1
|
Liu C, Guo Y, Dong Y, Qu Z, Mu Y, Liu B, Wang F, Li Y. Study on the synthesis, characterization, and antitumor mechanism investigation of QZQ-01115 via targeting sphingosine kinase 2. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167829. [PMID: 40216369 DOI: 10.1016/j.bbadis.2025.167829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Sphingosine kinase 2 (SphK2) is an oncogenic enzyme that plays an essential role in the development of oral squamous cell carcinoma (OSCC). Therefore, development of SphK2 inhibitors is of great significance for the treatment of OSCC. In this study, we synthesized a series of thiazolidinediones and screened compounds with good inhibitory activity against CAL-27 using cytotoxicity assay. The compounds were further investigated in vitro using a series of in vitro experiments such as Western blot and qPCR were used to investigate the in vivo anti-tumor mechanisms, and in vivo investigation was applied by using a nude mouse ectopic tumor model. The results showed that four new compounds were successfully synthesized, and among which the compound named QZQ-01115 showed the best inhibitory activity against CAL-27 at the concentration of 5.84 ± 0.042 μM. Further mechanistic studies showed that QZQ-01115 could inhibit the proliferation, migration and invasion of CAL-27 cells at a concentration of 4 μM-6 μM. QZQ-01115 affected the PI3K/AKT signaling pathway by influencing the levels of S1P and ceramides in CAL-27, which in turn affected the mTOR/p70S6K, resulting in the blockage of protein synthesis and the blockage of cell cycle at the G0/G0 level. Apoptosis was promoted by down-regulating Bcl-2 and up-regulating Bax. The in vivo results showed that QZQ-01115 reduced the volume and weight of xenograft tumors in nude mice. The induction of apoptosis by QZQ-01115 was further determined by HE staining and immunohistochemical analysis. These results suggest that QZQ-01115 may be a potential candidate for the treatment of OSCC.
Collapse
Affiliation(s)
- Caiyu Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yaxin Guo
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yutong Dong
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Zhiqiang Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yanling Mu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; National Key Laboratory of Advanced Drug Delivery System, Jinan 250117, China
| | - Bo Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Fuwen Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; National Key Laboratory of Advanced Drug Delivery System, Jinan 250117, China.
| | - Yan Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; National Key Laboratory of Advanced Drug Delivery System, Jinan 250117, China.
| |
Collapse
|
2
|
Zhao X, Li Y, Gu D, Wang X, Han G, Yao Y, Ren L, Yao Q, Li X, Qi Y. The up-regulated expression level of deubiquitinating enzyme USP46 induces the apoptosis of A549 cells by TRAF6. Invest New Drugs 2025; 43:328-336. [PMID: 40263244 DOI: 10.1007/s10637-025-01532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
This study investigates the function of Ubiquitin-specific protease 46 (USP46), a deubiquitinase, in the context of lung cancer, particularly its role in regulating cell proliferation via the ubiquitination of TRAF6. In A549 lung cancer cells, analysis revealed a significant downregulation of USP46 expression, while TRAF6 levels were notably elevated. These findings were corroborated by Western blotting, which confirmed the altered expression patterns. To further assess the implications of these changes, several experimental assays, including the Cell Counting Kit-8, transwell migration assays, and flow cytometry, were conducted to evaluate cell viability and apoptosis rates. Co-immunoprecipitation experiments demonstrated a direct interaction between USP46 and TRAF6, implicating USP46 in the modulation of TRAF6 ubiquitination, a process that is fundamental to tumor physiology. The results indicated that decreased USP46 expression led to an increase in the levels of the anti-apoptotic protein Bcl-2, while there was a corresponding decrease in key pro-apoptotic proteins such as caspase-3, caspase-9, and Bax. Additionally, the study found elevated levels of phosphorylated AKT and mTOR, which suggest the activation of survival signaling pathways in the cancer cells. These findings collectively suggest that the up-regulated USP46 promotes apoptosis in lung cancer cells through the regulation of TRAF6. Therefore, targeting the USP46/TRAF6 signaling pathway presents a promising therapeutic strategy for lung cancer treatment, potentially offering new avenues for intervention in cancer progression and cell survival mechanisms.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yanan Li
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Dandan Gu
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Xiaoru Wang
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Guangxin Han
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yasen Yao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Limei Ren
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Qingguo Yao
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Xiaobing Li
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
- Hebei Biopharmaceutical International Joint Research Center, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Yonghao Qi
- Department of Bioengineering, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Innovative Drug Research and Evaluation in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
3
|
Li Z, Zhang Y, Lei J, Wu Y. Autophagy in oral cancer: Promises and challenges (Review). Int J Mol Med 2024; 54:116. [PMID: 39422076 PMCID: PMC11518578 DOI: 10.3892/ijmm.2024.5440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Autophagy captures damaged or dysfunctional proteins and organelles through the lysosomal pathway to achieve proper cellular homeostasis. Autophagy possesses distinct characteristics and is given recognized functions in numerous physiological and pathological conditions, such as cancer. Early stage cancer development can be stopped by autophagy. After tumor cells have successfully undergone transformation and progressed to a late stage, the autophagy-mediated system of dynamic degradation and recycling will support cancer cell growth and adaptation to various cellular stress responses while preserving energy homeostasis. In the present study, the dual function that autophagy plays in various oral cancer development contexts and stages, the existing arguments for and against autophagy, and the ways in which autophagy contributes to oral cancer modifications, such as carcinogenesis, drug resistance, invasion, metastasis and self-proliferation, are reviewed. Special attention is paid to the mechanisms and functions of autophagy in oral cancer processes, and the most recent findings on the application of certain conventional drugs or natural compounds as novel agents that modulate autophagy in oral cancer are discussed. Overall, further research is needed to determine the validity and reliability of autophagy promotion and inhibition while maximizing the difficult challenge of increasing cancer suppression to improve clinical outcomes.
Collapse
Affiliation(s)
- Zhou Li
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Yao Zhang
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Jianhua Lei
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yunxia Wu
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
4
|
Wang L, Liu X, Han Y, Tsai HI, Dan Z, Yang P, Xu Z, Shu F, He C, Eriksson JE, Zhu H, Chen H, Cheng F. TRAF6 enhances PD-L1 expression through YAP1-TFCP2 signaling in melanoma. Cancer Lett 2024; 590:216861. [PMID: 38583649 DOI: 10.1016/j.canlet.2024.216861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Immunotherapy represented by programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) monoclonal antibodies has led tumor treatment into a new era. However, the low overall response rate and high incidence of drug resistance largely damage the clinical benefits of existing immune checkpoint therapies. Recent studies correlate the response to PD-1/PD-L1 blockade with PD-L1 expression levels in tumor cells. Hence, identifying molecular targets and pathways controlling PD-L1 protein expression and stability in tumor cells is a major priority. In this study, we performed a Stress and Proteostasis CRISPR interference screening to identify PD-L1 positive modulators. Here, we identified TRAF6 as a critical regulator of PD-L1 in melanoma cells. As a non-conventional E3 ubiquitin ligase, TRAF6 is inclined to catalyze the synthesis and linkage of lysine-63 (K63) ubiquitin which is related to the stabilization of substrate proteins. Our results showed that suppression of TRAF6 expression down-regulates PD-L1 expression on the membrane surface of melanoma cells. We then used in vitro and in vivo assays to investigate the biological function and mechanism of TRAF6 and its downstream YAP1/TFCP2 signaling in melanoma. TRAF6 stabilizes YAP1 by K63 poly-ubiquitination modification, subsequently promoting the formation of YAP1/TFCP2 transcriptional complex and PD-L1 transcription. Inhibition of TRAF6 by Bortezomib enhanced cytolytic activity of CD8+ T cells by reduction of endogenous PD-L1. Notably, Bortezomib enhances anti-tumor immunity to an extent comparable to anti-PD-1 therapies with no obvious toxicity. Our findings reveal the potential of inhibiting TRAF6 to stimulate internal anti-tumor immunological effect for TRAF6-PD-L1 overexpressing cancers.
Collapse
Affiliation(s)
- Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuhang Han
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Zilin Dan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Peiru Yang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chao He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
5
|
Wei K, Zhu W, Kou Y, Zheng X, Zheng Y. Advances in Small Molecular Agents against Oral Cancer. Molecules 2024; 29:1594. [PMID: 38611874 PMCID: PMC11013889 DOI: 10.3390/molecules29071594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Oral cancer is a common malignancy with a high mortality rate. Although surgery is the best treatment option for patients with cancer, this approach is ineffective for advanced metastases. Molecular agents are irreplaceable in preventing and treating distant metastases. This review aims to summarise the molecular agents used for the treatment of oral cancer in the last decade and describe their sources and curative effects. These agents are classified into phenols, isothiocyanates, anthraquinones, statins, flavonoids, terpenoids, and steroids. The mechanisms of action of these agents include regulating the expression of cell signalling pathways and related proteases to affect the proliferation, autophagy, migration, apoptosis, and other biological aspects of oral cancer cells. This paper may serve as a reference for subsequent studies on the treatment of oral cancer.
Collapse
Affiliation(s)
- Kai Wei
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Weiru Zhu
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Yanan Kou
- Affiliated Stomatology Hospital, Pingdingshan University, Pingdingshan 467000, China
| | - Xinhua Zheng
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Yunyun Zheng
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| |
Collapse
|
6
|
Tan Y, Zhu J, Hashimoto K. Autophagy-related gene model as a novel risk factor for schizophrenia. Transl Psychiatry 2024; 14:94. [PMID: 38351068 PMCID: PMC10864401 DOI: 10.1038/s41398-024-02767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Autophagy, a cellular process where cells degrade and recycle their own components, has garnered attention for its potential role in psychiatric disorders, including schizophrenia (SCZ). This study aimed to construct and validate a new autophagy-related gene (ARG) risk model for SCZ. First, we analyzed differential expressions in the GSE38484 training set, identifying 4,754 differentially expressed genes (DEGs) between SCZ and control groups. Using the Human Autophagy Database (HADb) database, we cataloged 232 ARGs and pinpointed 80 autophagy-related DEGs (AR-DEGs) after intersecting them with DEGs. Subsequent analyses, including metascape gene annotation, pathway and process enrichment, and protein-protein interaction enrichment, were performed on the 80 AR-DEGs to delve deeper into their biological roles and associated molecular pathways. From this, we identified 34 candidate risk AR-DEGs (RAR-DEGs) and honed this list to final RAR-DEGs via a constructed and optimized logistic regression model. These genes include VAMP7, PTEN, WIPI2, PARP1, DNAJB9, SH3GLB1, ATF4, EIF4G1, EGFR, CDKN1A, CFLAR, FAS, BCL2L1 and BNIP3. Using these findings, we crafted a nomogram to predict SCZ risk for individual samples. In summary, our study offers deeper insights into SCZ's molecular pathogenesis and paves the way for innovative approaches in risk prediction, gene-targeted diagnosis, and community-based SCZ treatments.
Collapse
Affiliation(s)
- Yunfei Tan
- Center for Rehabilitation Medicine, Department of Psychiatry, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
| | - Junpeng Zhu
- Center for Rehabilitation Medicine, Department of Psychiatry, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
7
|
Kern J, Schilling D, Schneeweis C, Schmid RM, Schneider G, Combs SE, Dobiasch S. Identification of the unfolded protein response pathway as target for radiosensitization in pancreatic cancer. Radiother Oncol 2024; 191:110059. [PMID: 38135186 DOI: 10.1016/j.radonc.2023.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND AND PURPOSE Due to the high intrinsic radioresistance of pancreatic ductal adenocarcinoma (PDAC), radiotherapy (RT) is only beneficial in 30% of patients. Therefore, this study aimed to identify targets to improve the efficacy of RT in PDAC. MATERIALS AND METHODS Alamar Blue proliferation and colony formation assay (CFA) were used to determine the radioresponse of a cohort of 38 murine PDAC cell lines. A gene set enrichment analysis was performed to reveal differentially expressed pathways. CFA, cell cycle distribution, γH2AX FACS analysis, and Caspase 3/7 SYTOX assay were used to examine the effect of a combination treatment using KIRA8 as an IRE1α-inhibitor and Ceapin-A7 as an inhibitor against ATF6. RESULTS The unfolded protein response (UPR) was identified as a pathway highly expressed in radioresistant cell lines. Using the IRE1α-inhibitor KIRA8 or the ATF6-inhibitor Ceapin-A7 in combination with radiation, a radiosensitizing effect was observed in radioresistant cell lines, but no substantial alteration of the radioresponse in radiosensitive cell lines. Mechanistically, increased apoptosis by KIRA8 in combination with radiation and a cell cycle arrest in the G1 phase after ATF6 inhibition and radiation have been observed in radioresistant cell lines. CONCLUSION So, our data show evidence that the UPR is involved in radioresistance of PDAC. Increased apoptosis and a G1 cell cycle arrest seem to be responsible for the radiosensitizing effect of UPR inhibition. These findings are supportive for developing novel combination treatment concepts in PDAC to overcome radioresistance.
Collapse
Affiliation(s)
- Jana Kern
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Daniela Schilling
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany; Institute of Radiation Medicine (IRM), Department of Radiation Sciences, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Christian Schneeweis
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Roland M Schmid
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Günter Schneider
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany; Department of General Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany; Institute of Radiation Medicine (IRM), Department of Radiation Sciences, Helmholtz Zentrum Munich, Neuherberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany; Institute of Radiation Medicine (IRM), Department of Radiation Sciences, Helmholtz Zentrum Munich, Neuherberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
8
|
Li T, Lei Z, Wei L, Yang K, Shen J, Hu L. Tumor Necrosis Factor Receptor-Associated Factor 6 and Human Cancer: A Systematic Review of Mechanistic Insights, Functional Roles, and Therapeutic Potential. J Cancer 2024; 15:560-576. [PMID: 38169510 PMCID: PMC10758021 DOI: 10.7150/jca.90059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer imposes a substantial burden and its incidence is persistently increasing in recent years. Cancer treatment has been difficult due to its inherently complex nature. The tumor microenvironment (TME) includes a complex interplay of cellular and noncellular constituents surrounding neoplastic cells, intricately contributing to the tumor initiation and progression. This critical aspect of tumors involves a complex interplay among cancer, stromal, and inflammatory cells, forming an inflammatory TME that promotes tumorigenesis across all stages. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is implicated in modulating various critical processes linked to tumor pathogenesis, including but not limited to the regulation of tumor cell proliferation, invasion, migration, and survival. Furthermore, TRAF6 prominently contributes to various immune and inflammatory pathways. The TRAF6-mediated activation of nuclear factor (NF)-κB in immune cells governs the production of proinflammatory cytokines. These cytokines sustain inflammation and stimulate tumor growth by activating NF-κB in tumor cells. In this review, we discuss various types of tumors, including gastrointestinal cancers, urogenital cancers, breast cancer, lung cancer, head and neck squamous cell carcinoma, uterine fibroids, and glioma. Employing a rigorous and systematic approach, we comprehensively evaluate the functional repertoire and potential roles of TRAF6 in various cancer types, thus highlighting TRAF6 as a compelling and emerging therapeutic target worthy of further investigation and development.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu, China
| | - Lin Wei
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jinhong Shen
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
| |
Collapse
|
9
|
Khayatan D, Hussain A, Tebyaniyan H. Exploring animal models in oral cancer research and clinical intervention: A critical review. Vet Med Sci 2023. [PMID: 37196179 DOI: 10.1002/vms3.1161] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Cancer is a leading cause of death worldwide, but advances in treatment, early detection, and prevention have helped to reduce its impact. To translate cancer research findings into clinical interventions for patients, appropriate animal experimental models, particularly in oral cancer therapy, can be helpful. In vitro experiments using animal or human cells can provide insight into cancer's biochemical pathways. This review discusses the various animal models used in recent years for research and clinical intervention in oral cancer, along with their advantages and disadvantages. We highlight the advantages and limitations of the used animal models in oral cancer research and therapy by searching the terms of animal models, oral cancer, oral cancer therapy, oral cancer research, and animals to find all relevant publications during 2010-2023. Mouse models, widely used in cancer research, can help us understand protein and gene functions in vivo and molecular pathways more deeply. To induce cancer in rodents, xenografts are often used, but companion animals with spontaneous tumours are underutilized for rapid advancement in human and veterinary cancer treatments. Like humans with cancer, companion animals exhibit biological behaviour, treatment responses, and cytotoxic agent responses similar to humans. In companion animal models, disease progression is more rapid, and the animals have a shorter lifespan. Animal models allow researchers to study how immune cells interact with cancer cells and how they can be targeted specifically. Additionally, animal models have been extensively used in research on oral cancers, so researchers can use existing knowledge and tools to better understand oral cancers using animal models.
Collapse
Affiliation(s)
- Danial Khayatan
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy (ECHA), University of Alberta, Edmonton, Canada
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
10
|
Saproo S, Sarkar SS, Gautam V, Konyak CW, Dass G, Karmakar A, Sharma M, Ahuja G, Gupta A, Tayal J, Mehta A, Naidu S. Salivary protein kinase C alpha and novel microRNAs as diagnostic and therapeutic resistance markers for oral squamous cell carcinoma in Indian cohorts. Front Mol Biosci 2023; 9:1106963. [PMID: 36703917 PMCID: PMC9871261 DOI: 10.3389/fmolb.2022.1106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the second leading cause of cancer-related morbidity and mortality in India. Tobacco, alcohol, poor oral hygiene, and socio-economic factors remain causative for this high prevalence. Identification of non-invasive diagnostic markers tailored for Indian population can facilitate mass screening to reduce overall disease burden. Saliva offers non-invasive sampling and hosts a plethora of markers for OSCC diagnosis. Here, to capture the OSCC-specific salivary RNA markers suitable for Indian population, we performed RNA-sequencing of saliva from OSCC patients (n = 9) and normal controls (n = 5). Differential gene expression analysis detected an array of salivary RNAs including mRNAs, long non-coding RNAs, transfer-RNAs, and microRNAs specific to OSCC. Computational analysis and functional predictions identified protein kinase c alpha (PRKCA), miR-6087, miR-449b-5p, miR-3656, miR-326, miR-146b-5p, and miR-497-5p as potential salivary indicators of OSCC. Notably, higher expression of PRKCA, miR-6087 and miR-449b-5p were found to be associated with therapeutic resistance and poor survival, indicating their prognostic potential. In addition, sequencing reads that did not map to the human genome, showed alignments with microbial reference genomes. Metagenomic and statistical analysis of these microbial reads revealed a remarkable microbial dysbiosis between OSCC patients and normal controls. Moreover, the differentially abundant microbial taxa showed a significant association with tumor promoting pathways including inflammation and oxidative stress. Summarily, we provide an integrated landscape of OSCC-specific salivary RNAs relevant to Indian population which can be instrumental in devising non-invasive diagnostics for OSCC.
Collapse
Affiliation(s)
- Sheetanshu Saproo
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shashanka S. Sarkar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Vishakha Gautam
- Department of Computational Biology, Indraprastha Institute of Information Technology- Delhi (IIIT-Delhi), New Delhi, India
| | - Chingmei W. Konyak
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Gouri Dass
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Arpita Karmakar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Mansi Sharma
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology- Delhi (IIIT-Delhi), New Delhi, India
| | - Anand Gupta
- Department of Dentistry, Government Medical College and Hospital, Chandigarh, India
| | - Juhi Tayal
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Anurag Mehta
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India,*Correspondence: Srivatsava Naidu,
| |
Collapse
|
11
|
Alwahsh M, Farhat J, Talhouni S, Hamadneh L, Hergenröder R. Bortezomib advanced mechanisms of action in multiple myeloma, solid and liquid tumors along with its novel therapeutic applications. EXCLI JOURNAL 2023; 22:146-168. [PMID: 36998701 PMCID: PMC10043448 DOI: 10.17179/excli2022-5653] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/12/2023] [Indexed: 04/01/2023]
Abstract
Bortezomib (BTZ) is a first-in-class reversible and selective proteasome inhibitor. It inhibits the ubiquitin proteasome pathway that leads to the degradation of many intracellular proteins. Initially, BTZ was FDA approved for the treatment of refractory or relapsed multiple myeloma (MM) in 2003. Later, its usage was approved for patients with previously untreated MM. In 2006, BTZ was approved for the treatment of relapsed or refractory Mantle Cell Lymphoma (MCL) and, in 2014, for previously untreated MCL. BTZ has been extensively studied either alone or in combination with other drugs for the treatment of different liquid tumors especially in MM. However, limited data evaluated the efficacy and safety of using BTZ in patients with solid tumors. In this review, we will discuss the advanced and novel mechanisms of action of BTZ documented in MM, solid tumors and liquid tumors. Moreover, we will shed the light on the newly discovered pharmacological effects of BTZ in other prevalent diseases.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
- Institute of Pathology and Medical Research Center (ZMF), University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
- *To whom correspondence should be addressed: Mohammad Alwahsh, Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan, E-mail:
| | - Joviana Farhat
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, PO Box 127788, United Arab Emirates
| | - Shahd Talhouni
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Lama Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| |
Collapse
|
12
|
Leng H, Zhang H, Li L, Zhang S, Wang Y, Chavda SJ, Galas-Filipowicz D, Lou H, Ersek A, Morris EV, Sezgin E, Lee YH, Li Y, Lechuga-Vieco AV, Tian M, Mi JQ, Yong K, Zhong Q, Edwards CM, Simon AK, Horwood NJ. Modulating glycosphingolipid metabolism and autophagy improves outcomes in pre-clinical models of myeloma bone disease. Nat Commun 2022; 13:7868. [PMID: 36550101 PMCID: PMC9780346 DOI: 10.1038/s41467-022-35358-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with multiple myeloma, an incurable malignancy of plasma cells, frequently develop osteolytic bone lesions that severely impact quality of life and clinical outcomes. Eliglustat, a U.S. Food and Drug Administration-approved glucosylceramide synthase inhibitor, reduced osteoclast-driven bone loss in preclinical in vivo models of myeloma. In combination with zoledronic acid, a bisphosphonate that treats myeloma bone disease, eliglustat provided further protection from bone loss. Autophagic degradation of TRAF3, a key step for osteoclast differentiation, was inhibited by eliglustat as evidenced by TRAF3 lysosomal and cytoplasmic accumulation. Eliglustat blocked autophagy by altering glycosphingolipid composition whilst restoration of missing glycosphingolipids rescued autophagy markers and TRAF3 degradation thus restoring osteoclastogenesis in bone marrow cells from myeloma patients. This work delineates both the mechanism by which glucosylceramide synthase inhibition prevents autophagic degradation of TRAF3 to reduce osteoclastogenesis as well as highlighting the clinical translational potential of eliglustat for the treatment of myeloma bone disease.
Collapse
Affiliation(s)
- Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shuhao Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15217, USA
| | - Yanping Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Selina J Chavda
- Department of Hematology, UCL Cancer Institute, University College London, London, UK
| | | | - Hantao Lou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Adel Ersek
- Norwich Medical School, University of East Anglia, James Watson Road, Norwich, NR4 7UQ, UK
| | - Emma V Morris
- Nuffield Department of Surgical Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Oxford, OX3 9DS, UK
| | - Yi-Hsuan Lee
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
- Norwich Medical School, University of East Anglia, James Watson Road, Norwich, NR4 7UQ, UK
| | - Yunsen Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | | | - Mei Tian
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, P.R. China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Kwee Yong
- Department of Hematology, UCL Cancer Institute, University College London, London, UK
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Nicole J Horwood
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
- Norwich Medical School, University of East Anglia, James Watson Road, Norwich, NR4 7UQ, UK.
| |
Collapse
|
13
|
Łuczkowska K, Rogińska D, Kulig P, Bielikowicz A, Baumert B, Machaliński B. Bortezomib-Induced Epigenetic Alterations in Nerve Cells: Focus on the Mechanisms Contributing to the Peripheral Neuropathy Development. Int J Mol Sci 2022; 23:ijms23052431. [PMID: 35269574 PMCID: PMC8910765 DOI: 10.3390/ijms23052431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Bortezomib-induced peripheral neuropathy (BiPN) occurs in approximately 40% of patients with multiple myeloma. The induction of severe neuropathy entails the dose reduction or complete elimination of bortezomib (BTZ). Interestingly, discontinuation of BTZ mostly results in a reduction or complete resolution of peripheral neuropathy (PN) symptoms. Therefore, it is likely that the BiPN mechanisms are based on temporary/reversible changes such as epigenetic alterations. In this study, we examined the effect of treating nerve cells, differentiated from the Lund human mesencephalic (dLUHMES) cell line, with several low-dose BTZ (0.15 nM) applications. We showed a significant decrease in global histone H3 acetylation as well as histone H3 lysine 9 acetylation. Moreover, analysis of the genetic microarray showed changes mainly in epigenetic processes related to chromatin rearrangement, chromatin silencing, and gene silencing. GSEA analysis revealed three interesting signaling pathways (SIRT1, B-WICH and, b-Catenin) that may play a pivotal role in PN development. We also performed an analysis of the miRNA microarray which showed the interactions of miR-6810-5p with the genes MSN, FOXM1, TSPAN9, and SLC1A5, which are directly involved in neuroprotective processes, neuronal differentiation, and signal transduction. The study confirmed the existence of BTZ-induced complex epigenetic alterations in nerve cells. However, further studies are necessary to assess the reversibility of epigenetic changes and their potential impact on the induction/resolution of PN.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (D.R.); (P.K.); (A.B.)
- Correspondence: (K.Ł.); (B.M.); Tel.: +48-914-661-546 (B.M.); Fax: +48-914-661-548 (B.M.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (D.R.); (P.K.); (A.B.)
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (D.R.); (P.K.); (A.B.)
| | - Anna Bielikowicz
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (D.R.); (P.K.); (A.B.)
| | - Bartłomiej Baumert
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (D.R.); (P.K.); (A.B.)
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland;
- Correspondence: (K.Ł.); (B.M.); Tel.: +48-914-661-546 (B.M.); Fax: +48-914-661-548 (B.M.)
| |
Collapse
|
14
|
Wang L, Yin H, Huang S, Huang S, Huang C, Zhang Z, Liu H. Bortezomib induces cellular senescence in A549 lung cancer cells by stimulating telomere shortening. Hum Exp Toxicol 2022; 41:9603271221124094. [DOI: 10.1177/09603271221124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bortezomib (BTZ) is a first-generation proteasome inhibitor with anti-tumor properties for multiple myeloma and mantle cell lymphoma. Increasing evidence has shown that BTZ exhibits toxic effects on diverse tumor cells, including non-small cell lung cancer (NSCLC) cells. However, the mechanism has not been fully evaluated. Here, we examined the regulatory effect of BTZ on cellular senescence, a potent tumor suppressive mechanism, in NSCLC cell lines. SA-β-gal staining assay showed that BTZ caused a significant increase in β-Gal positive A549 cells. BTZ also induced cell cycle arrest on G0/G1 phase in A549 cells. Furthermore, telomerase activity was markedly reduced in A549 cells treated with BTZ. BTZ reduced the expression levels of hTERT, and the key proteins binding to telomeric DNA, including POT1 and TIN2. It also induced the expressions of the cell cycle-associated tumor suppressors p53 and p21 in A549 cells. Moreover, hTERT overexpression abolished the effects of BTZ on A549 cells. These results show that BTZ induced cellular senescence by stimulating telomere shortening. Our results provide experimental data for the potential clinical application of BTZ in NSCLC treatment.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pulmonary and Critical Care Medicine, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Hang Yin
- Department of Cancer Day Clinic, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Shiren Huang
- Department of Pulmonary and Critical Care Medicine, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Sini Huang
- Department of Pulmonary and Critical Care Medicine, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Congcong Huang
- Department of Thoracic Oncology, Hainan Cancer Hospital, Haikou, China
| | - Zhao Zhang
- Department of Medical Oncology, Hainan Cancer Hospital, Haikou, China
| | - Hui Liu
- Department of Cancer Day Clinic, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
15
|
Kang Y, Chen J, Li X, Luo M, Chen H, Cui B, Wang L, Lv D, Feng Y, Zhang P. Salivary KLK5 and uPA are potential biomarkers for malignant transformation of OLK and OLP. Cancer Biomark 2021; 31:317-328. [PMID: 33896830 DOI: 10.3233/cbm-203105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) usually originates from oral potentially malignant disorders (OPMD), such as oral leukoplakia (OLK) and oral lichen planus (OLP). Identifying biomarkers for the early diagnosis and evaluation of malignant transformation in OPMD could improve the survival rate of OSCC patients. OBJECTIVE The present study aimed to screen for potential salivary biomarkers for evaluating the malignant transformation of OPMD. METHODS Salivary proteases from OLK and OSCC patients or healthy donors and proteases in cultural medium from DOK and Cal-27 cells were detected with a human protease array kit. The concentrations of the salivary Kallikrein 5 (KLK5) and urokinase-type plasminogen activator (uPA) proteases were measured by ELISA. Receiver operating characteristics (ROC) to determine the potential value of these proteases in clinical diagnosis were calculated using SPSS software. Immunohistochemistry was used to detect the KLK5 and uPA expression in the oral organizations. RESULTS The salivary protease spectrum was different among patients with OLK and OSCC and healthy donors. KLK5 and uPA levels in saliva tended to increase as the disease progressed (healthy < OPMD [OLK and OLP] < OSCC). ROC curves showed the optimum diagnostic cutoffs for KLK5 as a biomarker for OLK, OLP, and OSCC were 5.97, 6.03, and 9.45 pg/mL, respectively, while the cutoffs for uPA were 17.19, 17.26, and 20.96 pg/mL. Their combined analysis showed a higher sensitivity for the differential diagnosis of disease. Furthermore, higher levels of KLK5 and uPA were observed in OSCC tissues than in OLK and OLP. CONCLUSIONS Salivary KLK5 and uPA are potential biomarkers for evaluating OLK and OLP malignant transformation and early diagnosis of OSCC.
Collapse
|
16
|
Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res 2021; 40:197. [PMID: 34154610 PMCID: PMC8215813 DOI: 10.1186/s13046-021-02000-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia in solid tumors is an important predictor of treatment resistance and poor clinical outcome. The significance of hypoxia in the development of resistance to radiotherapy has been recognized for decades and the search for hypoxia-targeting, radiosensitizing agents continues. This review summarizes the main hypoxia-related processes relevant for radiotherapy on the subcellular, cellular and tissue level and discusses the significance of hypoxia in radiation oncology, especially with regard to the current shift towards hypofractionated treatment regimens. Furthermore, we discuss the strategies to interfere with hypoxia for radiotherapy optimization, and we highlight novel insights into the molecular pathways involved in hypoxia that might be utilized to increase the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
17
|
Lohberger B, Glaenzer D, Eck N, Steinecker-Frohnwieser B, Leithner A, Rinner B, Kerschbaum-Gruber S, Georg D. Effects of a combined therapy of bortezomib and ionizing radiation on chondrosarcoma three-dimensional spheroid cultures. Oncol Lett 2021; 21:428. [PMID: 33868466 PMCID: PMC8045153 DOI: 10.3892/ol.2021.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Chondrosarcomas represent a heterogeneous group of primary bone cancers that are characterized by hyaline cartilaginous neoplastic tissue and are predominantly resistant to radiation and chemotherapy. However, adjuvant radiotherapy is often recommended in inoperable cases or after incomplete resections. To improve the efficiency of treatment, the present study tested a combination therapy with ionizing radiation (IR) and the proteasome inhibitor bortezomib. Using a three-dimensional (3D) spheroid model, 0-20 Gy of IR was applied to chondrosarcoma cells and healthy human chondrocytes. Following combined treatment with IR and bortezomib, the cell cycle distribution, apoptotic induction, the survivin pathway, autophagy and DNA damage were evaluated. Both cell types exhibited a slight decrease in viability following increasing doses of IR; the chondrosarcoma cells demonstrated a significant dose-dependent increase in the expression levels of the DNA damage marker histone H2AX phosphorylation at serine 139 (γH2AX). The combination treatment with bortezomib significantly decreased the cell viability after 48 h compared with that in irradiated cells. High-dose IR induced a G2/M phase arrest, which was accompanied by a decrease in the number of cells at the G1 and S phase. Co-treatment with bortezomib changed the distribution of the cell cycle phases. The mRNA expression levels of the proapoptotic genes Bcl-2-associated X protein (Bax) and Bak were significantly increased by bortezomib treatment and combination therapy with IR. In addition, the combination therapy resulted in a synergistic decrease of the expression levels of survivin and its corresponding downstream pathway molecules, including heat shock protein 90, X-linked inhibitor of apoptosis protein, smad 2 and smad 3. Comparative analyses of γH2AX at 1 and 24 h post-IR revealed efficient DNA repair in human chondrosarcoma cells. Therefore, additional bortezomib treatment may only temporarily improve the radiation sensitivity of chondrosarcoma cells. However, the inhibition of the survivin pathway by the combined treatment with IR and bortezomib, observed in the present study, revealed a novel aspect in the tumor biology of chondrosarcoma 3D spheroid cultures and may represent a potential target for therapy.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, A-8036 Graz, Austria
| | - Dietmar Glaenzer
- Department of Orthopedics and Trauma, Medical University of Graz, A-8036 Graz, Austria
- Department for Rehabilitation, Ludwig Boltzmann Institute for Arthritis and Rehabilitation, A-5760 Saalfelden, Austria
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, A-8036 Graz, Austria
- Department for Rehabilitation, Ludwig Boltzmann Institute for Arthritis and Rehabilitation, A-5760 Saalfelden, Austria
| | | | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, A-8036 Graz, Austria
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, A-8036 Graz, Austria
| | | | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, A-1090 Vienna, Austria
- MedAustron Ion Therapy Center, A-2700 Wiener Neustadt, Austria
| |
Collapse
|
18
|
Dai LB, Zhong JT, Shen LF, Zhou SH, Lu ZJ, Bao YY, Fan J. Radiosensitizing effects of curcumin alone or combined with GLUT1 siRNA on laryngeal carcinoma cells through AMPK pathway-induced autophagy. J Cell Mol Med 2021; 25:6018-6031. [PMID: 33955148 DOI: 10.1111/jcmm.16450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/29/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigated the ability of curcumin alone or in combination with GLUT1 siRNA to radiosensitize laryngeal carcinoma (LC) through the induction of autophagy. Protein levels in tumour tissues and LC cells were measured by immunohistochemistry and Western blotting. In vitro, cell proliferation, colony formation assays, cell death and autophagy were detected. A nude mouse xenograft model was established through the injection of Tu212 cells. We found that GLUT1 was highly expressed and negatively associated with autophagy-related proteins in LC and that curcumin suppressed radiation-mediated GLUT1 overexpression in Tu212 cells. Treatment with curcumin, GLUT1 siRNA, or the combination of the two promoted autophagy. Inhibition of autophagy using 6-amino-3-methypourine (3-MA) promoted apoptosis after irradiation or treatment of cells with curcumin and GLUT1 siRNA. 3-MA inhibited curcumin and GLUT1 siRNA-mediated non-apoptotic programmed cell death. The combination of curcumin, GLUT1 siRNA and 3-MA provided the strongest sensitization in vivo. We also found that autophagy induction after curcumin or GLUT1 siRNA treatment implicated in the AMP-activated protein kinase-mTOR-serine/threonine-protein kinase-Beclin1 signalling pathway. Irradiation primarily caused apoptosis, and when combined with curcumin and GLUT1 siRNA treatment, the increased radiosensitivity of LC occurred through the concurrent induction of apoptosis and autophagy.
Collapse
Affiliation(s)
- Li-Bo Dai
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiang-Tao Zhong
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li-Fang Shen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong-Jie Lu
- Department of Radiotherapy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Fan X, Wang Y. Circular RNA circSPATA6 Inhibits the Progression of Oral Squamous Cell Carcinoma Cells by Regulating TRAF6 via miR-182. Cancer Manag Res 2021; 13:1817-1829. [PMID: 33654430 PMCID: PMC7910102 DOI: 10.2147/cmar.s292074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) has become a widely concerned social problem. Circular RNA spermatogenesis-associated protein 6 (circSPATA6) exhibited low expression in OSCC tissues, yet the regulatory mechanism of circSPATA6 remains vague. Methods Levels of circSPATA6, linear SPATA6, microRNA-182 (miR-182), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Migration, invasion, cell cycle arrest, and apoptosis were assessed by Wound-healing, Matrigel invasion, and Flow cytometry assays. The binding relationship between miR-182 and circSPATA6 or TRAF6 was predicted by circRNA interactome or DIANA TOOL and then proved by the dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. TRAF6 protein level was measured by Western blot assay. The biological role of circSPATA6 on OSCC tumor growth was analyzed by xenograft tumor model in vivo. Exosomes were isolated and detected by differential centrifugation and a transmission electron microscope. Results CircSPATA6 and TRAF6 were declined, and miR-182 was elevated in OSCC cells. Functionally, circSPATA6 impeded migration and invasion, and facilitated cell cycle arrest and apoptosis of OSCC cells. Mechanistically, circSPATA6 could modulate TRAF6 expression through sponging miR-182. Moreover, circSPATA6 blocked tumor growth in the OSCC mice model. Exosomal circSPATA6 retarded the growth of OSCC cells. Conclusion CircSPATA6 curbed migration and invasion, and expedited cell cycle arrest and apoptosis in OSCC cells partly through regulating the miR-182/TRAF6 axis. These findings hinted at an underlying circRNA-targeted therapy for OSCC.
Collapse
Affiliation(s)
- Xinhua Fan
- Department of Stomatology, Inner Mongolia Baotou Steel Hospital, Baotou City, Inner Mongolia, People's Republic of China
| | - Ying Wang
- Department of Stomatology, Inner Mongolia Baotou Steel Hospital, Baotou City, Inner Mongolia, People's Republic of China
| |
Collapse
|
20
|
Mechanism by which TRAF6 Participates in the Immune Regulation of Autoimmune Diseases and Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4607197. [PMID: 33294443 PMCID: PMC7714562 DOI: 10.1155/2020/4607197] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, is a signal transduction molecule shared by the interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) family and the TNFR superfamily. TRAF6 has a unique TRAF domain and RING finger domain that mediate intracellular signaling events. In the immune system, TRAF6-mediated signaling has been shown to be critical for the development, homeostasis, and activation of a variety of immune cells, including B cells, T cells, dendritic cells, and macrophages. Although the pathogenesis and etiology of autoimmune diseases and cancer are not fully understood, it is worth noting that existing studies have shown that TRAF6 is involved in the pathogenesis and development of a variety of these diseases. Herein, we reviewed the role of TRAF6 in certain immune cells, as well as the function and potential effect of TRAF6 in autoimmune diseases and cancer. Our review indicates that TRAF6 may be a novel target for autoimmune diseases and cancer.
Collapse
|
21
|
He G, Yao W, Li L, Wu Y, Feng G, Chen L. LOXL1-AS1 contributes to the proliferation and migration of laryngocarcinoma cells through miR-589-5p/TRAF6 axis. Cancer Cell Int 2020; 20:504. [PMID: 33061856 PMCID: PMC7552551 DOI: 10.1186/s12935-020-01565-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background LOXL1-AS1 is a long non-coding RNA (lncRNA) that plays crucial roles in various cancers. However, the functional role of LOXL1-AS1 in laryngocarcinoma remains unclear. Thus we planned to probe into the function and underlying mechanism of LOXL1-AS1 in laryngocarcinoma. Methods Gene expression was evaluated in laryngocarcinoma cells using RT-qPCR. The ability of cell proliferation and migration was assessed by CCK8, colony formation, wound healing and transwell assays. The interaction among LOXL1-AS1, miR-589-5p and TRAF6 was detected by Ago2-RIP, RNA pull down and luciferase reporter assays. Results LOXL1-AS1 was overexpressed in laryngocarcinoma cells. Silencing of LOXL1-AS1 suppressed cell proliferation, migration and EMT in laryngocarcinoma. Moreover, miR-589-5p, the downstream of LOXL1-AS1, directly targeted TRAF6 in laryngocarcinoma. Importantly, LOXL1-AS1 augmented TRAF6 expression in laryngocarcinoma cells by sequestering miR-589-5p. Besides, miR-589-5p worked as a tumor-inhibitor while TRAF6 functioned as a tumor-facilitator in laryngocarcinoma. Of note, rescue experiments both in vitro and in vivo validated that LOXL1-AS1 aggravated the malignancy in laryngocarcinoma by targeting miR-589-5p/TRAF6 pathway. Conclusions LOXL1-AS1 promotes the proliferation and migration of laryngocarcinoma cells through absorbing miR-589-5p to upregulate TRAF6 expression.
Collapse
Affiliation(s)
- Guijun He
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Wenfeng Yao
- Department of Otolaryngology, The First People's Hospital of Xinxiang City, Xinxiang, 453000 Henan China
| | - Liang Li
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Yang Wu
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Guojian Feng
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Li Chen
- Department of Otorhinolaryngology, Zaozhuang Municipal Hospital, No. 41, Longtou Middle Road, Shizhong District, Zaozhuang, 277100 Shandong China
| |
Collapse
|
22
|
Wang D, Qi H, Zhang H, Zhou W, Li Y, Li A, Liu Q, Wang Y. TAF1L promotes development of oral squamous cell carcinoma via decreasing autophagy-dependent apoptosis. Int J Biol Sci 2020; 16:1180-1193. [PMID: 32174793 PMCID: PMC7053316 DOI: 10.7150/ijbs.41148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
This study focused on investigating the relationships of TAF1L expression and clinical features or pathological stages of oral squamous cell carcinoma (OSCC), and its potential roles of TAF1L on OSCC development. Western blot and immunohistochemical staining were used to detect TAF1L expression in OSCC tissues and cells. Effects of TAF1L on OSCC cells in vitro were examined by cell proliferation assay, wound healing assay, transwell chamber assay, flow cytometry analysis and siRNA technique. Cellular key proteins related to cell autophagy and apoptosis were evaluated by Western blot and immunofluorescent staining. Moreover, functions of TAF1L on OSCC process were observed in nude mouse model. Testing results showed that expression of TAF1L protein was higher in OSCC tissues than that in normal oral epithelial or paracancerous tissues. Additionally, the level of TAF1L protein expression was upregulated in OSCC cell lines, compared to that in normal oral epithelial cells. Furthermore, cell proliferation, migration, autophagy and apoptosis were modulated post siRNA-TAF1L treatment in vitro. Especially, TAF1L knockdown-induced apoptotic activation on OSCC cells could be rescued by autophagic activator (Rapamycin). Moreover, that overexpression of TAF1L protein could promote the growth of OSCC cell xenografts was confirmed in nude mouse model. Taken together, it suggests that TAF1L may facilitate OSCC cells to escape cell apoptosis via autophagic activation for enhancing OSCC development.
Collapse
Affiliation(s)
- Daiwei Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Hong Qi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University. Xi'an, Shanxi, China
| | - Haoxing Zhang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Zhou
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanpeng Li
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University. Xi'an, Shanxi, China
| | - Qiong Liu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yun Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
23
|
Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int J Mol Sci 2019; 20:ijms20235821. [PMID: 31756921 PMCID: PMC6929154 DOI: 10.3390/ijms20235821] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.
Collapse
|
24
|
Khan T, Relitti N, Brindisi M, Magnano S, Zisterer D, Gemma S, Butini S, Campiani G. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med Res Rev 2019; 40:1002-1060. [PMID: 31742748 DOI: 10.1002/med.21646] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinomas (OSCC) and esophageal squamous cell carcinomas (ESCC) exhibit a survival rate of less than 60% and 40%, respectively. Late-stage diagnosis and lack of effective treatment strategies make both OSCC and ESCC a significant health burden. Autophagy, a lysosome-dependent catabolic process, involves the degradation of intracellular components to maintain cell homeostasis. Targeting autophagy has been highlighted as a feasible therapeutic strategy with clinical utility in cancer treatment, although its associated regulatory mechanisms remain elusive. The detection of relevant biomarkers in biological fluids has been anticipated to facilitate early diagnosis and/or prognosis for these tumors. In this context, recent studies have indicated the presence of specific proteins and small RNAs, detectable in circulating plasma and serum, as biomarkers. Interestingly, the interplay between biomarkers (eg, exosomal microRNAs) and autophagic processes could be exploited in the quest for targeted and more effective therapies for OSCC and ESCC. In this review, we give an overview of the available biomarkers and innovative targeted therapeutic strategies, including the application of autophagy modulators in OSCC and ESCC. Additionally, we provide a viewpoint on the state of the art and on future therapeutic perspectives combining the early detection of relevant biomarkers with drug discovery for the treatment of OSCC and ESCC.
Collapse
Affiliation(s)
- Tuhina Khan
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico IL, Napoli, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| |
Collapse
|
25
|
Yin F, He H, Zhang B, Zheng J, Wang M, Zhang M, Cui H. Effect of Deubiquitinase Ovarian Tumor Domain-Containing Protein 5 (OTUD5) on Radiosensitivity of Cervical Cancer by Regulating the Ubiquitination of Akt and its Mechanism. Med Sci Monit 2019; 25:3469-3475. [PMID: 31075090 PMCID: PMC6525574 DOI: 10.12659/msm.912904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of deubiquitinase [ovarian tumor domain-containing protein 5 (OTUD5)] in regulating Akt ubiquitination and its effect on the radiosensitivity of cervical cancer. MATERIAL AND METHODS Cervical cancer C33A cells were cultured, and then 2 groups of cells (overexpressed cells and silenced cells) were established by overexpressing and silencing OTUD5 gene. Next, quantitative polymerase chain reaction (qPCR) was employed to detect the expression level of OTUD5 in cells in each group. Co-immunoprecipitation and Western blot (WB) analysis were applied to measure the expression level of phosphorylated protein kinase B (Akt) and the level of ubiquitination. The sensitivity of cells to radiotherapy in each group was detected via clone-forming efficiency assay. After that, Statistical Product and Service Solutions (SPSS) 17.0 software was employed for analyses. The t test, one-way analysis of variance (ANOVA), and p test were used. P<0.05 suggested that a difference was statistically significant. RESULTS The levels of phosphorylated Akt and ubiquitination in OTUD5-overexpressed C33A cells were lower than those in the OTUD5-silenced group and control group. The sensitivity of OTUD5-overexpressed C33A cells to radiotherapy was higher than that of the OTUD5-silenced group and control group. CONCLUSIONS OTUD5 affects the radiosensitivity of cervical cancer through the regulation of Akt deubiquitination.
Collapse
Affiliation(s)
- Fengling Yin
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China (mainland)
| | - Houguang He
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China (mainland)
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China (mainland)
| | - Jianhua Zheng
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China (mainland)
| | - Meng Wang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China (mainland)
| | - Meng Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China (mainland)
| | - Hongxia Cui
- Department of Oncology, Jining First People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
26
|
Lee MJ, Tseng WS, Lai JCY, Shieh HR, Chi CW, Chen YJ. Differential Pharmacological Activities of Oxygen Numbers on the Sulfoxide Moiety of Wasabi Compound 6-(Methylsulfinyl) Hexyl Isothiocyanate in Human Oral Cancer Cells. Molecules 2018; 23:E2427. [PMID: 30248933 PMCID: PMC6222327 DOI: 10.3390/molecules23102427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
6-(methylsulfinyl) hexyl isothiocyanate (6-MITC) is a naturally occurring compound isolated from Wasabia japonica (wasabi). The synthetic derivatives, 6-(methylsulfenyl) hexyl isothiocyanate (I7447) and 6-(methylsulfonyl) hexyl isothiocyanate (I7557), were derived from 6-MITC with the deletion and addition of oxygen, respectively. We aimed to evaluate the effect of these synthetic compounds on human oral cancer cells, SAS and OECM-1. All three compounds (I7447, 6-MITC, and I7557) inhibited the viability of SAS and OECM-1 cells using MTT assay. Morphological observations showed various proportions of mitotic arrest and apoptosis in cells treated with these compounds. Cell cycle analysis revealed relatively abundant G2/M arrest in 6-MITC and I7557-treated cells, whereas sub-G1 accumulation was found in I7447-treated cells. In using phosphorylated histone H3 as a marker for mitosis, the addition of 6-MITC and I7557 (excluding I7447) could be shown to arrest cells during mitosis. In contrast, I7447 induced more prominent apoptosis than the 6-MITC or I7557 compounds. The down-regulated expression of the phosphorylated form of CHK1 and Cdc25c was noted in 6-MITC and I7557-treated cells. I7557 could sensitize SAS cells to death by radiation. The wasabi compound, 6-MITC, and its chemical derivatives with different numbers of oxygen may have differential pharmacological effects on human oral cancer cells.
Collapse
Affiliation(s)
- Min-Ju Lee
- Taipei First Girls High School, Taipei 10045, Taiwan.
| | - Wen-Ser Tseng
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
| | - Jerry Cheng-Yen Lai
- Department of Medical Research, Taitung MacKay Memorial Hospital, Taitung City 95054, Taiwan.
| | - Hui-Ru Shieh
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
| | - Chih-Wen Chi
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
- Department of Nursing, MacKay Medical College, New Taipei City 25245, Taiwan.
| | - Yu-Jen Chen
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25160, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan.
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 10449, Taiwan.
| |
Collapse
|
27
|
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, Xie P. Genetic Alterations of TRAF Proteins in Human Cancers. Front Immunol 2018; 9:2111. [PMID: 30294322 PMCID: PMC6158389 DOI: 10.3389/fimmu.2018.02111] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic adaptor proteins regulate the signal transduction pathways of a variety of receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and cytokine receptors. TRAF-dependent signaling pathways participate in a diverse array of important cellular processes, including the survival, proliferation, differentiation, and activation of different cell types. Many of these TRAF-dependent signaling pathways have been implicated in cancer pathogenesis. Here we analyze the current evidence of genetic alterations of TRAF molecules available from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) as well as the published literature, including copy number variations and mutation landscape of TRAFs in various human cancers. Such analyses reveal that both gain- and loss-of-function genetic alterations of different TRAF proteins are commonly present in a number of human cancers. These include pancreatic cancer, meningioma, breast cancer, prostate cancer, lung cancer, liver cancer, head and neck cancer, stomach cancer, colon cancer, bladder cancer, uterine cancer, melanoma, sarcoma, and B cell malignancies, among others. Furthermore, we summarize the key in vivo and in vitro evidence that demonstrates the causal roles of genetic alterations of TRAF proteins in tumorigenesis within different cell types and organs. Taken together, the information presented in this review provides a rationale for the development of therapeutic strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in different human cancers by precision medicine.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Angeli M. Lu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Haiyan Shan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianjun Feng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Fisheries College of Jimei University, Xiamen, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
28
|
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, Xie P. Genetic Alterations of TRAF Proteins in Human Cancers. Front Immunol 2018. [PMID: 30294322 DOI: 10.3389/fimmu.2018.02111/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic adaptor proteins regulate the signal transduction pathways of a variety of receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and cytokine receptors. TRAF-dependent signaling pathways participate in a diverse array of important cellular processes, including the survival, proliferation, differentiation, and activation of different cell types. Many of these TRAF-dependent signaling pathways have been implicated in cancer pathogenesis. Here we analyze the current evidence of genetic alterations of TRAF molecules available from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) as well as the published literature, including copy number variations and mutation landscape of TRAFs in various human cancers. Such analyses reveal that both gain- and loss-of-function genetic alterations of different TRAF proteins are commonly present in a number of human cancers. These include pancreatic cancer, meningioma, breast cancer, prostate cancer, lung cancer, liver cancer, head and neck cancer, stomach cancer, colon cancer, bladder cancer, uterine cancer, melanoma, sarcoma, and B cell malignancies, among others. Furthermore, we summarize the key in vivo and in vitro evidence that demonstrates the causal roles of genetic alterations of TRAF proteins in tumorigenesis within different cell types and organs. Taken together, the information presented in this review provides a rationale for the development of therapeutic strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in different human cancers by precision medicine.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Angeli M Lu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Haiyan Shan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianjun Feng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Fisheries College of Jimei University, Xiamen, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|