1
|
Huang Y, Liu P, Xu Y, Qian C, Wu T, Li T. Plasma Exosomes Derived from Patients with Primary Immune Thrombocytopenia Attenuate TBX21 + Regulatory T Cell-Mediated Immune Suppression via MiR-363-3p. Inflammation 2025:10.1007/s10753-025-02275-8. [PMID: 40032779 DOI: 10.1007/s10753-025-02275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Primary Immune Thrombocytopenia (ITP) is characterized by reduced immunosuppressive function of regulatory T cells (Tregs), contributing to immune imbalance and decreased platelet counts. However, the mechanisms behind this reduced efficacy of Tregs remain unclear. Our study used a variety of methods, including Treg function assays, cytokine analysis, and single-cell sequencing, to explore these mechanisms. We found that exosomes from ITP patients inhibited TBX21 expression in Tregs, and impaired their ability to suppress Th1 cells. At the single-cell level, Tregs with high TBX21 expression were identified, and the activity of the TBX21 regulon was found to be enhanced in early-stage Treg subpopulations. We also discovered that ARID3A interacted with SPI1 and TBX21 gene regions, indicating a regulatory relationship between ARID3A, SPI1, and TBX21. Additionally, exosomes in ITP patients' plasma contained elevated levels of miR-363-3p, which negatively correlated with platelet count. These exosomes transferred miR-363-3p to Tregs, downregulating ARID3A, SPI1, and TBX21 expression, thereby weakening Tregs' ability to suppress conventional CD4 + T cells. In conclusion, exosomes from ITP patients reduced Treg function through the ARID3A/SPI1/TBX21 axis by miR-363-3p, diminishing their ability to regulate Th1 cells and contributing to the immune dysfunction observed in ITP.
Collapse
Affiliation(s)
- Yuanlan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200000, China
| | - Peng Liu
- Department of Blood Transfusion, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Ying Xu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Cheng Qian
- Department of Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Tianqin Wu
- Suzhou100 Hospital, Suzhou, 215006, China
| | - Tengda Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
2
|
Cordero J, Swaminathan G, Rogel-Ayala DG, Rubio K, Elsherbiny A, Mahmood S, Szymanski W, Graumann J, Braun T, Günther S, Dobreva G, Barreto G. Nuclear microRNA 9 mediates G-quadruplex formation and 3D genome organization during TGF-β-induced transcription. Nat Commun 2024; 15:10711. [PMID: 39706840 DOI: 10.1038/s41467-024-54740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/20/2024] [Indexed: 12/23/2024] Open
Abstract
The dynamics of three-dimensional (3D) genome organization are essential to transcriptional regulation. While enhancers regulate spatiotemporal gene expression, chromatin looping is a means for enhancer-promoter interactions yielding cell-type-specific gene expression. Further, non-canonical DNA secondary structures, such as G-quadruplexes (G4s), are related to increased gene expression. However, the role of G4s in promoter-distal regulatory elements, such as super-enhancers (SE), and in chromatin looping has remained elusive. Here we show that mature microRNA 9 (miR-9) is enriched at promoters and SE of genes that are inducible by transforming growth factor beta 1 (TGFB1) signaling. Moreover, we find that miR-9 is required for formation of G4s, promoter-super-enhancer looping and broad domains of the euchromatin histone mark H3K4me3 at TGFB1-responsive genes. Our study places miR-9 in the same functional context with G4s and promoter-enhancer interactions during 3D genome organization and transcriptional activation induced by TGFB1 signaling, a critical signaling pathway in cancer and fibrosis.
Collapse
Affiliation(s)
- Julio Cordero
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK), 68167, Mannheim, Germany.
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
| | | | - Diana G Rogel-Ayala
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, F-54000, Nancy, France
| | - Karla Rubio
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, F-54000, Nancy, France
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Mexico
| | - Adel Elsherbiny
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167, Mannheim, Germany
| | - Samina Mahmood
- ECCPS Bioinformatics and Deep Sequencing Platform, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Witold Szymanski
- Department of Medicine, Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps-University Marburg, 35043, Marburg, Germany
| | - Johannes Graumann
- Department of Medicine, Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps-University Marburg, 35043, Marburg, Germany
| | - Thomas Braun
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167, Mannheim, Germany
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, 69117, Heidelberg, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, F-54000, Nancy, France.
| |
Collapse
|
3
|
Thangavelu L, Goyal A, Afzal M, Moglad E, Rawat S, Kazmi I, Alzarea SI, Almalki WH, Rani R, Madhubabu P, Rajput P, Bansal P. Pyroptosis in lung cancer: The emerging role of non-coding RNAs. Pathol Res Pract 2024; 263:155619. [PMID: 39357188 DOI: 10.1016/j.prp.2024.155619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Lung cancer remains an intractable malignancy worldwide, prompting novel therapeutic modalities. Pyroptosis, a lethal form of programmed cell death featured by inflammation, has been involved in cancer progression and treatment response. Simultaneously, non-coding RNA has been shown to have important roles in coordinating pattern formation and oncogenic pathways, including long non-coding RNA (lncRNAs), microRNA (miRNAs), circular RNA (circRNAs), and small interfering RNA (siRNAs). Recent studies have revealed that ncRNAs can promote or inhibit pyroptosis by interacting with key molecular players such as NLRP3, GSDMD, and various transcription factors. This dual role of ncRNAs offers a unique therapeutic potential to manipulate pyroptosis pathways, providing opportunities for innovative cancer treatments. In this review, we integrate current research findings to propose novel strategies for leveraging ncRNA-mediated pyroptosis as a therapeutic intervention in lung cancer. We explore the potential of ncRNAs as biomarkers for predicting patient response to treatment and as targets for overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | | | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Pooja Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| |
Collapse
|
4
|
Liu X, Wang Q, Li J, Diao Z, Hou J, Huo D, Hou C. Simultaneous Detection of Micro-RNAs by a Disposable Biosensor via the Click Chemistry Connection Strategy. Anal Chem 2024; 96:10577-10585. [PMID: 38887964 DOI: 10.1021/acs.analchem.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Simultaneous detection of multiple breast cancer-associated miRNAs significantly raises the accuracy and reliability of early diagnosis. In this work, disposable carbon fiber paper serves as the biosensing interface, linking DNA probes via click chemistry to efficiently capture targets and signals efficiently. DNA probes have multiple recognition domains that trigger a cascade reaction through the helper probes and targets, resulting in two signals output. The signals are centrally encapsulated in the pore of the MIL-88(Fe)-NH2. The signal carriers are directed by signal probes to the recognition domains that correspond to the DNA probes. The biosensor is selective and stable, and it can quantify miRNA-21 and miRNA-155 simultaneously with detection limits of 0.64 and 0.54 fmol/L, respectively. Furthermore, it demonstrates satisfactory performance in tests conducted with normal human serum and cell lysate. Overall, this method makes a satisfactory exploration to realize an inexpensive and sensitive biosensor for multiple biomarkers.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Qun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Zhan Diao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
5
|
Billi M, De Marinis E, Gentile M, Nervi C, Grignani F. Nuclear miRNAs: Gene Regulation Activities. Int J Mol Sci 2024; 25:6066. [PMID: 38892257 PMCID: PMC11172810 DOI: 10.3390/ijms25116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which contribute to the regulation of many physiological and pathological processes. Conventionally, miRNAs perform their activity in the cytoplasm where they regulate gene expression by interacting in a sequence-specific manner with mature messenger RNAs. Recent studies point to the presence of mature miRNAs in the nucleus. This review summarizes current findings regarding the molecular activities of nuclear miRNAs. These molecules can regulate gene expression at the transcriptional level by directly binding DNA on the promoter or the enhancer of regulated genes. miRNAs recruit different protein complexes to these regions, resulting in activation or repression of transcription, through a number of molecular mechanisms. Hematopoiesis is presented as a paradigmatic biological process whereby nuclear miRNAs possess a relevant regulatory role. Nuclear miRNAs can influence gene expression by affecting nuclear mRNA processing and by regulating pri-miRNA maturation, thus impacting the biogenesis of miRNAs themselves. Overall, nuclear miRNAs are biologically active molecules that can be critical for the fine tuning of gene expression and deserve further studies in a number of physiological and pathological conditions.
Collapse
Affiliation(s)
- Monia Billi
- General Pathology and Department of Medicine, University of Perugia, 06132 Perugia, Italy;
| | - Elisabetta De Marinis
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, 04100 Latina, Italy; (E.D.M.); (M.G.); (C.N.)
| | - Martina Gentile
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, 04100 Latina, Italy; (E.D.M.); (M.G.); (C.N.)
| | - Clara Nervi
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, 04100 Latina, Italy; (E.D.M.); (M.G.); (C.N.)
| | - Francesco Grignani
- General Pathology and Department of Medicine, University of Perugia, 06132 Perugia, Italy;
| |
Collapse
|
6
|
Zhao L, Tang P, Lin Y, Du M, Li H, Jiang L, Xu H, Sun H, Han J, Sun Z, Xu R, Lou H, Chen Z, Kopylov P, Liu X, Zhang Y. MiR-203 improves cardiac dysfunction by targeting PARP1-NAD + axis in aging murine. Aging Cell 2024; 23:e14063. [PMID: 38098220 PMCID: PMC10928583 DOI: 10.1111/acel.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 03/13/2024] Open
Abstract
Heart aging is a prevalent cause of cardiovascular diseases among the elderly. NAD+ depletion is a hallmark feature of aging heart, however, the molecular mechanisms that affect NAD+ depletion remain unclear. In this study, we identified microRNA-203 (miR-203) as a senescence-associated microRNA that regulates NAD+ homeostasis. We found that the blood miR-203 level negatively correlated with human age and its expression significantly decreased in the hearts of aged mice and senescent cardiomyocytes. Transgenic mice with overexpressed miR-203 (TgN (miR-203)) showed resistance to aging-induced cardiac diastolic dysfunction, cardiac remodeling, and myocardial senescence. At the cellular level, overexpression of miR-203 significantly prevented D-gal-induced cardiomyocyte senescence and mitochondrial damage, while miR-203 knockdown aggravated these effects. Mechanistically, miR-203 inhibited PARP1 expression by targeting its 3'UTR, which helped to reduce NAD+ depletion and improve mitochondrial function and cell senescence. Overall, our study first identified miR-203 as a genetic tool for anti-heart aging by restoring NAD+ function in cardiomyocytes.
Collapse
Affiliation(s)
- Limin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Pingping Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Lin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Menghan Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huimin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lintong Jiang
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Henghui Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Heyang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingjing Han
- Department of Pharmacy, Caoxian People's Hospital, Heze, China
| | - Zeqi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Run Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Han Lou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhouxiu Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Philipp Kopylov
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Xin Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
7
|
Swaminathan G, Rogel-Ayala DG, Armich A, Barreto G. Implications in Cancer of Nuclear Micro RNAs, Long Non-Coding RNAs, and Circular RNAs Bound by PRC2 and FUS. Cancers (Basel) 2024; 16:868. [PMID: 38473229 DOI: 10.3390/cancers16050868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The eukaryotic genome is mainly transcribed into non-coding RNAs (ncRNAs), including different RNA biotypes, such as micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), among others. Although miRNAs are assumed to act primarily in the cytosol, mature miRNAs have been reported and functionally characterized in the nuclei of different cells. Further, lncRNAs are important regulators of different biological processes in the cell nucleus as part of different ribonucleoprotein complexes. CircRNAs constitute a relatively less-characterized RNA biotype that has a circular structure as result of a back-splicing process. However, circRNAs have recently attracted attention in different scientific fields due to their involvement in various biological processes and pathologies. In this review, we will summarize recent studies that link to cancer miRNAs that have been functionally characterized in the cell nucleus, as well as lncRNAs and circRNAs that are bound by core components of the polycomb repressive complex 2 (PRC2) or the protein fused in sarcoma (FUS), highlighting mechanistic aspects and their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
| | - Diana G Rogel-Ayala
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Amine Armich
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, F-54000 Nancy, France
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
8
|
Wei R, Wang K, Liu X, Shi M, Pan W, Li N, Tang B. Stimuli-responsive probes for amplification-based imaging of miRNAs in living cells. Biosens Bioelectron 2023; 239:115584. [PMID: 37619479 DOI: 10.1016/j.bios.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important biomarkers in biomedicine and bioimaging due to their roles in various physiological and pathological processes. Real-time and in situ monitoring of dynamic fluctuation of miRNAs in living cells is crucial for understanding these processes. However, current miRNA imaging probes still have some limitations, including the lack of effective amplification methods for low abundance miRNAs bioanalysis and uncontrollable activation, leading to background signals and potential false-positive results. Therefore, researchers have been integrating activatable devices with miRNA amplification techniques to design stimuli-responsive nanoprobes for "on-demand" and precise imaging of miRNAs in living cells. In this review, we summarize recent advances of stimuli-responsive probes for the amplification-based imaging of miRNAs in living cells and discuss the future challenges and opportunities in this field, aiming to provide valuable insights for accurate disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Kaixian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266237, PR China.
| |
Collapse
|
9
|
Park S, Kim M, Park M, Jin Y, Lee SJ, Lee H. Specific upregulation of extracellular miR-6238 in particulate matter-induced acute lung injury and its immunomodulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130466. [PMID: 36455323 DOI: 10.1016/j.jhazmat.2022.130466] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases characterized by a severe inflammatory response and the destruction of alveolar epithelium and endothelium. ALI/ARDS is caused by pathogens and toxic environmental stimuli, such as particulate matter (PM). However, the general symptoms of ALI/ARDS are similar, and determining the cause of lung injury is often challenging. In this study, we investigated whether there is a critical miRNA that characterizes PM-induced ALI. We found that the expression of miR-6238 is specifically upregulated in lung tissue and lung-derived extracellular vesicles (EVs) in response to PM exposure. Notably, bacterial endotoxin (Lipopolysaccharide; LPS or peptidoglycan; PTG) does not induce the expression of miR-6238 in the lung. Instead, the expression of miR-155 is dramatically increased in LPS-induced ALI. We further demonstrated that human lung epithelial cells and macrophages predominantly produce miR-6238 and miR-155, respectively. Mechanistically, EV-miR-6238 is effectively internalized into alveolar macrophages (AMs) and regulates inflammatory responses in vivo. CXCL3 is a main target of miR-6238 in AMs and modulates neutrophil infiltration into the lung alveoli. Collectively, our findings suggest that miR-6238 is a novel regulator of pulmonary inflammation and a putative biomarker that distinguishes PM-induced ALI from endotoxin (LPS/PTG)-mediated ALI.
Collapse
Affiliation(s)
- Sujeong Park
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Miji Kim
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Minkyung Park
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, South Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Seon-Jin Lee
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, South Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea.
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea.
| |
Collapse
|
10
|
Huang D, Shen P, Xu C, Xu Z, Cheng D, Zhu X, Fang M, Wang Z, Xu Z. Dual nucleases-assisted cyclic amplification using polydopamine nanospheres-based biosensors for one-pot detection of microRNAs. Biosens Bioelectron 2023; 222:114957. [PMID: 36463653 DOI: 10.1016/j.bios.2022.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The accurate detection of microRNAs (miRNAs) is essential in the early diagnosis and treatment of cancers. Existing miRNA detection methods represented by nucleic acid amplification (NAA) techniques, such as qRT-PCR, suffer from the small size of miRNAs and lead to limited practicability. CRISPR Cas13a system, another valuable toolbox for nucleic acid detection, relies heavily on the behaviors of accompanying isothermal NAA techniques, which prompts similar deficiencies in miRNA detection. In this study, a dual nucleases-assisted cyclic amplification (DUNCAN) strategy has been established to replace NAA techniques for one-pot detection of miRNAs. The DUNCAN strategy contained an initial reaction based on CRISPR Cas13a for target recognition, and an accompanied cyclic reaction using DNA probes protected by polydopamine nanospheres (PDANSs) for signal amplification and result readout. Exemplified by miR-19b, which has been confirmed to be related to several tumors, the quantitative detection through the DUNCAN strategy was achieved in the dynamic range of 10-106 fM, with a calculated detection limit of 1.27 fM. Besides, the DUNCAN strategy presented well selectivity and anti-interference performance for accurate detection of miR-19b in complex miRNA mixtures, different cell lines and clinical samples compared with qRT-PCR. All these performances demonstrated the promising potential of the DUNCAN strategy in clinical miRNA detection and diagnosis.
Collapse
Affiliation(s)
- Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peijie Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chutian Xu
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zhipeng Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Dongyuan Cheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Mengjun Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ziyi Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
11
|
Onyiba CI, Scarlett CJ, Weidenhofer J. The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205118. [PMID: 36291902 PMCID: PMC9600935 DOI: 10.3390/cancers14205118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary There are diverse reports of the dual role of sirtuin genes and proteins in breast and prostate cancers. This review discusses the current information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, we highlight that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer. We also provide evidence of the direct regulation of sirtuins by miRNAs, highlighting the consequences of this regulation in breast and prostate cancer. Overall, this review reveals the potential value of sirtuins as biomarkers and/or targets for improved treatment of breast and prostate cancers. Abstract Mammalian sirtuins (SIRT1–7) are involved in a myriad of cellular processes, including apoptosis, proliferation, differentiation, epithelial-mesenchymal transition, aging, DNA repair, senescence, viability, survival, and stress response. In this review, we discuss the current information on the mechanistic roles of SIRT1–7 and their downstream effects (tumor promotion or suppression) in cancers of the breast and prostate. Specifically, we highlight the involvement of sirtuins in the regulation of various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of breast and prostate cancer. Additionally, we highlight the available information regarding SIRT1–7 regulation by miRNAs, laying much emphasis on the consequences in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Correspondence:
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
12
|
Zhao C, Liu J, Xu Y, Guo J, Wang L, Chen L, Xu L, Dong G, Zheng W, Li Z, Cai H, Li S. MiR-574-5p promotes cell proliferation by negatively regulating small C-terminal domain phosphatase 1 in esophageal squamous cell carcinoma. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1243-1250. [PMID: 36311195 PMCID: PMC9588319 DOI: 10.22038/ijbms.2022.65886.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Objectives Esophageal cancer is one of the most common cancers with high incidence and mortality rates, especially in China. MicroRNA (miRNA) can be used as a prognostic marker for various human cancers. This study aims to detect suitable miRNA markers for esophageal squamous cell carcinoma (ESCC). Materials and Methods Our previous gene expression data of ESCC cells and the data from GSE43732 and GSE112840 were analyzed. The expression of miR-574-5p in ESCC patients and controls was analyzed by real-time quantitative PCR. The effect of miR-574-5p on proliferation was detected by real-time cell analysis (RTCA) and EdU proliferation assay after cell transfections. The target gene small C-terminal domain phosphatase 1 (CTDSP1) of miR-574-5p was validated by luciferase reporter assay and western blotting. Results In the current study, the bioinformatics analysis found miR-574-5p up-regulated in ESCC. The qPCR assay of 26 ESCC and 13 adjacent/ normal tissues confirmed these results. We further demonstrated that miR-574-5p overexpression promoted cell proliferation. Then the dual-luciferase reporter assay and the rescue experiment suggested that CTDSP1 was a direct target of miR-574-5p. Conclusion MiR-574-5p played an oncological role in ESCC by interacting and negatively regulating CTDSP1. These results provided a deeper understanding of the effect of miR-574-5p on ESCC.
Collapse
Affiliation(s)
- Chunming Zhao
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jialin Liu
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yong Xu
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiamei Guo
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liping Wang
- Department of Basic Pathology, Pathology College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Linfeng Chen
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lina Xu
- NGS Center, Hangzhou D.A. Medical Laboratory Co., Ltd., Hangzhou, Zhejiang, China
| | - Guokai Dong
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Zheng
- Department of Basic Pathology, Pathology College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhouru Li
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongxing Cai
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China,Corresponding authors: Shanshan Li. Department of Forensic Medicine, Xuzhou Medical University, 84 Huaihai Road, Xuzhou, Jiangsu, 221002, China. ; Hongxing Cai. Department of Forensic Medicine, Xuzhou Medical University, 84 Huaihai Road, Xuzhou, Jiangsu, 221002, China.
| | - Shanshan Li
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China,Corresponding authors: Shanshan Li. Department of Forensic Medicine, Xuzhou Medical University, 84 Huaihai Road, Xuzhou, Jiangsu, 221002, China. ; Hongxing Cai. Department of Forensic Medicine, Xuzhou Medical University, 84 Huaihai Road, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
13
|
Eliason S, Hong L, Sweat Y, Chalkley C, Cao H, Liu Q, Qi H, Xu H, Zhan F, Amendt BA. Extracellular vesicle expansion of PMIS-miR-210 expression inhibits colorectal tumour growth via apoptosis and an XIST/NME1 regulatory mechanism. Clin Transl Med 2022; 12:e1037. [PMID: 36116139 PMCID: PMC9482803 DOI: 10.1002/ctm2.1037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high mortality rate, and therapeutic approaches to treat these cancers are varied and depend on the metabolic state of the tumour. Profiles of CRC tumours have identified several biomarkers, including microRNAs. microRNA-210 (miR-210) levels are directly correlated with CRC survival. miR-210 expression is higher in metastatic colon cancer cells versus non-metastatic and normal colon epithelium. Therefore, efficient methods to inhibit miR-210 expression in CRC may provide new advances in treatments. METHODS Expression of miRs was determined in several metastatic and non-metastatic cell lines. miR-210 expression was inhibited using PMIS-miR-210 in transduced cells, which were transplanted into xenograft mice. In separate experiments, CRC tumours were allowed to grow in xenograft mice and treated with therapeutic injections of PMIS-miR-210. Molecular and biochemical experiments identified several new pathways targeted by miR-210 inhibition. RESULTS miR-210 inhibition can significantly reduce tumour growth of implanted colon cancer cells in xenograft mouse models. The direct administration of PMIS-miR-210 to existing tumours can inhibit tumour growth in both NSG and Foxn1nu/j mouse models and is more efficacious than capecitabine treatments. Tumour cells further transfer the PMIS-miR-210 inhibitor to neighbouring cells by extracellular vesicles to inhibit miR-210 throughout the tumour. miR-210 inhibition activates the cleaved caspase 3 apoptotic pathway to reduce tumour formation. We demonstrate that the long non-coding transcript XIST is regulated by miR-210 correlating with decreased XIST expression in CRC tumours. XIST acts as a competing endogenous RNA for miR-210, which reduces XIST levels and miR-210 inhibition increases XIST transcripts in the nucleus and cytoplasm. The increased expression of NME1 is associated with H3K4me3 and H3K27ac modifications in the NME1 proximal promoter by XIST. CONCLUSION Direct application of the PMIS-miR-210 inhibitor to growing tumours may be an effective colorectal cancer therapeutic.
Collapse
Affiliation(s)
- Steven Eliason
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Liu Hong
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| | - Yan Sweat
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Camille Chalkley
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Huojun Cao
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| | - Qi Liu
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Hank Qi
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Hongwei Xu
- Department of Internal MedicineUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Fenghuang Zhan
- Department of Internal MedicineUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Brad A. Amendt
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| |
Collapse
|
14
|
Lin G, Lin L, Lin H, Xu Y, Chen W, Liu Y, Wu J, Chen S, Lin Q, Zeng Y, Xu Y. C1QTNF6 regulated by miR-29a-3p promotes proliferation and migration in stage I lung adenocarcinoma. BMC Pulm Med 2022; 22:285. [PMID: 35879698 PMCID: PMC9310408 DOI: 10.1186/s12890-022-02055-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE C1QTNF6 has been implicated as an essential component in multiple cellular and molecular preliminary event, including inflammation, glucose metabolism, endothelial cell modulation and carcinogenesis. However, the biological process and potential mechanism of C1QTNF6 in lung adenocarcinoma (LUAD) are indefinite and remain to be elucidated. Therefore, we investigated the interaction among the traits of C1QTNF6 and LUAD pathologic process. METHODS RT-qPCR and western blot were conducted to determine the expression levels of C1QTNF6. RNA interference and overexpression of C1QTNF6 were constructed to identify the biological function of C1QTNF6 in cellular proliferative, migratory and invasive potentials in vitro. Dual-luciferase reporter assay was applied to identify the possible interaction between C1QTNF6 and miR-29a-3p. Moreover, RNA sequencing analysis of C1QTNF6 knockdown was performed to identify the potential regulatory pathways. RESULTS C1QTNF6 was upregulated in stage I LUAD tissues compared with adjacent non-cancerous tissues. Concurrently, C1QTNF6 knockdown could remarkably inhibit cell proliferation, migratory and invasive abilities, while overexpression of C1QTNF6 presented opposite results. Additionally, miR-29a-3p may serve as an upstream regulator of C1QTNF6 and reduce the expression of C1QTNF6. Subsequent experiments showed that miR-29a-3p could decrease the cell mobility and proliferation positive cell rates, as well as reduce the migratory and invasive possibilities in LUAD cells via downregulating C1QTNF6. Moreover, RNA sequencing analysis demonstrated that the cytokine-cytokine receptor interaction pathway may participate in the process of C1QTNF6 regulating tumor progression. CONCLUSION Our study first demonstrated that downregulation of C1QTNF6 could inhibit tumorigenesis and progression in LUAD cells negatively regulated by miR-29a-3p. These consequences could reinforce our awareness and understanding of the underlying mechanism and provide a promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.,The Second Clinical College, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.,The Second Clinical College, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.,The Second Clinical College, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Yingxuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.,The Second Clinical College, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Wenhan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.,The Second Clinical College, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Yifei Liu
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Jingyang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Shaohua Chen
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Qinhui Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
15
|
Gao F, He S, Jin A. MiRNAs and lncRNAs in NK cell biology and NK/T-cell lymphoma. Genes Dis 2021; 8:590-602. [PMID: 34291131 PMCID: PMC8278539 DOI: 10.1016/j.gendis.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
The important role of lncRNAs and miRNAs in directing immune responses has become increasingly clear. Recent evidence conforms that miRNAs and lncRNAs are involved in NK cell biology and diseases through RNA-protein, RNA-RNA, or RNA-DNA interactions. In this view, we summarize the contribution of miRNAs and lncRNAs to NK cell lineage development, activation and function, highlight the biological significance of functional miRNAs or lncRNAs in NKTL and discuss the potential of these miRNAs and lncRNAs as innovative biomarkers/targets for NKTL early diagnosis, target treatment and prognostic evaluations.
Collapse
Affiliation(s)
- FengXia Gao
- Department of Immunology, Chongqing Medical University, Chongqing, 400010, PR China
- Chongqing Key Laboratory of Tumor Immunology and Tumor Immunotherapy, Chongqing Medical University, No.1, Medical School Road, Yuzhong District, Chongqing, 400010, PR China
| | - SiRong He
- Department of Immunology, Chongqing Medical University, Chongqing, 400010, PR China
- Chongqing Key Laboratory of Tumor Immunology and Tumor Immunotherapy, Chongqing Medical University, No.1, Medical School Road, Yuzhong District, Chongqing, 400010, PR China
| | - AiShun Jin
- Department of Immunology, Chongqing Medical University, Chongqing, 400010, PR China
- Chongqing Key Laboratory of Tumor Immunology and Tumor Immunotherapy, Chongqing Medical University, No.1, Medical School Road, Yuzhong District, Chongqing, 400010, PR China
| |
Collapse
|
16
|
Yang J, Shi X, Yang M, Luo J, Gao Q, Wang X, Wu Y, Tian Y, Wu F, Zhou H. Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway. Int J Oral Sci 2021; 13:12. [PMID: 33762576 PMCID: PMC7991655 DOI: 10.1038/s41368-021-00115-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
As an important component of the tumor microenvironment, cancer-associated fibroblasts (CAFs) secrete energy metabolites to supply energy for tumor progression. Abnormal regulation of long noncoding RNAs (lncRNAs) is thought to contribute to glucose metabolism, but the role of lncRNAs in glycolysis in oral CAFs has not been systematically examined. In the present study, by using RNA sequencing and bioinformatics analysis, we analyzed the lncRNA/mRNA profiles of normal fibroblasts (NFs) derived from normal tissues and CAFs derived from patients with oral squamous cell carcinoma (OSCC). LncRNA H19 was identified as a key lncRNA in oral CAFs and was synchronously upregulated in both oral cancer cell lines and CAFs. Using small interfering RNA (siRNA) strategies, we determined that lncRNA H19 knockdown affected proliferation, migration, and glycolysis in oral CAFs. We found that knockdown of lncRNA H19 by siRNA suppressed the MAPK signaling pathway, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and miR-675-5p. Furthermore, the lncRNA H19/miR-675-5p/PFKFB3 axis was involved in promoting the glycolysis pathway in oral CAFs, as demonstrated by a luciferase reporter system assay and treatment with a miRNA-specific inhibitor. Our study presents a new way to understand glucose metabolism in oral CAFs, theoretically providing a novel biomarker for OSCC molecular diagnosis and a new target for antitumor therapy.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueke Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinghong Gao
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangjian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of General Dentistry, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Bazavar M, Fazli J, Valizadeh A, Ma B, Mohammadi E, Asemi Z, Alemi F, Maleki M, Xing S, Yousefi B. miR-192 enhances sensitivity of methotrexate drug to MG-63 osteosarcoma cancer cells. Pathol Res Pract 2020; 216:153176. [DOI: 10.1016/j.prp.2020.153176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
|
18
|
Hua Y, Zhang J, Jia Z, Li J, Xiong X, Xiong Y. Immune-related genes response to stimulation of miR-155 overexpression in CIK (ctenopharyngodon idella kidney) cells and zebrafish. FISH & SHELLFISH IMMUNOLOGY 2019; 94:142-148. [PMID: 31487536 DOI: 10.1016/j.fsi.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
MiR-155 regulates the development of germinal-center and the generation of immunoglobulin class-switched plasma cells. However, whether miR-155 is involved in immune response in fish is still unclear. Here, CIK cells transfected with miR-155 overexpressed plasmid inhibited mRNA expression of mIg and Rag2 (P < 0.05). Interestingly, mIg was predicted as a potential target gene of miR-155 by RNAhybrid, with a putative binding site in its CDS. Further, mIg luciferase reporter vectors with successive deletions of mIg cDNA sequence were constructed and dual luciferase reporter assay showed that vectors containing the sequence from 318 to 347 in CDS exhibited lower relative luciferase activity than others without predicted binding region (P < 0.05), which indicated mIg is the target gene of miR-155 and reveal bona fide targeted binding site of mIg for miR-155 in fish. In vivo, the zebrafish were respectively injected with miR-155 overexpressed and empty vector, and showed that miR-155 efficiently expressed in zebrafish (P < 0.01), which consistently decreased mRNA level of immune-related genes, including mIg (P < 0.01), sIg (P < 0.05), AID (P < 0.01), PU.1 (P < 0.05) and Rag2 (P < 0.05) at d 3 and d 6 post injection, comparing to control. Collectively, this work indicates that overexpression of miR-155 suppresses the mRNA level of immune-related genes in CIK cells and zebrafish, and mIg is a novel target gene of miR-155 in fish. These findings provide an insight into the miR-155 modulating adaptive immunity in grass carp and zebrafish.
Collapse
Affiliation(s)
- Yonglin Hua
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Jing Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
19
|
Sethuraman S, Thomas M, Gay LA, Renne R. Computational analysis of ribonomics datasets identifies long non-coding RNA targets of γ-herpesviral miRNAs. Nucleic Acids Res 2019; 46:8574-8589. [PMID: 29846699 PMCID: PMC6144796 DOI: 10.1093/nar/gky459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Ribonomics experiments involving crosslinking and immuno-precipitation (CLIP) of Ago proteins have expanded the understanding of the miRNA targetome of several organisms. These techniques, collectively referred to as CLIP-seq, have been applied to identifying the mRNA targets of miRNAs expressed by Kaposi’s Sarcoma-associated herpes virus (KSHV) and Epstein–Barr virus (EBV). However, these studies focused on identifying only those RNA targets of KSHV and EBV miRNAs that are known to encode proteins. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are also targeted by miRNAs. In this study, we performed a systematic re-analysis of published datasets from KSHV- and EBV-driven cancers. We used CLIP-seq data from lymphoma cells or EBV-transformed B cells, and a crosslinking, ligation and sequencing of hybrids dataset from KSHV-infected endothelial cells, to identify novel lncRNA targets of viral miRNAs. Here, we catalog the lncRNA targetome of KSHV and EBV miRNAs, and provide a detailed in silico analysis of lncRNA–miRNA binding interactions. Viral miRNAs target several hundred lncRNAs, including a subset previously shown to be aberrantly expressed in human malignancies. In addition, we identified thousands of lncRNAs to be putative targets of human miRNAs, suggesting that miRNA–lncRNA interactions broadly contribute to the regulation of gene expression.
Collapse
Affiliation(s)
- Sunantha Sethuraman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Merin Thomas
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A Gay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.,UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.,UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Di Mauro V, Crasto S, Colombo FS, Di Pasquale E, Catalucci D. Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Sci Rep 2019; 9:9320. [PMID: 31249372 PMCID: PMC6597717 DOI: 10.1038/s41598-019-45818-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
MiR-133a is a muscle-enriched miRNA, which plays a key role for proper skeletal and cardiac muscle function via regulation of transduction cascades, including the Wnt signalling. MiR-133a modulates its targets via canonical mRNA repression, a process that has been largely demonstrated to occur within the cytoplasm. However, recent evidence has shown that miRNAs play additional roles in other sub-cellular compartments, such as nuclei. Here, we show that miR-133a translocates to the nucleus of cardiac cells following inactivation of the canonical Wnt pathway. The nuclear miR-133a/AGO2 complex binds to a complementary miR-133a target site within the promoter of the de novo DNA methyltransferase 3B (Dnmt3b) gene, leading to its transcriptional repression, which is mediated by DNMT3B itself. Altogether, these data show an unconventional role of miR-133a that upon its relocalization to the nucleus is responsible for epigenetic repression of its target gene Dnmt3b via a DNMT3B self-regulatory negative feedback loop.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- University of Milan Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Silvia Crasto
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Federico Simone Colombo
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Elisa Di Pasquale
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Daniele Catalucci
- CNR-IRGB UOS Milan, Via Fantoli 15/16, 20138, Milan, Italy.
- Humanitas Clinical and Research Center, via Alessandro Manzoni 113, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
21
|
Meng QB, Peng JJ, Qu ZW, Zhu XM, Wen Z, Kang WM. Eukaryotic initiation factor 5A2 and human digestive system neoplasms. World J Gastrointest Oncol 2019; 11:449-458. [PMID: 31236196 PMCID: PMC6580320 DOI: 10.4251/wjgo.v11.i6.449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic initiation factor 5A2 (eIF5A2), as one of the two isoforms in the family, is reported to be a novel oncogenic protein that is involved in multiple aspects of many types of human cancer. Overexpression or gene amplification of EIF5A2 has been demonstrated in many cancers. Accumulated evidence shows that eIF5A2 initiates tumor formation, enhances cancer cell growth, increases cancer cell metastasis, and promotes treatment resistance through multiple means, including inducing epithelial–mesenchymal transition, cytoskeletal rearrangement, angiogenesis, and metabolic reprogramming. Expression of eIF5A2 in cancer correlates with poor survival, advanced disease stage, as well as metastasis, suggesting that eIF5A2 function is crucial for tumor development and maintenance but not for normal tissue homeostasis. All these studies suggest that eIF5A2 is a useful biomarker in the prediction of cancer prognosis and serves as an anticancer molecular target. This review focuses on the expression, subcellular localization, post-translational modifications, and regulatory networks of eIF5A2, as well as its biochemical functions and evolving clinical applications in cancer, especially in human digestive system neoplasms.
Collapse
Affiliation(s)
- Qing-Bin Meng
- Department of Gastrointestinal Surgery, the First Hospital of Wuhan City, Wuhan 430022, Hubei Province, China
| | - Jing-Jing Peng
- Department of Gastroenterology, General Hospital of the Yangtze River Shipping, Wuhan 430015, Hubei Province, China
| | - Zi-Wei Qu
- Department of Gastrointestinal Surgery, the First Hospital of Wuhan City, Wuhan 430022, Hubei Province, China
| | | | - Zhang Wen
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Ming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
22
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
MicroRNA-1224 Splicing CircularRNA-Filip1l in an Ago2-Dependent Manner Regulates Chronic Inflammatory Pain via Targeting Ubr5. J Neurosci 2019; 39:2125-2143. [PMID: 30651325 DOI: 10.1523/jneurosci.1631-18.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
Dysfunctions of gene transcription and translation in the nociceptive pathways play the critical role in development and maintenance of chronic pain. Circular RNAs (circRNAs) are emerging as new players in regulation of gene expression, but whether and how circRNAs are involved in chronic pain remain elusive. We showed here that complete Freund's adjuvant-induced chronic inflammation pain significantly increased circRNA-Filip1l (filamin A interacting protein 1-like) expression in spinal neurons of mice. Blockage of this increase attenuated complete Freund's adjuvant-induced nociceptive behaviors, and overexpression of spinal circRNA-Filip1l in naive mice mimicked the nociceptive behaviors as evidenced by decreased thermal and mechanical nociceptive threshold. Furthermore, we found that mature circRNA-Filip1l expression was negatively regulated by miRNA-1224 via binding and splicing of precursor of circRNA-Filip1l (pre-circRNA-Filip1l) in the Argonaute-2 (Ago2)-dependent manner. Increase of spinal circRNA-Filip1l expression resulted from the decrease of miRNA-1224 expression under chronic inflammation pain state. miRNA-1224 knockdown or Ago2 overexpression induced nociceptive behaviors in naive mice, which was prevented by the knockdown of spinal circRNA-Filip1l. Finally, we demonstrated that a ubiquitin protein ligase E3 component n-recognin 5 (Ubr5), validated as a target of circRNA-Filip1l, plays a pivotal role in regulation of nociception by spinal circRNA-Filip1l. These data suggest that miRNA-1224-mediated and Ago2-dependent modulation of spinal circRNA-Filip1l expression regulates nociception via targeting Ubr5, revealing a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.SIGNIFICANCE STATEMENT circRNAs are emerging as new players in regulation of gene expression. Here, we found that the increase of circRNA-Filip1l mediated by miRNA-1224 in an Ago2-dependent way in the spinal cord is involved in regulation of nociception via targeting Ubr5 Our study reveals a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.
Collapse
|
24
|
Shieh M, Chitnis N, Clark P, Johnson FB, Kamoun M, Monos D. Computational assessment of miRNA binding to low and high expression HLA-DPB1 allelic sequences. Hum Immunol 2019; 80:53-61. [DOI: 10.1016/j.humimm.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022]
|
25
|
Russo A, Bartolini D, Mensà E, Torquato P, Albertini MC, Olivieri F, Testa R, Rossi S, Piroddi M, Cruciani G, De Feo P, Galli F. Physical Activity Modulates the Overexpression of the Inflammatory miR-146a-5p in Obese Patients. IUBMB Life 2018; 70:1012-1022. [PMID: 30212608 DOI: 10.1002/iub.1926] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/27/2018] [Accepted: 06/11/2018] [Indexed: 01/30/2023]
Abstract
Specific microRNAs (miRs), including the "angio-miR-126" and the "inflamma-miR-146a-5p," have been proposed as biomarkers and even therapeutic targets of obesity-associated metabolic diseases. Physical activity, a key measure of prevention for obesity and its complications, is reported to influence the expression of these miRs. In this study, we investigate whether a physical activity program proven to improve metabolic parameters in obese patients can correct the circulating levels of these miRs. Plasma miR-126 and miR-146a-5p were measured in a cohort of obese patients (n = 31, 16F + 15M) before and after the 3-month physical activity program of the CURIAMO trial (registration number for clinical trials: ACTRN12611000255987) and in 37 lean controls (24F + 13M). miR-146a-5p, but not miR-126, was significantly increased in obese patients as compared with lean controls and decreased in approximately two-thirds of the participants post-intervention with a response that positively correlated with pre-intervention levels of this miR. Waist circumference, the inflammatory cytokine IL-8 and lipid parameters, principally total cholesterol, showed the strongest correlation with both the baseline levels and post-intervention correction of miR-146a-5p. Post-hoc analysis of experimental data supports the use of miR-146a-5p as a biomarker and predictor of the clinical response to physical activity in obese patients. Furthermore, miR-146a-5p expression was confirmed to increase together with that of the inflammatory genes TLR4, NF-κB, IL-6, and TNF-α in LPS-stimulated human mononuclear leukocytes. In conclusion, the inflamma-miR-146a-5p can serve as a personalized predictor of clinical outcome in obese patients entering physical activity weight-reduction programs. © 2018 IUBMB Life, 70(10):1012-1022, 2018.
Collapse
Affiliation(s)
- Angelo Russo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.,"Centro Universitario di Ricerca Interdipartimentale sull' Attività Motoria", University of Perugia, Perugia, Italy
| | - Desireé Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Emanuela Mensà
- Experimental Models in Clinical Pathology, IRCCS INRCA National Institute, Ancona, Italy
| | - Pierangelo Torquato
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Fabiola Olivieri
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy.,Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Testa
- Experimental Models in Clinical Pathology, IRCCS INRCA National Institute, Ancona, Italy
| | - Sara Rossi
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy
| | - Marta Piroddi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Pierpaolo De Feo
- "Centro Universitario di Ricerca Interdipartimentale sull' Attività Motoria", University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
26
|
Lemcke H, David R. Potential mechanisms of microRNA mobility. Traffic 2018; 19:910-917. [PMID: 30058163 DOI: 10.1111/tra.12606] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
Abstract
microRNAs (miRNAs) are important epigenetic modulators of gene expression that control cellular physiology as well as tissue homeostasis, and development. In addition to the temporal aspects of miRNA-mediated gene regulation, the intracellular localization of miRNA is crucial for its silencing activity. Recent studies indicated that miRNA is even translocated between cells via gap junctional cell-cell contacts, allowing spatiotemporal modulation of gene expression within multicellular systems. Although non coding RNA remains a focus of intense research, studies regarding the intra-and intercellular mobility of small RNAs are still largely missing. Emerging data from experimental and computational work suggest the involvement of transport mechanisms governing proper localization of miRNA in single cells and cellular syncytia. Based on these data, we discuss a model of miRNA translocation that could help to address the spatial aspects of miRNA function and the impact of miRNA molecules on the intercellular signaling network.
Collapse
Affiliation(s)
- Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
27
|
Ji Q, Xu X, Song Q, Xu Y, Tai Y, Goodman SB, Bi W, Xu M, Jiao S, Maloney WJ, Wang Y. miR-223-3p Inhibits Human Osteosarcoma Metastasis and Progression by Directly Targeting CDH6. Mol Ther 2018; 26:1299-1312. [PMID: 29628305 PMCID: PMC5993963 DOI: 10.1016/j.ymthe.2018.03.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 01/08/2023] Open
Abstract
Cadherin-6 (CDH6) is aberrantly expressed in cancer and closely associated with tumor progression. However, the functions of CDH6 in human osteosarcoma and the molecular mechanisms underlying CDH6 in osteosarcoma oncogenesis remain poorly understood. In this work, we assessed the role of CDH6 in human osteosarcoma and identified that the expression of CDH6 was closely related with the overall survival and poor prognosis of osteosarcoma patients. MicroRNAs (miRNAs) have been implicated as important epigenetic regulators during the progression of osteosarcoma. Using dual-luciferase reporter assays, we showed that miR-223-3p suppresses CDH6 expression by directly binding to the 3' UTR of CDH6. miR-223-3p overexpression significantly inhibited cell invasion, migration, growth, and proliferation by suppressing the CDH6 expression in vivo and in vitro. Besides, CDH6 overexpression in the miR-223-3p-transfected osteosarcoma cells effectively rescued the inhibition of cell invasion, migration, growth, and proliferation mediated by miR-223-3p. Additionally, Kaplan-Meier analysis suggests that the expression of miR-223-3p predicts favorable clinical outcomes for osteosarcoma patients. Moreover, the expression of miR-223-3p was downregulated in osteosarcoma patients and was negatively associated with the expression of CDH6. Collectively, these data highlight that miR-223-3p/CDH6 axis is an important novel pleiotropic regulator and could early predict the metastatic potential in human osteosarcoma treatments.
Collapse
Affiliation(s)
- Quanbo Ji
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, China; Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Qi Song
- Department of Oncology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Yameng Xu
- Department of Traditional Chinese Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhong Tai
- Department of Pathology, the 307 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Wenzhi Bi
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Meng Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Shunchang Jiao
- Department of Oncology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - William J Maloney
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
| | - Yan Wang
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, China.
| |
Collapse
|
28
|
Liu L, Wan X, Zhou P, Zhou X, Zhang W, Hui X, Yuan X, Ding X, Zhu R, Meng G, Xiao H, Ma F, Huang H, Song X, Zhou B, Xiong S, Zhang Y. The chromatin remodeling subunit Baf200 promotes normal hematopoiesis and inhibits leukemogenesis. J Hematol Oncol 2018; 11:27. [PMID: 29482581 PMCID: PMC5828314 DOI: 10.1186/s13045-018-0567-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
Background Adenosine triphosphate (ATP)-dependent chromatin remodeling SWI/SNF-like BAF and PBAF complexes have been implicated in the regulation of stem cell function and cancers. Several subunits of BAF or PBAF, including BRG1, BAF53a, BAF45a, BAF180, and BAF250a, are known to be involved in hematopoiesis. Baf200, a subunit of PBAF complex, plays a pivotal role in heart morphogenesis and coronary artery angiogenesis. However, little is known on the importance of Baf200 in normal and malignant hematopoiesis. Methods Utilizing Tie2-Cre-, Vav-iCre-, and Mx1-Cre-mediated Baf200 gene deletion combined with fetal liver/bone marrow transplantation, we investigated the function of Baf200 in fetal and adult hematopoiesis. In addition, a mouse model of MLL-AF9-driven leukemogenesis was used to study the role of Baf200 in malignant hematopoiesis. We also explored the potential mechanism by using RNA-seq, RT-qPCR, cell cycle, and apoptosis assays. Results Tie2-Cre-mediated loss of Baf200 causes perinatal death due to defective erythropoiesis and impaired hematopoietic stem cell expansion in the fetal liver. Vav-iCre-mediated loss of Baf200 causes only mild anemia and enhanced extramedullary hematopoiesis. Fetal liver hematopoietic stem cells from Tie2-Cre+, Baf200f/f or Vav-iCre+, Baf200f/f embryos and bone marrow hematopoietic stem cells from Vav-iCre+, Baf200f/f mice exhibited impaired long-term reconstitution potential in vivo. A cell-autonomous requirement of Baf200 for hematopoietic stem cell function was confirmed utilizing the interferon-inducible Mx1-Cre mouse strain. Transcriptomes analysis revealed that expression of several erythropoiesis- and hematopoiesis-associated genes were regulated by Baf200. In addition, loss of Baf200 in a mouse model of MLL-AF9-driven leukemogenesis accelerates the tumor burden and shortens the host survival. Conclusion Our current studies uncover critical roles of Baf200 in both normal and malignant hematopoiesis and provide a potential therapeutic target for suppressing the progression of leukemia without interfering with normal hematopoiesis. Electronic supplementary material The online version of this article (10.1186/s13045-018-0567-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lulu Liu
- Institute of Biology and Medical Sciences, Soochow University, No. 199 Ren'ai Rd, Suzhou, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China
| | - Xiaoling Wan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peipei Zhou
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyuan Zhou
- University of Chinese Academy of Sciences, Beijing, China.,CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xinhui Hui
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiujie Yuan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodan Ding
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruihong Zhu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangxun Meng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Xiao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianmin Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Shanghai General Hospital, Shanghai, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.
| | - Sidong Xiong
- Institute of Biology and Medical Sciences, Soochow University, No. 199 Ren'ai Rd, Suzhou, China.
| | - Yan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer 2018; 17:64. [PMID: 29471827 PMCID: PMC5822656 DOI: 10.1186/s12943-018-0765-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that contain approximately 22 nucleotides. They serve as key regulators in various biological processes and their dysregulation is implicated in many diseases including cancer and autoimmune disorders. It has been well established that the maturation of miRNAs occurs in the cytoplasm and miRNAs exert post-transcriptional gene silencing (PTGS) via RNA-induced silencing complex (RISC) pathway in the cytoplasm. However, numerous studies reaffirm the existence of mature miRNA in the nucleus, and nucleus-cytoplasm transport mechanism has also been illustrated. Moreover, active regulatory functions of nuclear miRNAs were found including PTGS, transcriptional gene silencing (TGS), and transcriptional gene activation (TGA), in which miRNAs bind nascent RNA transcripts, gene promoter regions or enhancer regions and exert further effects via epigenetic pathways. Based on existing interaction rules, some miRNA binding sites prediction software tools are developed, which are evaluated in this article. In addition, we attempt to explore and review the nuclear functions of miRNA in immunity, tumorigenesis and invasiveness of tumor. As a non-canonical aspect of miRNA action, nuclear miRNAs supplement miRNA regulatory networks and could be applied in miRNA based therapies.
Collapse
Affiliation(s)
- Hongyu Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Cheng Lei
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Qin He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Zou Pan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China.
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
30
|
Komseli ES, Pateras IS, Krejsgaard T, Stawiski K, Rizou SV, Polyzos A, Roumelioti FM, Chiourea M, Mourkioti I, Paparouna E, Zampetidis CP, Gumeni S, Trougakos IP, Pefani DE, O’Neill E, Gagos S, Eliopoulos AG, Fendler W, Chowdhury D, Bartek J, Gorgoulis VG. A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence. BMC Genomics 2018; 19:37. [PMID: 29321003 PMCID: PMC5763532 DOI: 10.1186/s12864-017-4375-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Senescence is a fundamental biological process implicated in various pathologies, including cancer. Regarding carcinogenesis, senescence signifies, at least in its initial phases, an anti-tumor response that needs to be circumvented for cancer to progress. Micro-RNAs, a subclass of regulatory, non-coding RNAs, participate in senescence regulation. At the subcellular level micro-RNAs, similar to proteins, have been shown to traffic between organelles influencing cellular behavior. The differential function of micro-RNAs relative to their subcellular localization and their role in senescence biology raises concurrent in situ analysis of coding and non-coding gene products in senescent cells as a necessity. However, technical challenges have rendered in situ co-detection unfeasible until now. METHODS In the present report we describe a methodology that bypasses these technical limitations achieving for the first time simultaneous detection of both a micro-RNA and a protein in the biological context of cellular senescence, utilizing the new commercially available SenTraGorTM compound. The method was applied in a prototypical human non-malignant epithelial model of oncogene-induced senescence that we generated for the purposes of the study. For the characterization of this novel system, we applied a wide range of cellular and molecular techniques, as well as high-throughput analysis of the transcriptome and micro-RNAs. RESULTS This experimental setting has three advantages that are presented and discussed: i) it covers a "gap" in the molecular carcinogenesis field, as almost all corresponding in vitro models are fibroblast-based, even though the majority of neoplasms have epithelial origin, ii) it recapitulates the precancerous and cancerous phases of epithelial tumorigenesis within a short time frame under the light of natural selection and iii) it uses as an oncogenic signal, the replication licensing factor CDC6, implicated in both DNA replication and transcription when over-expressed, a characteristic that can be exploited to monitor RNA dynamics. CONCLUSIONS Consequently, we demonstrate that our model is optimal for studying the molecular basis of epithelial carcinogenesis shedding light on the tumor-initiating events. The latter may reveal novel molecular targets with clinical benefit. Besides, since this method can be incorporated in a wide range of low, medium or high-throughput image-based approaches, we expect it to be broadly applicable.
Collapse
Affiliation(s)
- Eirini-Stavroula Komseli
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Ioannis S. Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3c, DK-2200 Copenhagen, Denmark
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 15 Mazowiecka St. 92-215, Lodz, Poland
| | - Sophia V. Rizou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Alexander Polyzos
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, GR-11527 Athens, Greece
| | - Fani-Marlen Roumelioti
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, GR-11527 Athens, Greece
| | - Maria Chiourea
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, GR-11527 Athens, Greece
| | - Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Eleni Paparouna
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Christos P. Zampetidis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Dafni-Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
| | - Eric O’Neill
- CRUK/MRC Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
| | - Sarantis Gagos
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, GR-11527 Athens, Greece
| | - Aristides G. Eliopoulos
- Department of Biology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research & Technology-Hellas, GR-70013 Heraklion, Crete Greece
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 15 Mazowiecka St. 92-215, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215 USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215 USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Centre, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská, 1333/5, 779 00 Olomouc, Czech Republic
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, SE-171 77 Stockholm, Sweden
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National & Kapodistrian University of Athens, 75 Mikras Asias St, GR-11527 Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, GR-11527 Athens, Greece
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester, M20 4QL UK
| |
Collapse
|
31
|
Jiang S, Hu Y, Deng S, Deng J, Yu X, Huang G, Kawai T, Han X. miR-146a regulates inflammatory cytokine production in Porphyromonas gingivalis lipopolysaccharide-stimulated B cells by targeting IRAK1 but not TRAF6. Biochim Biophys Acta Mol Basis Dis 2017; 1864:925-933. [PMID: 29288795 DOI: 10.1016/j.bbadis.2017.12.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/08/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022]
Abstract
It has been suggested that microRNAs (miRs) are involved in the immune regulation of periodontitis. However, it is unclear whether and how miRs regulate the function of B cells in the context of periodontitis. This study is to explore the role of miR-146a on the inflammatory cytokine production of B cells challenged by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). Primary B cells were harvested from mouse spleen. Quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of inflammatory cytokines in B cells in the presence or absence of P. gingivalis LPS and/or miR-146a. Bioinformatics, luciferase reporter assay and overexpression assay were used to explore the binding target of miR-146a. Our results showed that miR-146a level in B cells was elevated by P. gingivalis LPS stimulation, and the mRNA expressions of interleukin (IL)-1β, 6 and 10, and IL-1 receptor associated kinase-1 (IRAK1), but not TNF receptor associated factor 6 (TRAF6), were also upregulated. The expression levels of IL-1β, 6, 10 and IRAK1 were reduced in the presence of miR-146a mimic, but were elevated by the addition of miR-146a inhibitor. MiR-146a could bind with IRAK1 3' untranslated region (UTR) but not TRAF6 3'-UTR. Overexpression of IRAK1 reversed the inhibitory effects of miR-146a on IL-1β, 6 and 10. In summary, miR-146a inhibits inflammatory cytokine production in B cells through directly targeting IRAK1, suggesting a regulatory role of miR-146a in B cell-mediated periodontal inflammation.
Collapse
Affiliation(s)
- Shaoyun Jiang
- Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin 300070, China; The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA 02142, USA
| | - Yang Hu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA 02115, USA
| | - Shu Deng
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA 02142, USA; The Secondary Hospital of Tianjin Medical University, Department of Stomatology, Tianjin, China
| | - Jiayin Deng
- Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Xinbo Yu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA 02142, USA
| | - Grace Huang
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA 02142, USA
| | - Toshihisa Kawai
- NOVA Southeastern University College of Dental Medicine, Department of Periodontology, Fort Lauderdale, FL, USA
| | - Xiaozhe Han
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Liang Y, Zou Q, Yu W. Steering Against Wind: A New Network of NamiRNAs and Enhancers. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:331-337. [PMID: 28882787 PMCID: PMC5673672 DOI: 10.1016/j.gpb.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/19/2017] [Accepted: 06/14/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs with regulatory functions. Traditionally, miRNAs are thought to play a negative regulatory role in the cytoplasm by binding to the 3′UTR of target genes to degrade mRNA or inhibit translation. However, it remains a challenge to interpret the potential function of many miRNAs located in the nucleus. Recently, we reported a new type of miRNAs present in the nucleus, which can activate gene expression by binding to the enhancer, and named them nuclear activating miRNAs (NamiRNAs). The discovery of NamiRNAs showcases a complementary regulatory mechanism of miRNA, demonstrating their differential roles in the nucleus and cytoplasm. Here, we reviewed miRNAs in nucleus to better understand the function of NamiRNAs in their interactions with the enhancers. Accordingly, we propose a NamiRNA–enhancer–target gene activation network model to better understand the crosstalk between NamiRNAs and enhancers in regulating gene transcription. Moreover, we hypothesize that NamiRNAs may be involved in cell identity or cell fate determination during development, although further study is needed to elucidate the underlying mechanisms in detail.
Collapse
Affiliation(s)
- Ying Liang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qingping Zou
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
33
|
Teplyakov E, Wu Q, Liu J, Pugacheva EM, Loukinov D, Boukaba A, Lobanenkov V, Strunnikov A. The downregulation of putative anticancer target BORIS/CTCFL in an addicted myeloid cancer cell line modulates the expression of multiple protein coding and ncRNA genes. Oncotarget 2017; 8:73448-73468. [PMID: 29088719 PMCID: PMC5650274 DOI: 10.18632/oncotarget.20627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
The BORIS/CTCFL gene, is a testis-specific CTCF paralog frequently erroneously activated in cancer, although its exact role in cancer remains unclear. BORIS is both a transcription factor and an architectural chromatin protein. BORIS' normal role is to establish a germline-like gene expression and remodel the epigenetic landscape in testis; it similarly remodels chromatin when activated in human cancer. Critically, at least one cancer cell line, K562, is dependent on BORIS for its self-renewal and survival. Here, we downregulate BORIS expression in the K562 cancer cell line to investigate downstream pathways regulated by BORIS. RNA-seq analyses of both mRNA and small ncRNAs, including miRNA and piRNA, in the knock-down cells revealed a set of differentially expressed genes and pathways, including both testis-specific and general proliferation factors, as well as proteins involved in transcription regulation and cell physiology. The differentially expressed genes included important transcriptional regulators such as SOX6 and LIN28A. Data indicate that both direct binding of BORIS to promoter regions and locus-control activity via long-distance chromatin domain regulation are involved. The sum of findings suggests that BORIS activation in leukemia does not just recapitulate the germline, but creates a unique regulatory network.
Collapse
Affiliation(s)
- Evgeny Teplyakov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Dmitry Loukinov
- NIH, NIAID, Laboratory of Immunogenetics, Rockville, MD, USA
| | - Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Alexander Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Harrison EB, Emanuel K, Lamberty BG, Morsey BM, Li M, Kelso ML, Yelamanchili SV, Fox HS. Induction of miR-155 after Brain Injury Promotes Type 1 Interferon and has a Neuroprotective Effect. Front Mol Neurosci 2017; 10:228. [PMID: 28804446 PMCID: PMC5532436 DOI: 10.3389/fnmol.2017.00228] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/04/2017] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) produces profound and lasting neuroinflammation that has both beneficial and detrimental effects. Recent evidence has implicated microRNAs (miRNAs) in the regulation of inflammation both in the periphery and the CNS. We examined the expression of inflammation associated miRNAs in the context of TBI using a mouse controlled cortical impact (CCI) model and found increased levels of miR-21, miR-223 and miR-155 in the hippocampus after CCI. The expression of miR-155 was elevated 9-fold after CCI, an increase confirmed by in situ hybridization (ISH). Interestingly, expression of miR-155 was largely found in neuronal nuclei as evidenced by co-localization with DAPI in MAP2 positive neurons. In miR-155 knock out (KO) mice expression of type I interferons IFNα and IFNβ, as well as IFN regulatory factor 1 and IFN-induced chemokine CXCL10 was decreased after TBI relative to wild type (WT) mice. Unexpectedly, miR-155 KO mice had increased levels of microglial marker Iba1 and increased neuronal degeneration as measured by fluoro-jade C (FJC) staining, suggesting a neuroprotective role for miR-155 in the context of TBI. This work demonstrates a role for miR-155 in regulation of the IFN response and neurodegeneration in the aftermath of TBI. While the presence of neuronal nuclear miRNAs has been described previously, their importance in disease states is relatively unknown. Here, we show evidence of dynamic regulation and pathological function of a nuclear miRNA in TBI.
Collapse
Affiliation(s)
- Emily B Harrison
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Katy Emanuel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Benjamin G Lamberty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Brenda M Morsey
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Min Li
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Matthew L Kelso
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical CenterOmaha, NE, United States
| | - Sowmya V Yelamanchili
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| |
Collapse
|
35
|
Sethuraman S, Gay LA, Jain V, Haecker I, Renne R. microRNA dependent and independent deregulation of long non-coding RNAs by an oncogenic herpesvirus. PLoS Pathog 2017; 13:e1006508. [PMID: 28715488 PMCID: PMC5531683 DOI: 10.1371/journal.ppat.1006508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/27/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma (KS) is a highly prevalent cancer in AIDS patients, especially in sub-Saharan Africa. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of KS and other cancers like Primary Effusion Lymphoma (PEL). In KS and PEL, all tumors harbor latent KSHV episomes and express latency-associated viral proteins and microRNAs (miRNAs). The exact molecular mechanisms by which latent KSHV drives tumorigenesis are not completely understood. Recent developments have highlighted the importance of aberrant long non-coding RNA (lncRNA) expression in cancer. Deregulation of lncRNAs by miRNAs is a newly described phenomenon. We hypothesized that KSHV-encoded miRNAs deregulate human lncRNAs to drive tumorigenesis. We performed lncRNA expression profiling of endothelial cells infected with wt and miRNA-deleted KSHV and identified 126 lncRNAs as putative viral miRNA targets. Here we show that KSHV deregulates host lncRNAs in both a miRNA-dependent fashion by direct interaction and in a miRNA-independent fashion through latency-associated proteins. Several lncRNAs that were previously implicated in cancer, including MEG3, ANRIL and UCA1, are deregulated by KSHV. Our results also demonstrate that KSHV-mediated UCA1 deregulation contributes to increased proliferation and migration of endothelial cells. KS is the most prevalent cancer associated with AIDS in sub-Saharan Africa, and is also common in males not affected by AIDS. KSHV manipulates human cells by targeting protein-coding genes and cell signaling. Here we show that KSHV alters the expression of hundreds of human lncRNAs, a broad class of regulatory molecules involved in a variety of cellular pathways including cell cycle and apoptosis. KSHV uses both latency proteins and miRNAs to target lncRNAs. miRNA-mediated targeting of lncRNAs is a novel regulatory mechanism of gene expression. Given that most herpesviruses encode miRNAs, this mechanism might be a common theme during herpesvirus infections. Understanding lncRNA deregulation by KSHV will help decipher the important molecular mechanisms underlying viral pathogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Sunantha Sethuraman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren Appleby Gay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Irina Haecker
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Battaglia R, Vento ME, Borzì P, Ragusa M, Barbagallo D, Arena D, Purrello M, Di Pietro C. Non-coding RNAs in the Ovarian Follicle. Front Genet 2017; 8:57. [PMID: 28553318 PMCID: PMC5427069 DOI: 10.3389/fgene.2017.00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/26/2017] [Indexed: 01/18/2023] Open
Abstract
The mammalian ovarian follicle is the complex reproductive unit comprising germ cell, somatic cells (Cumulus and Granulosa cells), and follicular fluid (FF): paracrine communication among the different cell types through FF ensures the development of a mature oocyte ready for fertilization. This paper is focused on non-coding RNAs in ovarian follicles and their predicted role in the pathways involved in oocyte growth and maturation. We determined the expression profiles of microRNAs in human oocytes and FF by high-throughput analysis and identified 267 microRNAs in FF and 176 in oocytes. Most of these were FF microRNAs, while 9 were oocyte specific. By bioinformatic analysis, independently performed on FF and oocyte microRNAs, we identified the most significant Biological Processes and the pathways regulated by their validated targets. We found many pathways shared between the two compartments and some specific for oocyte microRNAs. Moreover, we found 41 long non-coding RNAs able to interact with oocyte microRNAs and potentially involved in the regulation of folliculogenesis. These data are important in basic reproductive research and could also be useful for clinical applications. In fact, the characterization of non-coding RNAs in ovarian follicles could improve reproductive disease diagnosis, provide biomarkers of oocyte quality in Assisted Reproductive Treatment, and allow the development of therapies for infertility disorders.
Collapse
Affiliation(s)
- Rosalia Battaglia
- Section of Biology and Genetics G. Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | | | | | - Marco Ragusa
- Section of Biology and Genetics G. Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics G. Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Desirée Arena
- Section of Biology and Genetics G. Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Michele Purrello
- Section of Biology and Genetics G. Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics G. Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| |
Collapse
|