functions is under active investigation. Here, we uncover requirements for septins in detachment and motility of border cell clusters in the Drosophila ovary. Septins and myosin colocalize dynamically at the cluster periphery and share phenotypes but, surprisingly, do not impact each other. Instead, Rho independently regulates myosin activity and septin localization. Active Rho recruits septins to membranes, whereas inactive Rho sequesters septins in the cytoplasm. Mathematical analyses identify how manipulating septin expression levels alters cluster surface texture and shape. This study shows that the level of septin expression differentially regulates surface properties at different scales. This work suggests that downstream of Rho, septins tune surface deformability while myosin controls contractility, the combination of which governs cluster shape and movement.
Collapse
Affiliation(s)
- Allison M Gabbert
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joseph P Campanale
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - James A Mondo
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Noah P Mitchell
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Physics Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Adele Myers
- Electrical and Computer Engineering Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sebastian J Streichan
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nina Miolane
- Electrical and Computer Engineering Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
27
|
Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Abusudah WF, Almohmadi NH, Eldahshan OA, Ahmed EA, Batiha GES. Insights on benzodiazepines' potential in Alzheimer's disease. Life Sci 2023; 320:121532. [PMID: 36858314 DOI: 10.1016/j.lfs.2023.121532] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia characterized by the deposition of amyloid beta (Aβ) plaque and tau-neurofibrillary tangles (TNTs) in the brain. AD is associated with the disturbances of various neurotransmitters including gamma-aminobutyric acid (GABA). Of note, GABA is reduced in AD, and restoration of GABA effect by benzodiazepines (BDZs) may improve AD outcomes. However, BDZs may adversely affect cognitive functions chiefly in elderly AD patients with sleep disorders. Besides, there is a controversy regarding the use of BDZs in AD. Consequently, the objective of the present review was to disclose the possible role of BDZs on the pathogenesis of AD that might be beneficial, neutral, or detrimental effects on AD. Prolonged use of intermediate-acting BDZ lorazepam exerts amnesic effects due to attenuation of synaptic plasticity and impairment of recognition memory. However, BDZs may have a protective effect against the development of AD by reducing tau phosphorylation, neuroinflammation, and progression of AD neuropathology. On the other side, other findings highlighted that extended use of BDZs was not associated with the development of AD. In conclusion, there are controversial points concerning the use of BDZs and the risk for the progression of AD. Thus, preclinical, and clinical studies are essential in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department Applied Medical Sciences, College Jazan University, Jazan 82817, Saudi Arabia.
| | - Wafaa Fouzi Abusudah
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Al Beheira, Egypt.
| |
Collapse
|
28
|
Hou L, Liu J, Sun F, Huang R, Chang R, Ruan Z, Wang Y, Zhao J, Wang Q. Integrin Mac1 mediates paraquat and maneb-induced learning and memory impairments in mice through NADPH oxidase-NLRP3 inflammasome axis-dependent microglial activation. J Neuroinflammation 2023; 20:42. [PMID: 36804009 PMCID: PMC9938991 DOI: 10.1186/s12974-023-02732-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
INTRODUCTION The mechanisms of cognitive impairments in Parkinson's disease (PD) remain unknown. Accumulating evidence revealed that brain neuroinflammatory response mediated by microglial cells contributes to cognitive deficits in neuropathological conditions and macrophage antigen complex-1 (Mac1) is a key factor in controlling microglial activation. OBJECTIVES To explore whether Mac1-mediated microglial activation participates in cognitive dysfunction in PD using paraquat and maneb-generated mouse PD model. METHODS Cognitive performance was measured in wild type and Mac1-/- mice using Morris water maze test. The role and mechanisms of NADPH oxidase (NOX)-NLRP3 inflammasome axis in Mac1-mediated microglial dysfunction, neuronal damage, synaptic degeneration and phosphorylation (Ser129) of α-synuclein were explored by immunohistochemistry, Western blot and RT-PCR. RESULTS Genetic deletion of Mac1 significantly ameliorated learning and memory impairments, neuronal damage, synaptic loss and α-synuclein phosphorylation (Ser129) caused by paraquat and maneb in mice. Subsequently, blocking Mac1 activation was found to mitigate paraquat and maneb-elicited microglial NLRP3 inflammasome activation in both in vivo and in vitro. Interestingly, stimulating activation of NOX by phorbol myristate acetate abolished the inhibitory effects of Mac1 blocking peptide RGD on paraquat and maneb-provoked NLRP3 inflammasome activation, indicating a key role of NOX in Mac1-mediated NLRP3 inflammasome activation. Furthermore, NOX1 and NOX2, two members of NOX family, and downstream PAK1 and MAPK pathways were recognized to be essential for NOX to regulate NLRP3 inflammasome activation. Finally, a NLRP3 inflammasome inhibitor glybenclamide abrogated microglial M1 activation, neurodegeneration and phosphorylation (Ser129) of α-synuclein elicited by paraquat and maneb, which were accompanied by improved cognitive capacity in mice. CONCLUSIONS Mac1 was involved in cognitive dysfunction in a mouse PD model through NOX-NLRP3 inflammasome axis-dependent microglial activation, providing a novel mechanistic basis of cognitive decline in PD.
Collapse
Affiliation(s)
- Liyan Hou
- grid.411971.b0000 0000 9558 1426Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China ,grid.411971.b0000 0000 9558 1426National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044 China
| | - Jianing Liu
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Fuqiang Sun
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Ruixue Huang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Rui Chang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Zhengzheng Ruan
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Ying Wang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China. .,School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
29
|
Benoit B, Poüs C, Baillet A. Septins as membrane influencers: direct play or in association with other cytoskeleton partners. Front Cell Dev Biol 2023; 11:1112319. [PMID: 36875762 PMCID: PMC9982393 DOI: 10.3389/fcell.2023.1112319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
The cytoskeleton comprises three polymerizing structures that have been studied for a long time, actin microfilaments, microtubules and intermediate filaments, plus more recently investigated dynamic assemblies like septins or the endocytic-sorting complex required for transport (ESCRT) complex. These filament-forming proteins control several cell functions through crosstalks with each other and with membranes. In this review, we report recent works that address how septins bind to membranes, and influence their shaping, organization, properties and functions, either by binding to them directly or indirectly through other cytoskeleton elements.
Collapse
Affiliation(s)
- Béatrice Benoit
- INSERM UMR-S 1193, UFR de Pharmacie, University Paris-Saclay, Orsay, France
| | - Christian Poüs
- INSERM UMR-S 1193, UFR de Pharmacie, University Paris-Saclay, Orsay, France.,Laboratoire de Biochimie-Hormonologie, Hôpital Antoine Béclère, AP-HP, Hôpitaux Universitaires Paris-Saclay, Clamart, France
| | - Anita Baillet
- INSERM UMR-S 1193, UFR de Pharmacie, University Paris-Saclay, Orsay, France
| |
Collapse
|
30
|
Capriello T, Di Meglio G, De Maio A, Scudiero R, Bianchi AR, Trifuoggi M, Toscanesi M, Giarra A, Ferrandino I. Aluminium exposure leads to neurodegeneration and alters the expression of marker genes involved to parkinsonism in zebrafish brain. CHEMOSPHERE 2022; 307:135752. [PMID: 35863414 DOI: 10.1016/j.chemosphere.2022.135752] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Aluminium, despite being extremely widespread in the world, is a non-essential metal to human metabolism. This metal is known to have toxic effects on a variety of organs including the brain and is considered an etiological factor in neurodegenerative diseases. However, the molecular mechanisms by which aluminium exerts neurotoxic effects are not yet completely understood. Zebrafish is an animal model also used to study neurodegenerative diseases since the overall anatomical organization of the central nervous system is relatively conserved and similar to mammals. Adult zebrafish were exposed to 11 mg/L of Al for 10, 15, and 20 days and the neurotoxic effects of aluminium were analysed by histological, biochemical, and molecular evaluations. Histological stainings allowed to evaluation of the morphology of the brain parenchyma, the alteration of myelin and the activation of neurodegenerative processes. The expression of the Glial Fibrillary Acidic Protein, a marker of glial cells, was evaluated to observe the quantitative alteration of this important protein for the nervous system. In addition, the poly(ADP-ribose) polymerase activity was measured to verify a possible oxidative DNA damage caused by exposure to this metal. Finally, the evaluation of the markers involved in Parkinsonism was assessed by Real-Time PCR to better understand the role of aluminium in the regulation of genes related to Parkinson's neurodegenerative disease. Data showed that aluminium significantly affected the histology of cerebral tissue especially in the first periods of exposure, 10 and 15 days. This trend was also followed by the expression of GFAP. At longer exposure times, there was an improvement/stabilization of the overall neurological conditions and decrease in PARP activity. In addition, aluminium is involved in the deregulation of the expression of genes closely related to Parkinsonism. Overall, the data confirm the neurotoxicity induced by aluminium and shed a light on its involvement in neurodegenerative processes.
Collapse
Affiliation(s)
- Teresa Capriello
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Gianluca Di Meglio
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Anna De Maio
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Rosaria Scudiero
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Anna Rita Bianchi
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Ida Ferrandino
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
31
|
Pihlstrøm L, Shireby G, Geut H, Henriksen SP, Rozemuller AJM, Tunold JA, Hannon E, Francis P, Thomas AJ, Love S, Mill J, van de Berg WDJ, Toft M. Epigenome-wide association study of human frontal cortex identifies differential methylation in Lewy body pathology. Nat Commun 2022; 13:4932. [PMID: 35995800 PMCID: PMC9395387 DOI: 10.1038/s41467-022-32619-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are closely related progressive disorders with no available disease-modifying therapy, neuropathologically characterized by intraneuronal aggregates of misfolded α-synuclein. To explore the role of DNA methylation changes in PD and DLB pathogenesis, we performed an epigenome-wide association study (EWAS) of 322 postmortem frontal cortex samples and replicated results in an independent set of 200 donors. We report novel differentially methylated replicating loci associated with Braak Lewy body stage near TMCC2, SFMBT2, AKAP6 and PHYHIP. Differentially methylated probes were independent of known PD genetic risk alleles. Meta-analysis provided suggestive evidence for a differentially methylated locus within the chromosomal region affected by the PD-associated 22q11.2 deletion. Our findings elucidate novel disease pathways in PD and DLB and generate hypotheses for future molecular studies of Lewy body pathology.
Collapse
Affiliation(s)
- Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | - Gemma Shireby
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Hanneke Geut
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Netherlands Brain Bank, Netherlands Institute of Neurosciences, Amsterdam, The Netherlands
| | | | - Annemieke J M Rozemuller
- Amsterdam UMC, Vrije Universiteit, Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jon-Anders Tunold
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eilis Hannon
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Paul Francis
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Seth Love
- Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jonathan Mill
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Wilma D J van de Berg
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Radler MR, Spiliotis ET. Right place, right time - Spatial guidance of neuronal morphogenesis by septin GTPases. Curr Opin Neurobiol 2022; 75:102557. [PMID: 35609489 PMCID: PMC9968515 DOI: 10.1016/j.conb.2022.102557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022]
Abstract
Neuronal morphogenesis is guided by outside-in signals and inside-out mechanisms, which require spatiotemporal precision. How the intracellular mechanisms of neuronal morphogenesis are spatiotemporally controlled is not well understood. Septins comprise a unique GTPase module, which consists of complexes with differential localizations and functions. Septins demarcate distinct membrane domains in neural precursor cells, orienting the axis of cell division and the sites of neurite formation. By controlling the localization of membrane and cytoskeletal proteins, septins promote axon-dendrite formation and polarity. Furthermore, septins modulate vesicle exocytosis at pre-synaptic terminals, and stabilize dendritic spines and post-synaptic densities in a phospho-regulatable manner. We posit that neuronal septins are topologically and functionally specialized for the spatiotemporal regulation of neuronal morphogenesis and plasticity.
Collapse
Affiliation(s)
- Megan R. Radler
- Department of Biology, Drexel University, Papadakis Integrated Sciences Building 423, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Papadakis Integrated Sciences Building 423, 3245 Chestnut St, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
van der Ende EL, Bron EE, Poos JM, Jiskoot LC, Panman JL, Papma JM, Meeter LH, Dopper EGP, Wilke C, Synofzik M, Heller C, Swift IJ, Sogorb-Esteve A, Bouzigues A, Borroni B, Sanchez-Valle R, Moreno F, Graff C, Laforce R, Galimberti D, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, Rowe JB, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Otto M, Pijnenburg YAL, Sorbi S, Zetterberg H, Niessen WJ, Rohrer JD, Klein S, van Swieten JC, Venkatraghavan V, Seelaar H. A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain 2022; 145:1805-1817. [PMID: 34633446 PMCID: PMC9166533 DOI: 10.1093/brain/awab382] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Emma L van der Ende
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jackie M Poos
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jessica L Panman
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Janne M Papma
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Carlo Wilke
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, 20014 Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, 17176 Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 17176 Solna, Sweden
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Université Laval, G1Z 1J4 Québec, Canada
| | - Daniela Galimberti
- Centro Dino Ferrari, University of Milan, 20122 Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, ON M4N 3M5 Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, M5S 1A8 Toronto, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, ON N6A 3K7 London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - James B Rowe
- Cambridge University Centre for Frontotemporal Dementia, University of Cambridge, CB2 0SZ Cambridge, UK
| | | | | | - Isabel Santana
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute and McGill University Health Centre, McGill University, 3801 Montreal, Québec, Canada
| | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, OX3 9DU Oxford, UK
- Department of Brain Sciences, Imperial College London, SW7 2AZ London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ Manchester, UK
- Department of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, 45 147 Essen, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Yolande A L Pijnenburg
- Department of Neurology, Alzheimer Center, Location VU University Medical Center Amsterdam Neuroscience, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139 Florence, Italy
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 405 30 Mölndal, Sweden
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Stefan Klein
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vikram Venkatraghavan
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
34
|
Carson RE, Naganawa M, Toyonaga T, Koohsari S, Yang Y, Chen MK, Matuskey D, Finnema SJ. Imaging of Synaptic Density in Neurodegenerative Disorders. J Nucl Med 2022; 63:60S-67S. [PMID: 35649655 DOI: 10.2967/jnumed.121.263201] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
PET technology has produced many radiopharmaceuticals that target specific brain proteins and other measures of brain function. Recently, a new approach has emerged to image synaptic density by targeting the synaptic vesicle protein 2A (SV2A), an integral glycoprotein in the membrane of synaptic vesicles and widely distributed throughout the brain. Multiple SV2A ligands have been developed and translated to human use. The most successful of these to date is 11C-UCB-J, because of its high uptake, moderate metabolism, and effective quantification with a 1-tissue-compartment model. Further, since SV2A is the target of the antiepileptic drug levetiracetam, human blocking studies have characterized specific binding and potential reference regions. Regional brain SV2A levels were shown to correlate with those of synaptophysin, another commonly used marker of synaptic density, providing the basis for SV2A PET imaging to have broad utility across neuropathologic diseases. In this review, we highlight the development of SV2A tracers and the evaluation of quantification methods, including compartment modeling and simple tissue ratios. Mouse and rat models of neurodegenerative diseases have been studied with small-animal PET, providing validation by comparison to direct tissue measures. Next, we review human PET imaging results in multiple neurodegenerative disorders. Studies on Parkinson disease and Alzheimer disease have progressed most rapidly at multiple centers, with generally consistent results of patterns of SV2A or synaptic loss. In Alzheimer disease, the synaptic loss patterns differ from those of amyloid, tau, and 18F-FDG, although intertracer and interregional correlations have been found. Smaller studies have been reported in other disorders, including Lewy body dementia, frontotemporal dementia, Huntington disease, progressive supranuclear palsy, and corticobasal degeneration. In conclusion, PET imaging of SV2A has rapidly developed, and qualified radioligands are available. PET studies on humans indicate that SV2A loss might be specific to disease-associated brain regions and consistent with synaptic density loss. The recent availability of new 18F tracers, 18F-SynVesT-1 and 18F-SynVesT-2, will substantially broaden the application of SV2A PET. Future studies are needed in larger patient cohorts to establish the clinical value of SV2A PET and its potential for diagnosis and progression monitoring of neurodegenerative diseases, as well as efficacy assessment of disease-modifying therapies.
Collapse
Affiliation(s)
- Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut;
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut; and
| | - Sjoerd J Finnema
- Neuroscience Discovery Research, Translational Imaging, AbbVie, North Chicago, Illinois
| |
Collapse
|
35
|
Byeon S, Werner B, Falter R, Davidsen K, Snyder C, Ong SE, Yadav S. Proteomic Identification of Phosphorylation-Dependent Septin 7 Interactors that Drive Dendritic Spine Formation. Front Cell Dev Biol 2022; 10:836746. [PMID: 35602601 PMCID: PMC9114808 DOI: 10.3389/fcell.2022.836746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Septins are a family of cytoskeletal proteins that regulate several important aspects of neuronal development. Septin 7 (Sept7) is enriched at the base of dendritic spines in excitatory neurons and mediates both spine formation and spine and synapse maturation. Phosphorylation at a conserved C-terminal tail residue of Sept7 mediates its translocation into the dendritic spine head to allow spine and synapse maturation. The mechanistic basis for postsynaptic stability and compartmentalization conferred by phosphorylated Sept7, however, is unclear. We report herein the proteomic identification of Sept7 phosphorylation-dependent neuronal interactors. Using Sept7 C-terminal phosphopeptide pulldown and biochemical assays, we show that the 14-3-3 family of proteins specifically interacts with Sept7 when phosphorylated at the T426 residue. Biochemically, we validate the interaction between Sept7 and 14-3-3 isoform gamma and show that 14-3-3 gamma is also enriched in the mature dendritic spine head. Furthermore, we demonstrate that interaction of phosphorylated Sept7 with 14-3-3 protects it from dephosphorylation, as expression of a 14-3-3 antagonist significantly decreases phosphorylated Sept7 in neurons. This study identifies 14-3-3 proteins as an important physiological regulator of Sept7 function in neuronal development.
Collapse
Affiliation(s)
- Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Bailey Werner
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Reilly Falter
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Kristian Davidsen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Calvin Snyder
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
36
|
S327 phosphorylation of the presynaptic protein SEPTIN5 increases in the early stages of neurofibrillary pathology and alters the functionality of SEPTIN5. Neurobiol Dis 2022; 163:105603. [DOI: 10.1016/j.nbd.2021.105603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
|
37
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
38
|
Cao K, Xiang J, Dong YT, Xu Y, Guan ZZ. Activation of α7 Nicotinic Acetylcholine Receptor by its Selective Agonist Improved Learning and Memory of Amyloid Precursor Protein/Presenilin 1 (APP/PS1) Mice via the Nrf2/HO-1 Pathway. Med Sci Monit 2022; 28:e933978. [PMID: 34980874 PMCID: PMC8742434 DOI: 10.12659/msm.933978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND To reveal the mechanism underlying the effect of alpha7 nicotinic acetylcholine receptor (nAChR) on neurodegeneration in Alzheimer disease (AD), the influence of the receptor on recognition in APP/PS1 mice was evaluated by using its selective agonist (PNU-282987). MATERIAL AND METHODS APP/PS1 and wild-type (WT) mice were treated with PNU or saline, respectively, for 7 days at the ages of 6 and 10 months. RESULTS Morris water maze analysis showed that both at 6 and 10 months of age, PNU treatment enhanced the learning and memory of APP/PS1 mice. However, PNU treatment did not alter the number of senile plaques. Furthermore, a higher protein expression of Nrf2/HO-1, ADAM10, SYP, and SNAP-25, and a lower level of oxidative stress, were observed in the hippocampus of APP/PS1 mice treated with PNU compared with the control group. CONCLUSIONS The results indicated that the activation of alpha7 nAChR by PNU improved the learning and memory of mice carrying the APP/PS1 mutation, regulated the levels of enzymes that mediate APP metabolization to reduce ß-amyloid peptide damage, and decreased the level of oxidative stress and maintained synaptic plasticity, in which the mechanism might be enhancement of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Kun Cao
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jie Xiang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, PR China
| | - Yi Xu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
| | - Zhi-Zhong Guan
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, PR China
| |
Collapse
|
39
|
Relationships between frontal metabolites and Alzheimer's disease biomarkers in cognitively normal older adults. Neurobiol Aging 2021; 109:22-30. [PMID: 34638000 DOI: 10.1016/j.neurobiolaging.2021.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Elevated expression of β-amyloid (Aβ1-42) and tau are considered risk-factors for Alzheimer's disease in healthy older adults. We investigated the effect of aging and cerebrospinal fluid levels of Aβ1-42 and tau on 1) frontal metabolites measured with proton magnetic resonance spectroscopy (MRS) and 2) cognition in cognitively normal older adults (n = 144; age range 50-85). Levels of frontal gamma aminobutyric acid (GABA+) and myo-inositol relative to creatine (mI/tCr) were predicted by age. Levels of GABA+ predicted cognitive performance better than mI/tCr. Additionally, we found that frontal levels of n-acetylaspartate relative to creatine (tNAA/tCr) were predicted by levels of t-tau. In cognitively normal older adults, levels of frontal GABA+ and mI/tCr are predicted by aging, with levels of GABA+ decreasing with age and the opposite for mI/tCr. These results suggest that age- and biomarker-related changes in brain metabolites are not only located in the posterior cortex as suggested by previous studies and further demonstrate that MRS is a viable tool in the study of aging and biomarkers associated with pathological aging and Alzheimer's disease.
Collapse
|
40
|
Yu Z, Li D, Zhai S, Xu H, Liu H, Ao M, Zhao C, Jin W, Yu L. Neuroprotective effects of macamide from maca ( Lepidium meyenii Walp.) on corticosterone-induced hippocampal impairments through its anti-inflammatory, neurotrophic, and synaptic protection properties. Food Funct 2021; 12:9211-9228. [PMID: 34606547 DOI: 10.1039/d1fo01720a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study aims to investigate the protective effects of N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide (M 18:3) on corticosterone-induced neurotoxicity. A neurotoxic model was established by subcutaneous injection of corticosterone (40 mg per kg bw) for 21 days. Depressive behaviors (the percentage of sucrose consumption, the immobility time in the forced swimming test, and the total distance in the open field test) were observed. The levels of the brain-derived neurotrophic factor, the contents of tumor necrosis factor-α and interleukin-6, and the numbers of positive cells of doublecortin and bromodeoxyuridine in the hippocampus were measured. The density of hippocampal neurons was calculated. The morphological changes of hippocampal neurons (the density of dendritic spines, the dendritic length, and the area and volume of dendritic cell bodies) were observed. The expression levels of synaptophysin, synapsin I, and postsynaptic density protein 95 were measured. Behavioral experiments showed that M 18:3 (5 and 25 mg per kg bw) could remarkably improve the depressive behaviors. The enzyme-linked immunosorbent assay showed that M 18:3 could considerably reduce hippocampal neuroinflammation and increase hippocampal neurotrophy. Nissl staining showed that M 18:3 could remarkably improve the corticosterone-induced decrease in the hippocampal neuron density. Immunofluorescence analysis showed that M 18:3 could considerably promote hippocampal neurogenesis. Golgi staining showed that M 18:3 could remarkably improve the corticosterone-induced changes in the hippocampal dendritic structure. Western blotting showed that M 18:3 could considerably increase the expression levels of synaptic-structure-related proteins in the hippocampus. In conclusion, the protective effects of M 18:3 may be attributed to the anti-inflammatory, neurotrophic, and synaptic protection properties.
Collapse
Affiliation(s)
- Zejun Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Ezhou, 436060, China
| | - Dong Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Ezhou, 436060, China
| | - Shengbing Zhai
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Ezhou, 436060, China
| | - Hang Xu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Ezhou, 436060, China
| | - Hao Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Ezhou Industrial Technology Research Institute, Huazhong University of Science and Technology, Ezhou, 436060, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Chunfang Zhao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China
| |
Collapse
|
41
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
42
|
Vial A, Taveneau C, Costa L, Chauvin B, Nasrallah H, Godefroy C, Dosset P, Isambert H, Ngo KX, Mangenot S, Levy D, Bertin A, Milhiet PE. Correlative AFM and fluorescence imaging demonstrate nanoscale membrane remodeling and ring-like and tubular structure formation by septins. NANOSCALE 2021; 13:12484-12493. [PMID: 34225356 DOI: 10.1039/d1nr01978c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Septins are ubiquitous cytoskeletal filaments that interact with the inner plasma membrane and are essential for cell division in eukaryotes. In cellular contexts, septins are often localized at micrometric Gaussian curvatures, where they assemble onto ring-like structures. The behavior of budding yeast septins depends on their specific interaction with inositol phospholipids, enriched at the inner leaflet of the plasma membrane. Septin filaments are built from the non-polar self-assembly of short rods into filaments. However, the molecular mechanisms regulating the interplay with the inner plasma membrane and the resulting interaction with specific curvatures are not fully understood. In this report, we have imaged dynamical molecular assemblies of budding yeast septins on PIP2-containing supported lipid bilayers using a combination of high-speed AFM and correlative AFM-fluorescence microscopy. Our results clearly demonstrate that septins are able to bind to flat supported lipid bilayers and thereafter induce the remodeling of membranes. Short septin rods (octamers subunits) can indeed destabilize supported lipid bilayers and reshape the membrane to form 3D structures such as rings and tubes, demonstrating that long filaments are not necessary for septin-induced membrane buckling.
Collapse
Affiliation(s)
- Anthony Vial
- Centre de Biochimie Structurale (CBS), Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Benoit B, Baillet A, Poüs C. Cytoskeleton and Associated Proteins: Pleiotropic JNK Substrates and Regulators. Int J Mol Sci 2021; 22:8375. [PMID: 34445080 PMCID: PMC8395060 DOI: 10.3390/ijms22168375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
This review extensively reports data from the literature concerning the complex relationships between the stress-induced c-Jun N-terminal kinases (JNKs) and the four main cytoskeleton elements, which are actin filaments, microtubules, intermediate filaments, and septins. To a lesser extent, we also focused on the two membrane-associated cytoskeletons spectrin and ESCRT-III. We gather the mechanisms controlling cytoskeleton-associated JNK activation and the known cytoskeleton-related substrates directly phosphorylated by JNK. We also point out specific locations of the JNK upstream regulators at cytoskeletal components. We finally compile available techniques and tools that could allow a better characterization of the interplay between the different types of cytoskeleton filaments upon JNK-mediated stress and during development. This overview may bring new important information for applied medical research.
Collapse
Affiliation(s)
- Béatrice Benoit
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Anita Baillet
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
- Biochimie-Hormonologie, AP-HP Université Paris-Saclay, Site Antoine Béclère, 157 Rue de la Porte de Trivaux, 92141 Clamart, France
| |
Collapse
|
44
|
Buren C, Tu G, Raymond LA. Impaired Replenishment of Cortico-Striatal Synaptic Glutamate in Huntington's Disease Mouse Model. J Huntingtons Dis 2021; 9:149-161. [PMID: 32310183 DOI: 10.3233/jhd-200400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the Huntingtin gene (HTT). Studies suggest cortical to striatal (C-S) projections, which regulate movement and provide cell survival signals to SPNs, are altered in the pre-manifest and early symptomatic stages of HD. But whether and how presynaptic cortical terminals are affected in HD is not well explored. OBJECTIVE Test size and replenishment of readily releasable pool (RRP), and assess glutamate refill of C-S synapses in HD models. METHODS Immunocytochemistry was applied in C-S co-cultures generated from FVB/N (WT: wildtype) mice and YAC128, an HD mouse model expressing human HTT with 128 CAG repeats on the FVB/N background; Whole-cell patch clamp recordings from striatal neurons were performed both in cultures, with or without osmotic stimuli, and in acute brain slices from 6-month-old early symptomatic YAC128 mice and WT following prolonged trains of electrical stimuli in corpus callosum. RESULTS We found no change in the average size or vesicle replenishment rate of RRP in C-S synapses of YAC128, compared with WT, cultures at day in vitro 21, a time when immunocytochemistry showed comparable neuronal survival between the two genotypes. However, YAC128 C-S synapses showed a slowed rate of recovery of glutamate release in co-cultures as well as in acute brain slices. CONCLUSION Mutant HTT expression impairs glutamate refill but not RRP size or replenishment in C-S synapses. This work provides a foundation for examining the contribution of deficits in presynaptic cortical terminals on HD progression.
Collapse
Affiliation(s)
- Caodu Buren
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada.,Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Gaqi Tu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
45
|
Ali T, Rehman SU, Khan A, Badshah H, Abid NB, Kim MW, Jo MH, Chung SS, Lee HG, Rutten BPF, Kim MO. Adiponectin-mimetic novel nonapeptide rescues aberrant neuronal metabolic-associated memory deficits in Alzheimer's disease. Mol Neurodegener 2021; 16:23. [PMID: 33849621 PMCID: PMC8042910 DOI: 10.1186/s13024-021-00445-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background Recently, we and other researchers reported that brain metabolic disorders are implicated in Alzheimer’s disease (AD), a progressive, devastating and incurable neurodegenerative disease. Hence, novel therapeutic approaches are urgently needed to explore potential and novel therapeutic targets/agents for the treatment of AD. The neuronal adiponectin receptor 1 (AdipoR1) is an emerging potential target for intervention in metabolic-associated AD. We aimed to validate this hypothesis and explore in-depth the therapeutic effects of an osmotin-derived adiponectin-mimetic novel nonapeptide (Os-pep) on metabolic-associated AD. Methods We used an Os-pep dosage regimen (5 μg/g, i.p., on alternating days for 45 days) for APP/PS1 in amyloid β oligomer-injected, transgenic adiponectin knockout (Adipo−/−) and AdipoR1 knockdown mice. After behavioral studies, brain tissues were subjected to biochemical and immunohistochemical analyses. In separate cohorts of mice, electrophysiolocal and Golgi staining experiments were performed. To validate the in vivo studies, we used human APP Swedish (swe)/Indiana (ind)-overexpressing neuroblastoma SH-SY5Y cells, which were subjected to knockdown of AdipoR1 and APMK with siRNAs, treated with Os-pep and other conditions as per the mechanistic approach, and we proceeded to perform further biochemical analyses. Results Our in vitro and in vivo results show that Os-pep has good safety and neuroprotection profiles and crosses the blood-brain barrier. We found reduced levels of neuronal AdipoR1 in human AD brain tissue. Os-pep stimulates AdipoR1 and its downstream target, AMP-activated protein kinase (AMPK) signaling, in AD and Adipo−/− mice. Mechanistically, in all of the in vivo and in vitro studies, Os-pep rescued aberrant neuronal metabolism by reducing neuronal insulin resistance and activated downstream insulin signaling through regulation of AdipoR1/AMPK signaling to consequently improve the memory functions of the AD and Adipo−/− mice, which was associated with improved synaptic function and long-term potentiation via an AdipoR1-dependent mechanism. Conclusion Our findings show that Os-pep activates AdipoR1/AMPK signaling and regulates neuronal insulin resistance and insulin signaling, which subsequently rescues memory deficits in AD and adiponectin-deficient models. Taken together, the results indicate that Os-pep, as an adiponectin-mimetic novel nonapeptide, is a valuable and promising potential therapeutic candidate to treat aberrant brain metabolism associated with AD and other neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00445-4.
Collapse
Affiliation(s)
- Tahir Ali
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Amjad Khan
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Haroon Badshah
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Noman Bin Abid
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Woo Kim
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeung Hoon Jo
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seung Soo Chung
- Department of Physiology, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Hyoung-Gon Lee
- Department of Biology, The University of Texas at San Antonio, San Antonio, USA
| | - Bart P F Rutten
- Translational Neuroscience and Psychiatry, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
46
|
Belalcazar HM, Hendricks EL, Zamurrad S, Liebl FLW, Secombe J. The histone demethylase KDM5 is required for synaptic structure and function at the Drosophila neuromuscular junction. Cell Rep 2021; 34:108753. [PMID: 33596422 PMCID: PMC7945993 DOI: 10.1016/j.celrep.2021.108753] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the genes encoding the lysine demethylase 5 (KDM5) family of histone demethylases are observed in individuals with intellectual disability (ID). Despite clear evidence linking KDM5 function to neurodevelopmental pathways, how this family of proteins impacts transcriptional programs to mediate synaptic structure and activity remains unclear. Using the Drosophila larval neuromuscular junction (NMJ), we show that KDM5 is required presynaptically for neuroanatomical development and synaptic function. The Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, which is expected to be diminished by many ID-associated alleles, is required for appropriate synaptic morphology and neurotransmission. The activity of the C5HC2 zinc finger is also required, as an ID-associated mutation in this motif reduces NMJ bouton number, increases bouton size, and alters microtubule dynamics. KDM5 therefore uses demethylase-dependent and independent mechanisms to regulate NMJ structure and activity, highlighting the complex nature by which this chromatin modifier carries out its neuronal gene-regulatory programs.
Collapse
Affiliation(s)
- Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Emily L Hendricks
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Sumaira Zamurrad
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
47
|
Serwach K, Gruszczynska-Biegala J. Target Molecules of STIM Proteins in the Central Nervous System. Front Mol Neurosci 2020; 13:617422. [PMID: 33424550 PMCID: PMC7786003 DOI: 10.3389/fnmol.2020.617422] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecules (STIMs), including STIM1 and STIM2, are single-pass transmembrane proteins that are located predominantly in the endoplasmic reticulum (ER). They serve as calcium ion (Ca2+) sensors within the ER. In the central nervous system (CNS), they are involved mainly in Orai-mediated store-operated Ca2+ entry (SOCE). The key molecular components of the SOCE pathway are well-characterized, but the molecular mechanisms that underlie the regulation of this pathway need further investigation. Numerous intracellular target proteins that are located in the plasma membrane, ER, cytoskeleton, and cytoplasm have been reported to play essential roles in concert with STIMs, such as conformational changes in STIMs, their translocation, the stabilization of their interactions with Orai, and the activation of other channels. The present review focuses on numerous regulators, such as Homer, SOCE-associated regulatory factor (SARAF), septin, synaptopodin, golli proteins, partner of STIM1 (POST), and transcription factors and proteasome inhibitors that regulate STIM-Orai interactions in the CNS. Further we describe novel roles of STIMs in mediating Ca2+ influx via other than Orai pathways, including TRPC channels, VGCCs, AMPA and NMDA receptors, and group I metabotropic glutamate receptors. This review also summarizes recent findings on additional molecular targets of STIM proteins including SERCA, IP3Rs, end-binding proteins (EB), presenilin, and CaMKII. Dysregulation of the SOCE-associated toolkit, including STIMs, contributes to the development of neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease), traumatic brain injury, epilepsy, and stroke. Emerging evidence points to the role of STIM proteins and several of their molecular effectors and regulators in neuronal and glial physiology and pathology, suggesting their potential application for future therapeutic strategies.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
48
|
Györffy BA, Tóth V, Török G, Gulyássy P, Kovács RÁ, Vadászi H, Micsonai A, Tóth ME, Sántha M, Homolya L, Drahos L, Juhász G, Kékesi KA, Kardos J. Synaptic mitochondrial dysfunction and septin accumulation are linked to complement-mediated synapse loss in an Alzheimer's disease animal model. Cell Mol Life Sci 2020; 77:5243-5258. [PMID: 32034429 PMCID: PMC7671981 DOI: 10.1007/s00018-020-03468-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/25/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022]
Abstract
Synaptic functional disturbances with concomitant synapse loss represent central pathological hallmarks of Alzheimer's disease. Excessive accumulation of cytotoxic amyloid oligomers is widely recognized as a key event that underlies neurodegeneration. Certain complement components are crucial instruments of widespread synapse loss because they can tag synapses with functional impairments leading to their engulfment by microglia. However, an exact understanding of the affected synaptic functions that predispose to complement-mediated synapse elimination is lacking. Therefore, we conducted systematic proteomic examinations on synaptosomes prepared from an amyloidogenic mouse model of Alzheimer's disease (APP/PS1). Synaptic fractions were separated according to the presence of the C1q-tag using fluorescence-activated synaptosome sorting and subjected to proteomic comparisons. The results raised the decline of mitochondrial functions in the C1q-tagged synapses of APP/PS1 mice based on enrichment analyses, which was verified using flow cytometry. Additionally, proteomics results revealed extensive alterations in the level of septin protein family members, which are known to dynamically form highly organized pre- and postsynaptic supramolecular structures, thereby affecting synaptic transmission. High-resolution microscopy investigations demonstrated that synapses with considerable amounts of septin-3 and septin-5 show increased accumulation of C1q in APP/PS1 mice compared to the wild-type ones. Moreover, a strong positive correlation was apparent between synaptic septin-3 levels and C1q deposition as revealed via flow cytometry and confocal microscopy examinations. In sum, our results imply that deterioration of synaptic mitochondrial functions and alterations in the organization of synaptic septins are associated with complement-dependent synapse loss in Alzheimer's disease.
Collapse
Affiliation(s)
- Balázs A Györffy
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Vilmos Tóth
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - György Török
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Péter Gulyássy
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Réka Á Kovács
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Henrietta Vadászi
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - László Homolya
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Juhász
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- CRU Hungary Ltd., Göd, Hungary
| | - Katalin A Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
49
|
Pathak GA, Silzer TK, Sun J, Zhou Z, Daniel AA, Johnson L, O'Bryant S, Phillips NR, Barber RC. Genome-Wide Methylation of Mild Cognitive Impairment in Mexican Americans Highlights Genes Involved in Synaptic Transport, Alzheimer's Disease-Precursor Phenotypes, and Metabolic Morbidities. J Alzheimers Dis 2020; 72:733-749. [PMID: 31640099 DOI: 10.3233/jad-190634] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Mexican American population is among the fastest growing aging population and has a younger onset of cognitive decline. This group is also heavily burdened with metabolic conditions such as hypertension, diabetes, and obesity. Unfortunately, limited research has been conducted in this group. Understanding methylation alterations, which are influenced by both genetic and lifestyle factors, is key to identifying and addressing the root cause for mild cognitive impairment, a clinical precursor for dementia. We conducted an epigenome-wide association study on a community-based Mexican American population using the Illumina EPIC array. Following rigorous quality control measures, we identified 10 CpG sites to be differentially methylated between normal controls and individuals with mild cognitive impairment annotated to PKIB, KLHL29, SEPT9, OR2C3, CPLX3, BCL2L2-PABPN1, and CCNY. We found four regions to be differentially methylated in TMEM232, SLC17A8, ALOX12, and SEPT8. Functional gene-set analysis identified four gene-sets, RIN3, SPEG, CTSG, and UBE2L3, as significant. The gene ontology and pathway analyses point to neuronal cell death, metabolic dysfunction, and inflammatory processes. We found 1,450 processes to be enriched using empirical Bayes gene-set enrichment. In conclusion, the functional overlap of differentially methylated genes associated with cognitive impairment in Mexican Americans implies cross-talk between metabolically-instigated systemic inflammation and disruption of synaptic vesicular transport.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Talisa K Silzer
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jie Sun
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ann A Daniel
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Leigh Johnson
- Institute of Translational Medicine, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sid O'Bryant
- Institute of Translational Medicine, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Robert C Barber
- Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
50
|
Bloniecki V, Zetterberg H, Aarsland D, Vannini P, Kvartsberg H, Winblad B, Blennow K, Freund-Levi Y. Are neuropsychiatric symptoms in dementia linked to CSF biomarkers of synaptic and axonal degeneration? ALZHEIMERS RESEARCH & THERAPY 2020; 12:153. [PMID: 33203439 PMCID: PMC7670701 DOI: 10.1186/s13195-020-00718-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/29/2020] [Indexed: 01/12/2023]
Abstract
Background The underlying disease mechanism of neuropsychiatric symptoms (NPS) in dementia remains unclear. Cerebrospinal fluid (CSF) biomarkers for synaptic and axonal degeneration may provide novel neuropathological information for their occurrence. The aim was to investigate the relationship between NPS and CSF biomarkers for synaptic (neurogranin [Ng], growth-associated protein 43 [GAP-43]) and axonal (neurofilament light [NFL]) injury in patients with dementia. Methods A total of 151 patients (mean age ± SD, 73.5 ± 11.0, females n = 92 [61%]) were included, of which 64 had Alzheimer’s disease (AD) (34 with high NPS, i.e., Neuropsychiatric Inventory (NPI) score > 10 and 30 with low levels of NPS) and 18 were diagnosed with vascular dementia (VaD), 27 with mixed dementia (MIX), 12 with mild cognitive impairment (MCI), and 30 with subjective cognitive impairment (SCI). NPS were primarily assessed using the NPI. CSF samples were analyzed using enzyme-linked immunosorbent assays (ELISAs) for T-tau, P-tau, Aβ1–42, Ng, NFL, and GAP-43. Results No significant differences were seen in the CSF levels of Ng, GAP-43, and NFL between AD patients with high vs low levels of NPS (but almost significantly decreased for Ng in AD patients < 70 years with high NPS, p = 0.06). No significant associations between NPS and CSF biomarkers were seen in AD patients. In VaD (n = 17), negative correlations were found between GAP-43, Ng, NFL, and NPS. Conclusion Our results could suggest that low levels of Ng may be associated with higher severity of NPS early in the AD continuum (age < 70). Furthermore, our data may indicate a potential relationship between the presence of NPS and synaptic as well as axonal degeneration in the setting of VaD pathology.
Collapse
Affiliation(s)
- Victor Bloniecki
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden. .,Department of Dermatology, Karolinska University Hospital, Solna, Sweden.
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Center for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Patrizia Vannini
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hlin Kvartsberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry in Region Örebro County and School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Department of Old Age Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|