1
|
Haider S, Brough R, Madera S, Iacovacci J, Gulati A, Wicks A, Alexander J, Pettitt SJ, Tutt ANJ, Lord CJ. The transcriptomic architecture of common cancers reflects synthetic lethal interactions. Nat Genet 2025; 57:522-529. [PMID: 40033056 PMCID: PMC11906352 DOI: 10.1038/s41588-025-02108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
To maintain cell fitness, deleterious genetic alterations are buffered by compensatory changes in additional genes. In cancer, buffering processes could be targeted by synthetic lethality. However, despite the large-scale identification of synthetic lethal effects in preclinical models, evidence that these operate clinically is limited. This impedes the application of synthetic lethal approaches. By integrating molecular profiling data from >9,000 cancers with synthetic lethal screens, we show that transcriptomic buffering of tumor suppressor gene (TSG) loss by hyperexpression of synthetic lethal partners is a common phenomenon, extending to multiple TSGs and histotypes. Transcriptomic buffering is also notable in cancers that phenocopy TSG loss, such as BRCAness cancers, where expression of BRCA1/2 synthetic lethal genes correlates with clinical outcome. Synthetic lethal genes that exhibit transcriptomic buffering also represent more robust synthetic lethal effects. These observations have implications for understanding how tumor cells tolerate TSG loss, in part explain transcriptomic architectures in cancer and provide insight into target selection.
Collapse
Affiliation(s)
- Syed Haider
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK.
| | - Rachel Brough
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - Santiago Madera
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Jacopo Iacovacci
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Aditi Gulati
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Andrew Wicks
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - John Alexander
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Stephen J Pettitt
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK.
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK.
| | - Andrew N J Tutt
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK.
| | - Christopher J Lord
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK.
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK.
| |
Collapse
|
2
|
Yuan P, Ma N, Xu B. Poly (adenosine diphosphate-ribose) polymerase inhibitors in the treatment of triple-negative breast cancer with homologous repair deficiency. Med Res Rev 2024; 44:2774-2792. [PMID: 38922930 DOI: 10.1002/med.22058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Breast cancer (BC) is a highly heterogeneous disease, and the presence of germline breast cancer gene mutation (gBRCAm) is associated with a poor prognosis. Triple-negative breast cancer (TNBC) is a BC subtype, characterized by the absence of hormone and growth factor receptor expression, making therapeutic decisions difficult. Defects in the DNA damage response pathway due to mutation in breast cancer genes (BRCA 1/2) lead to homologous recombination deficiency (HRD). However, in HRD conditions, poly (adenosine diphosphate-ribose) polymerase (PARP) proteins repair DNA damage and lead to tumor cell survival. Biological understanding of HRD leads to the development of PARP inhibitors (PARPi), which trap PARP proteins and cause genomic instability and tumor cell lysis. HRD assessment can be an important biomarker in identifying gBRCAm patients with BC who could benefit from PARPi therapy. HRD can be identified by homologous recombination repair (HRR) gene-based assays, genomic-scarring assays and mutational signatures, transcription and protein expression profiles, and functional assays. However, gold standard methodologies that are robust and reliable to assess HRD are not available currently. Hence, there is a pressing need to develop accurate biomarkers identifying HRD tumors to guide targeted therapies such as PARPi in patients with BC. HRD assessment has shown fruitful outcomes in chemotherapy studies and preliminary evidence on PARPi intervention as monotherapy and combination therapy in HRD-stratified patients. Furthermore, ongoing trials are exploring the potential of PARPi in BC and clinically complex TNBC settings, where HRD testing is used as an adjunct to stratify patients based on BRCA mutations.
Collapse
Affiliation(s)
- Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Ma
- Value & Implementation, Global Medical & Scientific Affairs, MSD China, Shanghai, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Jackson-Spence F, Ackerman C, Jones R, Toms C, Jovaisaite A, Young M, Hussain S, Protheroe A, Birtle A, Chakraborti P, Huddart R, Jagdev S, Bahl A, Sundar S, Crabb S, Powles T, Szabados B. Biomarkers associated with survival in patients with platinum-refractory urothelial carcinoma treated with paclitaxel. Urol Oncol 2024; 42:372.e1-372.e10. [PMID: 39025719 DOI: 10.1016/j.urolonc.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Taxane- based chemotherapy is widely used in patients with platinum- and immunotherapy refractory, metastatic urothelial carcinoma (mUC). Outcomes are poor and biomarkers associated with outcome are lacking. We aim to identify cancer hallmarks associated with survival in patients receiving paclitaxel. METHODS Whole-transcriptome profiles were generated for a subset of patients enrolled in a randomised phase II study investigating paclitaxel and pazopanib in platinum refractory mUC (PLUTO, EudraCT 2011-001841-34). Estimates of gene expression were calculated and input into the Almac proprietary analysis pipeline and signature scores were calculated using ClaraT V3.0.0. Ten key gene signatures were assessed: Immuno-Oncology, Epithelial to Mesenchymal Transition, Angiogenesis, Proliferation, Cell Death, Genome Instability, Energetics, Inflammation, Immortality and Evading Growth. Hazard ratios were calculated using Cox regression model and Kaplan-Meier methods were used to estimate progression free survival (PFS) and overall survival (OS). RESULTS 38 and 45 patients treated with paclitaxel or pazopanib were included. Patients with high genome instability expression treated with paclitaxel had significantly improved survival with a HR of 0.29 (95% CI: 0.14-0.61, p=0.001) and HR 0.34 (95% CI: 0.17-0.69, p=0.003) for PFS and OS, respectively. Similarly, patients with high evading growth suppressor expression treated with paclitaxel had improved PFS and OS with a HR of 0.35 (95% CI: 0.19-0.77, p=0.007) and HR 0.46 (95% CI: 0.23-0.91, p=0.026), respectively. No other gene signatures had significant impact on outcome. In both paclitaxel and pazopanib cohorts, angiogenesis activation was associated with worse PFS and OS, and VEGF targeted therapy did not improve outcomes. CONCLUSION High Genome-instability and Evading-growth suppressor biologies are associated with improved survival in patients with platinum refractory mUC receiving paclitaxel. These may refine mUC risk stratification and guide treatment decision in the future.
Collapse
Affiliation(s)
| | - Charlotte Ackerman
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK
| | - Robert Jones
- Department of Genitourinary Oncology, University of Glasgow, Glasgow, Scotland, UK
| | - Charlotte Toms
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK
| | - Agne Jovaisaite
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK
| | - Matthew Young
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK
| | - Syed Hussain
- Department of Genitourinary Oncology, University of Liverpool, Liverpool, UK
| | - Andrew Protheroe
- Department of Genitourinary Oncology, Churchill Hospital, Oxford, UK
| | - Alison Birtle
- Department of Genitourinary Oncology, Preston Hospital, Preston, UK
| | - Prabir Chakraborti
- Department of Genitourinary Oncology, Derby Hospitals NHS Foundation trust, Derby, UK
| | - Robert Huddart
- Department of Genitourinary Oncology, Institute of Cancer Research, Sutton, UK
| | - Santinder Jagdev
- Department of Genitourinary Oncology, St James's University Hospital, Leeds, UK
| | - Amit Bahl
- Department of Genitourinary Oncology, Bristol Haematology and Oncology Centre, Bristol, UK
| | - Santhanam Sundar
- Department of Genitourinary Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Simon Crabb
- Department of Genitourinary Oncology, University of Southampton, Southampton UK
| | - Thomas Powles
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK.
| | - Bernadett Szabados
- Department of Genitourinary Oncology, Barts Cancer Institute, QMUL, London, UK
| |
Collapse
|
4
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Pan JW, Tan ZC, Ng PS, Zabidi MMA, Nur Fatin P, Teo JY, Hasan SN, Islam T, Teoh LY, Jamaris S, See MH, Yip CH, Rajadurai P, Looi LM, Taib NAM, Rueda OM, Caldas C, Chin SF, Lim J, Teo SH. Gene expression signature for predicting homologous recombination deficiency in triple-negative breast cancer. NPJ Breast Cancer 2024; 10:60. [PMID: 39030225 PMCID: PMC11271517 DOI: 10.1038/s41523-024-00671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Triple-negative breast cancers (TNBCs) are a subset of breast cancers that have remained difficult to treat. A proportion of TNBCs arising in non-carriers of BRCA pathogenic variants have genomic features that are similar to BRCA carriers and may also benefit from PARP inhibitor treatment. Using genomic data from 129 TNBC samples from the Malaysian Breast Cancer (MyBrCa) cohort, we developed a gene expression-based machine learning classifier for homologous recombination deficiency (HRD) in TNBCs. The classifier identified samples with HRD mutational signature at an AUROC of 0.93 in MyBrCa validation datasets and 0.84 in TCGA TNBCs. Additionally, the classifier strongly segregated HRD-associated genomic features in TNBCs from TCGA, METABRIC, and ICGC. Thus, our gene expression classifier may identify triple-negative breast cancer patients with homologous recombination deficiency, suggesting an alternative method to identify individuals who may benefit from treatment with PARP inhibitors or platinum chemotherapy.
Collapse
Affiliation(s)
- Jia-Wern Pan
- Cancer Research Malaysia, Subang Jaya, Malaysia.
| | | | - Pei-Sze Ng
- Cancer Research Malaysia, Subang Jaya, Malaysia
| | | | | | | | | | - Tania Islam
- Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Li-Ying Teoh
- Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Suniza Jamaris
- Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Mee-Hoong See
- Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | | | - Pathmanathan Rajadurai
- Subang Jaya Medical Centre, Subang Jaya, Malaysia
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Malaysia
| | - Lai-Meng Looi
- Department of Pathology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Oscar M Rueda
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Robinson Way, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Joanna Lim
- Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Malaysia
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Ishizuka Y, Horimoto Y, Eguchi H, Murakami F, Nakai K, Onagi H, Hayashi T, Ishikawa T, Arai M, Watanabe J. BRCAness of brain lesions reflects a worse outcome for patients with metastatic breast cancer. Breast Cancer Res Treat 2024; 203:49-55. [PMID: 37728693 DOI: 10.1007/s10549-023-07115-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Breast cancer often metastasizes to the central nervous system. Although the prognosis of brain metastases from breast cancer has been considered poor, and systemic therapy has not contributed to an improved prognosis, newer agents are expected to be more effective. BRCAness is defined as the status of homologous recombination deficiency (HRD) in tumor tissue, regardless of the presence of pathogenic germline BRCA1/2 variants. A study employing next-generation sequencing analysis showed that HRD was found relatively frequently in brain metastases of breast cancer patients. However, there have been no studies evaluating BRCAness in brain metastases of breast cancer with more efficient, rapid, and cost-effective methods. METHODS We retrospectively investigated 17 brain metastases of breast cancer that were surgically resected at our hospital from January 2007 to December 2022. Of these, samples from 15 patients were evaluable for BRCAness by employing multiplex ligation-dependent probe amplification (MLPA) assay. RESULTS Of the 15 patients, five patients (33%) had tumors with BRCAness. Clinicopathological factors of patients with brain metastases with BRCAness were not statistically different from those of patients who possessed tumors without BRCAness. Patients with brain metastases with BRCAness had shorter overall survival compared to those without BRCAness (BRCAness, median 15 months (95% CI 2-30) vs. non-BRCAness, median 28.5 months (95% CI 10-60); P = 0.013). CONCLUSION In this study, we evaluated BRCAness in brain metastases of breast cancer with the MLPA method, and found that about one-third of patients had BRCAness-positive tumors. The analysis of BRCAness using MLPA has the potential for practical clinical use.
Collapse
Affiliation(s)
- Yumiko Ishizuka
- Department of Breast Oncology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshiya Horimoto
- Department of Breast Oncology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Human Pathology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Disease, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumi Murakami
- Department of Breast Oncology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Katsuya Nakai
- Department of Breast Oncology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroko Onagi
- Department of Human Pathology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masami Arai
- Department of Breast Oncology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Diagnostics and Therapeutics of Intractable Disease, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Clinical Genetics, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Junichiro Watanabe
- Department of Breast Oncology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
7
|
Jacobson DH, Pan S, Fisher J, Secrier M. Multi-scale characterisation of homologous recombination deficiency in breast cancer. Genome Med 2023; 15:90. [PMID: 37919776 PMCID: PMC10621207 DOI: 10.1186/s13073-023-01239-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Homologous recombination is a robust, broadly error-free mechanism of double-strand break repair, and deficiencies lead to PARP inhibitor sensitivity. Patients displaying homologous recombination deficiency can be identified using 'mutational signatures'. However, these patterns are difficult to reliably infer from exome sequencing. Additionally, as mutational signatures are a historical record of mutagenic processes, this limits their utility in describing the current status of a tumour. METHODS We apply two methods for characterising homologous recombination deficiency in breast cancer to explore the features and heterogeneity associated with this phenotype. We develop a likelihood-based method which leverages small insertions and deletions for high-confidence classification of homologous recombination deficiency for exome-sequenced breast cancers. We then use multinomial elastic net regression modelling to develop a transcriptional signature of heterogeneous homologous recombination deficiency. This signature is then applied to single-cell RNA-sequenced breast cancer cohorts enabling analysis of homologous recombination deficiency heterogeneity and differential patterns of tumour microenvironment interactivity. RESULTS We demonstrate that the inclusion of indel events, even at low levels, improves homologous recombination deficiency classification. Whilst BRCA-positive homologous recombination deficient samples display strong similarities to those harbouring BRCA1/2 defects, they appear to deviate in microenvironmental features such as hypoxic signalling. We then present a 228-gene transcriptional signature which simultaneously characterises homologous recombination deficiency and BRCA1/2-defect status, and is associated with PARP inhibitor response. Finally, we show that this signature is applicable to single-cell transcriptomics data and predict that these cells present a distinct milieu of interactions with their microenvironment compared to their homologous recombination proficient counterparts, typified by a decreased cancer cell response to TNFα signalling. CONCLUSIONS We apply multi-scale approaches to characterise homologous recombination deficiency in breast cancer through the development of mutational and transcriptional signatures. We demonstrate how indels can improve homologous recombination deficiency classification in exome-sequenced breast cancers. Additionally, we demonstrate the heterogeneity of homologous recombination deficiency, especially in relation to BRCA1/2-defect status, and show that indications of this feature can be captured at a single-cell level, enabling further investigations into interactions between DNA repair deficient cells and their tumour microenvironment.
Collapse
Affiliation(s)
- Daniel H Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Shi Pan
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Stecklein SR, Barlow W, Pusztai L, Timms K, Kennedy R, Logan GE, Seitz R, Badve S, Gökmen-Polar Y, Porter P, Linden H, Tripathy D, Hortobagyi GN, Godwin AK, Thompson A, Hayes DF, Sharma P. Dual Prognostic Classification of Triple-Negative Breast Cancer by DNA Damage Immune Response and Homologous Recombination Deficiency. JCO Precis Oncol 2023; 7:e2300197. [PMID: 37972336 PMCID: PMC10681491 DOI: 10.1200/po.23.00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a heterogeneous disease. We previously showed that homologous recombination deficiency (HRD) and the DNA damage immune response (DDIR) signature are prognostic in TNBC. We hypothesized that these biomarkers reflect related but not completely interdependent biological processes, that their combined use would be prognostic, and that simultaneous assessment of the immunologic microenvironment and susceptibility to DNA damaging therapies might be able to identify subgroups with distinct therapeutic vulnerabilities. METHODS We analyzed the dual DDIR/HRD classification in 341 patients with TNBC treated with adjuvant anthracycline-based chemotherapy on the SWOG S9313 trial and corroborated our findings in The Cancer Genome Atlas breast cancer data set. RESULTS DDIR/HRD classification is highly prognostic in TNBC and identifies biologically and immunologically distinct subgroups. Immune-enriched DDIR+/HRD+ TNBCs have the most favorable prognosis, and DDIR+/HRD- and DDIR-/HRD+ TNBCs have favorable intermediate prognosis, despite the latter being immune-depleted. DDIR-/HRD- TNBCs have the worst prognosis and represent an internally heterogeneous group of immune-depleted chemoresistant tumors. CONCLUSION Our findings propose DDIR/HRD classification as a potentially clinically relevant approach to categorize tumors on the basis of therapeutic vulnerabilities.
Collapse
Affiliation(s)
| | | | | | | | - Richard Kennedy
- Almac Diagnostic Services, Craigavon, Northern Ireland, United Kingdom
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, United Kingdom
| | - Gemma E. Logan
- Almac Diagnostic Services, Craigavon, Northern Ireland, United Kingdom
| | | | - Sunil Badve
- Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
MEK1 drives oncogenic signaling and interacts with PARP1 for genomic and metabolic homeostasis in malignant pleural mesothelioma. Cell Death Discov 2023; 9:55. [PMID: 36765038 PMCID: PMC9918536 DOI: 10.1038/s41420-023-01307-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 02/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis.
Collapse
|
10
|
Clark CA, Yang ES. Therapeutic Targeting of DNA Damage Repair in the Era of Precision Oncology and Immune Checkpoint Inhibitors. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 6:31-49. [PMID: 36751656 PMCID: PMC9888518 DOI: 10.36401/jipo-22-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
Cancer manifestation is a multistep process involving accumulation of various genetic and epigenetic changes that results in oncogenic "hallmarks of cancer" processes including genomic instability. Exploitation of aberrant DNA-damage response (DDR) mechanisms in cancer is in part a goal of many therapeutic strategies, and recent evidence supports the role of targeting DDR in modulating the tumor immune microenvironment to enhance immunotherapeutic response. Improved cancer profiling, including next-generation and whole-genome mutational sequencing of tumor tissue, as well as circulating nucleic acids, has enhanced our understanding of the genetic and epigenetic molecular mechanisms in tumorigenesis and will become fundamental to precisely target tumors and achieve cancer control. With the successes of poly(ADP-ribose) polymerase inhibitors (PARPi) and immunotherapies, the intersection of DDR molecular machinery and corresponding antitumor immune response has gained much interest with a focus on achieving therapeutic synergy using DNA damage-targeting agents and immunotherapy. In this review, we provide a bench-to-bedside overview of the fundamentals of DDR signaling and repair as they relate to cancer therapeutic strategies including novel DDR-targeting agents. We also discuss the underlying mechanisms that link DDR signaling to antitumor immunity and immunotherapy efficacy, and how this knowledge can be used to improve precision medicine approaches in the treatment of cancer.
Collapse
Affiliation(s)
- Curtis A. Clark
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
,Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|
11
|
Gedminas JM, Laetsch TW. Targeting the DNA damage response in pediatric malignancies. Expert Rev Anticancer Ther 2022; 22:1099-1113. [PMID: 36099180 DOI: 10.1080/14737140.2022.2124970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION High levels of DNA damage and mutations in DNA damage response genes creates a high reliance on DNA damage repair in various tumors. This creates a vulnerability for new cancer therapies. Although there is extensive data for the use of these agents in adult tumors, the evaluation of these compounds in the pediatric population remains in the early stages. AREAS COVERED In this review, we discuss the role of the DNA damage response as a therapeutic vulnerability in pediatric malignancies, provide a summary of clinical data for the use of DNA damage response inhibitors in cancer, and review how these compounds can be extended to the pediatric population. EXPERT OPINION A number of pediatric cancers rely on robust DNA damage repair to maintain cell viability. This provides a therapeutic vulnerability in cancer cells resistant to other traditional therapies. Unfortunately, although clinical evaluation of inhibitors of various components of the DNA damage response has been done in adults, pediatric data remains limited. Further studies are needed to evaluate the efficacy of these compounds in the pediatric population.
Collapse
Affiliation(s)
- Jenna M Gedminas
- Children's Hospital of Philadelphia, Division of Oncology, Philadelphia, PA, USA
| | - Theodore W Laetsch
- Children's Hospital of Philadelphia, Division of Oncology, Philadelphia, PA, USA
| |
Collapse
|
12
|
Caramelo O, Silva C, Caramelo F, Frutuoso C, Pinto L, Almeida-Santos T. Efficacy of different neoadjuvant treatment regimens in BRCA-mutated triple negative breast cancer: a systematic review and meta-analysis. Hered Cancer Clin Pract 2022; 20:34. [PMID: 36085046 PMCID: PMC9463858 DOI: 10.1186/s13053-022-00242-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Triple negative breast cancer (TNBC) is an aggressive breast cancer strongly associated with BRCA mutation. Standard neoadjuvant chemotherapy remains the standard of care for early stage TNBC, the optimal chemotherapy regimen is still a matter of discussion. Other agents, such as poly-ADP-ribosyl polymerase inhibitors (PARPi) and anti-vascular endothelial growth factor (VEGF) antibodies were evaluated in the neoadjuvant setting. This systematic review and meta-analysis intend to evaluate the impact of neoadjuvant treatments in pCR rates in TNBC gBRCA mutation, beyond traditional standard chemotherapy. METHODS PubMed, Clinicaltrials.gov, Cochrane CENTRAL, Embase and key oncological meetings for trials were searched for studies reporting neoadjuvant chemo-immunotherapy in BRCA positive TNBC. RESULTS Out of 1238 records reviewed, thirty-one trials were included, resulting in a total 619 BRCA-mutated TNBC patients. In BRCA mutated TNBC patients who received cisplatin in monotherapy the proportion of patients who achieved pCR was 0.53 (95%CI [0.30, 0.76]), and when treatment combined standard chemotherapy and platin derivatives the proportion of pCR increased to 0.62 (95% CI [0.48, 0.76]). The group of patients treated with platin derivatives, anthracyclines ± taxanes achieved the highest proportion of pCR, 0.66. Patients treated with PARPi alone show a pCR proportion of 0.55 (95% CI [0.30, 0.81]); and when standard chemotherapy and platin derivatives were combined with PARPi the proportion of pCR did not vary. CONCLUSIONS Patients with BRCA mutated TNBC treated with cisplatin in monotherapy demonstrate inferior proportion in the pCR achievement when compared with standard chemotherapy plus platin derivates. The best pCR was achieved with platin derivates in association with anthracyclines ± taxanes. No difference in pCR was found between PARPi alone vs PARPi with standard chemotherapy.
Collapse
Affiliation(s)
- Olga Caramelo
- Gynecology Department, Coimbra Hospital and University Centre (CHUC), EPE, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.
| | - Cristina Silva
- Faculty of Pharmacy of the University of Coimbra, Rua Filipe Simões n° 33, 3000-186, Coimbra, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, iCBR - Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
| | - Cristina Frutuoso
- Gynecology Department, Coimbra Hospital and University Centre (CHUC), EPE, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Leonor Pinto
- Oncology Department, Coimbra Hospital and University Centre (CHUC), EPE, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Teresa Almeida-Santos
- Centre for Fertility Preservation, Human Reproduction Department, Coimbra Hospital and University Centre (CHUC), EPE, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Medicine of the University of Coimbra, Azinhaga de Santa Comba - Celas, 3000-548, Coimbra, Portugal
| |
Collapse
|
13
|
Predictive biomarkers for molecularly targeted therapies and immunotherapies in breast cancer. Arch Pharm Res 2022; 45:597-617. [PMID: 35982262 DOI: 10.1007/s12272-022-01402-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Globally, breast cancer is the most common malignancy in women. Substantial efforts have been made to develop novel therapies, including targeted therapies and immunotherapies, for patients with breast cancer who do not respond to standard therapies. Consequently, new targeted therapies, such as cyclin-dependent kinase 4 and 6 inhibitors, poly (ADP-ribose) polymerase inhibitors, phosphoinositide 3-kinase inhibitor, and antibody-drug conjugates targeting human epidermal growth factor receptor 2 or trophoblast cell surface antigen-2, and immune checkpoint inhibitor targeting programmed cell death-1, have been developed and are now in clinical use. However, only some patients have benefited from these novel therapies; therefore, the identification and validation of reliable or more accurate biomarkers for predicting responses to these agents remain a major challenge. This review summarizes the currently available predictive biomarkers for breast cancer and describes recent efforts undertaken to identify potential predictive markers for molecularly targeted therapies and immune checkpoint inhibitors.
Collapse
|
14
|
Pinilla K, Drewett LM, Lucey R, Abraham JE. Precision Breast Cancer Medicine: Early Stage Triple Negative Breast Cancer-A Review of Molecular Characterisation, Therapeutic Targets and Future Trends. Front Oncol 2022; 12:866889. [PMID: 36003779 PMCID: PMC9393396 DOI: 10.3389/fonc.2022.866889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Personalised approaches to the management of all solid tumours are increasing rapidly, along with wider accessibility for clinicians. Advances in tumour characterisation and targeted therapies have placed triple-negative breast cancers (TNBC) at the forefront of this approach. TNBC is a highly heterogeneous disease with various histopathological features and is driven by distinct molecular alterations. The ability to tailor individualised and effective treatments for each patient is of particular importance in this group due to the high risk of distant recurrence and death. The mainstay of treatment across all subtypes of TNBC has historically been cytotoxic chemotherapy, which is often associated with off-target tissue toxicity and drug resistance. Neoadjuvant chemotherapy is commonly used as it allows close monitoring of early treatment response and provides valuable prognostic information. Patients who achieve a complete pathological response after neoadjuvant chemotherapy are known to have significantly improved long-term outcomes. Conversely, poor responders face a higher risk of relapse and death. The identification of those subgroups that are more likely to benefit from breakthroughs in the personalised approach is a challenge of the current era where several targeted therapies are available. This review presents an overview of contemporary practice, and promising future trends in the management of early TNBC. Platinum chemotherapy, DNA damage response (DDR) inhibitors, immune checkpoint inhibitors, inhibitors of the PI3K-AKT-mTOR, and androgen receptor (AR) pathways are some of the increasingly studied therapies which will be reviewed. We will also discuss the growing evidence for less-developed agents and predictive biomarkers that are likely to contribute to the forthcoming advances in this field. Finally, we will propose a framework for the personalised management of TNBC based upon the integration of clinico-pathological and molecular features to ensure that long-term outcomes are optimised.
Collapse
Affiliation(s)
- Karen Pinilla
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lynsey M. Drewett
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rebecca Lucey
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Jean E. Abraham
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Xiao Y, Gao W. Therapeutic pattern and progress of neoadjuvant treatment for triple-negative breast cancer. Oncol Lett 2022; 24:219. [PMID: 35720488 PMCID: PMC9178680 DOI: 10.3892/ol.2022.13340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease, accounting for about 15.0-20.0% of all breast cancer cases. TNBC is associated with early recurrence and metastasis, strong invasiveness and a poor prognosis. Chemotherapy is currently the mainstay of treatment for TNBC, and achievement of a pathological complete response is closely associated with a long-term good prognosis. Improving the long-term prognosis in patients with TNBC is a challenge in breast cancer treatment, and more clinical evidence is needed to guide the choice of treatment strategies. The current study reviews the conventional treatment modality for TNBC and the selection of neoadjuvant chemotherapy (NACT) regimens available. The research progress on optimizing NACT regimens is also reviewed, and the uniqueness of the treatment of this breast cancer subtype is emphasized, in order to provide reference for the clinical practice and research with regard to TNBC treatment.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Wencheng Gao
- Department of General Surgery, Dongguan Houjie Town People's Hospital, Dongguan, Guangdong 523962, P.R. China
| |
Collapse
|
16
|
Beinse G, Just PA, Le Frere Belda MA, Laurent-Puig P, Jacques S, Koual M, Garinet S, Leroy K, Delanoy N, Blons H, Gervais C, Durdux C, Chapron C, Goldwasser F, Terris B, Badoual C, Taly V, Bats AS, Borghese B, Alexandre J. Discovery and validation of a transcriptional signature identifying homologous recombination-deficient breast, endometrial and ovarian cancers. Br J Cancer 2022; 127:1123-1132. [PMID: 35752712 DOI: 10.1038/s41416-022-01900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Molecular alterations leading to homologous recombination deficiency (HRD) are heterogeneous. We aimed to identify a transcriptional profile shared by endometrial (UCEC), breast (BRCA) and ovarian (OV) cancers with HRD. METHODS Genes differentially expressed with HRD genomic score (continuous gHRD score) in UCEC/BRCA/OV were identified using edgeR, and used to train a RNAseq score (ridge-regression model) predictive of the gHRD score (PanCanAtlas, N = 1684 samples). The RNAseq score was applied in independent gynaecological datasets (CARPEM/CPTAC/SCAN/TCGA, N = 4038 samples). Validations used ROC curves, linear regressions and Pearson correlations. Overall survival (OS) analyses used Kaplan-Meier curves and Cox models. RESULTS In total, 656 genes were commonly up/downregulated with gHRD score in UCEC/BRCA/OV. Upregulated genes were enriched for nuclear/chromatin/DNA-repair processes, while downregulated genes for cytoskeleton (gene ontologies). The RNAseq score correlated with gHRD score in independent gynaecological cancers (R² = 0.4-0.7, Pearson correlation = 0.64-0.86, all P < 10-11), and was predictive of gHRD score >42 (RNAseq HRD profile; AUC = 0.95/0.92/0.78 in UCEC/BRCA/OV). RNAseq HRD profile was associated (i) with better OS in platinum-treated advanced TP53-mutated-UCEC (P < 0.001) and OV (P = 0.013), and (ii) with poorer OS (P < 0.001) and higher benefit of adjuvant chemotherapy in Stage I-III BRCA (interaction test, P < 0.001). CONCLUSIONS UCEC/BRCA/OV with HRD-associated genomic scars share a common transcriptional profile. RNAseq signatures might be relevant for identifying HRD-gynaecological cancers, for prognostication and for therapeutic decision.
Collapse
Affiliation(s)
- Guillaume Beinse
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Medical Oncology, Hopital Cochin, Paris, France
| | - Pierre-Alexandre Just
- Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Pathology, Hopital Cochin, Paris, France.,Université de Paris Cité, Paris, France
| | - Marie-Aude Le Frere Belda
- Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Pathology, Hopital Européen Georges Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France.,Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Biology, Hopital Européen Georges Pompidou, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Paris, France
| | | | - Meriem Koual
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Gynecological Surgery, Hopital Européen Georges Pompidou, Paris, France
| | - Simon Garinet
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France.,Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Biology, Hopital Européen Georges Pompidou, Paris, France
| | - Karen Leroy
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Biology, Hopital Européen Georges Pompidou, Paris, France
| | - Nicolas Delanoy
- Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Medical Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Helene Blons
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Biology, Hopital Européen Georges Pompidou, Paris, France
| | - Claire Gervais
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Medical Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Catherine Durdux
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Radiotherapy, Hopital Européen Georges Pompidou, Paris, France
| | - Charles Chapron
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Gynecological Surgery, Hopital Cochin, Paris, France
| | - François Goldwasser
- Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Medical Oncology, Hopital Cochin, Paris, France.,Université de Paris Cité, Paris, France
| | - Benoit Terris
- Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Pathology, Hopital Cochin, Paris, France.,Université de Paris Cité, Paris, France
| | - Cecile Badoual
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Pathology, Hopital Européen Georges Pompidou, Paris, France
| | - Valerie Taly
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France
| | - Anne-Sophie Bats
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France.,Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Gynecological Surgery, Hopital Européen Georges Pompidou, Paris, France
| | - Bruno Borghese
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France.,Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Gynecological Surgery, Hopital Cochin, Paris, France
| | - Jérôme Alexandre
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France. .,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Medical Oncology, Hopital Cochin, Paris, France. .,Université de Paris Cité, Paris, France.
| |
Collapse
|
17
|
Meijer TG, Nguyen L, Van Hoeck A, Sieuwerts AM, Verkaik NS, Ladan MM, Ruigrok-Ritstier K, van Deurzen CHM, van de Werken HJG, Lips EH, Linn SC, Memari Y, Davies H, Nik-Zainal S, Kanaar R, Martens JWM, Cuppen E, Jager A, van Gent DC. Functional RECAP (REpair CAPacity) assay identifies homologous recombination deficiency undetected by DNA-based BRCAness tests. Oncogene 2022; 41:3498-3506. [PMID: 35662281 PMCID: PMC9232391 DOI: 10.1038/s41388-022-02363-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022]
Abstract
Germline BRCA1/2 mutation status is predictive for response to Poly-[ADP-Ribose]-Polymerase (PARP) inhibitors in breast cancer (BC) patients. However, non-germline BRCA1/2 mutated and homologous recombination repair deficient (HRD) tumors are likely also PARP-inhibitor sensitive. Clinical validity and utility of various HRD biomarkers are under investigation. The REpair CAPacity (RECAP) test is a functional method to select HRD tumors based on their inability to form RAD51 foci. We investigated whether this functional test defines a similar group of HRD tumors as DNA-based tests. An HRD enriched cohort (n = 71; 52 primary and 19 metastatic BCs) selected based on the RECAP test (26 RECAP-HRD; 37%), was subjected to DNA-based HRD tests (i.e., Classifier of HOmologous Recombination Deficiency (CHORD) and BRCA1/2-like classifier). Whole genome sequencing (WGS) was carried out for 38 primary and 19 metastatic BCs. The RECAP test identified all bi-allelic BRCA deficient samples (n = 15) in this cohort. RECAP status partially correlated with DNA-based HRD test outcomes (70% concordance for both RECAP-CHORD and RECAP-BRCA1/2-like classifier). RECAP selected additional samples unable to form RAD51 foci, suggesting that this functional assay identified deficiencies in other DNA repair genes, which could also result in PARP-inhibitor sensitivity. Direct comparison of these HRD tests in clinical trials will be required to evaluate the optimal predictive test for clinical decision making.
Collapse
Affiliation(s)
- Titia G Meijer
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Luan Nguyen
- Oncode Institute, Utrecht, The Netherlands
- Department of Molecular Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arne Van Hoeck
- Oncode Institute, Utrecht, The Netherlands
- Department of Molecular Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole S Verkaik
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Marjolijn M Ladan
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Kirsten Ruigrok-Ritstier
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carolien H M van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Esther H Lips
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yasin Memari
- Academic Department of Medical Genetics, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Helen Davies
- Academic Department of Medical Genetics, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edwin Cuppen
- Oncode Institute, Utrecht, The Netherlands
- Department of Molecular Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Science Park, Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
18
|
Upregulation of CXCL1 and LY9 contributes to BRCAness in ovarian cancer and mediates response to PARPi and immune checkpoint blockade. Br J Cancer 2022; 127:916-926. [DOI: 10.1038/s41416-022-01836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
|
19
|
de Boo LW, Jóźwiak K, Joensuu H, Lindman H, Lauttia S, Opdam M, van Steenis C, Brugman W, Kluin RJC, Schouten PC, Kok M, Nederlof PM, Hauptmann M, Linn SC. Adjuvant capecitabine-containing chemotherapy benefit and homologous recombination deficiency in early-stage triple-negative breast cancer patients. Br J Cancer 2022; 126:1401-1409. [PMID: 35124703 PMCID: PMC9090783 DOI: 10.1038/s41416-022-01711-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Background The addition of adjuvant capecitabine to standard chemotherapy of early-stage triple-negative breast cancer (TNBC) patients has improved survival in a few randomised trials and in meta-analyses. However, many patients did not benefit. We evaluated the BRCA1-like DNA copy number signature, indicative of homologous recombination deficiency, as a predictive biomarker for capecitabine benefit in the TNBC subgroup of the FinXX trial. Methods Early-stage TNBC patients were randomised between adjuvant capecitabine-containing (TX + CEX: capecitabine-docetaxel, followed by cyclophosphamide-epirubicin-capecitabine) and conventional chemotherapy (T + CEF: docetaxel, followed by cyclophosphamide-epirubicin-fluorouracil). Tumour BRCA1-like status was determined on low-coverage, whole genome next-generation sequencing data using an established DNA comparative genomic hybridisation algorithm. Results For 129/202 (63.9%) patients the BRCA1-like status could be determined, mostly due to lack of tissue. During a median follow-up of 10.7 years, 35 recurrences and 32 deaths occurred. Addition of capecitabine appears to improve recurrence-free survival more among 61 (47.3%) patients with non-BRCA1-like tumours (HR 0.23, 95% CI 0.08–0.70) compared to 68 (52.7%) patients with BRCA1-like tumours (HR 0.66, 95% CI 0.24–1.81) (P-interaction = 0.17). Conclusion Based on our data, patients with non-BRCA1-like TNBC appear to benefit from the addition of capecitabine to adjuvant chemotherapy. Patients with BRCA1-like TNBC may also benefit. Additional research is needed to define the subgroup within BRCA1-like TNBC patients who may not benefit from adjuvant capecitabine.
Collapse
|
20
|
Bieńkowski M, Tomasik B, Braun M, Jassem J. PARP inhibitors for metastatic castration-resistant prostate cancer: Biological rationale and current evidence. Cancer Treat Rev 2022; 104:102359. [DOI: 10.1016/j.ctrv.2022.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022]
|
21
|
Sueta A, Yamamoto-Ibusuki M, Tomiguchi M, Fujiki Y, Goto-Yamaguchi L, Iwase H, Yamamoto Y. Predictive and prognostic significance of BRCAness in HER2-negative breast cancer. Breast Cancer 2022; 29:368-376. [PMID: 34985726 DOI: 10.1007/s12282-021-01319-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/28/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND BRCAness is characterized as the phenotypes shared between some sporadic tumors and BRCA1/2 mutation cancers resulting in defective homologous recombination. The predictive or prognostic value of BRCAness in HER2-negative breast cancer patients who have received neoadjuvant chemotherapy (NAC) is not fully elucidated. METHODS We retrospectively selected 101 high-risk HER2-negative patients diagnosed with stage I-III breast cancer who underwent NAC treatment and evaluated BRCA1-like phenotype using multiplex ligation-dependent probe amplification assay. In an analysis of BRCAness, 95 out of 101 patients were analyzed. RESULTS In total, 70 (74%) patients had sporadic-type tumors and 25 (26%) had BRCA1-like tumors according to pre-treatment samples. The BRCA1-like phenotype was not associated with pathological complete response (pCR) rate in the entire cohort. In survival analysis, pre-treatment BRCA1-like phenotype was not associated with survival. On the other hand, post-treatment BRCA1-like patients apparently showed shorter relapse-free survival (log-rank P = 0.016) and breast cancer-specific survival (P < 0.001) compared with sporadic features. In multivariate analysis, only the post-treatment BRCA1-phenotype was significant prognostic factors (HR 5.67, 95% CI 1.19-29.3). Furthermore, we found phenotype change between BRCA1-like and sporadic type through NAC in 19% of non-pCR patients. Post-treatment Ki67 significantly decreased in the persistent sporadic tumors during treatment or sporadic tumors changed after NAC (P < 0.0001, P = 0.0078, respectively). CONCLUSIONS BRCAness may be useful biomarkers to predict prognosis for HER2-negative breast cancer refractory to standard chemotherapy. Our results pave the way for identifying patients who require alternative therapies.
Collapse
Affiliation(s)
- Aiko Sueta
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mutsuko Yamamoto-Ibusuki
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mai Tomiguchi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | | | - Lisa Goto-Yamaguchi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirotaka Iwase
- Department of Breast Surgery, Kumamoto City Hospital, 4-1-60, Higashimachi, Higashiku, Kumamoto, 862-8505, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
22
|
Shah MA, Cunningham D, Metges JP, Van Cutsem E, Wainberg Z, Elboudwarej E, Lin KW, Turner S, Zavodovskaya M, Inzunza D, Liu J, Patterson SD, Zhou J, He J, Thai D, Bhargava P, Brachmann CB, Cantenacci DVT. Randomized, open-label, phase 2 study of andecaliximab plus nivolumab versus nivolumab alone in advanced gastric cancer identifies biomarkers associated with survival. J Immunother Cancer 2021; 9:jitc-2021-003580. [PMID: 34893523 PMCID: PMC8666898 DOI: 10.1136/jitc-2021-003580] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background Matrix metalloproteinase-9 (MMP9) selectively cleaves extracellular matrix proteins contributing to tumor growth and an immunosuppressive microenvironment. This study evaluated andecaliximab (ADX), an inhibitor of MMP9, in combination with nivolumab (NIVO), for the treatment of advanced gastric cancer. Methods Phase 2, open-label, randomized multicenter study evaluating the efficacy, safety, and pharmacodynamics of ADX+NIVO versus NIVO in patients with pretreated metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma. The primary endpoint was objective response rate (ORR). Secondary endpoints included progression-free survival (PFS), overall survival (OS), and adverse events (AEs). We explored the correlation of efficacy outcomes with biomarkers. Results 144 patients were randomized; 141 were treated: 81% white, 69% male, median age was 61 years in the ADX+NIVO group and 62 years in the NIVO-alone group. The ORR was 10% (95% CI 4 to 19) in the ADX+NIVO group and 7% (95% CI 2 to 16) in the NIVO-alone group (OR: 1.5 (95% CI 0.4 to 6.1; p=0.8)). There was no response or survival benefit associated with adding ADX. AE rates were comparable in both treatment groups; the most common AEs were fatigue, decreased appetite, nausea, and vomiting. Programmed cell death ligand 1, interferon-γ (IFN), and intratumoral CD8+ cell density were not associated with treatment response or survival. The gene signature most correlated with shorter survival was the epithelial-to-mesenchymal gene signature; high transforming growth factor (TGF)-β fibrosis score was negatively associated with OS (p=0.036). Gene expression analysis of baseline tumors comparing long-(1+ years) and short-term (<1 year) survivors showed that GRB7 was associated with survival beyond 1 year. Human epidermal growth factor receptor 2 (HER2)-positive disease was associated with significantly longer survival (p=0.0077). Median tumor mutation burden (TMB) was 2.01; patients with TMB ≥median had longer survival (p=0.0025) and improved PFS (p=0.016). Based on a model accounting for TMB, TGF-β fibrosis, and HER2, TMB was the main driver of survival in this patient population. Conclusion Combination of ADX+NIVO had a favorable safety profile but did not improve efficacy compared with NIVO alone in patients with pretreated metastatic gastric or GEJ adenocarcinoma. HER2 positivity, higher TMB or GRB7, and lower TGF-β were associated with improved outcomes. Trial registration number NCT02864381 or GS-US-296–-2013.
Collapse
Affiliation(s)
- Manish A Shah
- Medicine, Weill Cornell Medicine, New York, New York, USA .,Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - David Cunningham
- Gastrointestinal and Lymphoma Unit, The Royal Marsden NHS Foundation Trust, Sutton and London Hospital, Sutton, UK
| | | | - Eric Van Cutsem
- Division Head of Digestive Oncology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Zev Wainberg
- Gastrointestinal Medical Oncology, University of California Los Angeles School of Medicine, Los Angeles, California, USA
| | | | - Kai-Wen Lin
- Gilead Sciences, Inc, Foster City, California, USA
| | - Scott Turner
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Jinfeng Liu
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Jingzhu Zhou
- Gilead Sciences, Inc, Foster City, California, USA
| | - Jing He
- Gilead Sciences, Inc, Foster City, California, USA
| | - Dung Thai
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Daniel V T Cantenacci
- Biological Sciences Division, University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
23
|
Yordanova M, Hubert A, Hassan S. Expanding the Use of PARP Inhibitors as Monotherapy and in Combination in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:1270. [PMID: 34959671 PMCID: PMC8709256 DOI: 10.3390/ph14121270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and is known to be associated with a poor prognosis and limited therapeutic options. Poly (ADP-ribose) polymerase inhibitors (PARPi) are targeted therapeutics that have demonstrated efficacy as monotherapy in metastatic BRCA-mutant (BRCAMUT) TNBC patients. Improved efficacy of PARPi has been demonstrated in BRCAMUT breast cancer patients who have either received fewer lines of chemotherapy or in chemotherapy-naïve patients in the metastatic, adjuvant, and neoadjuvant settings. Moreover, recent trials in smaller cohorts have identified anti-tumor activity of PARPi in TNBC patients, regardless of BRCA-mutation status. While there have been concerns regarding the efficacy and toxicity of the use of PARPi in combination with chemotherapy, these challenges can be mitigated with careful attention to PARPi dosing strategies. To better identify a patient subpopulation that will best respond to PARPi, several genomic biomarkers of homologous recombination deficiency have been tested. However, gene expression signatures associated with PARPi response can integrate different pathways in addition to homologous recombination deficiency and can be implemented in the clinic more readily. Taken together, PARPi have great potential for use in TNBC patients beyond BRCAMUT status, both as a single-agent and in combination.
Collapse
Affiliation(s)
- Mariya Yordanova
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Audrey Hubert
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada;
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada;
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada
- Division of Surgical Oncology, Department of Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0C1, Canada
| |
Collapse
|
24
|
Schouten PC, Richters L, Vis DJ, Kommoss S, van Dijk E, Ernst C, Kluin RJ, Marmé F, Lips EH, Schmidt S, Scheerman E, Prieske K, van Deurzen CH, Burges A, Ewing-Graham PC, Dietrich D, Jager A, de Gregorio N, Hauke J, du Bois A, Nederlof PM, Wessels LF, Hahnen E, Harter P, Linn SC, Schmutzler RK. Ovarian Cancer-Specific BRCA-like Copy-Number Aberration Classifiers Detect Mutations Associated with Homologous Recombination Deficiency in the AGO-TR1 Trial. Clin Cancer Res 2021; 27:6559-6569. [PMID: 34593530 PMCID: PMC9401539 DOI: 10.1158/1078-0432.ccr-21-1673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Previously, we developed breast cancer BRCA1-like and BRCA2-like copy-number profile shrunken centroid classifiers predictive for mutation status and response to therapy, targeting homologous recombination deficiency (HRD). Therefore, we investigated BRCA1- and BRCA2-like classification in ovarian cancer, aiming to acquire classifiers with similar properties as those in breast cancer.Experimental Design: We analyzed DNA copy-number profiles of germline BRCA1- and BRCA2-mutant ovarian cancers and control tumors and observed that existing breast cancer classifiers did not sufficiently predict mutation status. Hence, we trained new shrunken centroid classifiers on this set and validated them in the independent The Cancer Genome Atlas dataset. Subsequently, we assessed BRCA1/2-like classification and obtained germline and tumor mutation and methylation status of cancer predisposition genes, among them several involved in HR repair, of 300 ovarian cancer samples derived from the consecutive cohort trial AGO-TR1 (NCT02222883). RESULTS The detection rate of the BRCA1-like classifier for BRCA1 mutations and promoter hypermethylation was 95.6%. The BRCA2-like classifier performed less accurately, likely due to a smaller training set. Furthermore, three quarters of the BRCA1/2-like tumors could be explained by (epi)genetic alterations in BRCA1/2, germline RAD51C mutations and alterations in other genes involved in HR. Around half of the non-BRCA-mutated ovarian cancer cases displayed a BRCA-like phenotype. CONCLUSIONS The newly trained classifiers detected most BRCA-mutated and methylated cancers and all tumors harboring a RAD51C germline mutations. Beyond that, we found an additional substantial proportion of ovarian cancers to be BRCA-like.
Collapse
Affiliation(s)
- Philip C. Schouten
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Corresponding Author: Philip C. Schouten, Department of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands. Phone: 312-051-2449; E-mail:
| | - Lisa Richters
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Daniel J. Vis
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Ewald van Dijk
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Corinna Ernst
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Roelof J.C. Kluin
- Genomics Core Facility, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Frederik Marmé
- Department of Gynecologic Oncology, Medical Faculty Mannheim, University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Esther H. Lips
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sandra Schmidt
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Esther Scheerman
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Katharina Prieske
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Alexander Burges
- Department of Gynecology and Obstetrics, University Hospital Munich-Großhadern, Munich, Germany
| | | | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC, Rotterdam, the Netherlands
| | - Nikolaus de Gregorio
- Department of Gynecology and Obstetrics, University Hospital, University of Ulm, Ulm, Germany
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - Petra M. Nederlof
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F. Wessels
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - Sabine C. Linn
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
25
|
Barenboim M, Kovac M, Ameline B, Jones DTW, Witt O, Bielack S, Burdach S, Baumhoer D, Nathrath M. DNA methylation-based classifier and gene expression signatures detect BRCAness in osteosarcoma. PLoS Comput Biol 2021; 17:e1009562. [PMID: 34762643 PMCID: PMC8584788 DOI: 10.1371/journal.pcbi.1009562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
Although osteosarcoma (OS) is a rare cancer, it is the most common primary malignant bone tumor in children and adolescents. BRCAness is a phenotypical trait in tumors with a defect in homologous recombination repair, resembling tumors with inactivation of BRCA1/2, rendering these tumors sensitive to poly (ADP)-ribose polymerase inhibitors (PARPi). Recently, OS was shown to exhibit molecular features of BRCAness. Our goal was to develop a method complementing existing genomic methods to aid clinical decision making on administering PARPi in OS patients. OS samples with DNA-methylation data were divided to BRCAness-positive and negative groups based on the degree of their genomic instability (n = 41). Methylation probes were ranked according to decreasing variance difference between two groups. The top 2000 probes were selected for training and cross-validation of the random forest algorithm. Two-thirds of available OS RNA-Seq samples (n = 17) from the top and bottom of the sample list ranked according to genome instability score were subjected to differential expression and, subsequently, to gene set enrichment analysis (GSEA). The combined accuracy of trained random forest was 85% and the average area under the ROC curve (AUC) was 0.95. There were 449 upregulated and 1,079 downregulated genes in the BRCAness-positive group (fdr < 0.05). GSEA of upregulated genes detected enrichment of DNA replication and mismatch repair and homologous recombination signatures (FWER < 0.05). Validation of the BRCAness classifier with an independent OS set (n = 20) collected later in the course of study showed AUC of 0.87 with an accuracy of 90%. GSEA signatures computed for this test set were matching the ones observed in the training set enrichment analysis. In conclusion, we developed a new classifier based on DNA-methylation patterns that detects BRCAness in OS samples with high accuracy. GSEA identified genome instability signatures. Machine-learning and gene expression approaches add new epigenomic and transcriptomic aspects to already established genomic methods for evaluation of BRCAness in osteosarcoma and can be extended to cancers characterized by genome instability. Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and young adults with poor prognosis for patients with refractory or metastatic disease. A common feature, so-called BRCAness, exists in multiple cancers including OS and is characterized by homologous recombination deficiency. Tumors exhibiting BRCAness have been shown to respond to therapy with PARP inhibitors. Currently, BRCAness is mostly assessed by the genomic instability score. This method based on the DNA sequencing requires normal tissue DNA as control and is vulnerable to subjective interpretation of "genomic scarring" events. In this study, we implemented a classifier based on DNA methylation patterns. It is capable of detecting BRCAness in OS samples and does not require control tissue DNA. Therefore, it has the potential to support clinical decision making on administering PARPi in OS patients. We further corroborated the presence of BRCAness in OS by detecting homologous recombination signatures through gene expression analysis.
Collapse
Affiliation(s)
- Maxim Barenboim
- Department of Pediatrics and Children’s Cancer Research Center, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- * E-mail: (MB); (MN)
| | - Michal Kovac
- University Hospital Basel and University of Basel, Bone Tumour Reference Centre at the Institute of Pathology, Basel, Switzerland
- Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Baptiste Ameline
- University Hospital Basel and University of Basel, Bone Tumour Reference Centre at the Institute of Pathology, Basel, Switzerland
| | - David T. W. Jones
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- University Hospital Heidelberg, Hematology and Immunology at the Department of Pediatric Oncology, Heidelberg, Germany
| | - Stefan Bielack
- Klinikum Stuttgart–Olgahospital, Stuttgart Cancer Center, Pediatrics 5 (Oncology, Hematology, Immunology), Stuttgart, Germany
| | - Stefan Burdach
- Department of Pediatrics and Children’s Cancer Research Center, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CCC München—Comprehensive Cancer Center, DKTK German Cancer Consortium, Munich, Germany
| | - Daniel Baumhoer
- University Hospital Basel and University of Basel, Bone Tumour Reference Centre at the Institute of Pathology, Basel, Switzerland
| | - Michaela Nathrath
- Department of Pediatrics and Children’s Cancer Research Center, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Klinikum Kassel, Department of Pediatric Oncology, Kassel, Germany
- * E-mail: (MB); (MN)
| |
Collapse
|
26
|
Labrie M, Li A, Creason A, Betts C, Keck J, Johnson B, Sivagnanam S, Boniface C, Ma H, Blucher A, Chang YH, Chin K, Vuky J, Guimaraes AR, Downey M, Lim JY, Gao L, Siex K, Parmar S, Kolodzie A, Spellman PT, Goecks J, Coussens LM, Corless CL, Bergan R, Gray JW, Mills GB, Mitri ZI. Multiomics analysis of serial PARP inhibitor treated metastatic TNBC inform on rational combination therapies. NPJ Precis Oncol 2021; 5:92. [PMID: 34667258 PMCID: PMC8526613 DOI: 10.1038/s41698-021-00232-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
In a pilot study, we evaluated the feasibility of real-time deep analysis of serial tumor samples from triple negative breast cancer patients to identify mechanisms of resistance and treatment opportunities as they emerge under therapeutic stress engendered by poly-ADP-ribose polymerase (PARP) inhibitors (PARPi). In a BRCA-mutant basal breast cancer exceptional long-term survivor, a striking tumor destruction was accompanied by a marked infiltration of immune cells containing CD8 effector cells, consistent with pre-clinical evidence for association between STING mediated immune activation and benefit from PARPi and immunotherapy. Tumor cells in the exceptional responder underwent extensive protein network rewiring in response to PARP inhibition. In contrast, there were minimal changes in the ecosystem of a luminal androgen receptor rapid progressor, likely due to indifference to the effects of PARP inhibition. Together, identification of PARPi-induced emergent changes could be used to select patient specific combination therapies, based on tumor and immune state changes.
Collapse
Affiliation(s)
- Marilyne Labrie
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. .,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA.
| | - Allen Li
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Allison Creason
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA
| | - Courtney Betts
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Jamie Keck
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR, USA
| | - Brett Johnson
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Shamilene Sivagnanam
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Computational Biology Program, Oregon Health and Science University, Portland, OR, USA
| | - Christopher Boniface
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Hongli Ma
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Aurora Blucher
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Young Hwan Chang
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Koei Chin
- Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Jacqueline Vuky
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Alexander R Guimaraes
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Molly Downey
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Jeong Youn Lim
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Lina Gao
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kiara Siex
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Swapnil Parmar
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Annette Kolodzie
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR, USA
| | - Paul T Spellman
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Jeremy Goecks
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA
| | - Lisa M Coussens
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Christopher L Corless
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - Raymond Bergan
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Joe W Gray
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zahi I Mitri
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
27
|
Clark CA, Yang ES. Harnessing DNA Repair Defects to Augment Immune-Based Therapies in Triple-Negative Breast Cancer. Front Oncol 2021; 11:703802. [PMID: 34631532 PMCID: PMC8497895 DOI: 10.3389/fonc.2021.703802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has poor prognosis with limited treatment options, with little therapeutic progress made during the past several decades. DNA damage response (DDR) associated therapies, including radiation and inhibitors of DDR, demonstrate potential efficacy against TNBC, especially under the guidance of genomic subtype-directed treatment. The tumor immune microenvironment also contributes greatly to TNBC malignancy and response to conventional and targeted therapies. Immunotherapy represents a developing trend in targeted therapies directed against TNBC and strategies combining immunotherapy and modulators of the DDR pathways are being pursued. There is increasing understanding of the potential interplay between DDR pathways and immune-associated signaling. As such, the question of how we treat TNBC regarding novel immuno-molecular strategies is continually evolving. In this review, we explore the current and upcoming treatment options of TNBC in the context of DNA repair mechanisms and immune-based therapies, with a focus on implications of recent genomic analyses and clinical trial findings.
Collapse
Affiliation(s)
- Curtis A. Clark
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
| |
Collapse
|
28
|
Multiplex Patient-Based Drug Response Assay in Pancreatic Ductal Adenocarcinoma. Biomedicines 2021; 9:biomedicines9070705. [PMID: 34201419 PMCID: PMC8301364 DOI: 10.3390/biomedicines9070705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an extremely lethal malignancy arising from the pancreas. The treatment of PDA is complicated by ineffective treatments and a lack of biomarkers predictive of treatment success. We have designed a patient-derived organoid (PDO) based high-throughput drug screening assay to model treatment response to a variety of conventional and investigational treatments for PDA. Consecutive patients undergoing endoscopic ultrasound-guided fine-needle biopsy for tissue diagnosis of PDA at Rush University Medical Center were offered to participate in the study. Biopsies were immediately processed to develop organoids. Fifteen PDOs were screened for sensitivity to 18 compounds, including conventional PDA chemotherapies and FDA-approved investigational targeted therapies in cancer using Cell-titer GLO 3D (Promega) cell viability assay. The area under the curve (AUC) was calculated and normalized to the maximum area under the curve to generate a normalized AUC between 0 and 1. Molecular profiling of PDOs was conducted using RNA-seq. Human PDA transcriptomic was extracted from The Cancer Genome Atlas (TCGA). The drug response curves were reproducible. We observed variation in response to conventional therapies overall as well as among individual patients. There were distinct transcriptome signatures associated with response to the conventional chemotherapeutics in PDA. The transcriptomic profile of overall resistance to conventional therapies in our study was associated with poor survival in PDA patients in TCGA. Our pathway analysis for targeted drugs revealed a number of predictors of response associated with the mechanism of action of the tested drug. The multiplex organoid-based drug assay could be used in preclinical to inform patient stratification and therapeutic selection in PDA. When combined with omics data, ex vivo response to treatment could help identify gene signatures associated with response to novel therapies.
Collapse
|
29
|
Yuan Y, Lee JS, Yost SE, Li SM, Frankel PH, Ruel C, Schmolze D, Robinson K, Tang A, Martinez N, Stewart D, Waisman J, Kruper L, Jones V, Menicucci A, Uygun S, Yoder E, van der Baan B, Yim JH, Yeon C, Somlo G, Mortimer J. Phase II Trial of Neoadjuvant Carboplatin and Nab-Paclitaxel in Patients with Triple-Negative Breast Cancer. Oncologist 2021; 26:e382-e393. [PMID: 33098195 PMCID: PMC7930424 DOI: 10.1002/onco.13574] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In this phase II clinical trial, we evaluated the efficacy of the nonanthracycline combination of carboplatin and nab-paclitaxel in early stage triple-negative breast cancer (TNBC). PATIENTS AND METHODS Patients with newly diagnosed stage II-III TNBC (n = 69) were treated with neoadjuvant carboplatin (area under the curve 6) every 28 days for four cycles plus nab-paclitaxel (100 mg/m2 ) weekly for 16 weeks. Pathological complete response (pCR) and residual cancer burden (RCB) were analyzed with germline mutation status, tumor-infiltrating lymphocytes (TILs), TNBC molecular subtype, and GeparSixto immune signature (GSIS). RESULTS Sixty-seven patients were evaluable for safety and response. Fifty-three (79%) patients experienced grade 3/4 adverse events, including grade 3 anemia (43%), neutropenia (39%), leukopenia (15%), thrombocytopenia (12%), fatigue (7%), peripheral neuropathy (7%), neutropenia (16%), and leukopenia (1%). Twenty-four patients (35%) had at least one dose delay, and 50 patients (72%) required dose reduction. Sixty-three (94%) patients completed scheduled treatment. The responses were as follows: 32 of 67 patients (48%) had pCR (RCB 0), 10 of 67 (15%) had RCB I, 19 of 67 (28%) had RCB II, 5 of 67 (7%) had RCB III, and 1 of 67 (2%) progressed and had no surgery. Univariate analysis showed that immune-hot GSIS and DNA repair defect (DRD) were associated with higher pCR with odds ratios of 4.62 (p = .005) and 4.76 (p = .03), respectively, and with RCB 0/I versus RCB II/III with odds ratio 4.80 (p = .01). Immune-hot GSIS was highly correlated with DRD status (p = .03), TIL level (p < .001), and TNBC molecular subtype (p < .001). After adjusting for age, race, stage, and grade, GSIS remained associated with higher pCR and RCB class 0/I versus II/III with odds ratios 7.19 (95% confidence interval [CI], 2.01-25.68; p = .002) and 8.95 (95% CI, 2.09-38.23; p = .003), respectively. CONCLUSION The combination of carboplatin and nab-paclitaxel for early stage high-risk TNBC showed manageable toxicity and encouraging antitumor activity. Immune-hot GSIS is associated with higher pCR rate and RCB class 0/1. This study provides an additional rationale for using nonanthracycline platinum-based therapy for future neoadjuvant trials in early stage TNBCs. Clinical trial identification number: NCT01525966 IMPLICATIONS FOR PRACTICE: Platinum is an important neoadjuvant chemotherapy agent for treatment of early stage triple-negative breast cancer (TNBC). In this study, carboplatin and nab-paclitaxel were well tolerated and highly effective in TNBC, resulting in pathological complete response of 48%. In univariate and multivariate analyses adjusting for age, race, tumor stage and grade, "immune-hot" GeparSixto immune signature (GSIS) and DNA repair defect (DRD) were associated with higher pathological complete response (pCR) and residual cancer burden class 0/1. The association of immune-hot GSIS with higher pCR holds promise for de-escalating neoadjuvant chemotherapy for patients with early stage TNBC. Although GSIS is not routinely used in clinic, further development of this immune signature into a clinically applicable assay is indicated.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jin Sun Lee
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Susan E. Yost
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Sierra Min Li
- Department of Biostatistics, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paul H. Frankel
- Department of Biostatistics, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Christopher Ruel
- Department of Biostatistics, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Kim Robinson
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Aileen Tang
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Norma Martinez
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Daphne Stewart
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - James Waisman
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Laura Kruper
- Department of Surgery, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Veronica Jones
- Department of Surgery, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | | | - Sahra Uygun
- Agendia Precision OncologyIrvineCaliforniaUSA
| | - Erin Yoder
- Agendia Precision OncologyIrvineCaliforniaUSA
| | | | - John H. Yim
- Department of Surgery, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Christina Yeon
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - George Somlo
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Joanne Mortimer
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
30
|
Ladan MM, van Gent DC, Jager A. Homologous Recombination Deficiency Testing for BRCA-Like Tumors: The Road to Clinical Validation. Cancers (Basel) 2021; 13:1004. [PMID: 33670893 PMCID: PMC7957671 DOI: 10.3390/cancers13051004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Germline BRCA mutations result in homologous recombination deficiency (HRD) in hereditary breast and ovarian cancer, as well as several types of sporadic tumors. The HRD phenotype makes these tumors sensitive to DNA double strand break-inducing agents, including poly-(ADP-ribose)-polymerase (PARP) inhibitors. Interestingly, a subgroup of cancers without a BRCA mutation also shows an HRD phenotype. Various methods for selecting patients with HRD tumors beyond BRCA-mutations have been explored. These methods are mainly based on DNA sequencing or functional characteristics of the tumor. We here discuss the various tests and the status of their clinical validation.
Collapse
Affiliation(s)
- Marjolijn M. Ladan
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
- Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
- Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
| |
Collapse
|
31
|
Huang L, Lang GT, Liu Q, Shi JX, Shao ZM, Cao AY. A predictor of pathological complete response to neoadjuvant chemotherapy in triple-negative breast cancer patients with the DNA repair genes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:301. [PMID: 33708928 PMCID: PMC7944335 DOI: 10.21037/atm-20-4852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background We conducted this study to investigate the prevalence of potential chemo-response-related gene mutations in triple-negative breast cancer (TNBC) patients and to evaluate the potential relationship between these gene mutations and neoadjuvant chemotherapy response in TNBC patients. Methods One hundred sixty-two TNBC patients in Fudan University Shanghai Cancer Center who received NAC with 4 cycles of paclitaxel and carboplatin were enrolled in this study. Fifty-six pathological complete response (pCR) patients and 56 non-pCR patients were enrolled in this retrospective study for the training set. Clinical assessments of postoperative residual tumors were performed according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria. Forty chemo-response-related genes were screened in each tumor specimen by second-generation sequencing analysis. Fifty TNBC patients who received neoadjuvant chemotherapy with paclitaxel and carboplatin were enrolled in the validation group. Results Fifty-seven of 112 (50.9%) TNBCs contained at least one detected somatic mutation. As expected, TP53 mutation was the most common alteration, which was observed in 21.4% of patients. BRCA1, BRCA2, RET, PI3KCA, and PTEN mutations were each observed in 11.6%, 4.5%, 5.4%, 2.7% and 3.6% of all cases, respectively. No significant differences in any gene mutation frequency between pCR and non-pCR groups were identified. We found that the mutation status of 10 DNA repair genes involved in homologous recombination (HR) pathway successfully discriminated between responding and nonresponding tumors in the training group. Up to 18 patients who were mutation-positive experienced pCR compared to only 6 in the non-pCR group (P=0.006), and 75% the HR related gene mutation patients achieved pCR. In the validation group, TNBC patients with DNA repair gene mutations achieved 77.8% pCR. Conclusions A subset of TNBC patients carry deleterious somatic mutations in 10 HR-related genes. The mutation status of this expanded gene panel is likely to effectively predict respond rate to neoadjuvant chemotherapy based on paclitaxel and carboplatin. Our findings need to be validated through follow-up studies in this and additional cohorts.
Collapse
Affiliation(s)
- Liang Huang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guan-Tian Lang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China
| | - Jin-Xiu Shi
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI), Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - A-Yong Cao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Arakelyan A, Melkonyan A, Hakobyan S, Boyarskih U, Simonyan A, Nersisyan L, Nikoghosyan M, Filipenko M, Binder H. Transcriptome Patterns of BRCA1- and BRCA2- Mutated Breast and Ovarian Cancers. Int J Mol Sci 2021; 22:1266. [PMID: 33525353 PMCID: PMC7865215 DOI: 10.3390/ijms22031266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the BRCA1 and BRCA2 genes are known risk factors and drivers of breast and ovarian cancers. So far, few studies have been focused on understanding the differences in transcriptome and functional landscapes associated with the disease (breast vs. ovarian cancers), gene (BRCA1 vs. BRCA2), and mutation type (germline vs. somatic). In this study, we were aimed at systemic evaluation of the association of BRCA1 and BRCA2 germline and somatic mutations with gene expression, disease clinical features, outcome, and treatment. We performed BRCA1/2 mutation centered RNA-seq data analysis of breast and ovarian cancers from the TCGA repository using transcriptome and phenotype "portrayal" with multi-layer self-organizing maps and functional annotation. The results revealed considerable differences in BRCA1- and BRCA2-dependent transcriptome landscapes in the studied cancers. Furthermore, our data indicated that somatic and germline mutations for both genes are characterized by deregulation of different biological functions and differential associations with phenotype characteristics and poly(ADP-ribose) polymerase (PARP)-inhibitor gene signatures. Overall, this study demonstrates considerable variation in transcriptomic landscapes of breast and ovarian cancers associated with the affected gene (BRCA1 vs. BRCA2), as well as the mutation type (somatic vs. germline). These results warrant further investigations with larger groups of mutation carriers aimed at refining the understanding of molecular mechanisms of breast and ovarian cancers.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Ani Melkonyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia;
| | - Siras Hakobyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Uljana Boyarskih
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Arman Simonyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Lilit Nersisyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Maria Nikoghosyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
33
|
Schroth W, Büttner FA, Kandabarau S, Hoppe R, Fritz P, Kumbrink J, Kirchner T, Brauer HA, Ren Y, Henderson D, Madden SF, Sauer G, Fehm T, Wallwiener D, Fasching PA, Mürdter T, Schwab M, Brauch H. Gene Expression Signatures of BRCAness and Tumor Inflammation Define Subgroups of Early-Stage Hormone Receptor-Positive Breast Cancer Patients. Clin Cancer Res 2020; 26:6523-6534. [PMID: 33008814 DOI: 10.1158/1078-0432.ccr-20-1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Patients with estrogen receptor- and/or progesterone receptor-positive, early breast cancer benefit from hormonal treatment, yet high global death burdens due to high prevalence and long-term recurrence risk call for biomarkers to guide additional treatment approaches. EXPERIMENTAL DESIGN From a prospective, observational study of postmenopausal early breast cancer patients treated with tamoxifen or aromatase inhibitors, gene expression analyses of 612 tumors was performed using the NanoString Breast Cancer 360 panel to interrogate 23 breast cancer pathways. Candidate signatures associated with disease subtype and event-free survival (EFS) were obtained by cluster analysis, Cox modeling, and conditional inference trees, and were independently tested in 613 patients from BreastMark. Tumor-infiltrating lymphocytes (TIL) were assessed on tissue sections, and mutational burden was assessed in 36 tumors by whole-exome sequencing. RESULTS PAM50-derived classification distinguished lower-risk (Luminal A) from higher-risk subtypes (Luminal B, P = 0.04; HER2, P = 0.006; Basal, P = 0.008). In higher-risk patients, shorter EFS was associated with low androgen receptor [HR = 3.61; 95% confidence interval (CI), 1.72-7.56; P = 0.001] or high BRCAness signature expression (HR = 3.58; 95% CI, 1.19-10.7; P = 0.023). BRCAness was independently confirmed as a predictor of shorter EFS (HR = 2.64; 95% CI, 1.31-5.34; P = 0.007). About 13%-15% of patients, enriched for high-grade, higher-risk subtypes (P ≤ 0.0001), had strong expression of the Tumor Inflammation Signature (TIS) suggestive of an inhibited antitumor immune response. TIS scores were strongly associated with TIL numbers (P < 1e-30) but not with tumor mutation status. CONCLUSIONS BRCA-related DNA repair deficiency and suppressed tumor immune responses may be clinically relevant predictors of endocrine therapy complementing treatment options in subgroups of hormone-sensitive early breast cancer.
Collapse
Affiliation(s)
- Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany. .,University of Tübingen, Tübingen, Germany
| | - Florian A Büttner
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Siarhei Kandabarau
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Peter Fritz
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Institute of Pathology, Robert-Bosch Hospital, Stuttgart, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Munich, Munich Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Munich, Munich Germany
| | | | - Yuqi Ren
- NanoString Technologies Inc., Seattle, Washington
| | | | - Stephen F Madden
- Data Science Center, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Georg Sauer
- Department of Obstetrics and Gynecology, Robert-Bosch Hospital, Stuttgart, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University of Düsseldorf, Düsseldorf, Germany
| | - Diethelm Wallwiener
- Department of Obstetrics and Gynecology, University Hospital of Tübingen, Tübingen, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen and Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | | | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
34
|
Bodily WR, Shirts BH, Walsh T, Gulsuner S, King MC, Parker A, Roosan M, Piccolo SR. Effects of germline and somatic events in candidate BRCA-like genes on breast-tumor signatures. PLoS One 2020; 15:e0239197. [PMID: 32997669 PMCID: PMC7526916 DOI: 10.1371/journal.pone.0239197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 11/19/2022] Open
Abstract
Mutations in BRCA1 and BRCA2 cause deficiencies in homologous recombination repair (HR), resulting in repair of DNA double-strand breaks by the alternative non-homologous end-joining pathway, which is more error prone. HR deficiency of breast tumors is important because it is associated with better responses to platinum salt therapies and PARP inhibitors. Among other consequences of HR deficiency are characteristic somatic-mutation signatures and gene-expression patterns. The term "BRCA-like" (or "BRCAness") describes tumors that harbor an HR defect but have no detectable germline mutation in BRCA1 or BRCA2. A better understanding of the genes and molecular events associated with tumors being BRCA-like could provide mechanistic insights and guide development of targeted treatments. Using data from The Cancer Genome Atlas (TCGA) for 1101 breast-cancer patients, we identified individuals with a germline mutation, somatic mutation, homozygous deletion, and/or hypermethylation event in BRCA1, BRCA2, and 59 other cancer-predisposition genes. Based on the assumption that BRCA-like events would have similar downstream effects on tumor biology as BRCA1/BRCA2 germline mutations, we quantified these effects based on somatic-mutation signatures and gene-expression profiles. We reduced the dimensionality of the somatic-mutation signatures and expression data and used a statistical resampling approach to quantify similarities among patients who had a BRCA1/BRCA2 germline mutation, another type of aberration in BRCA1 or BRCA2, or any type of aberration in one of the other genes. Somatic-mutation signatures of tumors having a non-germline aberration in BRCA1/BRCA2 (n = 80) were generally similar to each other and to tumors from BRCA1/BRCA2 germline carriers (n = 44). Additionally, somatic-mutation signatures of tumors with germline or somatic events in ATR (n = 16) and BARD1 (n = 8) showed high similarity to tumors from BRCA1/BRCA2 carriers. Other genes (CDKN2A, CTNNA1, PALB2, PALLD, PRSS1, SDHC) also showed high similarity but only for a small number of events or for a single event type. Tumors with germline mutations or hypermethylation of BRCA1 had relatively similar gene-expression profiles and overlapped considerably with the Basal-like subtype; but the transcriptional effects of the other events lacked consistency. Our findings confirm previously known relationships between molecular signatures and germline or somatic events in BRCA1/BRCA2. Our methodology represents an objective way to identify genes that have similar downstream effects on molecular signatures when mutated, deleted, or hypermethylated.
Collapse
Affiliation(s)
- Weston R. Bodily
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Brian H. Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tom Walsh
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Suleyman Gulsuner
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Mary-Claire King
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Alyssa Parker
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Moom Roosan
- Pharmacy Practice Department, Chapman University School of Pharmacy, Irvine, CA, United States of America
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
35
|
t'Kint de Roodenbeke MD, Pondé N, Buisseret L, Piccart M. Management of early breast cancer in patients bearing germline BRCA mutations. Semin Oncol 2020; 47:243-248. [PMID: 32912765 DOI: 10.1053/j.seminoncol.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 11/11/2022]
Abstract
Women diagnosed with breast cancers (BCs) that harbor BRCA1/2 mutations have an increased lifetime risk of a second BC and ovarian cancer. They may benefit from risk-reducing surgical strategies such as mastectomy and salpingo-oophorectomy. In cases of triple negative BC with BRCA mutation, there is some evidence that adding platinum-agents in the neoadjuvant setting improves the pathologic complete response. Lastly, ongoing clinical trials testing the efficacy of PARP inhibitor therapy in tumors with BRCA1/2 mutations will be determinant for future guideline recommendations in selecting best adjuvant treatment options for this specific population. For pre-menopausal patients whose tumors have BRCA mutations and hormone-receptor positive BC, the option of combined bilateral annexectomy and hormonal therapy with aromatase inhibitor can be discussed with high-risk patients. This review summarizes the latest results from clinical trials evaluating treatment and prevention strategies for breast cancers harboring BRCA1/2 mutations and discusses the current management of this patient population.
Collapse
Affiliation(s)
| | - Noam Pondé
- Oncology Department AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Laurence Buisseret
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Martine Piccart
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
36
|
Lips EH, Benard-Slagter A, Opdam M, Scheerman CE, Wesseling J, Hogervorst FBL, Linn SC, Savola S, Nederlof PM. BRCAness digitalMLPA profiling predicts benefit of intensified platinum-based chemotherapy in triple-negative and luminal-type breast cancer. Breast Cancer Res 2020; 22:79. [PMID: 32711554 PMCID: PMC7382055 DOI: 10.1186/s13058-020-01313-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We previously showed that BRCA-like profiles can be used to preselect individuals with the highest risk of carrying BRCA mutations but could also indicate which patients would benefit from double-strand break inducing chemotherapy. A simple, robust, and reliable assay for clinical use that utilizes limited amounts of formalin-fixed, paraffin-embedded tumor tissue to assess BRCAness status in both ER-positive and ER-negative breast cancer (BC) is currently lacking. METHODS A digital multiplex ligation-dependent probe amplification (digitalMLPA) assay was designed to detect copy number alterations required for the classification of BRCA1-like and BRCA2-like BC. The BRCA1-like classifier was trained on 71 tumors, enriched for triple-negative BC; the BRCA2-like classifier was trained on 55 tumors, enriched for luminal-type BC. A shrunken centroid-based classifier was developed and applied on an independent validation cohort. A total of 114 cases of a randomized controlled trial were analyzed, and the association of the classifier result with intensified platinum-based chemotherapy response was assessed. RESULTS The digitalMLPA BRCA1-like classifier correctly classified 91% of the BRCA1-like samples and 82% of the BRCA2-like samples. Patients with a BRCA-like tumor derived significant benefit of high-dose chemotherapy (adjusted hazard ratio (HR) 0.12, 95% CI 0.04-0.44) which was not observed in non-BRCA-like patients (HR 0.9, 95% CI 0.37-2.18) (p = 0.01). Analysis stratified for ER status showed borderline significance. CONCLUSIONS The digitalMLPA is a reliable method to detect a BRCA1- and BRCA2-like pattern on clinical samples and predicts platinum-based chemotherapy benefit in both triple-negative and luminal-type BC.
Collapse
Affiliation(s)
- Esther H Lips
- Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | | - Mark Opdam
- Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Caroline E Scheerman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jelle Wesseling
- Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans B L Hogervorst
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Suvi Savola
- Department of Oncogenetics, MRC Holland, Amsterdam, The Netherlands
| | - Petra M Nederlof
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Gonçalves A, Bertucci A, Bertucci F. PARP Inhibitors in the Treatment of Early Breast Cancer: The Step Beyond? Cancers (Basel) 2020; 12:cancers12061378. [PMID: 32471249 PMCID: PMC7352970 DOI: 10.3390/cancers12061378] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Exquisitely exploiting defects in homologous recombination process, poly(ADP-ribose) polymerase (PARP) inhibitors have recently emerged as a promising class of therapeutics in human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer with germline breast cancer 1 (BRCA1) or breast cancer 2 (BRCA2) mutations (gBRCA1/2m). In this setting, PARP inhibitors, either as single agent or in combination with platinum-based chemotherapy, significantly increased progression-free survival, as compared to conventional chemotherapy. Accordingly, further therapeutic advances are expected at an earlier stage of the disease. In the neoadjuvant setting, veliparib failed to increase the pathological complete response rate when added to a carboplatin-based regimen, in unselected triple-negative breast cancer patients. Similarly, when administered before anthracycline-cyclophosphamide, the neoadjuvant olaparib-paclitaxel combination was not superior to carboplatin–paclitaxel, in patients with HER2-negative breast cancer and BRCA1/2 mutation, or homologous recombination defect. Yet, neoadjuvant talazoparib, administered as a single-agent in patients with HER2-negative breast cancer and germline BRCA1/2 mutation, achieved an impressive pathological complete response rate of nearly 50%. In the adjuvant setting, the results from the OlympiA phase III study, evaluating adjuvant olaparib in HER2-negative early breast cancer and germline BRCA1/2 mutations, are eagerly awaited. Ongoing trials should clarify whether PARP inhibitors might improve outcome when administered in the adjuvant or neoadjuvant setting in early breast cancer patients with BRCA1/2 mutation or homologous recombination defect.
Collapse
Affiliation(s)
- Anthony Gonçalves
- Medical Oncology Department, Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France; (A.B.); (F.B.)
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France
- Correspondence: ; Tel.: +33-4-91-22-37-89; Fax: +33-4-91-22-36-70
| | - Alexandre Bertucci
- Medical Oncology Department, Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France; (A.B.); (F.B.)
| | - François Bertucci
- Medical Oncology Department, Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France; (A.B.); (F.B.)
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France
| |
Collapse
|
38
|
Role of DNA Damage Response in Suppressing Malignant Progression of Chronic Myeloid Leukemia and Polycythemia Vera: Impact of Different Oncogenes. Cancers (Basel) 2020; 12:cancers12040903. [PMID: 32272770 PMCID: PMC7226398 DOI: 10.3390/cancers12040903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory and oncogenic signaling, both known to challenge genome stability, are key drivers of BCR-ABL-positive chronic myeloid leukemia (CML) and JAK2 V617F-positive chronic myeloproliferative neoplasms (MPNs). Despite similarities in chronic inflammation and oncogene signaling, major differences in disease course exist. Although BCR-ABL has robust transformation potential, JAK2 V617F-positive polycythemia vera (PV) is characterized by a long and stable latent phase. These differences reflect increased genomic instability of BCR-ABL-positive CML, compared to genome-stable PV with rare cytogenetic abnormalities. Recent studies have implicated BCR-ABL in the development of a "mutator" phenotype fueled by high oxidative damage, deficiencies of DNA repair, and defective ATR-Chk1-dependent genome surveillance, providing a fertile ground for variants compromising the ATM-Chk2-p53 axis protecting chronic phase CML from blast crisis. Conversely, PV cells possess multiple JAK2 V617F-dependent protective mechanisms, which ameliorate replication stress, inflammation-mediated oxidative stress and stress-activated protein kinase signaling, all through up-regulation of RECQL5 helicase, reactive oxygen species buffering system, and DUSP1 actions. These attenuators of genome instability then protect myeloproliferative progenitors from DNA damage and create a barrier preventing cellular stress-associated myelofibrosis. Therefore, a better understanding of BCR-ABL and JAK2 V617F roles in the DNA damage response and disease pathophysiology can help to identify potential dependencies exploitable for therapeutic interventions.
Collapse
|
39
|
Asleh K, Brauer HA, Sullivan A, Lauttia S, Lindman H, Nielsen TO, Joensuu H, Thompson EA, Chumsri S. Predictive Biomarkers for Adjuvant Capecitabine Benefit in Early-Stage Triple-Negative Breast Cancer in the FinXX Clinical Trial. Clin Cancer Res 2020; 26:2603-2614. [PMID: 32005747 DOI: 10.1158/1078-0432.ccr-19-1945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/11/2019] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent studies have demonstrated a benefit of adjuvant capecitabine in early breast cancer, particularly in patients with triple-negative breast cancer (TNBC). However, TNBC is heterogeneous and more precise predictive biomarkers are needed. EXPERIMENTAL DESIGN Tumor tissues collected from TNBC patients in the FinXX trial, randomized to adjuvant anthracycline-taxane-based chemotherapy with or without capecitabine, were analyzed using a 770-gene panel targeting multiple biological mechanisms and additional 30-custom genes related to capecitabine metabolism. Hypothesis-generating exploratory analyses were performed to assess biomarker expression in relation to treatment effect using the Cox regression model and interaction tests adjusted for multiplicity. RESULTS One hundred eleven TNBC samples were evaluable (57 without capecitabine and 54 with capecitabine). The median follow-up was 10.2 years. Multivariate analysis showed significant improvement in recurrence-free survival (RFS) favoring capecitabine in four biologically important genes and metagenes, including cytotoxic cells [hazard ratio (HR) = 0.38; 95% confidence intervals (CI), 0.16-0.86, P-interaction = 0.01], endothelial (HR = 0.67; 95% CI, 0.20-2.22, P-interaction = 0.02), mast cells (HR = 0.78; 95% CI, 0.49-1.27, P-interaction = 0.04), and PDL2 (HR = 0.31; 95% CI, 0.12-0.81, P-interaction = 0.03). Furthermore, we identified 38 single genes that were significantly associated with capecitabine benefit, and these were dominated by immune response pathway and enzymes involved in activating capecitabine to fluorouracil, including TYMP. However, these results were not significant when adjusted for multiple testing. CONCLUSIONS Genes and metagenes related to antitumor immunity, immune response, and capecitabine activation could identify TNBC patients who are more likely to benefit from adjuvant capecitabine. Given the reduced power to observe significant findings when correcting for multiplicity, our findings provide the basis for future hypothesis-testing validation studies on larger clinical trials.
Collapse
Affiliation(s)
- Karama Asleh
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Amy Sullivan
- NanoString Technologies Inc., Seattle, Washington
| | - Susanna Lauttia
- Laboratory of Molecular Oncology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Henrik Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Heikki Joensuu
- Laboratory of Molecular Oncology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Saranya Chumsri
- Robert and Monica Jacoby Center for Breast Health, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
40
|
de Boo L, Cimino-Mathews A, Lubeck Y, Daletzakis A, Opdam M, Sanders J, Hooijberg E, van Rossum A, Loncova Z, Rieder D, Trajanoski Z, Vollebergh M, Sobral-Leite M, van de Vijver K, Broeks A, van der Wiel R, van Tinteren H, Linn S, Horlings HM, Kok M. Tumour-infiltrating lymphocytes (TILs) and BRCA-like status in stage III breast cancer patients randomised to adjuvant intensified platinum-based chemotherapy versus conventional chemotherapy. Eur J Cancer 2020; 127:240-250. [PMID: 31956037 DOI: 10.1016/j.ejca.2019.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The prognostic value of tumour-infiltrating lymphocytes (TILs) differs by breast cancer (BC) subtype. The aim of this study was to evaluate TILs in stage III BC in the context of BRCA1/2-like phenotypes and association with outcome and benefit of intensified platinum-based chemotherapy. PATIENTS AND METHODS Patients participated in a randomised controlled trial of adjuvant intensified platinum-based chemotherapy versus conventional anthracycline-based chemotherapy carried out between 1993 and 1999 in stage III BC. Stromal TILs were scored according to International guidelines in these human epidermal growth factor receptor 2 (HER2)-negative tumours. BRCA-profiles were determined using Comparative Genomic Hybridization. RESULTS TIL levels were evaluated in 248 BCs. High TILs were associated with Triple Negative BC (TNBC). BRCA-like tumours harboured higher TILs compared to non-BRCA-like tumours (median TILs of 20% versus 10%, p < 0.01). TIL levels in BRCA1-like tumours were higher compared to BRCA2-like tumours (median TILs of 20% versus 10%, p < 0.001). These correlations remained significant within the oestrogen (ER)-positive subgroup, however not within the TNBC subgroup. In this stage III BC cohort, high TIL level was associated with favourable outcome (TILs per 10% increment, recurrence-free survival (RFS): multivariate hazard ratio (HR) 0.82, 95% confidence interval (CI) 0.71-0.94, p = 0.01; overall survival (OS): multivariate HR 0.80, 95% CI 0.68-0.94, p = 0.01). There was no significant interaction between TILs and benefit of intensified platinum-based chemotherapy. CONCLUSION In this high-risk breast cancer cohort, high TILs were associated with TNBC and BRCA1-like status. Within the ER-positive subgroup, TIL levels were higher in BRCA1-like compared to BRCA2-like tumours. When adjusted for clinical characteristics, TILs were significantly associated with a more favourable outcome in stage III BC patients.
Collapse
MESH Headings
- Adult
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- BRCA1 Protein/genetics
- BRCA2 Protein/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carboplatin/administration & dosage
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/drug therapy
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/immunology
- Carcinoma, Lobular/pathology
- Chemotherapy, Adjuvant
- Cyclophosphamide/administration & dosage
- Epirubicin/administration & dosage
- Female
- Fluorouracil/administration & dosage
- Follow-Up Studies
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Mutation
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Retrospective Studies
- Survival Rate
- Thiotepa/administration & dosage
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/immunology
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Leonora de Boo
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Yoni Lubeck
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Antonios Daletzakis
- Biometrics Department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Erik Hooijberg
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annelot van Rossum
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Zuzana Loncova
- Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Marieke Vollebergh
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marcelo Sobral-Leite
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Koen van de Vijver
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Annegien Broeks
- Core Facility Molecular Pathology and Biobanking, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rianne van der Wiel
- Core Facility Molecular Pathology and Biobanking, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Harm van Tinteren
- Biometrics Department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sabine Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Pathology, University Medical Centre, Utrecht, the Netherlands
| | - Hugo Mark Horlings
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marleen Kok
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
41
|
DNA damage repair functions and targeted treatment in breast cancer. Breast Cancer 2020; 27:355-362. [PMID: 31898156 DOI: 10.1007/s12282-019-01038-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Cell DNA is continuously attacked by endogenous and exogenous agents, which causes DNA damage. During long-term evolution, complex defense systems for DNA damage repair are formed by cells to maintain genome stability. Defects in the DNA damage repair process may lead to various diseases, including tumors. Therefore, DNA damage repair systems have become a new anti-tumor drug target. To date, a number of inhibitors related to DNA damage repair systems have been developed, particularly for tumors with BRCA1 and BRCA2 mutations. Poly (ADP-ribose) polymerase inhibitors developed by synthetic lethality are widely used in individualized tumor therapy. In this review, we briefly introduce the mechanisms underlying DNA damage repair, particularly in breast cancer, and mainly focus on new treatments targeting the DNA damage repair pathway in breast cancer.
Collapse
|
42
|
Tovey H, Cheang MCU. Identifying Biomarkers to Pair with Targeting Treatments within Triple Negative Breast Cancer for Improved Patient Stratification. Cancers (Basel) 2019; 11:E1864. [PMID: 31769425 PMCID: PMC6966447 DOI: 10.3390/cancers11121864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
The concept of precision medicine has been around for many years and recent advances in high-throughput sequencing techniques are enabling this to become reality. Within the field of breast cancer, a number of signatures have been developed to molecularly sub-classify tumours. Notable examples recently approved by National Institute for Health and Care Excellence in the UK to guide treatment decisions for oestrogen receptors (ER)+ human epidermal growth factor receptor 2 (HER2)- patients include Prosigna test, EndoPredict, and Oncotype DX. However, a population of still unmet need are those with triple negative breast cancer (TNBC). Accounting for 15-20% of patients, this population has comparatively poor prognosis and as yet no targeted treatment options. Studies have shown that some patients with TNBC respond favourably to DNA damaging drugs (carboplatin) or agents which inhibit DNA damage response (poly ADP ribose polymerase (PARP) inhibitors). Known to be a heterogeneous population, there is a need to identify further TNBC patients who may benefit from these treatments. A number of signatures have been identified based on association with treatment response or specific genetic features/pathways however many of these were not restricted to TNBC patients and as of yet are not common practice in the clinic.
Collapse
Affiliation(s)
- Holly Tovey
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Maggie Chon U. Cheang
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
43
|
Wang H, Yee D. I-SPY 2: a Neoadjuvant Adaptive Clinical Trial Designed to Improve Outcomes in High-Risk Breast Cancer. CURRENT BREAST CANCER REPORTS 2019; 11:303-310. [PMID: 33312344 DOI: 10.1007/s12609-019-00334-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose of Review The I-SPY 2 trial is an adaptive clinical trial platform designed to improve outcomes in high-risk breast cancer patients by testing new drugs in the neoadjuvant setting. The intent of this review is to discuss background, study structure, innovation, and outcomes of the I-SPY 2 trial. Recent Findings I-SPY 2 evaluates new agents combined with standard therapy with pathologic complete response (pCR) as the primary endpoint. I-SPY-2 uses clinical biomarkers to classify breast cancer into 10 subtypes, with Bayesian adaptive randomization to allow individualized patient assignment to therapy arms to maximize treatment effects. A total of 7 drugs have graduated from I-SPY 2. Multiple new agents are currently in active enrollment in I-SPY 2. Summary I-SPY 2 uses an individualized approach in clinical trial design to improve high-risk breast cancer outcomes. The purpose of this review is to encourage further research and innovation in this area and bring more precise treatment options to breast cancer patients.
Collapse
Affiliation(s)
- Haiyun Wang
- Masonic Cancer Center, University of Minnesota, MMC 806, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, MMC 806, 420 Delaware St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
44
|
Sharma P, Barlow WE, Godwin AK, Parkes EE, Knight LA, Walker SM, Kennedy RD, Harkin DP, Logan GE, Steele CJ, Lambe SM, Badve S, Gökmen-Polar Y, Pathak HB, Isakova K, Linden HM, Porter P, Pusztai L, Thompson AM, Tripathy D, Hortobagyi GN, Hayes DF. Validation of the DNA Damage Immune Response Signature in Patients With Triple-Negative Breast Cancer From the SWOG 9313c Trial. J Clin Oncol 2019; 37:3484-3492. [PMID: 31657982 DOI: 10.1200/jco.19.00693] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To independently validate two biomarkers, a 44-gene DNA damage immune response (DDIR) signature and stromal tumor-infiltrating lymphocytes (sTILs), as prognostic markers in patients with triple-negative breast cancer (TNBC) treated with adjuvant doxorubicin (A) and cyclophosphamide (C) in SWOG 9313. METHODS Four hundred twenty-five centrally determined patient cases with TNBC from S9313 were identified. DDIR signature was performed on RNA isolated from formalin-fixed paraffin-embedded tumor tissue, and samples were classified as DDIR negative or positive using predefined cutoffs. Evaluation of sTILs was performed as described previously. Markers were tested for prognostic value for disease-free survival (DFS) and overall survival (OS) using Cox regression models adjusted for treatment assignment, nodal status, and tumor size. RESULTS Among 425 patients with TNBC, 33% were node positive. DDIR was tested successfully in 90% of patients (381 of 425), 62% of which were DDIR signature positive. DDIR signature positivity was associated with improved DFS (hazard ratio [HR], 0.67; 95% CI, 0.48 to 0.92; P = .015) and OS (HR, 0.61; 95% CI, 0.43 to 0.89; P = .010). sTILs density assessment was available in 99% of patients and was associated with improved DFS (HR, 0.70; 95% CI, 0.51 to 0.96; P = .026 for sTILs density ≥ 20% v < 20%) and OS (HR, 0.59; 95% CI, 0.41 to 0.85; P = .004 for sTILs density ≥ 20% v < 20%). DDIR signature score and sTILs density were moderately correlated (r = 0.60), which precluded statistical significance for DFS in a joint model. Three-year DFS and OS in a subgroup of patients with DDIR positivity and T1c/T2N0 disease were 88% and 94%, respectively. CONCLUSION The prognostic role of sTILs and DDIR in early-stage TNBC was confirmed. DDIR signature conferred improved prognosis in two thirds of patients with TNBC treated with adjuvant AC. DDIR signature has the potential to stratify outcome and to identify patients with less projected benefit after AC chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Laura A Knight
- Queen's University Belfast, Belfast, UK.,Almac Group, Craigavon, UK
| | - Steven M Walker
- Queen's University Belfast, Belfast, UK.,Almac Group, Craigavon, UK
| | | | - Denis P Harkin
- Queen's University Belfast, Belfast, UK.,Almac Group, Craigavon, UK
| | | | | | | | - Sunil Badve
- Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | - Hannah M Linden
- University of Washington, Seattle, WA.,Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Peggy Porter
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | - Debu Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
45
|
Paluch-Shimon S, Evron E. Targeting DNA repair in breast cancer. Breast 2019; 47:33-42. [DOI: 10.1016/j.breast.2019.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
|
46
|
Adashek JJ, LoRusso PM, Hong DS, Kurzrock R. Phase I trials as valid therapeutic options for patients with cancer. Nat Rev Clin Oncol 2019; 16:773-778. [PMID: 31477881 DOI: 10.1038/s41571-019-0262-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
For many years, oncology phase I trials have been referred to as 'toxicity trials' and have been believed to have low clinical utility other than that of establishing the adverse event profile of novel therapeutic agents. The traditional distinction of clinical trials into three phases has been challenged in the past few years by the introduction of targeted therapies and immunotherapies into the routine management of patients with cancer. This transformation has especially affected early phase trials, leading to the current situation in which response rates are increasingly reported from phase I trials. In this Perspectives, we highlight key elements of phase I trials and discuss how each one of them contributes to a new paradigm whereby preliminary measurements of the clinical benefit from a novel treatment can be obtained in current phase I trials, which can therefore be considered to have a therapeutic intent.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - David S Hong
- Department of Investigational Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA.
| |
Collapse
|
47
|
Hoppe MM, Sundar R, Tan DSP, Jeyasekharan AD. Biomarkers for Homologous Recombination Deficiency in Cancer. J Natl Cancer Inst 2019; 110:704-713. [PMID: 29788099 DOI: 10.1093/jnci/djy085] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Defective DNA repair is a common hallmark of cancer. Homologous recombination is a DNA repair pathway of clinical interest due to the sensitivity of homologous recombination-deficient cells to poly-ADP ribose polymerase (PARP) inhibitors. The measurement of homologous recombination deficiency (HRD) in cancer is therefore vital to the appropriate design of clinical trials incorporating PARP inhibitors. However, methods to identify HRD in tumors are varied and controversial. Understanding existing and new methods to measure HRD is important to their appropriate use in clinical trials and practice. The aim of this review is to summarize the biology and clinical validation of current methods to measure HRD, to aid decision-making for patient stratification and translational research in PARP inhibitor trials. We discuss the current clinical development of PARP inhibitors, along with established indicators for HRD such as germline BRCA1/2 mutation status and clinical response to platinum-based therapy. We then examine newer assays undergoing clinical validation, including 1) somatic mutations in homologous recombination genes, 2) "genomic scar" assays using array-based comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP) analysis or mutational signatures derived from next-generation sequencing, 3) transcriptional profiles of HRD, and 4) phenotypic or functional assays of protein expression and localization. We highlight the strengths and weaknesses of each of these assays, for consideration during the design of studies involving PARP inhibitors.
Collapse
Affiliation(s)
- Michal M Hoppe
- Cancer Science Institute of Singapore, National University Hospital, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Hospital, Singapore
| | - David S P Tan
- Cancer Science Institute of Singapore, National University Hospital, Singapore.,Department of Haematology-Oncology, National University Hospital, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University Hospital, Singapore.,Department of Haematology-Oncology, National University Hospital, Singapore
| |
Collapse
|
48
|
Abstract
Introduction: Breast cancer is heterogeneous with distinct clinical outcomes. Diverse types of markers are available on the market for breast cancer prognosis, diagnosis, and therapeutics, with distinct assay approaches. These, though they enlarge our selection pool for characterizing breast cancer patients and help improve the precision on the therapeutics, they can complicate our understanding and choice of marker panels. Areas covered: This review aims at classifying the commonly used marker panels according to their functionalities and detection approaches, comparing their advantages and disadvantages, and identifying their shared features to gain a comprehensive understanding of the diversified molecular profiles that drive breast cancer heterogeneity. Expert opinion: Our effort will contribute as a guidebook for clinicians on the use of breast cancer signature panels for disease management, and for researchers on the establishment of novel marker panels with improved precision and reduced complexity. We propose that collectively analyzing all available marker panels is equally important as investigating on entirely novel marker panels. Advances in technologies capturing signals from multiple levels are of practical importance in breaking through limitations on translating markers into clinical use.
Collapse
Affiliation(s)
- Zhen Wang
- Wuxi School of Medicine, Jiangnan University , Wuxi , China
| | - Xuanhao Zhang
- School of Biotechnology, Jiangnan University , Wuxi , China
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University , Wuxi , China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University , Wuxi , China
| |
Collapse
|
49
|
Van Hoeck A, Tjoonk NH, van Boxtel R, Cuppen E. Portrait of a cancer: mutational signature analyses for cancer diagnostics. BMC Cancer 2019; 19:457. [PMID: 31092228 PMCID: PMC6521503 DOI: 10.1186/s12885-019-5677-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In the past decade, systematic and comprehensive analyses of cancer genomes have identified cancer driver genes and revealed unprecedented insight into the molecular mechanisms underlying the initiation and progression of cancer. These studies illustrate that although every cancer has a unique genetic make-up, there are only a limited number of mechanisms that shape the mutational landscapes of cancer genomes, as reflected by characteristic computationally-derived mutational signatures. Importantly, the molecular mechanisms underlying specific signatures can now be dissected and coupled to treatment strategies. Systematic characterization of mutational signatures in a cancer patient's genome may thus be a promising new tool for molecular tumor diagnosis and classification. RESULTS In this review, we describe the status of mutational signature analysis in cancer genomes and discuss the opportunities and relevance, as well as future challenges, for further implementation of mutational signatures in clinical tumor diagnostics and therapy guidance. CONCLUSIONS Scientific studies have illustrated the potential of mutational signature analysis in cancer research. As such, we believe that the implementation of mutational signature analysis within the diagnostic workflow will improve cancer diagnosis in the future.
Collapse
Affiliation(s)
- Arne Van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Niels H. Tjoonk
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Hartwig Medical Foundation, Science Park 408, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
50
|
Pellegrino B, Mateo J, Serra V, Balmaña J. Controversies in oncology: are genomic tests quantifying homologous recombination repair deficiency (HRD) useful for treatment decision making? ESMO Open 2019; 4:e000480. [PMID: 31231558 PMCID: PMC6555601 DOI: 10.1136/esmoopen-2018-000480] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Benedetta Pellegrino
- Experimental Therapeutics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
- Oncology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Joaquin Mateo
- Prostate Cancer Translational Research Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| |
Collapse
|