1
|
Bose M, Singh MI, Frödin M, Ejlertsen B, Sørensen CS, Rossing M. Precision screening facilitates clinical classification of BRCA2-PALB2 binding variants with benign and pathogenic functional effects. J Clin Invest 2025; 135:e181879. [PMID: 40232841 PMCID: PMC12165785 DOI: 10.1172/jci181879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/11/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUNDDecoding the clinical impact of genetic variants is particularly important for precision medicine in cancer. Genetic screening of mainly patients with breast and ovarian cancer has identified numerous BRCA1/BRCA2 variants of uncertain significance (VUS) that remain unclassified owing to a lack of pedigrees and functional data.METHODSHere, we used CRISPR-Select - a technology that exploits unique inbuilt controls at the endogenous locus - to assess 54 rare ClinVar VUS located in the PALB2-binding domain of BRCA2. Variant deleteriousness was examined in the absence and presence of PARPi, cisplatin, or mitomycin C.RESULTSMarked functional deficiency was observed for variants in the exon 2 donor splice region (A22 = c.66A>C, A22 = c.66A>G, A22 = c.66A>T, and D23H) and Trp31 aa (W31G, W31L, and W31C), both critical for BRCA2 function. Moreover, T10K and G25R resulted in an intermediate phenotype, suggesting these variants are hypomorphic in nature. Combining our functional results with the latest ClinGen BRCA1/2 Variant Curation Expert Panel recommendations, we classified 49 of the 54 VUS as either likely benign (n = 45) or likely pathogenic (n = 4).CONCLUSIONTherefore, CRISPR-Select is an important tool for efficient variant clinical classification. Application of this technology in the future will ultimately improve patient care.FUNDINGDanish Cancer Society, Novo Nordisk Foundation, Sygeforsikring Danmark, Børnecancerfonden, Neye-Fonden, Roche, Novartis, Pfizer, AstraZeneca, MSD, and Daiichi Sankyo Europe GmbH.
Collapse
Affiliation(s)
- Muthiah Bose
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Manika Indrajit Singh
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Frödin
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bent Ejlertsen
- Department of Clinical Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus S. Sørensen
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Guan X, Liao S, Zhang F, Zhu Q, Qiu H, Qin L, Zhang X. Identifying the germline variation spectrum and predisposition genes in Chinese ovarian cancer using whole exome sequencing. BMC Cancer 2025; 25:924. [PMID: 40405108 PMCID: PMC12100841 DOI: 10.1186/s12885-025-14302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 05/09/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) allows for the simultaneous sequencing of multiple cancer predisposition genes. We assessed the frequency and spectrum of germline variations in individuals with ovarian cancer (OC), using whole exome sequencing (WES). METHODS A total of 92 patients with OC, with or without a family history of cancer, were consecutively recruited between May 2020 and September 2023. Germline DNA was sequenced using WES. RESULTS Among the 12 canonical OC predisposition genes recommended by the National Comprehensive Cancer Network (NCCN) guidelines, 26 patients (28.26%) were found to have 28 pathogenic or likely pathogenic variations in 5 genes, including BRCA1 (n = 13), BRCA2 (n = 8), RAD51D (n = 4), BRIP1 (n = 2), and MSH2 (n = 1). Additionally, 24 patients (26.08%) harbored variants of uncertain significance (VUS) in canonical OC predisposition genes or other putative OC predisposition genes, including 3 loss of function variation: NM_001142548.1(RAD54L): c.1825C > T (p.Arg609Ter), NM_002907.3(RECQL): c.796C > T (p.Gln266Ter), and NM_001114132.2 (NBEAL1): c.5837dup (p.Tyr1946Ter). Moreover, we found that the detection rate of predisposition genes was correlated with a family history of malignancies and a personal history of other malignancies. CONCLUSIONS Using WES, we found that 28.26% of patients with OC had germline cancer-predisposing variations. WES substantially improved the detection rates of a wide spectrum of variations in OC patients and uncovered putative predisposition genes.
Collapse
Affiliation(s)
- Xiaojing Guan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang, China
| | - Sheng Liao
- Department of Gynecology and Obstetrics, The Zhoushan Putuo District People's Hospital, Ningbo, Zhejiang, China
| | - Fenglan Zhang
- Center for Clinical Genetics and Genomics, Dian Diagnostics Group Co., Ltd, Hangzhou, Zhejiang, China
| | - Qianyuan Zhu
- Center for Clinical Genetics and Genomics, Dian Diagnostics Group Co., Ltd, Hangzhou, Zhejiang, China
| | - Hao Qiu
- Center for Clinical Genetics and Genomics, Dian Diagnostics Group Co., Ltd, Hangzhou, Zhejiang, China
| | - Lan Qin
- Center for Clinical Genetics and Genomics, Dian Diagnostics Group Co., Ltd, Hangzhou, Zhejiang, China
| | - Xiao Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zawar A, Manoj G, Nair PP, Deshpande P, Suravajhala R, Suravajhala P. Variants of uncertain significance: At the crux of diagnostic odyssey. Gene 2025; 962:149587. [PMID: 40404072 DOI: 10.1016/j.gene.2025.149587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/09/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
The variants of uncertain significance (VUS) have caught an immense interest ever since the next-generation sequencing (NGS) capture technologies spanned beyond the vast majority of inferring disease-causing mutations. On the other hand, as genetic variation is best seen in non-coding regions, interpreting the mutations at exon-intron boundaries with large numbers of VUS has gained significance. This allows VUS more interesting and augurs well for pathogenicity even as non-synonymous mutations effectively are to be included among those swaths of genomic variant pool. In this perspective, we provide how VUSs serve as an interface and crux of the diagnostic odyssey.
Collapse
Affiliation(s)
- Akshaykumar Zawar
- Bioclues.org, Hyderabad, India; Department of Life Sciences, School of Science and Mathematics, DES Pune University, Pune, Maharashtra 411004, India; GeneSpectrum Life Sciences LLP, Office No. 304, R Square, Warje, Pune, Maharashtra 411058, India.
| | - Gautham Manoj
- Faculty of Interdisciplinary Studies, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Pramod P Nair
- Department of Mathematics, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Poonam Deshpande
- Department of Life Sciences, School of Science and Mathematics, DES Pune University, Pune, Maharashtra 411004, India.
| | | | - Prashanth Suravajhala
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Rajasthan 303007, India.
| |
Collapse
|
4
|
Lauzon-Young C, Silva A, Sadikovic B. Epigenomic insights and computational advances in hematologic malignancies. Mol Cytogenet 2025; 18:9. [PMID: 40221777 PMCID: PMC11993968 DOI: 10.1186/s13039-025-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Hematologic malignancies (HMs) encompass a diverse spectrum of cancers originating from the blood, bone marrow, and lymphatic systems, with myeloid malignancies representing a significant and complex subset. This review provides a focused analysis of their classification, prevalence, and incidence, highlighting the persistent challenges posed by their intricate genetic and epigenetic landscapes in clinical diagnostics and therapeutics. The genetic basis of myeloid malignancies, including chromosomal translocations, somatic mutations, and copy number variations, is examined in detail, alongside epigenetic modifications with a specific emphasis on DNA methylation. We explore the dynamic interplay between genetic and epigenetic factors, demonstrating how these mechanisms collectively shape disease progression, therapeutic resistance, and clinical outcomes. Advances in diagnostic modalities, particularly those integrating epigenomic insights, are revolutionizing the precision diagnosis of HMs. Key approaches such as nano-based contrast agents, optical imaging, flow cytometry, circulating tumor DNA analysis, and somatic mutation testing are discussed, with particular attention to the transformative role of machine learning in epigenetic data analysis. DNA methylation episignatures have emerged as a pivotal tool, enabling the development of highly sensitive and specific diagnostic and prognostic assays that are now being adopted in clinical practice. We also review the impact of computational advancements and data integration in refining diagnostic and therapeutic strategies. By combining genomic and epigenomic profiling techniques, these innovations are accelerating biomarker discovery and clinical translation, with applications in precision oncology becoming increasingly evident. Comprehensive genomic datasets, coupled with artificial intelligence, are driving actionable insights into the biology of myeloid malignancies and facilitating the optimization of patient management strategies. Finally, this review emphasizes the translational potential of these advancements, focusing on their tangible benefits for patient care and outcomes. By synthesizing current knowledge and recent innovations, we underscore the critical role of precision medicine and epigenomic research in transforming the diagnosis and treatment of myeloid malignancies, setting the stage for ongoing advancements and broader clinical implementation.
Collapse
Affiliation(s)
- Carolyn Lauzon-Young
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Ananilia Silva
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada.
- Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
5
|
Potrony M, Morales-Romero B, Moreno L, Pastor B, Grau E, Badenas C, Villanueva-Cañas JL, Montalbán-Casafont A, Arnau-Collell C, Ramon Y Cajal T, Aragón Manrique I, Carrasco Salas P, Puig S, Aguilera P, Alonso I, Cebrecos I, González-Bosquet E, Mellado B, Ferrer-Mileo L, Rodriguez-Hernandez A, Prat A, Muñoz M, Gaba L, Adamo B, Oriola J, Sánchez A, Puig-Butillé JA. Considerations for hereditary breast and ovarian cancer syndrome molecular diagnosis: experience from the clinical practice. Breast Cancer Res Treat 2025; 210:507-519. [PMID: 39992612 DOI: 10.1007/s10549-025-07643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
PURPOSE The implementation of the next-generation sequencing (NGS) in clinical practice has improved the genetic diagnosis of Hereditary Breast and Ovarian Cancer Syndrome (HBOC). We aimed to evaluate the diagnostic outcomes of using an NGS cancer gene panel in clinical practice for patients selected based on personal and/or family history of breast, ovarian, prostate, melanoma, and other HBOC-associated cancers. METHODS The study series included 2561 consecutive Spanish individuals referred for genetic testing, comprising 2445 cancer patients and 116 healthy individuals with family history of HBOC. Eleven HBOC susceptibility genes (BRCA1, BRCA2, PALB2, ATM, CHEK2, BARD1, BRIP1, RAD51C, RAD51D, TP53, and PTEN) and three Lynch Syndrome genes (MLH1, MSH2, and MSH6) available for opportunistic testing were analyzed using a commercial Hereditary Cancer Panel and an in-house bioinformatics pipeline. RESULTS Overall, the diagnostic yield was 11.0% in cancer patients and 8.6% in healthy individuals with a family history of breast/ovarian cancer. Pathogenic variants in high-risk genes were more frequent in patients with multiple HBOC tumors and a family history of different HBOC cancers. Additionally, we diagnosed five families with Lynch syndrome through opportunistic testing. CONCLUSION Testing cancer susceptibility genes using an agnostic strategy confers a diagnostic benefit for hereditary cancer syndromes compared to phenotype-driven test, without adding complexity to the study. The analysis of healthy individuals with a family history of HBOC detects pathogenic variants in a cost-efficient percentage of cases, resulting in a good alternative strategy when the index case is unavailable.
Collapse
Affiliation(s)
- Miriam Potrony
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Blai Morales-Romero
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Lorena Moreno
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Belen Pastor
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medical Oncology, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Elia Grau
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Celia Badenas
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | | | | | | | - Teresa Ramon Y Cajal
- Department of Medical Oncology, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Isabel Aragón Manrique
- Genetic Counseling, Medical Oncology Department, Hospital Juan Ramón Jiménez, Huelva, Spain
| | - Pilar Carrasco Salas
- Genetic Unit, Clinical Analysis Department, Hospital Juan Ramón Jiménez, Huelva, Spain
| | - Susana Puig
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Paula Aguilera
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Inmaculada Alonso
- Clinic Institute of Gynecology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Isaac Cebrecos
- Clinic Institute of Gynecology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Begoña Mellado
- Uro-Oncology Unit, Medical Oncology Department, Institute of Cancer and Blood Diseases, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Laura Ferrer-Mileo
- Department of Medical Oncology, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Adela Rodriguez-Hernandez
- Department of Medical Oncology, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department Medicine, University of Barcelona, Barcelona, Spain
| | - Aleix Prat
- Department of Medical Oncology, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department Medicine, University of Barcelona, Barcelona, Spain
| | - Montserrat Muñoz
- Department of Medical Oncology, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department Medicine, University of Barcelona, Barcelona, Spain
| | - Lydia Gaba
- Department of Medical Oncology, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department Medicine, University of Barcelona, Barcelona, Spain
| | - Barbara Adamo
- Department of Medical Oncology, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department Medicine, University of Barcelona, Barcelona, Spain
| | - Josep Oriola
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Aurora Sánchez
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Joan Anton Puig-Butillé
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain.
- Molecular Biology CORE, Hospital Clínic de Barcelona, C/Villarroel, 170. Esc 5-5, 08036, Barcelona, Spain.
| |
Collapse
|
6
|
Pratiwi L, Mashudi FH, Ningtyas MC, Sutanto H, Romadhon PZ. Genetic Profiling of Acute and Chronic Leukemia via Next-Generation Sequencing: Current Insights and Future Perspectives. Hematol Rep 2025; 17:18. [PMID: 40277842 PMCID: PMC12026831 DOI: 10.3390/hematolrep17020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Leukemia is a heterogeneous group of hematologic malignancies characterized by distinct genetic and molecular abnormalities. Advancements in genomic technologies have significantly transformed the diagnosis, prognosis, and treatment strategies for leukemia. Among these, next-generation sequencing (NGS) has emerged as a powerful tool, enabling high-resolution genomic profiling that surpasses conventional diagnostic approaches. By providing comprehensive insights into genetic mutations, clonal evolution, and resistance mechanisms, NGS has revolutionized precision medicine in leukemia management. Despite its transformative potential, the clinical integration of NGS presents challenges, including data interpretation complexities, standardization issues, and cost considerations. However, continuous advancements in sequencing platforms and bioinformatics pipelines are enhancing the reliability and accessibility of NGS in routine clinical practice. The expanding role of NGS in leukemia is paving the way for improved risk stratification, targeted therapies, and real-time disease monitoring, ultimately leading to better patient outcomes. This review highlights the impact of NGS on leukemia research and clinical applications, discussing its advantages over traditional diagnostic techniques, key sequencing approaches, and emerging challenges. As precision oncology continues to evolve, NGS is expected to play an increasingly central role in the diagnosis and management of leukemia, driving innovations in personalized medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Laras Pratiwi
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (L.P.); (F.H.M.); (M.C.N.)
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Fawzia Hanum Mashudi
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (L.P.); (F.H.M.); (M.C.N.)
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Mukti Citra Ningtyas
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (L.P.); (F.H.M.); (M.C.N.)
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (L.P.); (F.H.M.); (M.C.N.)
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Pradana Zaky Romadhon
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Internal Medicine, Airlangga University Hospital, Surabaya 60115, Indonesia
| |
Collapse
|
7
|
Fadoni J, Santos A, Amorim A, Cainé L. Sudden Cardiac Death: The Role of Molecular Autopsy with Next-Generation Sequencing. Diagnostics (Basel) 2025; 15:460. [PMID: 40002611 PMCID: PMC11854515 DOI: 10.3390/diagnostics15040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Molecular autopsy is a term employed to describe the investigation of the cause of death through the analysis of genetic information using biological samples collected post-mortem. Its utility becomes evident in situations where conventional medico-legal autopsy methods are not able to identify the cause of death, i.e., in sudden cardiac death (SCD) cases in young individuals, where deaths are commonly due to genetic cardiac conditions, such as cardiomyopathies and channelopathies. The recent advancement in high-throughput sequencing techniques, such as next-generation sequencing (NGS), has allowed the investigation of a high number of genomic regions in a more cost-effective and faster approach. Unlike traditional sequencing methods, which can only sequence one DNA fragment at a time, NGS can sequence millions of short polynucleotide fragments simultaneously. This parallel approach reduces both the time and cost required to generate large-scale genomic data, making it a useful tool for applications ranging from basic research to molecular autopsy. In the forensic context, by enabling the examination of multiple genes or entire exomes and genomes, NGS enhances the accuracy and depth of genetic investigations, contributing to a better understanding of complex inherited diseases. However, challenges remain, such as the interpretation of variants of unknown significance (VUS), the need for standardized protocols, and the high demand for specialized bioinformatics expertise. Despite these challenges, NGS continues to offer significant promise for enhancing the precision of molecular autopsies. The goal of this review is to assess the effectiveness of contemporary advancements in molecular autopsy methodologies when applied to cases of SCD in young individuals and to present an overview of the steps involved in the analysis of NGS data and the interpretation of genetic variants.
Collapse
Affiliation(s)
- Jennifer Fadoni
- National Institute of Legal Medicine and Forensic Sciences, North Branch, 4050-167 Porto, Portugal; (J.F.)
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Agostinho Santos
- National Institute of Legal Medicine and Forensic Sciences, North Branch, 4050-167 Porto, Portugal; (J.F.)
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - António Amorim
- National Institute of Legal Medicine and Forensic Sciences, North Branch, 4050-167 Porto, Portugal; (J.F.)
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Laura Cainé
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- National Institute of Legal Medicine and Forensic Sciences, Centre Branch, 3000-548 Coimbra, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
| |
Collapse
|
8
|
Wang Y, Armendariz DA, Wang L, Zhao H, Xie S, Hon GC. Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes. Genome Biol 2025; 26:10. [PMID: 39825430 PMCID: PMC11740497 DOI: 10.1186/s13059-025-03474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Genetic studies have associated thousands of enhancers with breast cancer (BC). However, the vast majority have not been functionally characterized. Thus, it remains unclear how BC-associated enhancers contribute to cancer. RESULTS Here, we perform single-cell CRISPRi screens of 3513 regulatory elements associated with breast cancer to measure the impact of these regions on transcriptional phenotypes. Analysis of > 500,000 single-cell transcriptomes in two breast cancer cell lines shows that perturbation of BC-associated enhancers disrupts breast cancer gene programs. We observe BC-associated enhancers that directly or indirectly regulate the expression of cancer genes. We also find one-to-multiple and multiple-to-one network motifs where enhancers indirectly regulate cancer genes. Notably, multiple BC-associated enhancers indirectly regulate TP53. Comparative studies illustrate subtype specific functions between enhancers in ER + and ER - cells. Finally, we develop the pySpade package to facilitate analysis of single-cell enhancer screens. CONCLUSIONS Overall, we demonstrate that enhancers form regulatory networks that link cancer genes in the genome, providing a more comprehensive understanding of the contribution of enhancers to breast cancer development.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel A Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
9
|
Pal T, Schon KR, Astiazaran-Symonds E, Balmaña J, Foulkes WD, James P, Klugman S, Livinski AA, Mak JS, Ngeow J, Voian N, Wick MJ, Hanson H, Stewart DR, Tischkowitz M. Management of individuals with heterozygous germline pathogenic variants in ATM: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2025; 27:101243. [PMID: 39636577 DOI: 10.1016/j.gim.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE ATM germline pathogenic variants (GPVs) are associated with a moderately increased risk of female breast cancer, pancreatic cancer, and prostate cancer. Resources for managing ATM heterozygotes in clinical practice are limited. METHODS An international workgroup developed a clinical practice resource to guide management of ATM heterozygotes using peer-reviewed publications and expert opinion. RESULTS Although ATM is a moderate (intermediate) penetrance gene, cancer risks may be considered as a continuous variable, influenced by family history and other modifiers. ATM GPV heterozygotes should generally be offered enhanced breast surveillance according to their personalized risk estimate and country-specific guidelines and, generally, risk-reducing mastectomy is not recommended. Prostate cancer surveillance should be considered. Pancreatic cancer surveillance should be considered based on assessment of family history, ideally as part of a clinical trial, with existence of country-specific guidelines. For ATM GPV heterozygotes who develop cancer, radiation therapy decisions should not be influenced by the genetic result. Although poly-adenosine diphosphate ribose polymerase inhibitors are licensed for use in metastatic castration-resistant prostate cancer and ATM GPVs, the evidence-base is currently weak. CONCLUSION Systematic prospective data collection is needed to establish the spectrum of ATM-associated cancer and determine the outlines of surveillance, response to cancer treatment, and survival.
Collapse
Affiliation(s)
- Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Katherine R Schon
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Medical Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - William D Foulkes
- Departments of Human Genetics, Oncology and Medicine, McGill University, Montréal, Québec, Canada
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Susan Klugman
- Division of Reproductive & Medical Genetics, Department of Obstetrics and Gynecology and Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Alicia A Livinski
- National Institutes of Health Library, Office of Research Services, OD, NIH, Bethesda, MD
| | - Julie S Mak
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Nicoleta Voian
- Providence Genetic Risk Clinic, Providence Cancer Institute, Portland, OR
| | - Myra J Wick
- Departments of Obstetrics and Gynecology and Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Helen Hanson
- Peninsula Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
So MK, Jung G, Koh HJ, Park S, Jeong TD, Huh J. Reinterpretation of Conflicting ClinVar BRCA1 Missense Variants Using VarSome and CanVIG-UK Gene-Specific Guidance. Diagnostics (Basel) 2024; 14:2821. [PMID: 39767183 PMCID: PMC11675547 DOI: 10.3390/diagnostics14242821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The accurate interpretation of the BRCA1/2 variant is critical for diagnosing and treating hereditary breast and ovarian cancers. ClinVar is a widely used public database for genetic variants. Conflicting classifications of pathogenicity can occur when different submitters categorize the same genetic variant inconsistently as pathogenic (PV), likely pathogenic (LPV), likely benign (LBV), benign (BV), or a variant of uncertain significance (VUS). The conflicting ClinVar BRCA1/2 variant classifications hinder clinical decision making. We reinterpreted 450 BRCA1 missense variants with conflicting interpretations in ClinVar (accessed on 20 December 2022). METHODS VarSome and the BRCA1/BRCA2: CanVIG-UK gene-specific guidance (CanVIG-UK) classifications were compared, and the five original classifications were consolidated into three categories (PV/LPV, VUS, and BV/LBV). Consensus analysis was performed between re-extracted ClinVar data and VarSome and CanVIG-UK results. RESULTS The three-category classification of the variants resulted in an overall concordance rate of 58.9% for BRCA1 missense variant interpretation between CanVIG-UK and VarSome, with VarSome having rates of 11.3, 24.7, and 64.0% for PV/LPV, VUS, and BV/LBV classifications and CanVIG-UK having rates of 11.1, 51.6, and 37.3% for P/LPV, VUS, and BV/LBV classifications, respectively. No variants classified as PV/LPV in VarSome were classified as BV/LBV in CanVIG-UK and vice versa. By 1 May 2024, 3.8% (17/450) of these conflicting variants reached a consensus classification in ClinVar and were definitively classified (9 PV/LPV, 1 VUS, and 7 BV/LBV). CONCLUSIONS VarSome and CanVIG-UK have different features that help improve the accuracy of pathogenicity classification, highlighting the potential complementary use of both tools to support clinical decision making.
Collapse
Affiliation(s)
- Min-Kyung So
- Department of Laboratory Medicine, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea; (M.-K.S.); (S.P.); (T.-D.J.)
| | - Gaeul Jung
- Department of Genetic Counseling, Ewha Womans University College of Medicine Graduate School, Seoul 03760, Republic of Korea; (G.J.); (H.-J.K.)
| | - Hyun-Jeong Koh
- Department of Genetic Counseling, Ewha Womans University College of Medicine Graduate School, Seoul 03760, Republic of Korea; (G.J.); (H.-J.K.)
| | - Sholhui Park
- Department of Laboratory Medicine, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea; (M.-K.S.); (S.P.); (T.-D.J.)
| | - Tae-Dong Jeong
- Department of Laboratory Medicine, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea; (M.-K.S.); (S.P.); (T.-D.J.)
| | - Jungwon Huh
- Department of Laboratory Medicine, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea; (M.-K.S.); (S.P.); (T.-D.J.)
- Department of Genetic Counseling, Ewha Womans University College of Medicine Graduate School, Seoul 03760, Republic of Korea; (G.J.); (H.-J.K.)
| |
Collapse
|
11
|
Kurtovic-Kozaric A, Delalic L, Mutapcic B, Comor L, Siciliano E, Kiel MJ. Comprehensive evaluation of AlphaMissense predictions by evidence quantification for variants of uncertain significance. Front Genet 2024; 15:1487608. [PMID: 39720176 PMCID: PMC11666499 DOI: 10.3389/fgene.2024.1487608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Accurate variant classification is critical for genetic diagnosis. Variants without clear classification, known as "variants of uncertain significance" (VUS), pose a significant diagnostic challenge. This study examines AlphaMissense performance in variant classification, specifically for VUS. A systematic comparison between AlphaMissense predictions and predictions based on curated evidence according to the ACMG/AMP classification guidelines was conducted for 5845 missense variants in 59 genes associated with representative Mendelian disorders. A framework for quantifying and modeling VUS pathogenicity was used to facilitate comparison. Manual reviewing classified 5845 variants as 4085 VUS, 1576 pathogenic/likely pathogenic, and 184 benign/likely benign. Pathogenicity predictions based on AlphaMissense and ACMG guidelines were concordant for 1887 variants (1352 pathogenic, 132 benign, and 403 VUS/ambiguous). The sensitivity and specificity of AlphaMissense predictions for pathogenicity were 92% and 78%. Moreover, the quantification of VUS evidence and heatmaps weakly correlated with the AlphaMissense score. For VUS without computational evidence, incorporating AlphaMissense changed the VUS quantification for 878 variants, while 56 were reclassified as likely pathogenic. When AlphaMissense replaced existing computational evidence for all VUS, 1709 variants changed quantified criteria while 63 were reclassified as likely pathogenic. Our research suggests that the augmentation of AlphaMissense with empirical evidence may improve performance by incorporating a quantitative framework to aid in VUS classification.
Collapse
|
12
|
Ehman M, Punian J, Weymann D, Regier DA. Next-generation sequencing in oncology: challenges in economic evaluations. Expert Rev Pharmacoecon Outcomes Res 2024; 24:1115-1132. [PMID: 39096135 DOI: 10.1080/14737167.2024.2388814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Next-generation sequencing (NGS) identifies genetic variants to inform personalized treatment plans. Insufficient evidence of cost-effectiveness impedes the integration of NGS into routine cancer care. The complexity of personalized treatment challenges conventional economic evaluation. Clearly delineating challenges informs future cost-effectiveness analyses to better value and contextualize health, preference-, and equity-based outcomes. AREAS COVERED We conducted a scoping review to characterize the applied methods and outcomes of economic evaluations of NGS in oncology and identify existing challenges. We included 27 articles published since 2016 from a search of PubMed, Embase, and Web of Science. Identified challenges included defining the evaluative scope, managing evidentiary limitations including lack of causal evidence, incorporating preference-based utility, and assessing distributional and equity-based impacts. These challenges reflect the difficulty of generating high-quality clinical effectiveness and real-world evidence (RWE) for NGS-guided interventions. EXPERT OPINION Adapting methodological approaches and developing life-cycle health technology assessment (HTA) guidance using RWE is crucial for implementing NGS in oncology. Healthcare systems, decision-makers, and HTA organizations are facing a pivotal opportunity to adapt to an evolving clinical paradigm and create innovative regulatory and reimbursement processes that will enable more sustainable, equitable, and patient-oriented healthcare.
Collapse
Affiliation(s)
- Morgan Ehman
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Jesman Punian
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Deirdre Weymann
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Dean A Regier
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Bug DS, Moiseev IS, Porozov YB, Petukhova NV. Shedding light on the DICER1 mutational spectrum of uncertain significance in malignant neoplasms. Front Mol Biosci 2024; 11:1441180. [PMID: 39421690 PMCID: PMC11484276 DOI: 10.3389/fmolb.2024.1441180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
The Dicer protein is an indispensable player in such fundamental cell pathways as miRNA biogenesis and regulation of protein expression in a cell. Most recently, both germline and somatic mutations in DICER1 have been identified in diverse types of cancers, which suggests Dicer mutations can lead to cancer progression. In addition to well-known hotspot mutations in RNAase III domains, DICER1 is characterized by a wide spectrum of variants in all the functional domains; most are of uncertain significance and unstated clinical effects. Moreover, various new somatic DICER1 mutations continuously appear in cancer genome sequencing. The latest contemporary methods of variant effect prediction utilize machine learning algorithms on bulk data, yielding suboptimal correlation with biological data. Consequently, such analysis should be conducted based on the functional and structural characteristics of each protein, using a well-grounded targeted dataset rather than relying on large amounts of unsupervised data. Domains are the functional and evolutionary units of a protein; the analysis of the whole protein should be based on separate and independent examinations of each domain by their evolutionary reconstruction. Dicer represents a hallmark example of a multidomain protein, and we confirmed the phylogenetic multidomain approach being beneficial for the clinical effect prediction of Dicer variants. Because Dicer was suggested to have a putative role in hematological malignancies, we examined variants of DICER1 occurring outside the well-known hotspots of the RNase III domain in this type of cancer using phylogenetic reconstruction of individual domain history. Examined substitutions might disrupt the Dicer function, which was demonstrated by molecular dynamic simulation, where distinct structural alterations were observed for each mutation. Our approach can be utilized to study other multidomain proteins and to improve clinical effect evaluation.
Collapse
Affiliation(s)
- D. S. Bug
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
| | - I. S. Moiseev
- R. M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Yu. B. Porozov
- St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, Saint Petersburg, Russia
- Advitam Laboratory, Belgrade, Serbia
| | - N. V. Petukhova
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
| |
Collapse
|
14
|
Enjeti AK, Walker N, Fahey O, Johnston E, Legge-Wilkinson H, Ramsurrun N, Sillar J, Lincz LF, Ziolkowski A, Mossman D. Certainty in uncertainty: Determining the rate and reasons for reclassification of variants of uncertain significance in haematological malignancies. EJHAEM 2024; 5:957-963. [PMID: 39415915 PMCID: PMC11474286 DOI: 10.1002/jha2.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
Introduction Variants of uncertain significance (VUS) are commonly reported in cancer with the widespread adoption of diagnostic massive parallel sequencing. The rate of reclassification of VUS in patients with haematological malignancy is not known and we evaluated this retrospectively. We also investigated whether re-evaluating VUS in 12-24 months or greater than 24 months post-initial classification was significant. Method A retrospective audit of patients with haematological malignancies referred to the Molecular Medicine Department at the John Hunter Hospital in Newcastle, Australia between September 2018 and December 2021. Data was analysed for VUS, which was then re-analysed in standard software using current somatic variant guidelines. Proportions of VUS at baseline were compared to post-re-analysis. Results The most common diagnoses in the patient cohort (n = 944) were acute myelogenous leukaemia (41%), myelodysplastic syndrome (31%), and chronic myelomonocytic leukaemia (7%). A total of 210 VUS were re-analysed. The most common VUS were in the TET2 (20%), RUNX1 (10%) and DNMT3A (9%) genes. A total of 103 were re-analysed at 24-39 months post-initial classification and 107 variants were re-analysed between 12 and 24 months post-initial classification. Of these, 33 (16%) of VUS were re-classified at 24-39 months and 12 (11%) were re-classified at 12-24 months post-initial classification. The most common variants that were re-classified in both groups were CSF3R (32%), TET2 (29%), ASXL1 (11%) and ZRSR2 (11%). Conclusion This study on reclassification of VUS in blood cancers demonstrated that one in seven VUS were re-classified 12 months post initial classification. This can inform practice guidelines and potentially impact the prognosis, diagnosis and treatment of haematological malignancies.
Collapse
Affiliation(s)
- Anoop K Enjeti
- Department of Molecular Medicine NSW Health Pathology, John Hunter Hospital Waratah Australia
- Department of Haematology Calvary Mater Newcastle Waratah Australia
- Precision Medicine Research Program, University of Newcastle Waratah Australia
- School of Medicine and Public Health University of Newcastle Waratah Australia
- Hunter Medical Research Institute Waratah Australia
| | - Natasha Walker
- Precision Medicine Research Program, University of Newcastle Waratah Australia
| | - Oliver Fahey
- Precision Medicine Research Program, University of Newcastle Waratah Australia
| | - Elizabeth Johnston
- Precision Medicine Research Program, University of Newcastle Waratah Australia
| | | | - Nateika Ramsurrun
- Precision Medicine Research Program, University of Newcastle Waratah Australia
| | - Jonathan Sillar
- Department of Haematology Calvary Mater Newcastle Waratah Australia
- Precision Medicine Research Program, University of Newcastle Waratah Australia
- School of Medicine and Public Health University of Newcastle Waratah Australia
- Hunter Medical Research Institute Waratah Australia
| | - Lisa F Lincz
- Department of Haematology Calvary Mater Newcastle Waratah Australia
- School of Medicine and Public Health University of Newcastle Waratah Australia
| | - Andrew Ziolkowski
- Department of Molecular Medicine NSW Health Pathology, John Hunter Hospital Waratah Australia
| | - David Mossman
- Department of Molecular Medicine NSW Health Pathology, John Hunter Hospital Waratah Australia
| |
Collapse
|
15
|
Zanti M, O’Mahony DG, Parsons MT, Dorling L, Dennis J, Boddicker NJ, Chen W, Hu C, Naven M, Yiangou K, Ahearn TU, Ambrosone CB, Andrulis IL, Antoniou AC, Auer PL, Baynes C, Bodelon C, Bogdanova NV, Bojesen SE, Bolla MK, Brantley KD, Camp NJ, Campbell A, Castelao JE, Cessna MH, Chang-Claude J, Chen F, Chenevix-Trench G, NBCS Collaborators, Conroy DM, Czene K, De Nicolo A, Domchek SM, Dörk T, Dunning AM, Eliassen AH, Evans DG, Fasching PA, Figueroa JD, Flyger H, Gago-Dominguez M, García-Closas M, Glendon G, González-Neira A, Grassmann F, Hadjisavvas A, Haiman CA, Hamann U, Hart SN, Hartman MB, Ho WK, Hodge JM, Hoppe R, Howell SJ, kConFab Investigators, Jakubowska A, Khusnutdinova EK, Ko YD, Kraft P, Kristensen VN, Lacey JV, Li J, Lim GH, Lindström S, Lophatananon A, Luccarini C, Mannermaa A, Martinez ME, Mavroudis D, Milne RL, Muir K, Nathanson KL, Nuñez-Torres R, Obi N, Olson JE, Palmer JR, Panayiotidis MI, Patel AV, Pharoah PD, Polley EC, Rashid MU, Ruddy KJ, Saloustros E, Sawyer EJ, Schmidt MK, Southey MC, Tan VKM, Teo SH, Teras LR, Torres D, Trentham-Dietz A, Truong T, Vachon CM, Wang Q, Weitzel JN, Yadav S, Yao S, Zirpoli GR, Cline MS, Devilee P, et alZanti M, O’Mahony DG, Parsons MT, Dorling L, Dennis J, Boddicker NJ, Chen W, Hu C, Naven M, Yiangou K, Ahearn TU, Ambrosone CB, Andrulis IL, Antoniou AC, Auer PL, Baynes C, Bodelon C, Bogdanova NV, Bojesen SE, Bolla MK, Brantley KD, Camp NJ, Campbell A, Castelao JE, Cessna MH, Chang-Claude J, Chen F, Chenevix-Trench G, NBCS Collaborators, Conroy DM, Czene K, De Nicolo A, Domchek SM, Dörk T, Dunning AM, Eliassen AH, Evans DG, Fasching PA, Figueroa JD, Flyger H, Gago-Dominguez M, García-Closas M, Glendon G, González-Neira A, Grassmann F, Hadjisavvas A, Haiman CA, Hamann U, Hart SN, Hartman MB, Ho WK, Hodge JM, Hoppe R, Howell SJ, kConFab Investigators, Jakubowska A, Khusnutdinova EK, Ko YD, Kraft P, Kristensen VN, Lacey JV, Li J, Lim GH, Lindström S, Lophatananon A, Luccarini C, Mannermaa A, Martinez ME, Mavroudis D, Milne RL, Muir K, Nathanson KL, Nuñez-Torres R, Obi N, Olson JE, Palmer JR, Panayiotidis MI, Patel AV, Pharoah PD, Polley EC, Rashid MU, Ruddy KJ, Saloustros E, Sawyer EJ, Schmidt MK, Southey MC, Tan VKM, Teo SH, Teras LR, Torres D, Trentham-Dietz A, Truong T, Vachon CM, Wang Q, Weitzel JN, Yadav S, Yao S, Zirpoli GR, Cline MS, Devilee P, Tavtigian SV, Goldgar DE, Couch FJ, Easton DF, Spurdle AB, Michailidou K. Analysis of more than 400,000 women provides case-control evidence for BRCA1 and BRCA2 variant classification. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313051. [PMID: 39281752 PMCID: PMC11398439 DOI: 10.1101/2024.09.04.24313051] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Clinical genetic testing identifies variants causal for hereditary cancer, information that is used for risk assessment and clinical management. Unfortunately, some variants identified are of uncertain clinical significance (VUS), complicating patient management. Case-control data is one evidence type used to classify VUS, and previous findings indicate that case-control likelihood ratios (LRs) outperform odds ratios for variant classification. As an initiative of the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) Analytical Working Group we analyzed germline sequencing data of BRCA1 and BRCA2 from 96,691 female breast cancer cases and 303,925 unaffected controls from three studies: the BRIDGES study of the Breast Cancer Association Consortium, the Cancer Risk Estimates Related to Susceptibility consortium, and the UK Biobank. We observed 11,227 BRCA1 and BRCA2 variants, with 6,921 being coding, covering 23.4% of BRCA1 and BRCA2 VUS in ClinVar and 19.2% of ClinVar curated (likely) benign or pathogenic variants. Case-control LR evidence was highly consistent with ClinVar assertions for (likely) benign or pathogenic variants; exhibiting 99.1% sensitivity and 95.4% specificity for BRCA1 and 92.2% sensitivity and 86.6% specificity for BRCA2. This approach provides case-control evidence for 785 unclassified variants, that can serve as a valuable element for clinical classification.
Collapse
Affiliation(s)
- Maria Zanti
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Denise G. O’Mahony
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Michael T. Parsons
- Public Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Nicholas J. Boddicker
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Wenan Chen
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marc Naven
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kristia Yiangou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Thomas U. Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Institute, Buffalo, NY, USA
| | - Irene L. Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul L. Auer
- Division of Biostatistics, Data Science Institute and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Clara Bodelon
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Stig E. Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kristen D. Brantley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicola J. Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, The University of Edinburgh, Edinburgh, UK
| | - Jose E. Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Foundation, Complejo Hospitalario Universitario de Santiago, SERGAS, Vigo, Spain
| | - Melissa H. Cessna
- Department of Pathology and Intermountatin Biorepository, Intermountain Health, Salt Lake City, UT, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fei Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Georgia Chenevix-Trench
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - NBCS Collaborators
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Research, Vestre Viken Hospital, Drammen, Norway
- Section for Breast- and Endocrine Surgery, Department of Cancer, Division of Surgery, Cancer and Transplantation Medicine, Oslo University Hospital-Ullevål, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Division of Surgery, Cancer and Transplantation Medicine, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- National Advisory Unit on Late Effects after Cancer Treatment, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Oslo Breast Cancer Research Consortium, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Don M. Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Arcangela De Nicolo
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Susan M. Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - A. Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - D. Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jonine D. Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Manuela Gago-Dominguez
- Cancer Genetics and Epidemiology Group, Genomic Medicine Group, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Felix Grassmann
- Institute for Clinical Research, Health and Medical University, Potsdam, Germany
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Christopher A. Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven N. Hart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mikael B.A. Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City, Singapore
- Department of Surgery, National University Health System, Singapore City, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor, Malaysia
| | - James M. Hodge
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Sacha J. Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - kConFab Investigators
- Research Department, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Elza K. Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, Bonn, Germany
| | - Peter Kraft
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Vessela N. Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - James V. Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Geok Hoon Lim
- Breast Department, KK Women’s and Children’s Hospital, Singapore City, Singapore
- Duke-NUS Medical School, Singapore City, Singapore
| | - Sara Lindström
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Maria Elena Martinez
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Roger L. Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Katherine L. Nathanson
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Rocio Nuñez-Torres
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janet E. Olson
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Julie R. Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
- School of Medicine, Boston University, Boston, MA, USA
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Alpa V. Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Paul D.P. Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Eric C. Polley
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Muhammad U. Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | | | - Emmanouil Saloustros
- Division of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Elinor J. Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy’s Campus, King’s College London, London, UK
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Melissa C. Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Veronique Kiak-Mien Tan
- Duke-NUS Medical School, Singapore City, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore City, Singapore
- Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore City, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore City, Singapore
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, UM Cancer Research Institute, Kuala Lumpur, Malaysia
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Amy Trentham-Dietz
- Carbone Cancer Center and Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Thérèse Truong
- Team ‘Exposome and Heredity’, CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Celine M. Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Institute, Buffalo, NY, USA
| | - Gary R. Zirpoli
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | | | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sean V. Tavtigian
- Department of Oncological Services, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David E. Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Amanda B. Spurdle
- Public Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| |
Collapse
|
16
|
Tsai CY, Hsu JSJ, Chen PL, Wu CC. Implementing next-generation sequencing for diagnosis and management of hereditary hearing impairment: a comprehensive review. Expert Rev Mol Diagn 2024; 24:753-765. [PMID: 39194060 DOI: 10.1080/14737159.2024.2396866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Sensorineural hearing impairment (SNHI), a common childhood disorder with heterogeneous genetic causes, can lead to delayed language development and psychosocial problems. Next-generation sequencing (NGS) offers high-throughput screening and high-sensitivity detection of genetic etiologies of SNHI, enabling clinicians to make informed medical decisions, provide tailored treatments, and improve prognostic outcomes. AREAS COVERED This review covers the diverse etiologies of HHI and the utility of different NGS modalities (targeted sequencing and whole exome/genome sequencing), and includes HHI-related studies on newborn screening, genetic counseling, prognostic prediction, and personalized treatment. Challenges such as the trade-off between cost and diagnostic yield, detection of structural variants, and exploration of the non-coding genome are also highlighted. EXPERT OPINION In the current landscape of NGS-based diagnostics for HHI, there are both challenges (e.g. detection of structural variants and non-coding genome variants) and opportunities (e.g. the emergence of medical artificial intelligence tools). The authors advocate the use of technological advances such as long-read sequencing for structural variant detection, multi-omics analysis for non-coding variant exploration, and medical artificial intelligence for pathogenicity assessment and outcome prediction. By integrating these innovations into clinical practice, precision medicine in the diagnosis and management of HHI can be further improved.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jacob Shu-Jui Hsu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
17
|
Lazareva TE, Barbitoff YA, Nasykhova YA, Glotov AS. Major Causes of Conflicting Interpretations of Variant Pathogenicity in Rare Disease: A Systematic Analysis. J Pers Med 2024; 14:864. [PMID: 39202055 PMCID: PMC11355203 DOI: 10.3390/jpm14080864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
The identification of the genetic causes of inherited disorders from next-generation sequencing (NGS) data remains a complicated process, in particular due to challenges in interpretation of the vast amount of generated data and hundreds of candidate variants identified. Inconsistencies in variant classification, where genetic centers classify the same variant differently, can hinder accurate diagnoses for rare diseases. Publicly available databases that collect data on human genetic variations and their association with diseases provide ample opportunities to discover conflicts in variant interpretation worldwide. In this study, we explored patterns of variant classification discrepancies using data from ClinVar, a public archive of variant interpretations. We found that 5.7% of variants have conflicting interpretations (COIs) reported, and the vast majority of interpretation conflicts arise for variants of uncertain significance (VUS). As many as 78% of clinically relevant genes harbor variants with COIs, and genes with high COI rates tended to have more exons and longer transcripts, with a greater proportion of genes linked to several distinct conditions. The enrichment analysis of COI-enriched genes revealed that the products of these genes are involved in cardiac disorders, muscle development, and function. To improve diagnoses, we believe that specific variant interpretation rules could be developed for such genes. Additionally, our findings underscore the need for the publication of variant pathogenicity evidence and the importance of considering every variant as VUS unless proven otherwise.
Collapse
Affiliation(s)
- Tatyana E. Lazareva
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
- Bioinformatics Institute, Kantemirovskaya St. 2A, 197342 St. Petersburg, Russia
| | - Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
| |
Collapse
|
18
|
Forte G, Buonadonna AL, Fasano C, Sanese P, Cariola F, Manghisi A, Guglielmi AF, Lepore Signorile M, De Marco K, Grossi V, Disciglio V, Simone C. Clinical and Molecular Characterization of SMAD4 Splicing Variants in Patients with Juvenile Polyposis Syndrome. Int J Mol Sci 2024; 25:7939. [PMID: 39063183 PMCID: PMC11276957 DOI: 10.3390/ijms25147939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Juvenile polyposis syndrome (JPS) is an inherited autosomal dominant condition that predisposes to the development of juvenile polyps throughout the gastrointestinal (GI) tract, and it poses an increased risk of GI malignancy. Germline causative variants were identified in the SMAD4 gene in a subset (20%) of JPS cases. Most SMAD4 germline genetic variants published to date are missense, nonsense, and frameshift mutations. SMAD4 germline alterations predicted to result in aberrant splicing have rarely been reported. Here, we report two unrelated Italian families harboring two different SMAD4 intronic variants, c.424+5G>A and c.425-9A>G, which are clinically associated with colorectal cancer and/or juvenile GI polyps. In silico prediction analysis, in vitro minigene assays, and RT-PCR showed that the identified variants lead to aberrant SMAD4 splicing via the exonization of intronic nucleotides, resulting in a premature stop codon. This is expected to cause the production of a truncated protein. This study expands the landscape of SMAD4 germline genetic variants associated with GI polyposis and/or cancer. Moreover, it emphasizes the importance of the functional characterization of SMAD4 splicing variants through RNA analysis, which can provide new insights into genetic disease variant interpretation, enabling tailored genetic counseling, management, and surveillance of patients with GI polyposis and/or cancer.
Collapse
Affiliation(s)
- Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Antonia Lucia Buonadonna
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Andrea Manghisi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Anna Filomena Guglielmi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (C.F.); (P.S.); (F.C.); (A.M.); (A.F.G.); (M.L.S.); (K.D.M.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
19
|
Shukla K, Idanwekhai K, Naradikian M, Ting S, Schoenberger SP, Brunk E. Machine Learning of Three-Dimensional Protein Structures to Predict the Functional Impacts of Genome Variation. J Chem Inf Model 2024; 64:5328-5343. [PMID: 38635316 DOI: 10.1021/acs.jcim.3c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Research in the human genome sciences generates a substantial amount of genetic data for hundreds of thousands of individuals, which concomitantly increases the number of variants of unknown significance (VUS). Bioinformatic analyses can successfully reveal rare variants and variants with clear associations with disease-related phenotypes. These studies have had a significant impact on how clinical genetic screens are interpreted and how patients are stratified for treatment. There are few, if any, computational methods for variants comparable to biological activity predictions. To address this gap, we developed a machine learning method that uses protein three-dimensional structures from AlphaFold to predict how a variant will influence changes to a gene's downstream biological pathways. We trained state-of-the-art machine learning classifiers to predict which protein regions will most likely impact transcriptional activities of two proto-oncogenes, nuclear factor erythroid 2 (NFE2L2)-related factor 2 (NRF2) and c-Myc. We have identified classifiers that attain accuracies higher than 80%, which have allowed us to identify a set of key protein regions that lead to significant perturbations in c-Myc or NRF2 transcriptional pathway activities.
Collapse
Affiliation(s)
- Kriti Shukla
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Kelvin Idanwekhai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Martin Naradikian
- La Jolla Institute for Immunology, San Diego, California 92093, United States
| | - Stephanie Ting
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | | | - Elizabeth Brunk
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Integrative Program for Biological and Genome Sciences (IBGS), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| |
Collapse
|
20
|
Ahmed J, Torrado C, Chelariu A, Kim SH, Ahnert JR. Fusion Challenges in Solid Tumors: Shaping the Landscape of Cancer Care in Precision Medicine. JCO Precis Oncol 2024; 8:e2400038. [PMID: 38986029 PMCID: PMC11371109 DOI: 10.1200/po.24.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Targeting actionable fusions has emerged as a promising approach to cancer treatment. Next-generation sequencing (NGS)-based techniques have unveiled the landscape of actionable fusions in cancer. However, these approaches remain insufficient to provide optimal treatment options for patients with cancer. This article provides a comprehensive overview of the actionability and clinical development of targeted agents aimed at driver fusions. It also highlights the challenges associated with fusion testing, including the evaluation of patients with cancer who could potentially benefit from testing and devising an effective strategy. The implementation of DNA NGS for all tumor types, combined with RNA sequencing, has the potential to maximize detection while considering cost effectiveness. Herein, we also present a fusion testing strategy aimed at improving outcomes in patients with cancer.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anca Chelariu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center, German Cancer Consortium (DKTK), Munich, Germany
| | - Sun-Hee Kim
- Precision Oncology Decision Support, Khalifa Institute for Personalized Cancer Therapy, University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
21
|
Wyatt Castillo RB, Nielsen SM, Chen E, Heald B, Ellsworth RE, Esplin ED, Tomlinson GE. Disparate Rates of Germline Variants in Cancer Predisposition Genes in African American/Black Compared With Non-Hispanic White Individuals Between 2015 and 2022. JCO Precis Oncol 2024; 8:e2300715. [PMID: 38991178 PMCID: PMC12085080 DOI: 10.1200/po.23.00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE African American/Black (AA/B) individuals are under-represented in genomic databases and thus less likely to receive definitive information from germline genetic testing (GGT) than non-Hispanic White (NHW) individuals. With nearly 500,000 AA/B and NHW individuals having undergone multigene panel testing (MGPT) for hereditary cancer risk at a single commercial laboratory, to our knowledge, we present the largest study to date investigating cancer GGT results in AA/B and NHW individuals. METHODS MGPT results from a retrospective cohort of AA/B (n = 48,684) and NHW (n = 444,831) patients were evaluated. Frequencies of pathogenic germline variants (PGVs) and variants of uncertain significance (VUS) were compared between AA/B and NHW individuals. Changes in frequency of VUS over time were determined. Pearson's chi-squared test was used to compare categorical variables among groups. All significance tests were two-tailed, and P < .05 was considered statistically significant. RESULTS Between 2015 and 2022, rates of VUS decreased 2.3-fold in AA/B and 1.8-fold in NHW individuals; however, frequencies of VUS and PGV remained significantly higher (46% v 32%; P < .0001) and lower (9% v 13%; P < .0001) in AA/B compared with NHW individuals. Rates of VUS in ATM, BRCA1, BRCA2, PALB2, and PMS2 were significantly higher in AA/B compared with NHW individuals, whereas rates of PGV in BRCA1, BRCA2, and PALB2 were higher in AA/B compared with NHW individuals (P < .001). CONCLUSION Despite reductions in VUS frequencies over time, disparities in definitive GGT results persist. Increasing inclusion of AA/B populations in both testing and research will further increase knowledge of genetic variants across these racial groups.
Collapse
Affiliation(s)
- Rachel B Wyatt Castillo
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX
| | | | | | | | | | | | - Gail E Tomlinson
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
| |
Collapse
|
22
|
Thorel L, Perréard M, Florent R, Divoux J, Coffy S, Vincent A, Gaggioli C, Guasch G, Gidrol X, Weiswald LB, Poulain L. Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology. Exp Mol Med 2024; 56:1531-1551. [PMID: 38945959 PMCID: PMC11297165 DOI: 10.1038/s12276-024-01272-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 07/02/2024] Open
Abstract
Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade.
Collapse
Grants
- AP-RM-19-020 Fondation de l'Avenir pour la Recherche Médicale Appliquée (Fondation de l'Avenir)
- PJA20191209649 Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Ligue Contre le Cancer
- ORGAPRED Ligue Contre le Cancer
- 3D-Hub Canceropôle PACA (Canceropole PACA)
- Pré-néo 2019-188 Institut National Du Cancer (French National Cancer Institute)
- Conseil Régional de Haute Normandie (Upper Normandy Regional Council)
- GIS IBiSA, Cancéropôle Nord-Ouest (ORGRAFT project), the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (ORGAVADS project), the Fonds de dotation Patrick de Brou de Laurière (ORGAVADS project),and Normandy County Council (ORGATHEREX project).
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), Etat-région
- GIS IBiSA, Region Sud
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), and Normandy County Council (ORGAPRED, PLATONUS ONE, POLARIS, and EQUIP’INNOV projects).
Collapse
Affiliation(s)
- Lucie Thorel
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Marion Perréard
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Department of Head and Neck Surgery, Caen University Hospital, Caen, France
| | - Romane Florent
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Jordane Divoux
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Sophia Coffy
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Audrey Vincent
- CNRS UMR9020, INSERM U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, Lille, France
| | - Cédric Gaggioli
- CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, CNRS University Côte d'Azur, Nice, France
| | - Géraldine Guasch
- CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Aix-Marseille University, Marseille, France
| | - Xavier Gidrol
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Louis-Bastien Weiswald
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| | - Laurent Poulain
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| |
Collapse
|
23
|
Kendall T, Overi D, Guido M, Braconi C, Banales J, Cardinale V, Gaudio E, Groot Koerkamp B, Carpino G. Recommendations on maximising the clinical value of tissue in the management of patients with intrahepatic cholangiocarcinoma. JHEP Rep 2024; 6:101067. [PMID: 38699072 PMCID: PMC11060959 DOI: 10.1016/j.jhepr.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 05/05/2024] Open
Abstract
Background & Aims Patients with intrahepatic cholangiocarcinoma can now be managed with targeted therapies directed against specific molecular alterations. Consequently, tissue samples submitted to the pathology department must produce molecular information in addition to a diagnosis or, for resection specimens, staging information. The pathologist's role when evaluating these specimens has therefore changed to accommodate such personalised approaches. Methods We developed recommendations and guidance for pathologists by conducting a systematic review of existing guidance to generate candidate statements followed by an international Delphi process. Fifty-nine pathologists from 28 countries in six continents rated statements mapped to all elements of the specimen pathway from receipt in the pathology department to authorisation of the final written report. A separate survey of 'end-users' of the report including surgeons, oncologists, and gastroenterologists was undertaken to evaluate what information should be included in the written report to enable appropriate patient management. Results Forty-eight statements reached consensus for inclusion in the guidance including 10 statements about the content of the written report that also reached consensus by end-user participants. A reporting proforma to allow easy inclusion of the recommended data points was developed. Conclusions These guiding principles and recommendations provide a framework to allow pathologists reporting on patients with intrahepatic cholangiocarcinoma to maximise the informational yield of specimens required for personalised patient management. Impact and Implications Biopsy or resection lesional tissue from intrahepatic cholangiocarcinoma must yield information about the molecular abnormalities within the tumour that define suitability for personalised therapies in addition to a diagnosis and staging information. Here, we have developed international consensus guidance for pathologists that report such cases using a Delphi process that sought the views of both pathologists and 'end-users of pathology reports. The guide highlights the need to report cases in a way that preserves tissue for molecular testing and emphasises that reporting requires interpretation of histological characteristics within the broader clinical and radiological context. The guide will allow pathologists to report cases of intrahepatic cholangiocarcinoma in a uniform manner that maximises the value of the tissue received to facilitate optimal multidisciplinary patient management.
Collapse
Affiliation(s)
- Timothy Kendall
- University of Edinburgh Centre for Inflammation Research and Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Guido
- Department of Medicine, DIMED, University of Padua, Padua, Italy
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, CRUK Scotland Cancer Centre, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Jesus Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, CIBERehd and University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Young WJ, Maung S, Ahmet S, Kirkby C, Ives C, Schilling RJ, Lowe M, Lambiase PD. The frequency of gene variant reclassification and its impact on clinical management in the inherited arrhythmia clinic. Heart Rhythm 2024; 21:903-910. [PMID: 38218330 DOI: 10.1016/j.hrthm.2024.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Genetic testing in the inherited arrhythmia clinic informs risk stratification, clinical management, and family screening. Periodic review of variant classification is recommended as supporting evidence accrues over time. However, there is limited reporting of real-world data on the frequency and impact of variant reclassification. OBJECTIVE The purpose of this study was to determine the burden of variant reclassification in our inherited arrhythmia clinic and the impact on clinical management. METHODS Genetic testing reports for patients referred to our clinic from 2004-2020 were reviewed. Reported variants were reinvestigated using ClinVar, VarSome, and a literature review. Classification was updated using the American College of Medical Genetics and Genomics (ACMG) criteria and tested for association with arrhythmic events and modification of medical management. RESULTS We identified 517 patients (median age 37 years) who underwent gene panel testing. A variant of uncertain significance (VUS) was reported for 94 patients (18.2%) and more commonly identified when using large gene panels (P <.001). A total of 28 of 87 unique VUSs (32.2%) were reclassified to pathogenic/likely pathogenic (n = 11) or benign/likely benign (n = 17). Of 138 originally reported pathogenic variants, 7 (5.1%) lacked support using ACMG criteria. Variant reclassification was not associated with arrhythmic events; however, it did impact genotype-specific counseling and future therapeutic options. CONCLUSION In our large real-world patient cohort, we identify a clinically important proportion of both pathogenic variants and VUSs with evidence for reclassification. These findings highlight the need for informed pretest counseling, a regular structured review of variants reported in genetic testing, and the potential benefits to patients for supporting genotype-guided therapy.
Collapse
Affiliation(s)
- William J Young
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Centre for Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London, United Kingdom
| | - Soe Maung
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Selda Ahmet
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Claire Kirkby
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Charlotte Ives
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | | | - Martin Lowe
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
25
|
Murciano-Goroff YR, Uppal M, Chen M, Harada G, Schram AM. Basket Trials: Past, Present, and Future. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:59-80. [PMID: 38938274 PMCID: PMC11210107 DOI: 10.1146/annurev-cancerbio-061421-012927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Large-scale tumor molecular profiling has revealed that diverse cancer histologies are driven by common pathways with unifying biomarkers that can be exploited therapeutically. Disease-agnostic basket trials have been increasingly utilized to test biomarker-driven therapies across cancer types. These trials have led to drug approvals and improved the lives of patients while simultaneously advancing our understanding of cancer biology. This review focuses on the practicalities of implementing basket trials, with an emphasis on molecularly targeted trials. We examine the biologic subtleties of genomic biomarker and patient selection, discuss previous successes in drug development facilitated by basket trials, describe certain novel targets and drugs, and emphasize practical considerations for participant recruitment and study design. This review also highlights strategies for aiding patient access to basket trials. As basket trials become more common, steps to ensure equitable implementation of these studies will be critical for molecularly targeted drug development.
Collapse
Affiliation(s)
| | - Manik Uppal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Monica Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guilherme Harada
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
26
|
Al-Saei O, Malka S, Owen N, Aliyev E, Vempalli FR, Ocieczek P, Al-Khathlan B, Fakhro K, Moosajee M. Increasing the diagnostic yield of childhood glaucoma cases recruited into the 100,000 Genomes Project. BMC Genomics 2024; 25:484. [PMID: 38755526 PMCID: PMC11097485 DOI: 10.1186/s12864-024-10353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.
Collapse
Affiliation(s)
- Omayma Al-Saei
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Samantha Malka
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | - Paulina Ocieczek
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | | | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
- The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
27
|
Kerkhof J, Rastin C, Levy MA, Relator R, McConkey H, Demain L, Dominguez-Garrido E, Kaat LD, Houge SD, DuPont BR, Fee T, Fletcher RS, Gokhale D, Haukanes BI, Henneman P, Hilton S, Hilton BA, Jenkinson S, Lee JA, Louie RJ, Motazacker MM, Rzasa J, Stevenson RE, Plomp A, van der Laan L, van der Smagt J, Walden KK, Banka S, Mannens M, Skinner SA, Friez MJ, Campbell C, Tedder ML, Alders M, Sadikovic B. Diagnostic utility and reporting recommendations for clinical DNA methylation episignature testing in genetically undiagnosed rare diseases. Genet Med 2024; 26:101075. [PMID: 38251460 DOI: 10.1016/j.gim.2024.101075] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
PURPOSE This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.
Collapse
Affiliation(s)
- Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Cassandra Rastin
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Leigh Demain
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sofia Douzgou Houge
- Haukeland University Hospital, Centre for Medical Genetics and Molecular Medicine, Bergen, Norway
| | | | | | | | - David Gokhale
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Bjørn Ivar Haukanes
- Haukeland University Hospital, Centre for Medical Genetics and Molecular Medicine, Bergen, Norway
| | - Peter Henneman
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Sarah Hilton
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Sarah Jenkinson
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | | | - M Mahdi Motazacker
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | | | - Astrid Plomp
- Department of Clinical Genetics, AMC, Amsterdam, The Netherlands
| | - Liselot van der Laan
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jasper van der Smagt
- Department of Genetics, Utrecht University Medical Center, Utrecht, The Netherlands
| | | | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Marcel Mannens
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | | | | | - Christopher Campbell
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Marielle Alders
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
28
|
Tsishyn M, Cia G, Hermans P, Kwasigroch J, Rooman M, Pucci F. FiTMuSiC: leveraging structural and (co)evolutionary data for protein fitness prediction. Hum Genomics 2024; 18:36. [PMID: 38627807 PMCID: PMC11020440 DOI: 10.1186/s40246-024-00605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Systematically predicting the effects of mutations on protein fitness is essential for the understanding of genetic diseases. Indeed, predictions complement experimental efforts in analyzing how variants lead to dysfunctional proteins that in turn can cause diseases. Here we present our new fitness predictor, FiTMuSiC, which leverages structural, evolutionary and coevolutionary information. We show that FiTMuSiC predicts fitness with high accuracy despite the simplicity of its underlying model: it was among the top predictors on the hydroxymethylbilane synthase (HMBS) target of the sixth round of the Critical Assessment of Genome Interpretation challenge (CAGI6) and performs as well as much more complex deep learning models such as AlphaMissense. To further demonstrate FiTMuSiC's robustness, we compared its predictions with in vitro activity data on HMBS, variant fitness data on human glucokinase (GCK), and variant deleteriousness data on HMBS and GCK. These analyses further confirm FiTMuSiC's qualities and accuracy, which compare favorably with those of other predictors. Additionally, FiTMuSiC returns two scores that separately describe the functional and structural effects of the variant, thus providing mechanistic insight into why the variant leads to fitness loss or gain. We also provide an easy-to-use webserver at https://babylone.ulb.ac.be/FiTMuSiC , which is freely available for academic use and does not require any bioinformatics expertise, which simplifies the accessibility of our tool for the entire scientific community.
Collapse
Affiliation(s)
- Matsvei Tsishyn
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium
| | - Gabriel Cia
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium
| | - Pauline Hermans
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium
| | - Jean Kwasigroch
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium.
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium.
| |
Collapse
|
29
|
Sanoguera-Miralles L, Llinares-Burguet I, Bueno-Martínez E, Ramadane-Morchadi L, Stuani C, Valenzuela-Palomo A, García-Álvarez A, Pérez-Segura P, Buratti E, de la Hoya M, Velasco-Sampedro EA. Comprehensive splicing analysis of the alternatively spliced CHEK2 exons 8 and 10 reveals three enhancer/silencer-rich regions and 38 spliceogenic variants. J Pathol 2024; 262:395-409. [PMID: 38332730 DOI: 10.1002/path.6243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Lobna Ramadane-Morchadi
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Cristiana Stuani
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
30
|
Pietka G, De Lord C, Matthias G, Cheung B, Atwal S, Furtado M, Cullis J, Grey-Davies L, Narayanan S, McGregor A, Kilner M, Bosworth J, McMullin MF, Coats T, Parcharidou A, Cavenagh J, Byrne J, Iyengar S, Mohammed K, Cross N, Hubank M, Ribeiro S, Khorashad J, Wren D, O'Connor S, Taussig D. Capture-based targeted sequencing using a T-cell control in myeloid malignancies and idiopathic cytopenias. Br J Haematol 2024; 204:1325-1334. [PMID: 38462984 DOI: 10.1111/bjh.19377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
We report on a study of next-generation sequencing in 257 patients undergoing investigations for cytopenias. We sequenced bone marrow aspirates using a target enrichment panel comprising 82 genes and used T cells from paired blood as a control. One hundred and sixty patients had idiopathic cytopenias, 81 had myeloid malignancies and 16 had lymphoid malignancies or other diagnoses. Forty-seven of the 160 patients with idiopathic cytopenias had evidence of somatic pathogenic variants consistent with clonal cytopenias. Only 39 genes of the 82 tested were mutated in the 241 patients with either idiopathic cytopenias or myeloid neoplasms. We confirm that T cells can be used as a control to distinguish between germline and somatic variants. The use of paired analysis with a T-cell control significantly reduced the time molecular scientists spent reporting compared to unpaired analysis. We identified somatic variants of uncertain significance (VUS) in a higher proportion (24%) of patients with myeloid malignancies or clonal cytopenias compared to less than 2% of patients with non-clonal cytopenias. This suggests that somatic VUS are indicators of a clonal process. Lastly, we show that blood depleted of lymphocytes can be used in place of bone marrow as a source of material for sequencing.
Collapse
Affiliation(s)
- Grzegorz Pietka
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Translational Research, Royal Marsden Hospital NHS Trust, London, UK
| | - Corinne De Lord
- Department of Haematology, St Helier Hospital, London, UK
- Department of Haematology, Royal Marsden Hospital NHS Trust, London, UK
| | - Gwynn Matthias
- Department of Haematology, Queen Alexandra Hospital, Portsmouth, UK
| | - Betty Cheung
- Department of Haematology, Croydon University Hospital, London, UK
| | - Sangeeta Atwal
- Department of Haematology, Kingston Hospital NHS Foundation Trust, London, UK
| | - Michelle Furtado
- Department of Haematology, Royal Cornwall Hospitals NHS Foundation Trust, Cornwall, Truro, UK
| | - Jonathan Cullis
- Department of Haematology, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Liz Grey-Davies
- Department of Haematology, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | | | - Andrew McGregor
- Department of Haematology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Mari Kilner
- Department of Haematology, Northumbria Healthcare NHS Foundation Trust, Tyneside, UK
| | - Jenny Bosworth
- Department of Haematology, St Helier Hospital, London, UK
- Department of Haematology, Royal Marsden Hospital NHS Trust, London, UK
| | | | - Thomas Coats
- Department of Haematology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | | | - Jamie Cavenagh
- Department of Haematology, St Bartholomew's Hospital, London, UK
| | - Jenny Byrne
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sunil Iyengar
- Department of Haematology, Royal Marsden Hospital NHS Trust, London, UK
| | - Kabir Mohammed
- Department of Statistics, Royal Marsden Hospital NHS Trust, London, UK
| | - Nicholas Cross
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Genomics Laboratory Service, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Mike Hubank
- Department of Translational Research, Royal Marsden Hospital Sutton, London, UK
- Division of Molecular Pathology, Clinical Genomics (Research), Institute of Cancer Research, London, UK
| | - Sara Ribeiro
- Department of Molecular Pathology, Royal Marsden Hospital Sutton, London, UK
| | - Jamshid Khorashad
- Department of Molecular Pathology, Royal Marsden Hospital Sutton, London, UK
| | - Dorte Wren
- Department of Molecular Pathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Simon O'Connor
- Department of Histopathology, Royal Marsden NHS Foundation Trust, London, UK
| | - David Taussig
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Haematology, Royal Marsden Hospital NHS Trust, London, UK
| |
Collapse
|
31
|
De Matteis E, Tumolo MR, Tarantino P, Ciccarese M, Grassi T, Bagordo F, De Giorgio MR, Rizzo E, Ronzino G. Prevalence and spectrum of germline BRCA1 and BRCA2 in a cohort of ovarian cancer patients from the Salento peninsula (Southern Italy): a matter of preventive health. Oncotarget 2024; 15:134-141. [PMID: 38386807 PMCID: PMC10883683 DOI: 10.18632/oncotarget.28561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVES The aim of this exploratory, descriptive study was to characterize the deleterious BRCA1 and BRCA2 variants evaluated by genetic testing in a group of Ovarian cancer patients living in the Salento peninsula (Southern Italy). METHODS From June 2014 to July 2023, patients with histologically confirmed high-grade serous carcinoma, fallopian tube, or primary peritoneal cancer who were referred to Lecce Familial Cancer Clinic were considered. BRCA-mutation genetic testing was performed on these patients. Socio-demographic data and cancer epidemiology were assessed, and Next Generation Sequencing and Sanger DNA sequencing were performed. RESULTS The median age at the diagnosis of 332 ovarian cancer patients collected was 57 years. The pedigree analyses showed that 28.6% had familial cases and 39.7% had sporadic cases. Of the 319 patients submitted to genetic testing, 29.8% were carriers of BRCA1/2 mutation, 75.8% at BRCA1 and 24.2% at BRCA2 gene. Of the 21 BRCA1 mutations, the variant c.5266dupC was the most frequent alteration (28.4%). With respect to BRCA2, 13 mutations were found and the variant c.9676delT was the most frequently recorded (6.3%). CONCLUSIONS This study reveals that the prevalence of germline mutations in the BRCA1 and BRCA2 genes was higher than reported by other studies. A broader understanding of the prevalence and role of BRCA mutations in development, response to treatment, and prognosis represents an exciting and developing area of ovarian cancer treatment and prevention.
Collapse
Affiliation(s)
| | - Maria Rosaria Tumolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Paolo Tarantino
- U.O.C. Medical Genetics, “Vito Fazzi” Hospital, Lecce, Italy
| | | | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Francesco Bagordo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Emanuele Rizzo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | | |
Collapse
|
32
|
Rosellini M, Mollica V, Marchetti A, Coluccelli S, Giunchi F, Tassinari E, Ricci C, Fiorentino M, Tallini G, De Biase D, Massari F. Chromosome 3p gene alterations as biomarkers for immunocombinations in metastatic renal cell carcinoma: A hypothesis-generating analysis. Pathol Res Pract 2024; 254:155142. [PMID: 38277752 DOI: 10.1016/j.prp.2024.155142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Identifying biomarkers for metastatic renal cell carcinoma (mRCC) is an unmet need in actual immunotherapy era. Available data regarding chromosome 3p genes (i.e., VHL, PBRM1, SETD2) mutations as potential predictors for therapy response is conflicting. We describe the impact of these mutations on clinical outcomes in mRCC patients treated with immune checkpoint inhibitor (ICI)-doublet or ICI/tyrosine kinase inhibitor (TKI) combinations. METHODS We performed a single-center retrospective analysis on mRCC patients treated with first line ICI/ICI or ICI/TKI. A multi-gene panel was used, allowing the amplification of 841 amplicons (54.93 kb, human reference sequence hg19/GRCh37) in the coding sequences of the following genes: ATM, BAP1, KDM5C, MET, MTOR, NF2, PBRM1, PIK3CA, PTEN, SETD2, SMARCB1, TP53, TSC1, TSC2, VHL. RESULTS 18 patients undergoing ICI/ICI and ICI/TKI who had tumor tissue adequate for molecular analysis were included. Histology was 100% clear cell. IMDC risk was 50% intermediate, 33.4% good, 16.6% poor. First line therapy was 89% ICI/TKI, 11% ICI/ICI. 83.3% pts (n = 15) carried genomic alterations (GA). Most common GA included VHL in 44% (n = 8; 7 pathogenic - PAT and 1 variant of unknown significance - VUS), PBRM1 in 44% (n = 8; 5 PAT and 3 VUS) and SETD2 in 33% (n = 6; 4 PAT and 2 VUS). With the limit of a small sample that did not allow proper statistical analyses, SETD2-mutated patients had lower median progression free (mPFS) and overall survival (mOS) than non-SETD2 mutated patients. Higher mPFS and mOS were shown with VHL or PBRM1 GA, especially in PBRM1 +VHL mutated pts. CONCLUSIONS Our data shows a possible negative predictive role of SETD2 GA for ICI-based therapy in RCC. Concomitant VHL and PBRM1 GA could act as a predictor for ICI/TKI efficacy. Our hypothesis-generating analysis highlights the need of an integrated evaluation of these genes as promising biomarkers in RCC. Further larger studies are required.
Collapse
Affiliation(s)
- Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Sara Coluccelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesca Giunchi
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elisa Tassinari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Costantino Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
| | - Giovanni Tallini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Dario De Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126 Bologna, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| |
Collapse
|
33
|
Chrysafi P, Jani CT, Lotz M, Al Omari O, Singh H, Stafford K, Agarwal L, Rupal A, Dar AQ, Dangelo A, Lam P. Prevalence of Variants of Uncertain Significance in Patients Undergoing Genetic Testing for Hereditary Breast and Ovarian Cancer and Lynch Syndrome. Cancers (Basel) 2023; 15:5762. [PMID: 38136308 PMCID: PMC10742236 DOI: 10.3390/cancers15245762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) and Lynch Syndrome (LS) are the most common inherited cancer syndromes identified with genetic testing. Testing, though, commonly reveals variants of uncertain significance (VUSs). This is a retrospective observational study designed to determine the prevalence of pathogenic mutations and VUSs in patients tested for HBOC and/or LS and to explore the characteristics of the VUS population. Patients 18-80 years old that met NCCN criteria for HBOC and/or LS genetic screening were tested between 2006 and 2020 at Mount Auburn Hospital in Cambridge, Massachusetts. A total of 663 patients were included in the study, with a mean age of 50 years old and 90% being females. Pathogenic mutations were identified in 12.5% and VUSs in 28.3%. VUS prevalence was associated with race (p-value = 0.019), being particularly higher in Asian populations. Patients with a personal history of breast cancer or family history of breast or ovarian cancer were more likely to have a VUS (personal breast: OR: 1.55; CI: 1.08-2.25; family breast: OR: 1.68; CI: 1.08-2.60, family ovarian OR: 2.29; CI: 1.04-5.45). In conclusion, VUSs appear to be detected in almost one third patients tested for cancer genetic syndromes, and thus future work is warranted to determine their significance in cancer development.
Collapse
Affiliation(s)
- Pavlina Chrysafi
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | - Chinmay T. Jani
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA
| | - Margaret Lotz
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Division of Hematology and Oncology, Mount Auburn Hospital, Cambridge, MA 02138, USA
| | - Omar Al Omari
- Department of Pulmonary and Critical Care, Temple University, Philadelphia, PA 19122, USA;
| | - Harpreet Singh
- Department of Pulmonary and Critical Care, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Katherine Stafford
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | - Lipisha Agarwal
- Department of Pulmonary and Critical Care, University of Vermont, Burlington, VT 05405, USA;
| | - Arashdeep Rupal
- Department of Pulmonary and Critical Care, University of South Florida, Tampa, FL 33620, USA;
| | - Abdul Qadir Dar
- Department of Medicine, Lahey Medical Center, Burlington, MA 01805, USA;
| | - Abby Dangelo
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Division of Hematology and Oncology, Mount Auburn Hospital, Cambridge, MA 02138, USA
| | - Prudence Lam
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
34
|
Pinto EM, Ribeiro EMSF, Wang J, Phillips AH, Kriwacki RW, Zambetti GP. Clinical and functional analysis of the germline TP53 p.K164E acetylation site variant. Cold Spring Harb Mol Case Stud 2023; 9:a006290. [PMID: 38050059 PMCID: PMC10815290 DOI: 10.1101/mcs.a006290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
TP53 plays a critical role as a tumor suppressor by controlling cell cycle progression, DNA repair, and apoptosis. Post-translational modifications such as acetylation of specific lysine residues in the DNA binding and carboxy-terminus regulatory domains modulate its tumor suppressor activities. In this study, we addressed the functional consequences of the germline TP53 p.K164E (NM_000546.5: c.490A>G) variant identified in a patient with early-onset breast cancer and a significant family history of cancer. K164 is a conserved residue located in the L2 loop of the p53 DNA binding domain that is post-translationally modified by acetylation. In silico, in vitro, and in vivo analyses demonstrated that the glutamate substitution at K164 marginally destabilizes the p53 protein structure but significantly impairs sequence-specific DNA binding, transactivation, and tumor cell growth inhibition. Although p.K164E is currently considered a variant of unknown significance by different clinical genetic testing laboratories, the clinical and laboratory-based findings presented here provide strong evidence to reclassify TP53 p.K164E as a likely pathogenic variant.
Collapse
Affiliation(s)
- Emilia Modolo Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
| | - Enilze M S F Ribeiro
- Programa de Pós-graduação em Genética, Universidade Federal do Paraná, Curitiba, Paraná, 81531-980, Brazil;
| | - Jinling Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
| |
Collapse
|
35
|
Basho R, Chase MC. Genetic Testing in Metastatic Breast Cancer in the USA: A Podcast. Oncol Ther 2023; 11:433-443. [PMID: 37707712 PMCID: PMC10673788 DOI: 10.1007/s40487-023-00243-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023] Open
Abstract
This podcast highlights the importance of genetic testing in patients with metastatic breast cancer, with a specific focus on germline or inherited breast cancer susceptibility gene (BRCA) mutations. In the USA, national guidelines recommend that all patients with recurrent or metastatic breast cancer should be offered genetic testing for germline breast cancer susceptibility gene 1 or 2 (BRCA1 or 2) mutations to identify patients potentially suitable for treatment with a poly(ADP-ribose) polymerase inhibitor. However, a retrospective study indicated that only 43% of patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer who may be eligible for genetic testing have undergone germline BRCA1 or 2 testing. Therefore, a large national effort is required to offer genetic testing to more patients with recurrent or metastatic breast cancer. The aim of this podcast is to provide physicians with information to support the early engagement of patients in discussions about genetic testing, and guidance on how to manage patient concerns about the potential implications of testing. Here, a healthcare professional discusses germline genetic testing with a patient advocate and answers questions regarding the importance of testing in patients with metastatic breast cancer. Furthermore, the authors discuss what it means to receive a positive or negative result for a germline BRCA mutation and the impact this may have on the patient and their family members. Overall, the authors emphasize the importance of healthcare professionals providing every patient with metastatic breast cancer with the relevant information about genetic testing so that patients can make informed decisions. Podcast Audio and Infographic available for this article.Podcast Audio and Infographic available for this article.
Collapse
Affiliation(s)
- Reva Basho
- The Lawrence J. Ellison Institute for Transformative Medicine, 12414 Exposition Blvd, Los Angeles, CA, 90064, USA.
| | | |
Collapse
|
36
|
Militello AM, Orsi G, Cavaliere A, Niger M, Avallone A, Salvatore L, Tortora G, Rapposelli IG, Giordano G, Noventa S, Giommoni E, Bozzarelli S, Macchini M, Peretti U, Procaccio L, Puccini A, Cascinu S, Montagna C, Milella M, Reni M. Clinical outcomes and response to chemotherapy in a cohort of pancreatic cancer patients with germline variants of unknown significance (VUS) in BRCA1 and BRCA2 genes. Cancer Chemother Pharmacol 2023; 92:501-510. [PMID: 37725113 DOI: 10.1007/s00280-023-04585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE The clinical outcome and the efficacy of chemotherapy in pancreatic cancer patients with BRCA1/2 Variants of Unknown Significance (VUS) is unknown. We explored the effects of chemotherapy with or without Platinum in non metastatic and metastatic pancreatic cancer patients with BRCA1/2 VUS. METHODS A retrospective analysis of non-metastatic or metastatic pancreatic cancer patients with gBRCA1/2 VUS treated in 13 Italian centers between November 2015 and December 2020 was performed. All patients were assessed for toxicity and RECIST 1.1 response. Metastatic patients were evaluated for survival outcome. RESULTS 30 pancreatic cancer patients with gBRCA1/2 VUS were considered: 20 were M+ and 10 were non-M+. Pl-CT was recommended to 16 patients: 10 M+ (6 FOLFIRINOX and 4 PAXG) and 6 non-M+ (3 FOLFIRINOX and 3 PAXG); 11 patients received Nabpaclitaxel-Gemcitabine (AG; 8 M+) and 3 patients (2 M+) were treated with Gemcitabine (G). The RECIST 1.1 response rate was 27% for AG and 44% for Pl-CT (22% for (m) FOLFIRINOX and 71% PAXG). 1 year Progression-Free Survival was 37.5% for patients treated with AG and 33% in the Pl-CT subgroup. Median Overall Survival (OS) was 23.5 months for patients treated with AG and 14 months for the Pl-CT subgroup. 1 Year and 2 Year OS were numerically better for AG (1 Year OS: 75% vs 60% and 2 Year OS: 50% and 20% in AG and Pl-CT subgroups, respectively) as well. CONCLUSIONS Pl-CT does not seem to be associated with a better outcome compared to AG chemotherapy in PDAC patients with BRCA 1/2 VUS.
Collapse
Affiliation(s)
- Anna Maria Militello
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Cavaliere
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS Candiolo, Candiolo, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Antonio Avallone
- Biologia Cellulare e Bioterapie, Istituto Nazionale per lo Studio e la Cura dei Tumori ''Fondazione Giovanni Pascale'' - IRCCS, Naples, Italy
| | - Lisa Salvatore
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ''Dino Amadori'', Meldola, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Riuniti, Foggia, Italy
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Silvia Noventa
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elisa Giommoni
- Medical Oncology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Silvia Bozzarelli
- Department of Medical Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Procaccio
- Medical Oncology 1 Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Alberto Puccini
- University of Genoa, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Montagna
- Department of Radiation Oncology and Genomic Instability and Cancer Genetics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy.
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
37
|
Watts G, Newson AJ. Is there a duty to routinely reinterpret genomic variant classifications? JOURNAL OF MEDICAL ETHICS 2023; 49:808-814. [PMID: 37208157 DOI: 10.1136/jme-2022-108864] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/09/2023] [Indexed: 05/21/2023]
Abstract
Multiple studies show that periodic reanalysis of genomic test results held by clinical laboratories delivers significant increases in overall diagnostic yield. However, while there is a widespread consensus that implementing routine reanalysis procedures is highly desirable, there is an equally widespread understanding that routine reanalysis of individual patient results is not presently feasible to perform for all patients. Instead, researchers, geneticists and ethicists are beginning to turn their attention to one part of reanalysis-reinterpretation of previously classified variants-as a means of achieving similar ends to large-scale individual reanalysis but in a more sustainable manner. This has led some to ask whether the responsible implementation of genomics in healthcare requires that diagnostic laboratories routinely reinterpret their genomic variant classifications and reissue patient reports in the case of materially relevant changes. In this paper, we set out the nature and scope of any such obligation, and analyse some of the main ethical considerations pertaining to a putative duty to reinterpret. We discern and assess three potential outcomes of reinterpretation-upgrades, downgrades and regrades-in light of ongoing duties of care, systemic error risks and diagnostic equity. We argue against the existence of any general duty to reinterpret genomic variant classifications, yet we contend that a suitably restricted duty to reinterpret ought to be recognised, and that the responsible implementation of genomics into healthcare must take this into account.
Collapse
Affiliation(s)
- Gabriel Watts
- Faculty of Medicine and Health, Sydney School of Public Health, Sydney Health Ethics, The University of Sydney, Sydney, New South Wales, Australia
| | - Ainsley J Newson
- Faculty of Medicine and Health, Sydney School of Public Health, Sydney Health Ethics, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Wang Y, Armendariz D, Wang L, Zhao H, Xie S, Hon GC. Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567880. [PMID: 38045327 PMCID: PMC10690208 DOI: 10.1101/2023.11.20.567880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genetic studies have associated thousands of enhancers with breast cancer. However, the vast majority have not been functionally characterized. Thus, it remains unclear how variant-associated enhancers contribute to cancer. Here, we perform single-cell CRISPRi screens of 3,512 regulatory elements associated with breast cancer to measure the impact of these regions on transcriptional phenotypes. Analysis of >500,000 single-cell transcriptomes in two breast cancer cell lines shows that perturbation of variant-associated enhancers disrupts breast cancer gene programs. We observe variant-associated enhancers that directly or indirectly regulate the expression of cancer genes. We also find one-to-multiple and multiple-to-one network motifs where enhancers indirectly regulate cancer genes. Notably, multiple variant-associated enhancers indirectly regulate TP53. Comparative studies illustrate sub-type specific functions between enhancers in ER+ and ER- cells. Finally, we developed the pySpade package to facilitate analysis of single-cell enhancer screens. Overall, we demonstrate that enhancers form regulatory networks that link cancer genes in the genome, providing a more comprehensive understanding of the contribution of enhancers to breast cancer development.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | | | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Current address: Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
39
|
Dilliott AA, Kwon S, Rouleau GA, Iqbal S, Farhan SMK. Characterizing proteomic and transcriptomic features of missense variants in amyotrophic lateral sclerosis genes. Brain 2023; 146:4608-4621. [PMID: 37394881 PMCID: PMC10629772 DOI: 10.1093/brain/awad224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023] Open
Abstract
Within recent years, there has been a growing number of genes associated with amyotrophic lateral sclerosis (ALS), resulting in an increasing number of novel variants, particularly missense variants, many of which are of unknown clinical significance. Here, we leverage the sequencing efforts of the ALS Knowledge Portal (3864 individuals with ALS and 7839 controls) and Project MinE ALS Sequencing Consortium (4366 individuals with ALS and 1832 controls) to perform proteomic and transcriptomic characterization of missense variants in 24 ALS-associated genes. The two sequencing datasets were interrogated for missense variants in the 24 genes, and variants were annotated with gnomAD minor allele frequencies, ClinVar pathogenicity classifications, protein sequence features including Uniprot functional site annotations, and PhosphoSitePlus post-translational modification site annotations, structural features from AlphaFold predicted monomeric 3D structures, and transcriptomic expression levels from Genotype-Tissue Expression. We then applied missense variant enrichment and gene-burden testing following binning of variation based on the selected proteomic and transcriptomic features to identify those most relevant to pathogenicity in ALS-associated genes. Using predicted human protein structures from AlphaFold, we determined that missense variants carried by individuals with ALS were significantly enriched in β-sheets and α-helices, as well as in core, buried or moderately buried regions. At the same time, we identified that hydrophobic amino acid residues, compositionally biased protein regions and regions of interest are predominantly enriched in missense variants carried by individuals with ALS. Assessment of expression level based on transcriptomics also revealed enrichment of variants of high and medium expression across all tissues and within the brain. We further explored enriched features of interest using burden analyses and identified individual genes were indeed driving certain enrichment signals. A case study is presented for SOD1 to demonstrate proof-of-concept of how enriched features may aid in defining variant pathogenicity. Our results present proteomic and transcriptomic features that are important indicators of missense variant pathogenicity in ALS and are distinct from features associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Allison A Dilliott
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Seulki Kwon
- The Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Sumaiya Iqbal
- The Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sali M K Farhan
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Kelly P, Mahon S, Friend P. When Germline Genetic Testing Results Are Unclear: Highlighting Variants of Uncertain Significance. J Adv Pract Oncol 2023; 14:631-638. [PMID: 38196669 PMCID: PMC10715289 DOI: 10.6004/jadpro.2023.14.7.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
With the advent of high-throughput next-generation sequencing (NGS) and multigene panel testing, genetic testing and interpretations have become increasingly complex. Specifically, reports demonstrating "variant of uncertain significance" (VUS) present interpretative challenges. Misinterpretation of a VUS may result in clinical harm, emotional distress for patients and family members, and potential health-care provider liability. The following article and deidentified case study illustrate how a lack of health-care provider and patient understanding of a germline VUS resulted in a negative patient outcome and unnecessary surgery.
Collapse
Affiliation(s)
| | | | - Patricia Friend
- Marcella Niehoff School of Nursing, Loyola University Chicago, Illinois
| |
Collapse
|
41
|
Pan YE, Hood A, Ahmad H, Altwerger G. Real-World Efficacy and Safety of PARP Inhibitors in Recurrent Ovarian Cancer Patients With Somatic BRCA and Other Homologous Recombination Gene Mutations. Ann Pharmacother 2023; 57:1162-1171. [PMID: 36651235 PMCID: PMC11062080 DOI: 10.1177/10600280221149136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Real-world data regarding the use of poly (ADP-ribose) polymerase (PARP) inhibitors in recurrent ovarian cancer patients with non-BRCA homologous recombination (HR) mutations or somatic BRCA mutations are lacking. OBJECTIVE The purpose of our study is to evaluate the response rate, duration of treatment, time to progression (TTP), and toxicities of olaparib, niraparib, and rucaparib in somatic BRCAm and non-BRCA HR-mutated patients. METHODS This was a retrospective study using the electronic medical record to identify patients across our health system who were initiated on a PARP inhibitor for ovarian cancer between December 2014 and December 2019. Patients were screened for the presence of a somatic BRCA1/2 mutation or a mutation in non-BRCA HR genes. Data were collected via chart review. RESULTS For the efficacy analysis, 8 patients had somatic BRCA mutations and 12 patients had HR mutations. The overall response rate (ORR) was 50% for BRCA-mutated (BRCAm) patients and 9.1% for non-BRCA HR-mutated (non-BRCA HRm) patients. 72.7% of patients with non-BRCA HR mutations had stable disease. The duration of therapy ranged from 2 to 66 months. The median TTP was 9.5 months. Overall, 66.7% of patients in the entire cohort started on a reduced dose of PARP inhibitor. Dose reductions due to AEs were observed in 52.4% of patients, while AEs requiring treatment interruption occurred in 61.9%. CONCLUSION AND RELEVANCE We found that PARP inhibitors provided stable disease in a high proportion of recurrent ovarian cancer patients who had pathogenic HR mutations, with toxicities comparable to major trials. Patients with non-BRCA HR and somatic BRCA mutations could benefit from PARP inhibitors.
Collapse
Affiliation(s)
- Yifang Eva Pan
- Smilow Cancer Hospital, Yale New Haven Health, New Haven, CT, USA
| | - Annette Hood
- Smilow Cancer Hospital, Yale New Haven Health, New Haven, CT, USA
| | - Hiba Ahmad
- University of Colorado Hospital, Aurora, CO, USA
| | | |
Collapse
|
42
|
Zanti M, Loizidou MA, O’Mahony DG, Dorling L, Dennis J, Devilee P, Easton DF, Panayiotidis MI, Hadjisavvas A, Michailidou K. Multi-gene panel testing and association analysis in Cypriot breast cancer cases and controls. Front Genet 2023; 14:1248492. [PMID: 37790698 PMCID: PMC10544326 DOI: 10.3389/fgene.2023.1248492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction: It is estimated that around 5% of breast cancer cases carry pathogenic variants in established breast cancer susceptibility genes. However, the underlying prevalence and gene-specific population risk estimates in Cyprus are currently unknown. Methods: We performed sequencing on a population-based case-control study of 990 breast cancer cases and 1094 controls from Cyprus using the BRIDGES sequencing panel. Analyses were conducted separately for protein-truncating and rare missense variants. Results: Protein-truncating variants in established breast cancer susceptibility genes were detected in 3.54% of cases and 0.37% of controls. Protein-truncating variants in BRCA2 and ATM were associated with a high risk of breast cancer, whereas PTVs in BRCA1 and PALB2 were associated with a high risk of estrogen receptor (ER)-negative disease. Among participants with a family history of breast cancer, PTVs in ATM, BRCA2, BRCA1, PALB2 and RAD50 were associated with an increased risk of breast cancer. Furthermore, an additional 19.70% of cases and 17.18% of controls had at least one rare missense variant in established breast cancer susceptibility genes. For BRCA1 and PALB2, rare missense variants were associated with an increased risk of overall and triple-negative breast cancer, respectively. Rare missense variants in BRCA1, ATM, CHEK2 and PALB2 domains, were associated with increased risk of disease subtypes. Conclusion: This study provides population-based prevalence and gene-specific risk estimates for protein-truncating and rare missense variants. These results may have important clinical implications for women who undergo genetic testing and be pivotal for a substantial proportion of breast cancer patients in Cyprus.
Collapse
Affiliation(s)
- Maria Zanti
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria A. Loizidou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denise G. O’Mahony
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leila Dorling
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Douglas F. Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Mintoff D, Pace NP, Borg I. NCSTN In-Frame Deletion in Maltese Patients With Hidradenitis Suppurativa. JAMA Dermatol 2023; 159:939-944. [PMID: 37494055 PMCID: PMC10372757 DOI: 10.1001/jamadermatol.2023.2227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/19/2023] [Indexed: 07/27/2023]
Abstract
Importance Hidradenitis suppurativa (HS) is a complex trait that has a monogenic etiology in a subset of patients. Variation in genes that encode proteins of the γ secretase complex, particularly NCSTN, account for few patients who exhibit familial forms of HS. Thus far, extensive genotype-phenotype correlations have been lacking. Objective To establish the prevalence of the NCSTN:c.671_682del variant and explore potential genotype-phenotype associations in an ethnically Maltese HS cohort. Design, Setting, and Participants This cross-sectional study conducted from December 2021 to September 2022 included patients 18 years or older with a diagnosis of HS as defined by recurrent nodules, abscesses, and/or draining tunnels in typical (axilla, breast, groin, buttock, thighs, and inframammary folds) and less typical (scalp, ear pinnae, neck, arms, antecubital fossae) sites who were recruited from the sole national dermatology reference center servicing the Maltese archipelago. Clinical examination and targeted genetic analysis for an NCSTN deletion that was originally identified through whole-exome sequencing in a family with multigenerational disease were performed. Exposure Recruited patients were phenotyped and genotyped for the NCSTN:c.671_682del variant. Main Outcome and Measures To determine the prevalence of the NCSTN:c.671_682del variant and establish possible genotype-phenotype associations in the ethnically Maltese HS cohort. Results A total of 113 patients with HS (56 women [49.6%]) met the inclusion criteria and were enrolled in this study. The median age of disease onset was 18 years (range, 7-62 years), and the median International Hidradenitis Suppurativa Severity Score System score was 4.39 (range, 1.0-64.0). The NCSTN variant was identified in the heterozygous state in 14 patients (12.4%) from 5 unrelated, nonconsanguineous families of Maltese ethnicity. The variant was not identified in an ethnically matched reference genomic data set of disease-free individuals. Variant carriers manifested HS symptoms earlier and were more likely to exhibit a distinctive HS phenotype, which was characterized by involvement of the scalp, neck, torso, and antecubital fossae. Despite manifesting similar clinical disease severity, variant carriers were more likely to require treatment with adalimumab. Conclusions and Relevance The results of this cross-sectional study suggest that monogenic variation in NCSTN is associated with HS in a subset of patients who have a distinct, atypical phenotype.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
| | - Nikolai Paul Pace
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Isabella Borg
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Medical Genetics Section, Department of Pathology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
44
|
Raidt J, Loges NT, Olbrich H, Wallmeier J, Pennekamp P, Omran H. Primary ciliary dyskinesia. Presse Med 2023; 52:104171. [PMID: 37516247 DOI: 10.1016/j.lpm.2023.104171] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Primary ciliary dyskinesia (PCD, ORPHA:244) is a group of rare genetic disorders characterized by dysfunction of motile cilia. It is phenotypically and genetically heterogeneous, with more than 50 genes involved. Thanks to genetic, clinical, and functional characterization, immense progress has been made in the understanding and diagnosis of PCD. Nevertheless, it is underdiagnosed due to the heterogeneous phenotype and complexity of diagnosis. This review aims to help clinicians navigate this heterogeneous group of diseases. Here, we describe the broad spectrum of phenotypes associated with PCD and address pitfalls and difficult-to-interpret findings to avoid misinterpretation. METHOD Review of literature CONCLUSION: PCD diagnosis is complex and requires integration of history, clinical picture, imaging, functional and structural analysis of motile cilia and, if available, genetic analysis to make a definitive diagnosis. It is critical that we continue to expand our knowledge of this group of rare disorders to improve the identification of PCD patients and to develop evidence-based therapeutic approaches.
Collapse
Affiliation(s)
- Johanna Raidt
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
45
|
Bandini E, Zampiga V, Cangini I, Ravegnani M, Arcangeli V, Rossi T, Mammi I, Schiavi F, Zovato S, Falcini F, Calistri D, Danesi R. A Novel FLCN Variant in a Suspected Birt-Hogg-Dubè Syndrome Patient. Int J Mol Sci 2023; 24:12418. [PMID: 37569793 PMCID: PMC10419138 DOI: 10.3390/ijms241512418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Subjects with pathogenic (PV) and likely pathogenic (LPV) FLCN variants have an increased risk of manifesting benign and malignant disorders that are related to Birt-Hogg-Dubé syndrome (BHDS): an autosomal dominantly inherited disorder whose severity can vary significantly. Renal cell carcinoma (RCC) development in BHD (Birt-Hogg-Dubé) patients has a very high incidence; thus, identifying this rare syndrome at early stages and preventing metastatic spread is crucial. Over the last decade, the advancement of Next Generation Sequencing (NGS) and the implementation of multigene panels for hereditary cancer syndromes (HCS) have led to a subsequent focus on additional genes and variants, including those of uncertain significance (VUS). Here, we describe a novel FLCN variant observed in a subject manifesting disorders that were suspected to be related to BHDS and with a family history of multiple cancers.
Collapse
Affiliation(s)
- Erika Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (V.Z.); (I.C.); (T.R.); (D.C.)
| | - Valentina Zampiga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (V.Z.); (I.C.); (T.R.); (D.C.)
| | - Ilaria Cangini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (V.Z.); (I.C.); (T.R.); (D.C.)
| | - Mila Ravegnani
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.R.); (V.A.); (F.F.); (R.D.)
| | - Valentina Arcangeli
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.R.); (V.A.); (F.F.); (R.D.)
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (V.Z.); (I.C.); (T.R.); (D.C.)
| | - Isabella Mammi
- Familial Cancer Unit, Veneto Institute of Oncology IOV IRCSS, 35128 Padova, Italy; (I.M.); (F.S.); (S.Z.)
| | - Francesca Schiavi
- Familial Cancer Unit, Veneto Institute of Oncology IOV IRCSS, 35128 Padova, Italy; (I.M.); (F.S.); (S.Z.)
| | - Stefania Zovato
- Familial Cancer Unit, Veneto Institute of Oncology IOV IRCSS, 35128 Padova, Italy; (I.M.); (F.S.); (S.Z.)
| | - Fabio Falcini
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.R.); (V.A.); (F.F.); (R.D.)
| | - Daniele Calistri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (V.Z.); (I.C.); (T.R.); (D.C.)
| | - Rita Danesi
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.R.); (V.A.); (F.F.); (R.D.)
| |
Collapse
|
46
|
Hedgecoe A, Job K, Clarke A. Reflexive standardization and the resolution of uncertainty in the genomics clinic. SOCIAL STUDIES OF SCIENCE 2023; 53:358-378. [PMID: 36922706 PMCID: PMC7614615 DOI: 10.1177/03063127231154863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In genomics, the clinical application of Next Generation Sequencing technologies (such as Whole Genome or Exome Sequencing) has attracted considerable attention from UK policymakers, interested in the benefits such technologies could bring the National Health Service. However, this boosterism plays little attention to the challenges raised by a kind of result known as a Variant of Uncertain Significance, or VUS, which require clinical geneticists and related colleagues to classify ambiguous genomic variants as 'benign' or 'pathogenic'. With a rigorous analysis based on data gathered at 290 clinical meetings over a two-year period, this paper presents the first ethnographic account of decision-making around NGS technology in a NHS clinical genomics service, broadening our understanding of the role formal criteria play in the classification of VUS. Drawing on Stefan Timmermans' concept of 'reflexive standardisation' to explore the way in which clinical genetics staff classify such variants this paper explores the application of a set of criteria drafted by the American College of Medical Genetics and Genomics, highlighting the flexible way in which various resources - variant databases, computer programmes, the research literature - are drawn on to reach a decision. A crucial insight is how professionals' perception of, and trust in, the clinical practice at other genomics centres in the NHS, shapes their own application of criteria and the classification of a VUS as either benign or pathogenic.
Collapse
|
47
|
Teague AG, Quintero M, Karimi Dermani F, Cagan RL, Bangi E. A polycistronic transgene design for combinatorial genetic perturbations from a single transcript in Drosophila. PLoS Genet 2023; 19:e1010792. [PMID: 37267433 PMCID: PMC10266610 DOI: 10.1371/journal.pgen.1010792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/14/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Experimental models that capture the genetic complexity of human disease and allow mechanistic explorations of the underlying cell, tissue, and organ interactions are crucial to furthering our understanding of disease biology. Such models require combinatorial manipulations of multiple genes, often in more than one tissue at once. The ability to perform complex genetic manipulations in vivo is a key strength of Drosophila, where many tools for sophisticated and orthogonal genetic perturbations exist. However, combining the large number of transgenes required to establish more representative disease models and conducting mechanistic studies in these already complex genetic backgrounds is challenging. Here we present a design that pushes the limits of Drosophila genetics by allowing targeted combinatorial ectopic expression and knockdown of multiple genes from a single inducible transgene. The polycistronic transcript encoded by this transgene includes a synthetic short hairpin cluster cloned within an intron placed at the 5' end of the transcript, followed by two protein-coding sequences separated by the T2A sequence that mediates ribosome skipping. This technology is particularly useful for modeling genetically complex diseases like cancer, which typically involve concurrent activation of multiple oncogenes and loss of multiple tumor suppressors. Furthermore, consolidating multiple genetic perturbations into a single transgene further streamlines the ability to perform combinatorial genetic manipulations and makes it readily adaptable to a broad palette of transgenic systems. This flexible design for combinatorial genetic perturbations will also be a valuable tool for functionally exploring multigenic gene signatures identified from omics studies of human disease and creating humanized Drosophila models to characterize disease-associated variants in human genes. It can also be adapted for studying biological processes underlying normal tissue homeostasis and development that require simultaneous manipulation of many genes.
Collapse
Affiliation(s)
- Alexander G. Teague
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Maria Quintero
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Fateme Karimi Dermani
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Ross L. Cagan
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
48
|
Sánchez-Gaya V, Rada-Iglesias A. POSTRE: a tool to predict the pathological effects of human structural variants. Nucleic Acids Res 2023; 51:e54. [PMID: 36999617 PMCID: PMC10201441 DOI: 10.1093/nar/gkad225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Understanding the pathological impact of non-coding genetic variation is a major challenge in medical genetics. Accumulating evidences indicate that a significant fraction of genetic alterations, including structural variants (SVs), can cause human disease by altering the function of non-coding regulatory elements, such as enhancers. In the case of SVs, described pathomechanisms include changes in enhancer dosage and long-range enhancer-gene communication. However, there is still a clear gap between the need to predict and interpret the medical impact of non-coding variants, and the existence of tools to properly perform these tasks. To reduce this gap, we have developed POSTRE (Prediction Of STRuctural variant Effects), a computational tool to predict the pathogenicity of SVs implicated in a broad range of human congenital disorders. By considering disease-relevant cellular contexts, POSTRE identifies SVs with either coding or long-range pathological consequences with high specificity and sensitivity. Furthermore, POSTRE not only identifies pathogenic SVs, but also predicts the disease-causative genes and the underlying pathological mechanism (e.g, gene deletion, enhancer disconnection, enhancer adoption, etc.). POSTRE is available at https://github.com/vicsanga/Postre.
Collapse
Affiliation(s)
- Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Albert Einstein 22, 39011 Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Albert Einstein 22, 39011 Santander, Spain
| |
Collapse
|
49
|
Arranz-Ledo M, Lastra E, Abella L, Ferreira R, Orozco M, Hernández L, Martínez N, Infante M, Durán M. Multigene germline testing usefulness instead of BRCA1/2 single screening in triple negative breast cancer cases. Pathol Res Pract 2023; 247:154514. [PMID: 37201465 DOI: 10.1016/j.prp.2023.154514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Triple negative breast cancer is considered as the worst aggressive subtype with poor prognosis. Recent studies suggest a hereditary component is involved in TNBC development, especially in young patients. However, genetic spectrum remains unclear. Our purpose was to evaluate the usefulness of multigene panel testing in triple negative patients compared to overall breast cancer cases as well as contributing to elucidate which genes are most implicated in triple negative subtype development. Two breast cancer cohorts, comprising 100 triple negative breast cancer patients and 100 patients with other breast cancer subtypes, were analyzed by Next-Generation Sequencing using an On-Demand panel which included 35 predisposition cancer genes associated with inherited cancer susceptibility. The percentage of germline pathogenic variant carriers was higher in the triple negative cohort. ATM, PALB2, BRIP1 and TP53 were the most non-BRCA mutated genes. Moreover, triple negative breast cancer patients without family history related who were identified as carriers were diagnosed at significantly earlier age. As conclusion, our study reinforces the usefulness of multigene panel testing in breast cancer cases but specifically in those with triple negative subtype regardless family history.
Collapse
Affiliation(s)
- M Arranz-Ledo
- Cancer Genetics Group. Instituto de Biología y Genética Molecular (UVa-CSIC), Universidad de Valladolid, C/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - E Lastra
- Unit of Genetic Counselling in Cancer, Complejo Hospitalario de Burgos, Burgos, Spain
| | - L Abella
- Unit of Genetic Counselling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - R Ferreira
- Unit of Genetic Counselling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - M Orozco
- Unit of Genetic Counselling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - L Hernández
- Cancer Genetics Group. Instituto de Biología y Genética Molecular (UVa-CSIC), Universidad de Valladolid, C/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - N Martínez
- Cancer Genetics Group. Instituto de Biología y Genética Molecular (UVa-CSIC), Universidad de Valladolid, C/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - M Infante
- Cancer Genetics Group. Instituto de Biología y Genética Molecular (UVa-CSIC), Universidad de Valladolid, C/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - M Durán
- Cancer Genetics Group. Instituto de Biología y Genética Molecular (UVa-CSIC), Universidad de Valladolid, C/ Sanz y Forés 3, 47003 Valladolid, Spain.
| |
Collapse
|
50
|
Bartow BB, Siegal GP, Yalniz C, Elkhanany AM, Huo L, Ding Q, Sahin AA, Guo H, Magi-Galluzzi C, Harada S, Huang X. Mutations in Homologous Recombination Genes and Loss of Heterozygosity Status in Advanced-Stage Breast Carcinoma. Cancers (Basel) 2023; 15:cancers15092524. [PMID: 37173992 PMCID: PMC10177458 DOI: 10.3390/cancers15092524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPis) have demonstrated antitumor activity in cancers with a homologous recombination deficiency (HRD) and have recently been approved by the FDA for the treatment of germline BRCA1/2-mutation-associated breast cancer. PARPis have also been found to be efficacious in BRCA wild-type (BRCAwt) lesions with high genomic loss of heterozygosity (LOH-high). The goal of this study was to retrospectively investigate the tumor mutations in homologous recombination (HRR) genes and the LOH score in advanced-stage breast carcinomas (BCs). Sixty-three patients were included in our study, 25% of whom had HRR gene mutations in their tumors, including 6% BRCA1/2 and 19% non-BRCA-containing gene mutations. An HRR gene mutation was associated with a triple-negative phenotype. Twenty-eight percent of the patients had an LOH-high score, which, in turn, was associated with a high histological grade, a triple-negative phenotype, and a high tumor mutational burden (TMB). Among the six patients who received PARPi therapy, one had a tumor with a PALB2 mutation other than BRCA and had a clinical partial response. Twenty-two percent of the LOH-low tumors had BRCAwt-HRR gene mutations, compared with 11% of the LOH-high tumors. Comprehensive genomic profiling revealed a subset of breast cancer patients with a BRCAwt-HRR gene mutation that would be missed by an LOH test. The necessity of next-generation sequencing coupled with HRR gene analysis for PARPi therapy requires further investigation in clinical trials.
Collapse
Affiliation(s)
- Brooke B Bartow
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gene P Siegal
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ceren Yalniz
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ahmed M Elkhanany
- Department of Breast Medical Oncology, Division of Hematology & Oncology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lei Huo
- Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingqing Ding
- Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Guo
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cristina Magi-Galluzzi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shuko Harada
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao Huang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|