1
|
Manjili DA, Babaei FN, Younesirad T, Ghadir S, Askari H, Daraei A. Dysregulated circular RNA and long non-coding RNA-Mediated regulatory competing endogenous RNA networks (ceRNETs) in ovarian and cervical cancers: A non-coding RNA-Mediated mechanism of chemotherapeutic resistance with new emerging clinical capacities. Arch Biochem Biophys 2025; 768:110389. [PMID: 40090441 DOI: 10.1016/j.abb.2025.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Cervical cancer (CC) and ovarian cancer (OC) are among the most common gynecological cancers with significant mortality in women, and their incidence is increasing. In addition to the prominent role of the malignant aspect of these cancers in cancer-related women deaths, chemotherapy drug resistance is a major factor that contributes to their mortality and presents a clinical obstacle. Although the exact mechanisms behind the chemoresistance in these cancers has not been revealed, accumulating evidence points to the dysregulation of non-coding RNAs (ncRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as key contributors. These ncRNAs perform the roles of regulators of signaling pathways linked to tumor formation and chemoresistance. Strong data from various recent studies have uncovered that the main mechanism of these ncRNAs in the induction of chemoresistance of CC and OC is done through a dysregulated miRNA sponge activity as competing endogenous RNA (ceRNA) in the competing endogenous RNA networks (ceRNETs), where a miRNA regulating a messenger RNA (mRNA) is trapped, thereby removing its inhibitory effect on the desired mRNA. Understanding these mechanisms is essential to enhancing treatment outcomes and managing the problem of drug resistance. This review provides a comprehensive overview of lncRNA- and circRNA-mediated ceRNETs as the core process of chemoresistance against the commonly used chemotherapeutics, including cisplatin, paclitaxel, oxaliplatin, carboplatin, and docetaxel in CC and OC. Furthermore, we highlight the clinical potential of these ncRNAs serving as diagnostic indicators of chemotherapy responses and therapeutic targets.
Collapse
Affiliation(s)
- Danial Amiri Manjili
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Naghdi Babaei
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tayebeh Younesirad
- Department of Medical Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sara Ghadir
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Askari
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Pan H, Ouyang B, Zhang H, Zhao C. Non-coding RNAs: the architects of placental development and pregnancy success. Mol Genet Genomics 2025; 300:39. [PMID: 40159439 DOI: 10.1007/s00438-025-02244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Noncoding RNAs (ncRNAs) constitute a significant portion of the transcriptome that lacks evident protein-coding functions; however, they have been confirmed to be crucial in various biological processes, including placental development. Notwithstanding the existence of various ncRNAs, research on their role in placental development and pregnancy has been constrained. The predominant category of identified ncRNAs specific to placental tissue is microRNAs (miRNAs). Given their prevalence, the significantly larger cohort of other non-coding RNAs, such as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), is anticipated to exert a considerably greater influence than miRNAs. Syncytiotrophoblast, a fetal-derived cell, serves as a conduit between the fetus and mother by secreting extracellular vesicles that contain fetal proteins and RNA. Alterations in ncRNAs within placental tissue, especially in trophoblast cells and extracellular vesicles, may be linked to placental dysfunction that leads to pregnancy complications, serving either as a causative factor or a result. This review encapsulates the existing understanding of ncRNAs in placental development, pregnancy success, pregnancy-related complications, extracellular vesicle conveyance, and their capacity as innovative diagnostic instruments and therapeutic strategies.
Collapse
Affiliation(s)
- Hongjuan Pan
- Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei, China
| | - Baisha Ouyang
- Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei, China
| | - Hui Zhang
- Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei, China
| | - Caizhen Zhao
- Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, Hubei, China.
| |
Collapse
|
3
|
Cannarella R, Curto R, Condorelli RA, La Vignera S, Calogero AE. Early Embryo Development: What Does Daddy Do? Endocrinology 2025; 166:bqaf065. [PMID: 40179236 DOI: 10.1210/endocr/bqaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Infertility represents a major global health challenge, with male infertility accounting for a significant proportion of cases, yet its underlying causes remain elusive in many instances. Traditionally, spermatozoa were viewed merely as DNA carriers, with little consideration given to their role beyond fertilization. Recent research, however, is challenging this view, revealing that spermatozoa are far more than passive delivery vehicles. They carry a complex array of molecules, particularly RNAs, which actively influence fertilization, early embryo development, and the transmission of paternal traits. These sperm-carried RNAs, including mRNAs, small RNAs, and noncoding RNAs, regulate gene expression in both spermatozoa and embryo, with profound implications for offspring development. Additionally, environmental factors, such as lifestyle choices and exposure to toxins, have been shown to affect sperm RNA composition, highlighting the dynamic interplay between genetics and the environment in shaping fertility. This emerging and evolving understanding of sperm function challenges traditional reproductive biology and offers new insights into male infertility, particularly in cases that remain unexplained by current diagnostic methods. Although the exact molecular mechanisms underlying these processes are still being investigated, this paradigm shift opens the door to innovative diagnostic tools and therapeutic strategies for treating male infertility. By uncovering the critical role of sperm RNAs, these findings not only enhance our understanding of reproductive biology but also hold the promise to improve assisted reproductive technologies and outcomes for infertile couples.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
4
|
Zhan S, Jiang R, An Z, Zhang Y, Zhong T, Wang L, Guo J, Cao J, Li L, Zhang H. CircRNA profiling of skeletal muscle satellite cells in goats reveals circTGFβ2 promotes myoblast differentiation. BMC Genomics 2024; 25:1075. [PMID: 39533172 PMCID: PMC11555921 DOI: 10.1186/s12864-024-11008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) function as essential regulatory elements with pivotal roles in various biological processes. However, their expression profiles and functional regulation during the differentiation of goat myoblasts have not been thoroughly explored. This study conducts an analysis of circRNA expression profiles during the proliferation phase (cultured in growth medium, GM) and differentiation phase (cultured in differentiation medium, DM1/DM5) of skeletal muscle satellite cells (MuSCs) in goats. RESULTS A total of 2,094 circRNAs were identified, among which 84 were differentially expressed as determined by pairwise comparisons across three distinct groups. Validation of the expression levels of six randomly selected circRNAs was performed using reverse transcription PCR (RT-PCR) and quantitative RT-PCR (qRT-PCR), with confirmation of their back-splicing junction sites. Enrichment analysis of the host genes associated with differentially expressed circRNAs (DEcircRNAs) indicated significant involvement in biological processes such as muscle contraction, muscle hypertrophy, and muscle tissue development. Additionally, these host genes were implicated in key signaling pathways, including Hippo, TGF-beta, and MAPK pathways. Subsequently, employing Cytoscape, we developed a circRNA-miRNA interaction network to elucidate the complex regulatory mechanisms underlying goat muscle development, encompassing 21 circRNAs and 47 miRNAs. Functional assays demonstrated that circTGFβ2 enhances myogenic differentiation in goats, potentially through a miRNA sponge mechanism. CONCLUSION In conclusion, we identified the genome-wide expression profiles of circRNAs in goat MuSCs during both proliferation and differentiation phases, and established that circTGFβ2 plays a role in the regulation of myogenesis. This study offers a significant resource for the advanced exploration of the biological functions and mechanisms of circRNAs in the myogenesis of goats.
Collapse
Affiliation(s)
- Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Rui Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Zongqi An
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Yang Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China.
| |
Collapse
|
5
|
Yu Y, Zhang M, Wang D, Xiang Z, Zhao Z, Cui W, Ye S, Fazhan H, Waiho K, Ikhwanuddin M, Ma H. Whole transcriptome RNA sequencing provides novel insights into the molecular dynamics of ovarian development in mud crab, Scylla paramamosain after mating. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101247. [PMID: 38788625 DOI: 10.1016/j.cbd.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Ovarian development in animals is a complicated biological process, requiring the simultaneous coordination among various genes and pathways. To understand the dynamic changes and molecular regulatory mechanisms of ovarian development in mud crab (Scylla paramamosain), both histological observation and whole transcriptome sequencing of ovarian tissues at different mating stages were implemented in this study. The histological results revealed that ovarian development was delayed in unmated females (60 days after courtship behavior but not mating), who exhibited an oocyte diameter of 56.38 ± 15.17 μm. Conversely, mated females exhibited accelerated the ovarian maturation process, with females reaching ovarian stage III (proliferative stage) 23 days after mating and attained an average oocyte diameter of 132.19 ± 15.07 μm. Thus, mating process is essential in promoting the rapid ovarian development in mud crab. Based on the whole transcriptome sequencing analysis, a total of 518 mRNAs, 1502 lncRNAs, 18 circRNAs and 151 miRNAs were identified to be differentially expressed between ovarian tissues at different mating stages. Notably, six differentially expressed genes (DEGs) associated with ovarian development were identified, including ovary development-related protein, red pigment concentrating hormone receptor, G2/mitotic-specific cyclin-B3-like, lutropin-chorio gonadotropic hormone receptor, renin receptor, and SoxB2. More importantly, both DEGs and targets of differentially expressed non-coding RNAs (DEncRNAs) were enriched in renin-angiotensin system, TGF-β signaling, cell adhesion molecules, MAPK signaling pathway, and ECM-receptor interaction, suggesting that these pathways may play significant roles in the ovarian development of mud crabs. Moreover, competition endogenous RNA (ceRNA) networks were constructed while mRNAs were differentially expressed between mating stages were involved in Gene Ontology (GO) biological processes such as developmental process, reproduction, and growth. These findings could provide solid foundations for the future development of female mud crab maturation enhancement strategy, and improve the understanding of the ovarian maturation process in crustaceans.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mengqian Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Dahe Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Zifei Xiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zilin Zhao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Wenxiao Cui
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shaopan Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hanafiah Fazhan
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Khor Waiho
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
6
|
Shen Y, Ulaangerel T, Ren H, Liu Q, Davshilt T, Yi M, Dugarjaviin M, Bou G. Comprehensive analysis of the whole-transcriptome landscape of the ovarian cortex from Mongolian horses that reproduce seasonally. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101179. [PMID: 38134534 DOI: 10.1016/j.cbd.2023.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
The reproductive cycle of equines tends to be seasonal and is influenced by factors such as light and temperature. The process and methods of regulating the mare oestrous cycle in the anestrus period are still immature. The effects of noncoding RNAs and mRNAs on the oestrous cycle have aroused much interest, but corresponding analyses of seasonal mare ovaries have not been reported. Here, we report a whole transcriptome analysis of the Mongolian horse ovarian cortex collected in anestrus and diestrus periods. In total, 1081 mRNAs, 205 lncRNAs, 54 circRNAs, and 13 miRNAs were upregulated in winter anestrus ovarian cortex (WAO), and 1261 mRNAs, 90 lncRNAs, 29 circRNAs, and 40 miRNAs were upregulated in summer diestrus ovarian cortex (SDO). The GO and KEGG enrichment analysis of differentially expressed mRNAs and target genes of differentially expressed lncRNAs, circRNAs, and miRNAs revealed some key functions and pathways that may be related to follicle and oocyte development. We found that estrogen-related pathways were enriched in different RNAs. Our data were used to generate miRNA, circRNA, lncRNA, and mRNA databases from the Mongolian horse ovary and differential expression profiles between WAO and SDO; these results provide clues for exploring methods of estrus regulation in mares during the anestrus period.
Collapse
Affiliation(s)
- Yingchao Shen
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot, China
| | - Tseweendolmaa Ulaangerel
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot, China
| | - Hong Ren
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Liu
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot, China
| | - Toli Davshilt
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot, China
| | - Minna Yi
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot, China
| | - Manglai Dugarjaviin
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot, China.
| | - Gerelchemg Bou
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
7
|
Kirgiafini D, Kyrgiafini MA, Gournaris T, Mamuris Z. Understanding Circular RNAs in Health, Welfare, and Productive Traits of Cattle, Goats, and Sheep. Animals (Basel) 2024; 14:733. [PMID: 38473119 DOI: 10.3390/ani14050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Circular RNAs (circRNAs) are unique noncoding RNA molecules, notable for their covalent closed-loop structures, which play a crucial role in regulating gene expression across a variety of biological processes. This review comprehensively synthesizes the existing knowledge of circRNAs in three key livestock species: Bos taurus (cattle), Ovis aries (sheep), and Capra hircus (goats). It focuses on their functional importance and emerging potential as biomarkers for disease detection, stress response, and overall physiological health. Specifically, it delves into the expression and functionality of circRNAs in these species, paying special attention to traits critical to livestock productivity such as milk production, meat quality, muscle development, wool production, immune responses, etc. We also address the current challenges faced in circRNA research, including the need for standardized methodologies and broader studies. By providing insights into the molecular mechanisms regulated by circRNAs, this review underscores their scientific and economic relevance in the livestock industry. The potential of circRNAs to improve animal health management and the quality of animal-derived products aligns with growing consumer concerns for animal welfare and sustainability. Thus, this paper aims to guide future research directions while supporting the development of innovative strategies in livestock management and breeding.
Collapse
Affiliation(s)
- Dimitra Kirgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
- Averofeio Agri-Food Technological Park of Thessaly, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Theocharis Gournaris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
- Averofeio Agri-Food Technological Park of Thessaly, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| |
Collapse
|
8
|
Zhang Y, Tang L, Wang Y, Zhu X, Liu L. In-depth analyses of lncRNA and circRNA expression in the hippocampus of LPS-induced AD mice by Byu d Mar 25. Neuroreport 2024; 35:49-60. [PMID: 38051653 PMCID: PMC10702698 DOI: 10.1097/wnr.0000000000001977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Byu d Mar 25 (BM25) has been verified to have neuroprotective effects in Alzheimer's disease (AD) mice. However, the molecular mechanism remains unclear. We aimed to investigate the expression profiling of lncRNAs and circRNAs by microarray analysis. Six hippocampus from LPS-mediated AD mice model treated with (normal saline (NS) (n = 3) and AD mice model treated with BM25 (n = 3) were selected. Microarray analysis was performed to detect the expression profiles of lncRNAs and circRNAs in hippocampus. Differentially expressed (DE) lncRNAs, mRNAs and circRNAs were identified through scatter plot and volcano plot filtering with a threshold of fold-change ≥2 and P ≤ 0.05. Co-expression network is analyzed by Circos software. Cis - and Trans - regulation were analyzed using RIsearch-2.0 and FEELNC softwares. LncRNA-transcription factors (TFs) and LncRNA-Target-TFs network were analyzed by Clusterprofiler software. The prediction of miRNAs bind to circRNAs were performed with miRNAbase. A total of 113 DElncRNAs, 117 DEmRNAs, and 4 DEcircRNAs were detected. The pathway analysis showed the mRNAs that correlated with lncRNAs were involved in apoptosis, inflammatory mediator regulation of TRP channels, NF-kappa B and PI3K-Akt signaling pathway. The lncRNA-TFs network analysis suggested the lncRNAs were mostly regulated by Ncoa1, Phf5a, Klf6, Lmx1b, and Pax3. Additionally, lncRNA-target-TFs network analysis indicated the GATA6, Junb, Smad1, Twist1, and Mafb mostly regulate the same lncRNAs: XR_001783430.1 and NR_051982.1. Furthermore, 480 miRNAs were predicted binding to 4 identified circRNAs. The BM25 may affect AD by regulating the expression of lncRNAs and circRNAs, which could regulate the expressions of mRNAs or miRNAs by LncRNA-Target-TFs network.
Collapse
Affiliation(s)
| | - Liang Tang
- Department of Basic Medicine, Changsha Medical University
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, People's Republic of China
| | - Yan Wang
- Department of Basic Medicine, Changsha Medical University
| | - Xiaoyan Zhu
- Medical College, Tibet University, Lhasa, Tibet
| | - Lan Liu
- Medical College, Tibet University, Lhasa, Tibet
| |
Collapse
|
9
|
Paskeh MDA, Babaei N, Hashemi M, Doosti A, Hushmandi K, Entezari M, Samarghandian S. The protective impact of curcumin, vitamin D and E along with manganese oxide and Iron (III) oxide nanoparticles in rats with scrotal hyperthermia: Role of apoptotic genes, miRNA and circRNA. J Trace Elem Med Biol 2024; 81:127320. [PMID: 37913559 DOI: 10.1016/j.jtemb.2023.127320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 06/08/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Infertility is one of the major factors affecting most people around the world. Short-term exposure to high temperatures can cause hyperthermia, which is one of the causes of male infertility. The aim of this study was to investigate the protective effect of curcumin, vitamins D and E along with Iron (III) oxide nanoparticles (Fe2O3-NPs) and manganese oxide nanoparticles (MnO2-NPs) on semen parameters and its effect on miRNA21 and circRNA0001518 expression. MATERIAL AND METHODS In this study, the lower part of the rat was exposed to 43 °C for 5 weeks every other day for 5 weeks. Then the animals were killed. Tissue samples were collected for sperm parameters analysis, and tissue samples were taken for evaluation of apoptosis levels in germ cells, and RNA extraction in order to examine the expression of Bax, Bcl-2, miRNA, and CircRNA genes. RESULTS The results of this study showed that administration of curcumin, vitamin D, and vitamin E with Fe2O3-NPs and MnO2-NPs can improve the parameters of semen, Bax gene expression, Bcl-2 as well as miRNA and CircRNA in rats with testicular hyperthermia. In addition, curcumin by reducing the toxicity of Fe2O3 nanoparticles was able to reduce its negative effects and also reduce apoptosis in germ cells. This decrease in apoptosis was attributed to decreased Bcl-2 gene expression and increased expression of Bax, miRNA-21, and circRNA0001518. CONCLUSION All the results of this study confirmed that Fe2O3-NPs and Mno2-NPs containing antioxidants or vitamins are useful in improving fertility in rats due to scrotal hyperthermia. Although Fe2O3-NPs and Mno2-NPs containing both antioxidants and vitamins had a greater effect on improving fertility and reducing the toxic effects of nanoparticles.
Collapse
Affiliation(s)
| | - Nahid Babaei
- Department of Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Lv J, Zhang Y, Yang M, Qiao L, Wang H, Jiang H, Fu M, Qin J, Xu S. Hsa_circ_0013561 promotes epithelial-mesenchymal transition and tumor progression by regulating ANXA2 via miR-23b-3p in ovarian cancer. Cancer Gene Ther 2024; 31:108-118. [PMID: 38102461 PMCID: PMC10794140 DOI: 10.1038/s41417-023-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Our preliminary experiment discovered that hsa_circ_0013561 was aberrantly expressed in OC. However, the underlying mechanism is unclear. The expression of hsa_circ_0013561 in OC cells and tissues was detected by RT-qPCR and fluorescence in situ hybridization. The effects of hsa_circ_0013561 on the proliferation and metastasis of OC were explored by functional experiments such as cell counting kit-8, transwell, and tumor xenograft models. To mechanistically understand the regulatory role of hsa_circ_0013561, bioinformatics analysis, Western blot, luciferase reporter assay, and a series of rescue experiments were applied. We found that the hsa_circ_0013561 expression was elevated in OC cells and tissues, and was correlated with metastasis formation. Downregulation of hsa_circ_0013561 suppressed the proliferation and migration of OC cells both in vitro and in vivo. Regarding the interactions of hsa_circ_0013561, the luciferase reporter assay verified that miR-23b-3p and Annexin A2 (ANXA2) were its downstream targets. MiR-23b-3p inhibition or ANXA2 overexpression reversed OC cell proliferation, migration, and epithelial-mesenchymal transition (EMT) post-hsa_circ_0013561 silencing. Moreover, ANXA2 overexpression also reversed OC cell migration, proliferation, and EMT after miR-23b-3p upregulation. Our data suggest that hsa_circ_0013561 increases the expression of ANXA2 by regulating miR-23b-3p competitively, resulting in EMT and metastasis of OC. Thus, hsa_circ_0013561 may serve as a novel oncogenic biomarker for OC progression.
Collapse
Affiliation(s)
- Jia Lv
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yijun Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengying Yang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lianqiao Qiao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihui Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huici Jiang
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingxu Fu
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinlong Qin
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Fu P, Cai Z, Zhang Z, Meng X, Peng Y. An updated database of virus circular RNAs provides new insights into the biogenesis mechanism of the molecule. Emerg Microbes Infect 2023; 12:2261558. [PMID: 37725485 PMCID: PMC10557547 DOI: 10.1080/22221751.2023.2261558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Virus circular RNAs (circRNA) have been reported to be extensively expressed and play important roles in viral infections. Previously we build the first database of virus circRNAs named VirusCircBase which has been widely used in the field. This study significantly improved the database on both the data quantity and database functionality: the number of virus circRNAs, virus species, host organisms was increased from 46440, 23, 9 to 60859, 43, 22, respectively, and 1902 full-length virus circRNAs were newly added; new functions were added such as visualization of the expression level of virus circRNAs and visualization of virus circRNAs in the Genome Browser. Analysis of the expression of virus circRNAs showed that they had low expression levels in most cells or tissues and showed strong expression heterogeneity. Analysis of the splicing of virus circRNAs showed that they used a much higher proportion of non-canonical back-splicing signals compared to those in animals and plants, and mainly used the A5SS (alternative 5' splice site) in alternative-splicing. Most virus circRNAs have no more than two isoforms. Finally, human genes associated with the virus circRNA production were investigated and more than 1000 human genes exhibited moderate correlations with the expression of virus circRNAs. Most of them showed negative correlations including 42 genes encoding RNA-binding proteins. They were significantly enriched in biological processes related to cell cycle and RNA processing. Overall, the study provides a valuable resource for further studies of virus circRNAs and also provides new insights into the biogenesis mechanisms of virus circRNAs.
Collapse
Affiliation(s)
- Ping Fu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Zena Cai
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Zhiyuan Zhang
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Xiangxian Meng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Yousong Peng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| |
Collapse
|
12
|
Liu Y, Zhu QF, Li WY, Chen P, Xue J, Yu Y, Feng YZ. The Pivotal Role of Noncoding RNAs in Flowering Time Regulation. Genes (Basel) 2023; 14:2114. [PMID: 38136936 PMCID: PMC10742506 DOI: 10.3390/genes14122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Noncoding RNAs constitute a substantial portion of the transcriptome and play pivotal roles in plant growth and development. Among these processes, flowering stands out as a crucial trait, ensuring reproductive success and seed set, and is meticulously controlled by genetic and environmental factors. With remarkable advancements in the identification and characterization of noncoding RNAs in plants, it has become evident that noncoding RNAs are intricately linked to the regulation of flowering time. In this article, we present an overview of the classification of plant noncoding RNAs and delve into their functions in the regulation of flowering time. Furthermore, we review their molecular mechanisms and their involvement in flowering pathways. Our comprehensive review enhances the understanding of how noncoding RNAs contribute to the regulation of flowering time and sheds light on their potential implications in crop breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (Q.-F.Z.); (W.-Y.L.); (P.C.); (J.X.)
| | - Yan-Zhao Feng
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (Q.-F.Z.); (W.-Y.L.); (P.C.); (J.X.)
| |
Collapse
|
13
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
14
|
Zeng M, Yan S, Yang P, Li Q, Li J, Fan X, Liu X, Yao Y, Wang W, Chen R, Han G, Yang Y, Tang Z. Circular RNA transcriptome across multiple tissues reveal skeletal muscle-specific circPSME4 regulating myogenesis. Int J Biol Macromol 2023; 251:126322. [PMID: 37591436 DOI: 10.1016/j.ijbiomac.2023.126322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
There are significant differences in meat production, growth rate and other traits between Western commercial pigs and Chinese local pigs. Comparative transcriptome approaches have identified many coding and non-coding candidate genes associated various traits. However, the expression and function of circular RNAs (circRNAs) in different pig tissues are largely unknown. In this study, we conducted a comprehensive analysis of the genome-wide circRNA expression profile across ten tissues in Luchuan (a Chinese local breed) and Duroc (a Western commercial breed) pigs. We identified a total of 56,254 circRNAs, of which 42.9 % were not previously annotated. We found that 33.7 % of these circRNAs were differentially expressed. Enrichment analysis revealed that differentially expressed circRNAs might contribute to the phenotypic differentiation between Luchuan and Duroc pigs. We identified 538 tissue-specific circRNAs, most of which were specifically expressed in the brain and skeletal muscle. Competitive endogenous RNA network analysis suggested that skeletal muscle-specific circPSME4 was co-expressed with MYOD1 and targeted by ssc-miR-181d-3p. Functional analysis revealed that circPSME4 knockdown could promote the proliferation and differentiation of myoblasts. Together, our findings provide valuable resources of circRNAs for animal breeding and biomedical research. We demonstrated that circPSME4 is a novel regulator of skeletal muscle development.
Collapse
Affiliation(s)
- Mu Zeng
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shanying Yan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Peng Yang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Qiaowei Li
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Jiju Li
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaoqin Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yilong Yao
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Wei Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ruipu Chen
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Guohao Han
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
15
|
Cui L, Shi M, Meng X, Qian J, Wang S. Identification of m6A Modification Regulated by Dysregulated circRNAs in Decidua of Recurrent Pregnancy Loss. Curr Issues Mol Biol 2023; 45:8767-8779. [PMID: 37998728 PMCID: PMC10670759 DOI: 10.3390/cimb45110551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a prevalent modification of messenger ribonucleic acid (mRNA) in eukaryote cells and is closely associated with recurrent pregnancy loss (RPL). Circular RNAs (circRNAs) play critical roles in embryo implantation, trophoblast invasion and immune balance, which are important events during pregnancy. However, how m6A modification is regulated by circRNAs and the potential regulatory mechanism of circRNAs on RPL occurrence remain largely unclassified. We displayed the expression profiles of circRNAs and mRNAs in the decidua of normal pregnancies and RPL patients based on circRNA sequencing and the Gene Expression Omnibus database. A total of 936 differentially expressed circRNAs were identified, including 509 upregulated and 427 downregulated circRNAs. Differentially expressed circRNAs were enriched in immune, metabolism, signaling and other related pathways via the analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The competitive endogenous RNA (ceRNA) network was predicted to supply the possible role of circRNAs in RPL occurrence, and we further analyzed the profiles of nine m6A regulators (seven readers, one writer and one eraser) managed by circRNAs in this network. We also showed the expression profiles of circRNAs in the serum, trying to seek a potential biomarker to help in the diagnosis of RPL. These data imply that circRNAs are involved in pathogenesis of RPL by changing immune activities, metabolism and m6A modification in the ceRNA network. Our study might provide assistance in exploring the pathogenesis and diagnosis of RPL.
Collapse
Affiliation(s)
- Liyuan Cui
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200090, China; (L.C.); (X.M.)
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Minfeng Shi
- Reproductive Medicine Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China;
| | - Xinhang Meng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200090, China; (L.C.); (X.M.)
| | - Jinfeng Qian
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200090, China; (L.C.); (X.M.)
| | - Songcun Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200090, China; (L.C.); (X.M.)
| |
Collapse
|
16
|
Shi S, Ren H, Xie Y, Yu M, Chen Y, Yang L. Engineering advanced nanomedicines against central nervous system diseases. MATERIALS TODAY 2023; 69:355-392. [DOI: 10.1016/j.mattod.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Kyrgiafini MA, Mamuris Z. Circular RNAs and Their Role in Male Infertility: A Systematic Review. Biomolecules 2023; 13:1046. [PMID: 37509082 PMCID: PMC10377305 DOI: 10.3390/biom13071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Male infertility is a global health problem that is on the rise. Today, many noncoding RNAs (ncRNAs) are associated with male infertility. Circular RNAs (circRNAs) have recently drawn attention, but a comprehensive understanding of the role of circRNAs in male infertility is limited. This systematic review investigates the differential expression of circRNAs in male infertility or circRNAs that could serve as candidate biomarkers. The PRISMA guidelines were used to search PubMed and Web of Science on 11 January 2023. Inclusion criteria were human participants, experimental studies aiming to associate circRNAs with male infertility reporting differentially expressed circRNAs, and the English language. A total of 156 articles were found, and after the screening and eligibility stages, 13 studies were included in the final sample. Many circRNAs are deregulated in male infertility, and their interactions with miRNAs play an important role in affecting cellular processes and pathways. CircRNAs could also be used as biomarkers to screen patients before sperm retrieval. However, most studies focus on the role of circRNAs in azoospermia, and there is a knowledge gap regarding other subtypes of male infertility. Future research is needed to explore the exact mechanism of action of circRNAs and investigate their use as biomarkers.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
18
|
Oluwayiose OA, Houle E, Whitcomb BW, Suvorov A, Rahil T, Sites CK, Krawetz SA, Visconti PE, Pilsner JR. Non-coding RNAs from seminal plasma extracellular vesicles and success of live birth among couples undergoing fertility treatment. Front Cell Dev Biol 2023; 11:1174211. [PMID: 37427387 PMCID: PMC10323426 DOI: 10.3389/fcell.2023.1174211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Background: Infertility remains a global health problem with male-factor infertility accounting for around 50% of cases. Understanding the molecular markers for the male contribution of live birth success has been limited. Here, we evaluated the expression levels of seminal plasma extracellular vesicle (spEV) non-coding RNAs (ncRNAs) in men of couples in relation with those with and without a successful live birth after infertility treatment. Method: Sperm-free spEV small RNA profiles were generated from 91 semen samples collected from male participants of couples undergoing assisted reproductive technology (ART) treatment. Couples were classified into two groups based on successful live birth (yes, n = 28) and (no, n = 63). Mapping of reads to human transcriptomes followed the order: miRNA > tRNA > piRNA > rRNA> "other" RNA > circRNA > lncRNA. Differential expression analysis of biotype-specific normalized read counts between groups were assessed using EdgeR (FDR<0.05). Result: We found a total of 12 differentially expressed spEV ncRNAs which included 10 circRNAs and two piRNAs between the live birth groups. Most (n = 8) of the identified circRNAs were downregulated in the no live birth group and targeted genes related to ontology terms such as negative reproductive system and head development, tissue morphogenesis, embryo development ending in birth or egg hatching, and vesicle-mediated transport. The differentially upregulated piRNAs overlapped with genomic regions including coding PID1 genes previously known to play a role in mitochondrion morphogenesis, signal transduction and cellular proliferation. Conclusion: This study identified novel ncRNAs profiles of spEVs differentiating men of couples with and without live birth and emphasizes the role of the male partner for ART success.
Collapse
Affiliation(s)
- Oladele A. Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Brian W. Whitcomb
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Tayyab Rahil
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Springfield, MA, United States
| | - Cynthia K. Sites
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Springfield, MA, United States
| | - Stephen A. Krawetz
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State School of Medicine, Detroit, MI, United States
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - J. Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
19
|
Gopikrishnan M, R HC, R G, Ashour HM, Pintus G, Hammad M, Kashyap MK, C GPD, Zayed H. Therapeutic and diagnostic applications of exosomal circRNAs in breast cancer. Funct Integr Genomics 2023; 23:184. [PMID: 37243750 PMCID: PMC10224846 DOI: 10.1007/s10142-023-01083-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Circular RNAs (circRNAs) are regulatory elements that are involved in orchestrating gene expression and protein functions and are implicated in various biological processes including cancer. Notably, breast cancer has a significant mortality rate and is one of the most common malignancies in women. CircRNAs have been demonstrated to contribute to the pathogenesis of breast cancer including its initiation, progression, metastasis, and resistance to drugs. By acting as miRNA sponges, circRNAs can indirectly influence gene expression by disrupting miRNA regulation of their target genes, ultimately altering the course of cancer development and progression. Additionally, circRNAs can interact with proteins and modulate their functions including signaling pathways involved in the initiation and development of cancer. Recently, circRNAs can encode peptides that play a role in the pathophysiology of breast cancer and other diseases and their potential as diagnostic biomarkers and therapeutic targets for various cancers including breast cancer. CircRNAs possess biomarkers that differentiate, such as stability, specificity, and sensitivity, and can be detected in several biological specimens such as blood, saliva, and urine. Moreover, circRNAs play an important role in various cellular processes including cell proliferation, differentiation, and apoptosis, all of which are integral factors in the development and progression of cancer. This review synthesizes the functions of circRNAs in breast cancer, scrutinizing their contributions to the onset and evolution of the disease through their interactions with exosomes and cancer-related intracellular pathways. It also delves into the potential use of circRNA as a biomarker and therapeutic target against breast cancer. It discusses various databases and online tools that offer crucial circRNA information and regulatory networks. Lastly, the challenges and prospects of utilizing circRNAs in clinical settings associated with breast cancer are explored.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, Florida, 33701, USA
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Mohamed Hammad
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
- Clinical Biosamples & Research Services (CBRS), Noida, Uttar Pradesh, 201301, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
20
|
Dong Y, Gao Q, Chen Y, Zhang Z, Du Y, Liu Y, Zhang G, Li S, Wang G, Chen X, Liu H, Han L, Ye Y. Identification of CircRNA signature associated with tumor immune infiltration to predict therapeutic efficacy of immunotherapy. Nat Commun 2023; 14:2540. [PMID: 37137884 PMCID: PMC10156742 DOI: 10.1038/s41467-023-38232-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Circular RNAs (circRNAs) play important roles in the regulation of cancer. However, the clinical implications and regulatory networks of circRNAs in cancer patients receiving immune checkpoint blockades (ICB) have not been fully elucidated. Here, we characterize circRNA expression profiles in two independent cohorts of 157 ICB-treated advanced melanoma patients and reveal overall overexpression of circRNAs in ICB non-responders in both pre-treatment and early during therapy. Then, we construct circRNA-miRNA-mRNA regulatory networks to reveal circRNA-related signaling pathways in the context of ICB treatment. Further, we construct an ICB-related circRNA signature (ICBcircSig) score model based on progression-free survival-related circRNAs to predict immunotherapy efficacy. Mechanistically, the overexpression of ICBcircSig circTMTC3 and circFAM117B could increase PD-L1 expression via the miR-142-5p/PD-L1 axis, thus reducing T cell activity and leading to immune escape. Overall, our study characterizes circRNA profiles and regulatory networks in ICB-treated patients, and highlights the clinical utility of circRNAs as predictive biomarkers of immunotherapy.
Collapse
Affiliation(s)
- Yu Dong
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Lin Gang Laboratory, Shanghai, 200025, China
| | - Qian Gao
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Chen
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200433, P. R. China
| | - Yanhua Du
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Guangxiong Zhang
- Lin Gang Laboratory, Shanghai, 200025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 201620, China
| | - Gaoyang Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiang Chen
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China.
| | - Hong Liu
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| | - Youqiong Ye
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
21
|
Jin M, Wang Y, Zhou D, Liu W, Han R, Chi Y. Downregulation of circ-YES1 suppresses NSCLC migration and proliferation through the miR-142-3p-HMGB1 axis. Respir Res 2023; 24:100. [PMID: 37009887 PMCID: PMC10069124 DOI: 10.1186/s12931-023-02378-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new family of abundant regulatory RNAs with roles in various types of cancer. While the hsa_circ_0046701 (circ-YES1) function in non-small cell lung cancer (NSCLC) is unclear. METHODS Circ-YES1 expression in normal pulmonary epithelial and NSCLC cells was examined. The small interfering RNA for circ-YES1 was prepared, cell proliferation and migration were assessed. Tumorigenesis in nude mice was assayed to validate the role of circ-YES1. Bioinformatics analyses and luciferase reporter assays were utilized to identify downstream targets of circ-YES1. RESULTS Compared to normal pulmonary epithelial cells, the circ-YES1 expression increased in NSCLC cells, and cell proliferation and migration were suppressed after circ-YES1 knockdown. Both high mobility group protein B1 (HMGB1) and miR-142-3p were found to be downstream targets of circ-YES1, and miR-142-3p inhibition and HMGB1 overexpression reversed the effects of circ-YES1 knockdown on cell proliferation and migration. Similarly, HMGB1 overexpression reversed the miR-142-3p overexpression effects on these two processes. The imaging experiment results revealed that circ-YES1 knockdown impeded tumor development and metastasis in a nude mouse xenograft model. CONCLUSION Taken together, our results show that circ-YES1 promotes tumor development through the miR-142-3p-HMGB1 axis and support the development of circ-YES1 probability as a new therapeutic NSCLC target.
Collapse
Affiliation(s)
- Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318 People’s Republic of China
| | - Yan Wang
- Department of Clinical Lab, Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Sino-French Cooperative Central Lab, Shanghai Pudong Gongli Hospital, Secondary Military Medical University, Shanghai, 200135 People’s Republic of China
| | - Dawei Zhou
- Department of Ultrasonics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201901 People’s Republic of China
| | - Wanchao Liu
- Department of Clinical Laboratory, Baoshan District Integrative Medicine Hospital, Shanghai, Shanghai 201901 People’s Republic of China
| | - Ruodong Han
- Department of Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, 236800 People’s Republic of China
| | - Yongbin Chi
- Department of Clinical Lab, Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Sino-French Cooperative Central Lab, Shanghai Pudong Gongli Hospital, Secondary Military Medical University, Shanghai, 200135 People’s Republic of China
| |
Collapse
|
22
|
HAN ZY, HUANG SJ, WANG R, GUAN HQ. Screening of differential circRNAs in the placenta of patients with preeclampsia and their regulatory mechanism. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.22.02913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
23
|
Zhou Y, Wu M, Wen L, Wu W. Hsa_circ_0000129 drives tumor growth via sequestering miR-485-3p and upregulating SPIN1 in breast cancer. J Biochem Mol Toxicol 2023; 37:e23254. [PMID: 36426627 DOI: 10.1002/jbt.23254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Breast cancer (BC) is second cancer frequently occurring worldwide. Circular RNA hsa_circ_0000129 (circ_0000129) exerts a tumor-promoting effect in BC. Nevertheless, the molecular mechanisms mediated by the upregulation of circ_0000129 during BC progression are not well understood. METHODS Forty-five BC patients were recruited for the research. Changes in circ_0000129 levels were detected with quantitative reverse transcription-polymerase chain reaction. Cell proliferation, apoptosis, migration, invasion, and angiopoiesis were determined by cell counting, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and tube formation assays. Protein levels were detected by western blot analysis. The regulatory mechanism of circ_0000129 was predicted by bioinformatics analysis and validated by dual-luciferase reporter and RNA immunoprecipitation assays. In vivo experiments were carried out to verify the function of circ_0000129. RESULTS Circ_0000129 was overexpressed in BC samples and cell lines. Functionally, circ_0000129 silencing reduced cell proliferation, migration, invasion, and promoted cell apoptosis, as well as induced HUVEC angiopoiesis in vitro. Furthermore, circ_0000129 knockdown decreased BC cell growth in mouse xenograft models. Mechanically, circ_0000129 interacted with miR-485-3p to mediate the inhibiting effect of miR-485-3p on SPIN1. Silenced miR-485-3p expression weakened the inhibiting effect of circ_0000129 knockdown on BC cell malignant behaviors. Also, forced SPIN1 expression weakened miR-485-3p upregulation mediated effects on BC cell malignant behaviors. CONCLUSION Circ_0000129 acted as a miR-485-3p sponge molecular to mediate expression, thus promoting BC progression.
Collapse
Affiliation(s)
- Yuxin Zhou
- Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Minhua Wu
- Department of Breast Surgery, Li Huili Hospital Ningbo Medical Center, Ningbo, Zhejiang, China
| | - Limu Wen
- Department of Breast Surgery, Li Huili Hospital Ningbo Medical Center, Ningbo, Zhejiang, China
| | - Weizhu Wu
- Department of Breast Surgery, Li Huili Hospital Ningbo Medical Center, Ningbo, Zhejiang, China
| |
Collapse
|
24
|
Saberiyan M, Karimi E, Safi A, Movahhed P, Dehdehi L, Haririan N, Mirfakhraie R. Circular RNAs: Novel Biomarkers in Spermatogenesis Defects and Male Infertility. Reprod Sci 2023; 30:62-71. [PMID: 35178677 DOI: 10.1007/s43032-022-00885-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/09/2022] [Indexed: 01/06/2023]
Abstract
Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs involved in several cellular and biological processes, including gene expression regulation, microRNA function, transcription regulation, and translation modification. Therefore, these non-coding RNAs have important roles in the pathogenesis of various diseases. Male infertility is mainly due to abnormal sperm parameters such as motility, morphology, and concentration. Recent studies have confirmed the role of circRNAs in spermatogenesis, and the expression of several circRNAs is confirmed in seminal plasma, spermatozoa, and testicular tissue. It is suggested that deregulation of circRNAs is involved in different types of male infertility, including azoospermia, oligozoospermia, and asthenozoospermia. In the present review, we aimed to discuss the potential roles of circRNAs in spermatogenesis failure, sperm defects, and male infertility. Due to their conserved and special structure and tissue-specific expression pattern, circRNAs can be applied as reliable noninvasive molecular biomarkers, therapeutic and pharmaceutical targets in male infertility.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Karimi
- Department of Medical Genetics, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Young Researchers and Elite Club, Islamic Azad University, Najafabad Branch, , Najafabad, Iran
| | - Parvaneh Movahhed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dehdehi
- Clinical Research Developmental Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nazanin Haririan
- Biology Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Koodakyar St, Velenjak Ave, Chamran highway, 19395-4719, Tehran, Iran.
| |
Collapse
|
25
|
Raza SHA, Wijayanti D, Pant SD, Abdelnour SA, Hashem NM, Amin A, Wani AK, Prakash A, Dawood MAO, Zan L. Exploring the physiological roles of circular RNAs in livestock animals. Res Vet Sci 2022; 152:726-735. [PMID: 36270182 DOI: 10.1016/j.rvsc.2022.09.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Circular RNAs (circRNAs) are a recently identified class of RNAs produced via back-splicing and covalent linkage between RNA ends, resulting in a circularized RNA molecule. Physiologically, circRNAs are known to influence a variety of biological pathways, and can also regulate transcription, post-transcription, RNA splicing, or interaction with other proteins or microRNAs (miRNAs). Functionally, circRNAs are known to competitively bind to various other RNA molecules including miRNAs and other competing endogenous RNA such as long noncoding RNA, thereby significantly influencing gene expression. Since gene expression is a crucial factor that underlies economically important livestock traits, it is likely that circRNAs significantly influence livestock traits like growth, milk production, reproduction, meat quality, hair follicle growth, and gametogenesis. Thousands of circRNAs have been recognized in different species of animals, and some of these circRNAs have also been shown to regulate stress responses that may be crucial for animal welfare. Therefore, in this review, we aim to highlight the biogenesis of circRNAs, along with its potential implications for livestock. The presented summary would offer a fundamental understanding of the molecular machinery that underlies circRNAs and associated biological phenomena and emphasize the need for further explorations into the role of circRNAs in the other productive, reproductive, and physiological attributes in animals.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Dwi Wijayanti
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Sameer D Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Ahmed Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (144411), India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, USA
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516 Egypt; Center for Applied Research on the Environment and Sustainability, The American University in Cairo, New Cairo 11835, Egypt
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
26
|
Ali MK, Schimmel K, Zhao L, Chen CK, Dua K, Nicolls MR, Spiekerkoetter E. The role of circular RNAs in pulmonary hypertension. Eur Respir J 2022; 60:2200012. [PMID: 35680145 PMCID: PMC10361089 DOI: 10.1183/13993003.00012-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are endogenous, covalently circularised, non-protein-coding RNAs generated from back-splicing. Most circRNAs are very stable, highly conserved, and expressed in a tissue-, cell- and developmental stage-specific manner. circRNAs play a significant role in various biological processes, such as regulation of gene expression and protein translation via sponging of microRNAs and binding with RNA-binding proteins. circRNAs have become a topic of great interest in research due to their close link with the development of various diseases. Their high stability, conservation and abundance in body fluids make them promising biomarkers for many diseases. A growing body of evidence suggests that aberrant expression of circRNAs and their targets plays a crucial role in pulmonary vascular remodelling and pulmonary arterial hypertension (group 1) as well as other forms (groups 3 and 4) of pulmonary hypertension (PH). Here we discuss the roles and molecular mechanisms of circRNAs in the pathogenesis of pulmonary vascular remodelling and PH. We also highlight the therapeutic and biomarker potential of circRNAs in PH.
Collapse
Affiliation(s)
- Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Katharina Schimmel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Lan Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Chun-Kan Chen
- Departments of Dermatology and Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, Australia
| | - Mark R Nicolls
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
Zhang W, Jiang Z, Tang D. The value of exosome-derived noncoding RNAs in colorectal cancer proliferation, metastasis, and clinical applications. Clin Transl Oncol 2022; 24:2305-2318. [PMID: 35921060 DOI: 10.1007/s12094-022-02908-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/23/2022] [Indexed: 11/26/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world today, and its incidence and mortality rates are increasing every year. The ease of proliferation and metastasis of CRC has long been an important reason for its high mortality rate. Exosomes serve as key mediators that mediate communication between tumor cells and various other cells. Non-coding RNAs (ncRNAs) have been shown to play a key role in apoptosis, immunosuppression and proliferation metastasis in cancer. ncRNAs are loaded on exosomes and initiate the onset of metastasis by promoting epithelial-mesenchymal transition (EMT) at the primary site of the tumor. Meanwhile, exosome-derived ncRNAs construct a pre-metastatic niche (PMN) for CRC metastasis by forming an inflammatory microenvironment in distant organs, immunosuppression, and promoting angiogenesis and remodeling of the extracellular matrix. Here, we summarize the specific mechanisms associated with exosome-derived ncRNAs promoting local invasion and metastasis in CRC. Finally, we focus on their value for clinical application in future CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
28
|
Transcriptome Sequencing Analysis of circRNA in Skeletal Muscle between Fast- and Slow-Growing Chickens at Embryonic Stages. Animals (Basel) 2022; 12:ani12223166. [PMID: 36428392 PMCID: PMC9686870 DOI: 10.3390/ani12223166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle growth has always been the focus of the broiler industry, and circRNAs play a significant role in this process. We collected leg muscles of slow- and fast-growing Bian chicken embryos in the study at 14 (S14 and F14) and 20 (S20 and F20) days for RNA-seq. Finally, 123 and 121 differentially expressed circRNAs (DECs) were identified in S14 vs. F14 and S20 vs. F20, respectively. GO enrichment analysis for DECs obtained important biological process (BP) terms including nicotinate nucleotide biosynthetic process, nicotinate nucleotide salvage, and NAD salvage in S20 vs. F20 and protein mannosylation in S14 vs. F14. KEGG pathway analysis showed Wnt signaling pathway, Tight junction, Ubiquitin mediated proteolysis, and Notch signaling pathway were enriched in the top 20. Based on the GO and KEGG analysis results, we found some significant host genes and circRNAs such as NAPRT and novel_circ_0004547, DVL1 and novel_circ_0003578, JAK2 and novel_circ_0010289, DERA and novel_circ_0003082, etc. Further analysis found 19 co-differentially expressed circRNAs between the two comparison groups. We next constructed a circRNA-miRNA network for them, and some candidate circRNA-miRNA pairs related to skeletal muscle were obtained, such as novel_circ_0002153-miR-12219-5p, novel_circ_0003578-miR-3064-3p, and novel_circ_0010661-miR-12260-3p. These results would help to reveal the mechanism for circRNAs in skeletal muscle and also provide some guidance for the breeding of broilers.
Collapse
|
29
|
Wu Y, Li H, Zhao X, Baki G, Ma C, Yao Y, Li J, Yao Y, Wang L. Differential expression of circRNAs of testes with high and low sperm motility in Yili geese. Front Genet 2022; 13:970097. [PMID: 36226183 PMCID: PMC9548634 DOI: 10.3389/fgene.2022.970097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to explore the potential biological function of circular RNAs (circRNAs) in the sperm motility traits of Xinjiang Yili geese, and to provide a reference for analyzing the mechanism of regulation of Yili geese sperm motility. The 10 selected Xinjiang Yili Geese with high or low sperm motility (five for each group) were 3 years old, in good health, and were kept in the same feeding conditions. Yili geese were slaughtered for the collection of testicular tissue and high-throughput sequencing technology was used to screen differentially expressed circRNAs for bioinformatics analysis. Combined with the previously screened miRNAs related to the sperm motility of Yili geese, the circRNAs miRNAs regulatory network was constructed. The results showed that a total of 26,311 circRNAs were obtained from testicular tissues with high and low sperm motility, and 173 DECs were screened between the two groups (p < 0.05, |log2Foldchange|>0), of which 82 were up-regulated and 91 were down-regulated. Functional analysis of the source genes of these DECs showed that the source genes were mainly involved in biological processes. KEGG enrichment analysis showed that the source genes of DECs were mainly enriched in autophagy-animal, ubiquinone and other terpenoid-quinone biosynthesis, progesterone-mediated oocyte maturation, regulation of the actin cytoskeleton and other pathways. Furthermore, the visual regulatory network of differential circRNA-miRNA-mRNA was constructed, including 20 circRNAs, 18 miRNAs and 177 mRNAs, and nine core regulatory circRNAs were screened, including novell_circ_0045314, novel_circ_0019994 and novel_circ_0020422, etc., targeting ppy-mir-16, hsa-mir-221–3p, gga-mir-499–5p, etc. The results suggest that circRNAs may interact with miRNAs to further regulate mRNA to regulate sperm motility in Yili geese, so as to provide a reference for analyzing the molecular mechanism of sperm motility regulation.
Collapse
|
30
|
Zhou X, Lin J, Wang F, Chen X, Zhang Y, Hu Z, Jin X. Circular RNA-regulated autophagy is involved in cancer progression. Front Cell Dev Biol 2022; 10:961983. [PMID: 36187468 PMCID: PMC9515439 DOI: 10.3389/fcell.2022.961983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 12/05/2022] Open
Abstract
Circular RNAs (circRNAs) are a sort of long, non-coding RNA molecules with a covalently closed continuous ring structure without 5'-3' polarity and poly-A tail. The modulative role of circRNAs in malignant diseases has been elucidated by many studies in recent years via bioinformatics and high-throughput sequencing technologies. Generally, circRNA affects the proliferative, invasive, and migrative capacity of malignant cells via various mechanisms, exhibiting great potential as novel biomarkers in the diagnoses or treatments of malignancies. Meanwhile, autophagy preserves cellular homeostasis, serving as a vital molecular process in tumor progression. Mounting studies have demonstrated that autophagy can not only contribute to cancer cell survival but can also induce autophagic cell death in specific conditions. A growing number of research studies have indicated that there existed abundant associations between circRNAs and autophagy. Herein, we systemically reviewed and discussed recent studies on this topic in different malignancies and concluded that the circRNA–autophagy axis played crucial roles in the proliferation, metastasis, invasion, and drug or radiation resistance of different tumor cells.
Collapse
|
31
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
32
|
Wu P, Zhou K, Zhang J, Ling X, Zhang X, Zhang L, Li P, Wei Q, Zhang T, Wang X, Zhang G. Identification of crucial circRNAs in skeletal muscle during chicken embryonic development. BMC Genomics 2022; 23:330. [PMID: 35484498 PMCID: PMC9052468 DOI: 10.1186/s12864-022-08588-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Chicken provides humans with a large amount of animal protein every year, in which skeletal muscle plays a leading role. The embryonic skeletal muscle development determines the number of muscle fibers and will affect the muscle production of chickens. CircRNAs are involved in a variety of important biological processes, including muscle development. However, studies on circRNAs in the chicken embryo muscle development are still lacking. Results In the study, we collected chicken leg muscles at 14 and 20-day embryo ages both in the fast- and slow-growing groups for RNA-seq. We identified 245 and 440 differentially expressed (DE) circRNAs in the comparison group F14vsF20 and S14vsS20 respectively. GO enrichment analysis for the host genes of DE circRNAs showed that biological process (BP) terms in the top 20 related to growth in F14vsF20 were found such as positive regulation of transcription involved in G1/S phase of mitotic cell cycle, multicellular organismal macromolecule metabolic process, and multicellular organismal metabolic process. In group S14vsS20, we also found some BP terms associated with growth in the top 20 including actomyosin structure organization, actin cytoskeleton organization and myofibril assembly. A total of 7 significantly enriched pathways were obtained, containing Adherens junction and Tight junction. Further analysis of those pathways found three crucial host genes MYH9, YBX3, IGF1R in both fast- and slow-growing groups, three important host genes CTNNA3, AFDN and CREBBP only in the fast-growing group, and six host genes FGFR2, ACTN2, COL1A2, CDC42, DOCK1 and MYL3 only in the slow-growing group. In addition, circRNA-miRNA network also revealed some key regulation pairs such as novel_circ_0007646-miR-1625-5p, novel_circ_0007646-miR-1680-5p, novel_circ_0008913-miR-148b-5p, novel_circ_0008906-miR-148b-5p and novel_circ_0001640-miR-1759-3p. Conclusions Comprehensive analysis of circRNAs and their targets would contribute to a better understanding of the molecular mechanisms in poultry skeletal muscle and it also plays an important guiding role in the next research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08588-4.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaizhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xuanze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Li Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Peifeng Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Qingyu Wei
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinglong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
33
|
Arthurs AL, Jankovic-Karasoulos T, Smith MD, Roberts CT. Circular RNAs in Pregnancy and the Placenta. Int J Mol Sci 2022; 23:ijms23094551. [PMID: 35562943 PMCID: PMC9100345 DOI: 10.3390/ijms23094551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The emerging field of circular RNAs (circRNAs) has identified their novel roles in the development and function of many cancers and inspired the interest of many researchers. circRNAs are also found throughout the healthy body, as well as in other pathological states, but while research into the function and abundance of circRNAs has progressed, our overall understanding of these molecules remains primitive. Importantly, recent studies are elucidating new roles for circRNAs in pregnancy, particularly in the placenta. Given that many of the genes responsible for circRNA production in cancer are also highly expressed in the placenta, it is likely that the same genes act in the production of circRNAs in the placenta. Furthermore, placental development can be referred to as ‘controlled cancer’, as it shares many key signalling pathways and hallmarks with tumour growth and metastasis. Hence, the roles of circRNAs in this field are important to study with respect to pregnancy success but also may provide novel insights for cancer progression. This review illuminates the known roles of circRNAs in pregnancy and the placenta, as well as demonstrating differential placental expressions of circRNAs between complicated and uncomplicated pregnancies.
Collapse
|
34
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
35
|
Wang W, He X, Di R, Wang X, Chu M. Photoperiods induced the circRNA differential expression in the thyroid gland of OVX+E 2 ewes. Front Endocrinol (Lausanne) 2022; 13:974518. [PMID: 36105406 PMCID: PMC9464909 DOI: 10.3389/fendo.2022.974518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs newly identified and play important roles in RNA regulation. However, little is known regarding photoperiods induced circRNAs in the thyroid gland. In this study, we performed a comprehensive analysis of circRNA profiles in the thyroid gland of OVX+E2 ewes at different photoperiods by whole transcriptome sequencing. A total of 37,470 novel circRNAs were detected in different photoperiods (42 days of short photoperiod treatment, SP42; 42 days of long photoperiod treatment, LP42; SP42 transfer to LP42, SPLP42), with a total of 817 circRNAs for SP42-LP42 (down: 132; up: 114), LP42-SPLP42 (down: 136; up: 112) and SP42-SPLP42 (down: 182; up: 141) having differentially expressed. Functional enrichment annotation analysis of DE-circRNAs for GO and KEGG by R package, features that influence photoperiod response in Sunite ewes through the Inositol phosphate metabolism, cGMP-PKG signaling pathway, Calcium signaling pathway, MAPK signaling pathway, and Oocyte meiosis. In addition, competitive endogenous RNA (ceRNA) network analysis revealed target binding sites for identified miRNAs in DE-cirRNAs such as oar-miR-10b, oar-miR-200c, oar-miR-21, oar-miR-370-3p, oar-miR-377-3p, oar-miR-181a, oar-miR-432, and oar-miR-495-3p. These results of this study will provide some new information for understanding circRNA function as well as the changes in the sheep thyroid gland under different photoperiods.
Collapse
|
36
|
Advances in the role of natural products in human gene expression. Chin J Nat Med 2022; 20:1-8. [DOI: 10.1016/s1875-5364(22)60147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 11/17/2022]
|
37
|
Khan IM, Liu H, Zhuang J, Khan NM, Zhang D, Chen J, Xu T, Avalos LFC, Zhou X, Zhang Y. Circular RNA Expression and Regulation Profiling in Testicular Tissues of Immature and Mature Wandong Cattle ( Bos taurus). Front Genet 2021; 12:685541. [PMID: 34880896 PMCID: PMC8647812 DOI: 10.3389/fgene.2021.685541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Wandong cattle are an autochthonous Chinese breed used extensively for beef production. The breed tolerates extreme weather conditions and raw feed and is resistant to tick-borne diseases. However, the genetic basis of testis development and sperm production as well as breeding management is not well established in local cattle. Therefore, improving the reproductive efficiency of bulls via genetic selection is crucial as a single bull can breed thousands of cows through artificial insemination (AI). Testis development and spermatogenesis are regulated by hundreds of genes and transcriptomes. However, circular RNAs (circRNAs) are the key players in many biological developmental processes that have not been methodically described and compared between immature and mature stages in Bovine testes. In this study, we performed total RNA-seq and comprehensively analyzed the circRNA expression profiling of the testis samples of six bulls at 3 years and 3 months of developmental age. In total, 17,013 circRNAs were identified, of which 681 circRNAs (p-adjust < 0.05) were differentially expressed (DE). Among these DE circRNAs, 579 were upregulated and 103 were downregulated in calf and bull testes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the identified target genes were classified into three broad functional categories, including biological process, cellular component, and molecular function, and were enriched in the lysine degradation, cell cycle, and cell adhesion molecule pathways. The binding interactions between DE circRNAs and microRNAs (miRNAs) were subsequently constructed using bioinformatics approaches. The source genes ATM, CCNA1, GSK3B, KMT2C, KMT2E, NSD2, SUCLG2, QKI, HOMER1, and SNAP91 were found to be actively associated with bull sexual maturity and spermatogenesis. In addition, a real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed a strong correlation with the sequencing data. Moreover, the developed model of Bovine testes in the current study provides a suitable framework for understanding the mechanism of circRNAs in the development of testes and spermatogenesis.
Collapse
Affiliation(s)
- Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jingyi Zhuang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Dandan Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jingmeng Chen
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tengteng Xu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lourdes Felicidad Córdova Avalos
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xinqi Zhou
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
38
|
Chen L, Huang C, Shan G. Circular RNAs in physiology and non-immunological diseases. Trends Biochem Sci 2021; 47:250-264. [PMID: 34865956 DOI: 10.1016/j.tibs.2021.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs. Four subclasses of circRNAs have been identified in animal cells, and they have unique features in their biogenesis, degradation, and transport. CircRNAs have diverse molecular functions in sponging miRNAs, regulating transcription, modulating RNA-binding proteins, and even encoding proteins. Some circRNAs are important regulators of various physiological processes to maintain homeostasis. Dysregulation of circRNAs is associated with human disorders, and individual circRNAs are crucial factors that contribute to major diseases including non-immunological diseases such as cancers, neurological disorders, cardiovascular disease, and metabolic disease. Debates on circRNAs have also been raised in recent years, and further studies would help to resolve these disputes and potentially lead to biomedical applications of circRNAs.
Collapse
Affiliation(s)
- Liang Chen
- Department of Clinical Laboratory, First Affiliated Hospital of the USTC, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China.
| | - Ge Shan
- Department of Clinical Laboratory, First Affiliated Hospital of the USTC, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, China; Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
39
|
Ge P, Zhang X, Yang YQ, Lv MQ, Zhang J, Han SP, Zhao WB, Zhou DX. Rno_circRNA_016194 might be involved in the testicular injury induced by long-term formaldehyde exposure via rno-miR-449a-5p mediated Atg4b activation. Food Chem Toxicol 2021; 155:112409. [PMID: 34265366 DOI: 10.1016/j.fct.2021.112409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Although circular RNAs (circRNAs) can function as microRNAs (miRNAs) sponges to participate in spermatogenesis, little is known about the functions of circRNAs in testis exposed to formaldehyde. In this study, twenty-four male SD rats (6-8 weeks) were randomly assigned to four groups, including a control group, 0.5, 2.46, and 5 mg/m3 formaldehyde exposure groups, inhaling formaldehyde for eight consecutive weeks. The RT-qPCR was used to detect the expression of rno_circRNA_016194; the testicular injuries were observed by testicular histopathology. Our study illustrated up-regulated rno_circRNA_016194 was dose-dependent with formaldehyde. Simultaneously, the testicular histopathology showed an obvious damages in the 2.46 and 5 mg/m3 formaldehyde exposure rats. Combined with bioinformatics analysis, the rno-miR-449a-5p was predicted and verified that its expression decreased in the testis exposed to formaldehyde. Meanwhile, the testicular morphometry changes were contrary to the expression of rno_circRNA_016194 and consistent with rno-miR-449a-5p. Moreover, bioinformatics analysis also prompted the potential downstream target gene for rno_circRNA_016194/rno-miR-449a-5p was Atg4b, and Atg4b expression was up-regulated in rats exposed to formaldehyde verifying by Western blot. Collectively, the rno_circRNA_016194 might be involved in formaldehyde-induced male reproductive toxicity and become potential therapeutic targets for male occupational exposure to formaldehyde.
Collapse
Affiliation(s)
- Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiang Zhang
- Department of Science and Education, Xi'an Children' s Hospital, Xi'an, Shaanxi, 710003, China
| | - Yan-Qi Yang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Zhang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shui-Ping Han
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen-Bao Zhao
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
40
|
Yin J, Huang HY, Long Y, Ma Y, Kamalibaike M, Dawuti R, Li L. circ_C20orf11 enhances DDP resistance by inhibiting miR-527/YWHAZ through the promotion of extracellular vesicle-mediated macrophage M2 polarization in ovarian cancer. Cancer Biol Ther 2021; 22:440-454. [PMID: 34382916 DOI: 10.1080/15384047.2021.1959792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is a fatal gynecologic tumor, and conventional treatment is mainly limited by chemoresistance. The mechanism contributing to chemoresistance in ovarian cancer has yet to be established. This study aimed to investigate the specific role of circ_C20orf11 in regulating chemoresistance to cisplatin (DDP)in ovarian cancer. We first established two DDP-resistant ovarian cancer cell lines. Then, we identified the effect of circ_C20orf11 on specific cellular characteristics (proliferation, apoptosis, DDP resistance) via a series of experiments. The binding sites between circ_C20orf11 and miR-527 and between miR-527 and YWHAZ were predicted using a bioinformatics tool and confirmed with a dual-luciferase reporter assay. Furthermore, extracellular vesicles (EVs) derived from DDP-resistant cell lines were identified, and the effect of EVs on macrophage polarization was examined. circ_C20orf11 was upregulated in ovarian cancer. Increased circ_C20orf11 expression enhanced DDP resistance and cell proliferation and reduced cell apoptosis in DDP-resistant cell lines after DDP treatment by sponging miR-527 and promoting YWHAZ expression. In addition, we found that DDP-resistant cell-derived EVs can induce macrophage M2 polarization, whereas silencing of circ_C20orf11 inhibited EV-induced macrophage M2 polarization. Consistent with these results, silencing of circ_C20orf11 enhanced sensitivity to DDP in vivo. Importantly, we proved that circ_C20orf11 expression was upregulated in EVs extracted from the serum of DDP-resistant patients. Our study demonstrated that silencing circ_C20orf11 sensitizes ovarian cancer to DDP by promoting miR-527/YWHAZ signaling and EV-mediated macrophage M2 polarization.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pharmacy, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Hai-Yan Huang
- Department of Medical Image Center, The Frist Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Ying Long
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China
| | - Yan Ma
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Maerkeya Kamalibaike
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Reyanguli Dawuti
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Li Li
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
41
|
Chadourne M, Poumerol E, Jouneau L, Passet B, Castille J, Sellem E, Pailhoux E, Mandon-Pépin B. Structural and Functional Characterization of a Testicular Long Non-coding RNA (4930463O16Rik) Identified in the Meiotic Arrest of the Mouse Topaz1 -/- Testes. Front Cell Dev Biol 2021; 9:700290. [PMID: 34277642 PMCID: PMC8281061 DOI: 10.3389/fcell.2021.700290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
Spermatogenesis involves coordinated processes, including meiosis, to produce functional gametes. We previously reported Topaz1 as a germ cell-specific gene highly conserved in vertebrates. Topaz1 knockout males are sterile with testes that lack haploid germ cells because of meiotic arrest after prophase I. To better characterize Topaz1–/– testes, we used RNA-sequencing analyses at two different developmental stages (P16 and P18). The absence of TOPAZ1 disturbed the expression of genes involved in microtubule and/or cilium mobility, biological processes required for spermatogenesis. Moreover, a quarter of P18 dysregulated genes are long non-coding RNAs (lncRNAs), and three of them are testis-specific and located in spermatocytes, their expression starting between P11 and P15. The suppression of one of them, 4939463O16Rik, did not alter fertility although sperm parameters were disturbed and sperm concentration fell. The transcriptome of P18-4939463O16Rik–/– testes was altered and the molecular pathways affected included microtubule-based processes, the regulation of cilium movement and spermatogenesis. The absence of TOPAZ1 protein or 4930463O16Rik produced the same enrichment clusters in mutant testes despite a contrasted phenotype on male fertility. In conclusion, although Topaz1 is essential for the meiosis in male germ cells and regulate the expression of numerous lncRNAs, these studies have identified a Topaz1 regulated lncRNA (4930463O16Rik) that is key for both sperm production and motility.
Collapse
Affiliation(s)
- Manon Chadourne
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elodie Poumerol
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Passet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Johan Castille
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Eric Pailhoux
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
42
|
Darbeheshti F, Zokaei E, Mansoori Y, Emadi Allahyari S, Kamaliyan Z, Kadkhoda S, Tavakkoly Bazzaz J, Rezaei N, Shakoori A. Circular RNA hsa_circ_0044234 as distinct molecular signature of triple negative breast cancer: a potential regulator of GATA3. Cancer Cell Int 2021; 21:312. [PMID: 34126989 PMCID: PMC8201848 DOI: 10.1186/s12935-021-02015-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been implicated in the initiation and development of breast cancer as functional non-coding RNAs (ncRNA). The roles of circRNAs as the competing endogenous RNAs (ceRNAs) to sponge microRNAs (miRNAs) have also been indicated. However, the functions of circRNAs in breast cancer have not been totally elucidated. This study aimed to explore the clinical implications and possible roles of circ_0044234 in carcinogenesis of the most problematic BC subtype, triple negative breast cancer (TNBC), which are in desperate need of biomarkers and targeted therapies. METHODS The importance of circ_0044234 as one of the most dysregulated circRNAs in TNBC was discovered through microarray expression profile analysis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the downregulation of circ_0044234 in triple negative tumors and cell lines versus non-triple negative ones. The bioinformatics prediction revealed that circ_0044234 could act as an upstream sponge in the miR-135b/GATA3 axis, two of the most dysregulated transcripts in TNBC. RESULTS Our experimental investigation of circ_0044234 expressions in various BC subtypes as well as cell lines reveals that TNBC expresses circ_0044234 at a substantially lower level than non-TNBC. The ROC curve analysis indicates that it could be applied as a discriminative biomarker to identify TNBC from other BC subtypes. Moreover, circ_0044234 expression could be an independent prognostic biomarker in BC. Interestingly, a substantial inverse expression correlation was detected between circ_0044234 and miR-135b-5p as well as between miR-135b-5p and GATA3 in breast tumors. CONCLUSIONS The possible clinical usefulness of circ_0044234 as a promising distinct biomarker and upcoming therapeutic target for TNBC have been indicated in this research. Our comprehensive approach revealed the potential circ_0044234/miR135b-5p/GATA3 ceRNA axis in TNBC.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elham Zokaei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Yaser Mansoori
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Sima Emadi Allahyari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeeba Kamaliyan
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Abbas Shakoori
- Medical Genetic Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran. .,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Wang X, Xing L, Yang R, Chen H, Wang M, Jiang R, Zhang L, Chen J. The circACTN4 interacts with FUBP1 to promote tumorigenesis and progression of breast cancer by regulating the expression of proto-oncogene MYC. Mol Cancer 2021; 20:91. [PMID: 34116677 PMCID: PMC8194204 DOI: 10.1186/s12943-021-01383-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
Background Recent studies have revealed that circular RNAs (circRNAs) play significant roles in the occurrence and development of many kinds of cancers including breast cancer (BC). However, the potential functions of most circRNAs and the molecular mechanisms underlying progression of BC remain elusive. Method Here, Circular RNA microarray was executed in 4 pairs of breast cancer tissues and para-cancer tissues. The expression and prognostic significance of circACTN4 in BC cells and tissues were determined by qRT-PCR and in situ hybridization. Gain-and loss-of-function experiments were implemented to observe the impacts of circACTN4 on the growth, invasion, and metastasis of BC cells in vitro and in vivo. Mechanistically, chromatin immunoprecipitation, luciferase reporter, RNA pulldown, mass spectrum, RNA immunoprecipitation, fluorescence in situ hybridization and co-immunoprecipitation assays were executed. Results CircACTN4 was significantly upregulated in breast cancer tissues and cells, its expression was correlated with clinical stage and poor prognosis of patients with BC. Ectopic expression of circACTN4 strikingly facilitated the growth, invasion, and metastasis of breast cancer cells in vitro and in vivo. Whereas knockdown of circACTN4 revealed opposite roles. CircACTN4 was mainly distributed in the nucleus. Further mechanistic research proved that circACTN4 could competitively bind to far upstream element binding protein 1 (FUBP1) to prevent the combination between FUBP1 and FIR, thereby activating MYC transcription and facilitating tumor progression of breast cancer. Furthermore, we found that upstream transcription factor 2 (USF2) might promote the biogenesis of circACTN4. Conclusion Our findings uncover a pivotal mechanism that circACTN4 mediated by USF2 might interact with FUBP1 to promote the occurrence and development of breast cancer via enhancing the expression of MYC. CircACTN4 could be a novel potential target for diagnosis and treatment of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01383-x.
Collapse
Affiliation(s)
- Xiaosong Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Lei Xing
- Department of Endocrine and breast surgery, The First Affiliated Hospital of Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Rui Yang
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Hang Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Min Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
44
|
Xu Y, Chen F. Current Status of Functional Studies on Circular RNAs in Rheumatoid Arthritis and Their Potential Role as Diagnostic Biomarkers. J Inflamm Res 2021; 14:1185-1193. [PMID: 33833541 PMCID: PMC8020583 DOI: 10.2147/jir.s302846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs), a new class of endogenous non-coding RNAs (ncRNAs), are highly stable and exhibit tissue-specific expression. Accumulating evidence has indicated that circRNAs play crucial roles in the development and progression of multiple diseases. Notably, circRNAs, important epigenetic modulators of gene expression in inflammation and autoimmune regulation, have a close association with the pathogenesis of rheumatoid arthritis (RA). RA, one of the most common systemic autoimmune diseases, is characterized by synovial hyperplasia and inflammation, and cartilage and bone destruction. Here, we focus on the roles of circRNAs in macrophage, synovial tissues, fibroblast-like synoviocytes (FLSs), and cartilage tissues in pathogenesis and progression of RA, highlighting the potential of circRNAs in the blood as diagnostic biomarkers, and aiming at providing new insights into the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,School of Pharmacy, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People's Republic of China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,School of Pharmacy, The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People's Republic of China
| |
Collapse
|
45
|
Cai Z, Lu C, He J, Liu L, Zou Y, Zhang Z, Zhu Z, Ge X, Wu A, Jiang T, Zheng H, Peng Y. Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Brief Bioinform 2021; 22:1297-1308. [PMID: 33757279 PMCID: PMC7799257 DOI: 10.1093/bib/bbaa334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
The life-threatening coronaviruses MERS-CoV, SARS-CoV-1 and SARS-CoV-2 (SARS-CoV-1/2) have caused and will continue to cause enormous morbidity and mortality to humans. Virus-encoded noncoding RNAs are poorly understood in coronaviruses. Data mining of viral-infection-related RNA-sequencing data has resulted in the identification of 28 754, 720 and 3437 circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2, respectively. MERS-CoV exhibits much more prominent ability to encode circRNAs in all genomic regions than those of SARS-CoV-1/2. Viral circRNAs typically exhibit low expression levels. Moreover, majority of the viral circRNAs exhibit expressions only in the late stage of viral infection. Analysis of the competitive interactions of viral circRNAs, human miRNAs and mRNAs in MERS-CoV infections reveals that viral circRNAs up-regulated genes related to mRNA splicing and processing in the early stage of viral infection, and regulated genes involved in diverse functions including cancer, metabolism, autophagy, viral infection in the late stage of viral infection. Similar analysis in SARS-CoV-2 infections reveals that its viral circRNAs down-regulated genes associated with metabolic processes of cholesterol, alcohol, fatty acid and up-regulated genes associated with cellular responses to oxidative stress in the late stage of viral infection. A few genes regulated by viral circRNAs from both MERS-CoV and SARS-CoV-2 were enriched in several biological processes such as response to reactive oxygen and centrosome localization. This study provides the first glimpse into viral circRNAs in three deadly coronaviruses and would serve as a valuable resource for further studies of circRNAs in coronaviruses.
Collapse
Affiliation(s)
- Zena Cai
- College of Biology, Hunan University
| | - Congyu Lu
- College of Biology, Hunan University
| | | | - Li Liu
- Hunan Yuelu mountain data science and Technology Research Institute Co., Ltd, Changsha, China
| | | | | | | | - Xingyi Ge
- College of Biology, Hunan University
| | - Aiping Wu
- Suzhou Institute of Systems Medicine
| | | | | | | |
Collapse
|
46
|
Zhang Y, Zhong Y, Guo S, Zhu Y, Guo J, Fu Y, Li M. CircRNA profiling reveals circ880 functions as miR-375-3p sponge in medaka gonads. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100797. [PMID: 33714082 DOI: 10.1016/j.cbd.2021.100797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/25/2020] [Accepted: 01/23/2021] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) have been regarded as regulators in the biological processes of various species. However, there is no report about circRNAs in the gonads of model fish medaka (Oryzias latipes). In this study, 1157 and 1570 circRNAs were obtained in the ovary and testis by RNA-sequencing. The characteristics of circRNAs were explored in sequence length, exon composition, and chromosome position. 24 circRNAs were significantly up or down-regulated in the testis compared to the ovary, 9 of which were verified by qRT-PCR. Interestingly, circ452 was highly expressed in the testis while circ880 expression exhibited sexual dimorphism. In situ hybridization (ISH) revealed that circ452 and circ880 were expressed in meiotic germ cells, and circ880 was also abundant in spermatogonia. In addition, dual-luciferase reporter assay manifested that circ880 and Oldnd can combine with miR-375-3p. Overall, these results provide emerging circRNA libraries and open new avenues for future investigation of circRNAs in medaka.
Collapse
Affiliation(s)
- Yu Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Shaoyu Guo
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yefei Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Guo
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Mingyou Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
47
|
Wang L, Si X, Chen S, Wang X, Yang D, Yang H, He C. A comprehensive evaluation of skin aging-related circular RNA expression profiles. J Clin Lab Anal 2021; 35:e23714. [PMID: 33534927 PMCID: PMC8059755 DOI: 10.1002/jcla.23714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/10/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been shown to play important regulatory roles in a range of both pathological and physiological contexts, but their functions in the context of skin aging remain to be clarified. In the present study, we therefore, profiled circRNA expression profiles in four pairs of aged and non‐aged skin samples to identify identifying differentially expressed circRNAs that may offer clinical value as biomarkers of the skin aging process. Methods We utilized an RNA‐seq to profile the levels of circRNAs in eyelid tissue samples, with qRT‐PCR being used to confirm these RNA‐seq results, and with bioinformatics approaches being used to predict downstream target miRNAs for differentially expressed circRNAs. Results In total, we identified 571 circRNAs with 348 and 223 circRNAs being up and downregulated that were differentially expressed in aged skin samples compared to young skin samples. The top 10 upregulated circRNAs in aged skin sample were hsa_circ_0123543, hsa_circ_0057742, hsa_circ_0088179, hsa_circ_0132428, hsa_circ_0094423, hsa_circ_0008166, hsa_circ_0138184, hsa_circ_0135743, hsa_circ_0114119, and hsa_circ_0131421. The top 10 reduced circRNAs were hsa_circ_0101479, hsa_circ_0003650, hsa_circ_0004249, hsa_circ_0030345, hsa_circ_0047367, hsa_circ_0055629, hsa_circ_0062955, hsa_circ_0005305, hsa_circ_0001627, and hsa_circ_0008531. Functional enrichment analyses revealed the potential functionality of these differentially expressed circRNAs. The top 3 enriched gene ontology (GO) terms of the host genes of differentially expressed circRNAs are regulation of GTPase activity, positive regulation of GTPase activity and autophagy. The top 3 enriched KEGG pathway ID are Lysine degradation, Fatty acid degradation and Inositol phosphate metabolism. The top 3 enriched reactome pathway ID are RAB GEFs exchange GTP for GDP on RABs, Regulation of TP53 Degradation and Regulation of TP53 Expression and Degradation. Six circRNAs were selected for qRT‐PCR verification, of which 5 verification results were consistent with the sequencing results. Moreover, targeted miRNAs, such as hsa‐miR‐588, hsa‐miR‐612, hsa‐miR‐4487, hsa‐miR‐149‐5p, hsa‐miR‐494‐5p were predicted for circRna‐miRna interaction networks. Conclusion Overall, these results offer new insights into circRNA expression profiles, potentially highlighting future avenues for research regarding the roles of these circRNAs in the context of skin aging.
Collapse
Affiliation(s)
- Lili Wang
- Department of Dermatology, Key Laboratory of Immunodermatology, No. 1 Hospital of China Medical University, Shenyang, China.,The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xijian Si
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shuang Chen
- Department of Dermatology, Key Laboratory of Immunodermatology, No. 1 Hospital of China Medical University, Shenyang, China
| | - Xiuli Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dan Yang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Henan Yang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chundi He
- Department of Dermatology, Key Laboratory of Immunodermatology, No. 1 Hospital of China Medical University, Shenyang, China
| |
Collapse
|
48
|
Wang L, Zhou L, Hou J, Meng J, Lin K, Wu X, Chen X. Three novel circRNAs upregulated in tissue and plasma from hepatocellular carcinoma patients and their regulatory network. Cancer Cell Int 2021; 21:72. [PMID: 33482819 PMCID: PMC7824949 DOI: 10.1186/s12935-021-01762-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background The regulatory roles of circular RNAs (circRNAs) in tumorigenesis have attracted increasing attention. However, novel circRNAs with the potential to be used as serum/plasma biomarkers and their regulatory mechanism in the pathogenesis of hepatocellular carcinoma (HCC) remain explored. Methods CircRNA expression profiles of tumor tissues and plasma samples from HCC patients were compiled and jointly analyzed. CircRNA–miRNA–mRNA interactions were predicted by bioinformatics tools. The expression of interacting miRNAs and mRNA was verified in independent datasets. Survival analysis and pathway enrichment analysis were conducted on hub genes. Results We identified three significantly up-regulated circRNAs (hsa_circ_0009910, hsa_circ_0049783, and hsa_circ_0089172) both in HCC tissues and plasma samples. Two of them were validated to be indeed circular and could be excreted from hepatoma cells. We further revealed four miRNAs (hsa-miR-455-5p, hsa-miR-615-3p, hsa-miR-18a-3p, hsa-miR-4524a-3p) that targeting circRNAs and expressed in human HCC samples, and 95 mRNAs targeted by miRNAs and significantly up-regulated in two HCC cohorts. A protein-protein interaction network revealed 19 hub genes, 12 of them (MCM6, CCNB1, CDC20, NDC80, ZWINT, ASPM, CENPU, MCM3, MCM5, ECT2, CDC7, and DLGAP5) were associated with reduced survival in two HCC cohorts. KEGG, Reactome, and Wikipathway enrichment analysis indicated that the hub genes mainly functioned in DNA replication and cell cycle. Conclusions Our study uncovers three novel deregulated circRNAs in tumor and plasma from HCC patients and provides an insight into the pathogenesis from the circRNA–miRNA–mRNA regulatory network.
Collapse
Affiliation(s)
- Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Lisha Zhou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jin Meng
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Ke Lin
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Xueling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
49
|
Zhang W, Wu G, Sun P, Zhu Y, Zhang H. circ_SMAD2 regulate colorectal cancer cells proliferation through targeting miR-1258/RPN2 signaling pathway. J Cancer 2021; 12:1678-1686. [PMID: 33613755 PMCID: PMC7890329 DOI: 10.7150/jca.50888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are associated with various diseases, including cancers. However, their roles in colorectal cancer (CRC) have not been established. Hsa_circ_0000847 (circ_SMAD2) is a novel circRNA that was found to be elevated in CRC cell lines and tissues. High circ_SMAD2 levels were positively correlated with CRC clinicopathological features. Functional assays revealed that circ_SMAD2 enhanced CRC cell invasion, proliferation, and tumor growth. Mechanistically, circ_SMAD2 elevated Ribophorin II (RPN2) levels by inhibiting miR-1258. Therefore, circ_SMAD2 is a potential indicator for CRC progression.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Yuanzeng Zhu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Han Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| |
Collapse
|
50
|
Cheng D, Wang J, Dong Z, Li X. Cancer-related circular RNA: diverse biological functions. Cancer Cell Int 2021; 21:11. [PMID: 33407501 PMCID: PMC7789196 DOI: 10.1186/s12935-020-01703-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs, including long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), are involved in regulating biological functions. In recent decades, miRNAs and lncRNAs have both inspired a wave of research, but the study of circRNA functions is still in its infancy. Studies have found that circRNAs actively participate in the occurrence and development of various diseases, which emphasizes the importance of circRNAs. Here, we review the features and classification of circRNAs and summarize their functions. Then, we briefly describe how to analyze circRNAs by bioinformatics procedures. In addition, the relationship between circRNAs and cancers is discussed with an emphasis on proving whether circRNAs can be potential biomarkers for the prognosis and diagnosis of cancer.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Jing Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
| |
Collapse
|