1
|
Bernal YA, Blanco A, Oróstica K, Delgado I, Armisén R. Integration of RNA Editing with Multiomics Data Improves Machine Learning Models for Predicting Drug Responses in Breast Cancer Patients. RESEARCH SQUARE 2024:rs.3.rs-5604105. [PMID: 39764127 PMCID: PMC11702790 DOI: 10.21203/rs.3.rs-5604105/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Background The integration of conventional omics data such as genomics and transcriptomics data into artificial intelligence models has advanced significantly in recent years; however, their low applicability in clinical contexts, due to the high complexity of models, has been limited in their direct use inpatients. We integrated classic omics, including DNA mutation and RNA gene expression, added a novel focus on promising omics methods based on A>I(G) RNA editing, and developed a drug response prediction model. Methods We analyzed 104 patients from the Breast Cancer Genome-Guided Therapy Study (NCT02022202). This study was used to train (70%) with 10-fold cross-validation and test (30%) the drug response classification models. We assess the performance of the random forest (RF), generalized linear model (GLM), and support vector machine (SVM) with the Caret package in classifying therapy response via various combinations of clinical data, tumoral and germline mutation data, gene expression data, and RNA editing data via the LASSO and PCA strategies. Results First, we characterized the cohort on the basis of clinical data, mutation landscapes, differential gene expression, and RNAediting sites in 69 nonresponders and 35 responders to therapy. Second, regarding the prediction models, we demonstrated that RNA editing data improved or maintained the performance of the RF model for predicting drug response across all combinations. To select the final model, we compared the F1 score between models with different data combinations, highlighting an F1 score of 0.96 (95% CI: 0.957--0.961) and an AUC of 0.922, using LASSO for feature selection. Finally, we developed a nonresponse risk score on the basis of features that contributed to the selected model, focusing on three RNA-edited sites in the genes KDM4B, miRNA200/TTLL10-AS1, and BEST1. The score was created to facilitate the clinical translation of our findings, presenting a probability of therapy response according to RNA editing site patterns. Conclusion Our study highlights the potential of RNA editing as a valuable addition to predictive modeling for drug response in patients with breast cancer. The nonresponse risk score could represent a tool for clinical translation, offering a probability-based assessment of therapy response. These findings suggest that incorporating RNA editing into predictive models could enhance personalized treatment strategies and improve decision-making in oncology.
Collapse
|
2
|
Lee R, Ellison V, Forbes D, Gao C, Katanov D, Kern A, Levine F, Leybengrub P, Ogunwobi O, Xiao G, Feng Z, Bargonetti J. Chemokine CXCL12 Activates CXC Receptor 4 Metastasis Signaling Through the Upregulation of a CXCL12/CXCR4/MDMX (MDM4) Axis. Cancers (Basel) 2024; 16:4194. [PMID: 39766093 PMCID: PMC11674518 DOI: 10.3390/cancers16244194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The metastasis-promoting G-protein-coupled receptor CXC Receptor 4 (CXCR4) is activated by the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1). The CXCL12/CXCR4 pathway in cancer promotes metastasis but the molecular details of how this pathway cross-talks with oncogenes are understudied. An oncogene pathway known to promote breast cancer metastasis in MDA-MB-231 xenografts is that of Mouse Double Minute 2 and 4 (MDM2 and MDM4, also known as MDMX). MDM2 and MDMX promote circulating tumor cell (CTC) formation and metastasis, and positively correlate with a high expression of CXCR4. Interestingly, this MDMX-associated upregulation of CXCR4 is only observed in cells grown in the tumor microenvironment (TME), but not in MDA-MB-231 cells grown in a tissue culture dish. This suggested a cross-talk signaling factor from the TME which was predicted to be CXCL12 and, as such, we asked if the exogenous addition of the cell non-autonomous CXCL12 ligand would recapitulate the MDMX-dependent upregulation of CXCR4. METHODS We used MDA-MB-231 cells and isolated CTCs, with and without MDMX knockdown, plus the exogenous addition of CXCL12 to determine if MDMX-dependent upregulation of CXCR4 could be recapitulated outside of the TME context. We added exogenous CXCL12 to the culture medium used for growth of MDA-MB-231 cells and isogenic cell lines engineered for MDM2 or MDMX depletion. We carried out immunoblotting, and quantitative RT-PCR to compare the expression of CXCR4, MDM2, MDMX, and AKT activation. We carried out Boyden chamber and wound healing assays to assess the influence of MDMX and CXCL12 on the cells' migration capacity. RESULTS The addition of the CXCL12 chemokine to the medium increased the CXCR4 cellular protein level and activated the PI3K/AKT signaling pathway. Surprisingly, we observed that the addition of CXCL12 mediated the upregulation of MDM2 and MDMX at the protein, but not at the mRNA, level. A reduction in MDMX, but not MDM2, diminished both the CXCL12-mediated CXCR4 and MDM2 upregulation. Moreover, a reduction in both MDM2 and MDMX hindered the ability of the added CXCL12 to promote Boyden chamber-assessed cell migration. The upregulation of MDMX by CXCL12 was mediated, at least in part, by a step upstream of the proteasome pathway because CXCL12 did not increase protein stability after cycloheximide treatment, or when the proteasome pathway was blocked. CONCLUSIONS These data demonstrate a positive feed-forward activation loop between the CXCL12/CXCR4 pathway and the MDM2/MDMX pathway. As such, MDMX expression in tumor cells may be upregulated in the primary tumor microenvironment by CXCL12 expression. Furthermore, CXCL12/CXCR4 metastatic signaling may be upregulated by the MDM2/MDMX axis. Our findings highlight a novel positive regulatory loop between CXCL12/CXCR4 signaling and MDMX to promote metastasis.
Collapse
Affiliation(s)
- Rusia Lee
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
- Biology and Biochemistry Programs, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Viola Ellison
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
| | - Dominique Forbes
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
| | - Chong Gao
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
- Biology and Biochemistry Programs, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Diana Katanov
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
| | - Alexandra Kern
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
| | - Fayola Levine
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
| | - Pam Leybengrub
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
| | - Olorunseun Ogunwobi
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
- Biology and Biochemistry Programs, The Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Gu Xiao
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers, State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, Belfer Building, New York, NY 10021, USA; (R.L.); (V.E.)
- Biology and Biochemistry Programs, The Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
3
|
Yu S, Si Y, Yu J, Jiang C, Cheng F, Xu M, Fan Z, Liu F, Liu C, Wang Y, Wang N, Liu C, Bi C, Sun H. SNRPB2 promotes triple-negative breast cancer progression by controlling alternative splicing of MDM4 pre-mRNA. Cancer Sci 2024; 115:3915-3927. [PMID: 39329452 PMCID: PMC11611762 DOI: 10.1111/cas.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Alternative splicing generates cancer-specific transcripts and is now recognized as a hallmark of cancer. However, the critical oncogenic spliceosome-related proteins involved in triple-negative breast cancer (TNBC) remain elusive. Here, we explored the expression pattern of spliceosome-related proteins in TNBC, non-TNBC, and normal breast tissues from The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort, revealing higher expression of nearly half of spliceosome-related proteins in TNBC than their counterparts. Among these TNBC-specific spliceosome-related proteins, the expression of SNRPB2 was associated with poor prognosis in patients with TNBC. In TNBC cells, the knockdown of SNRPB2 strongly suppressed cell proliferation and invasion and induced cell cycle arrest. Mechanistically, transcriptome data showed that SNRPB2 knockdown inactivated E2F1 signaling, which regulated the cell cycle. We further validated the downregulation of several cell cycle genes in SNRPB2 knockdown cells. Moreover, the analysis showed that SNRPB2 knockdown triggered the alteration of many alternative splicing events, most of which were skipping of exon. In TNBC cells, it was found that SNRPB2 knockdown led to the skipping of exon 6 in MDM4 pre-mRNA, generating MDM4-S transcript and downregulating MDM4 protein expression. More importantly, downregulation of MDM4 decreased retinoblastoma 1 (Rb1) protein expression, which is a target of MDM4 and a regulator of E2F1 signaling. In summary, the current study revealed an SNRPB2/MDM4/Rb axis in promoting the progression of TNBC, providing novel insights and novel targets for combating TNBC.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Yue Si
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Jianzhong Yu
- Department of Internal MedicineHaian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNantongChina
| | - Chengyang Jiang
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Fei Cheng
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Miao Xu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Zhehao Fan
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Fangchen Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Chang Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Ying Wang
- Department of Thyroid and Breast SurgeryThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Ning Wang
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Chenxu Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Caili Bi
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Haibo Sun
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| |
Collapse
|
4
|
Duan H, Ren J, Wei S, Yang Z, Li C, Wang Z, Li M, Wei Z, Liu Y, Wang X, Lan H, Zeng Z, Xie M, Xie Y, Wu S, Hu W, Guo C, Zhang X, Liang L, Yu C, Mou Y, Jiang Y, Li H, Sugarman E, Deek RA, Chen Z, Li T, Chen Y, Yao M, Chen L, Liu L, Zhang G, Mou Y. Integrated analyses of multi-omic data derived from paired primary lung cancer and brain metastasis reveal the metabolic vulnerability as a novel therapeutic target. Genome Med 2024; 16:138. [PMID: 39593114 PMCID: PMC11590298 DOI: 10.1186/s13073-024-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Lung cancer brain metastases (LC-BrMs) are frequently associated with dismal mortality rates in patients with lung cancer; however, standard of care therapies for LC-BrMs are still limited in their efficacy. A deep understanding of molecular mechanisms and tumor microenvironment of LC-BrMs will provide us with new insights into developing novel therapeutics for treating patients with LC-BrMs. METHODS Here, we performed integrated analyses of genomic, transcriptomic, proteomic, metabolomic, and single-cell RNA sequencing data which were derived from a total number of 154 patients with paired and unpaired primary lung cancer and LC-BrM, spanning four published and two newly generated patient cohorts on both bulk and single cell levels. RESULTS We uncovered that LC-BrMs exhibited a significantly greater intra-tumor heterogeneity. We also observed that mutations in a subset of genes were almost always shared by both primary lung cancers and LC-BrM lesions, including TTN, TP53, MUC16, LRP1B, RYR2, and EGFR. In addition, the genome-wide landscape of somatic copy number alterations was similar between primary lung cancers and LC-BrM lesions. Nevertheless, several regions of focal amplification were significantly enriched in LC-BrMs, including 5p15.33 and 20q13.33. Intriguingly, integrated analyses of transcriptomic, proteomic, and metabolomic data revealed mitochondrial-specific metabolism was activated but tumor immune microenvironment was suppressed in LC-BrMs. Subsequently, we validated our results by conducting real-time quantitative reverse transcription PCR experiments, immunohistochemistry, and multiplexed immunofluorescence staining of patients' paired tumor specimens. Therapeutically, targeting oxidative phosphorylation with gamitrinib in patient-derived organoids of LC-BrMs induced apoptosis and inhibited cell proliferation. The combination of gamitrinib plus anti-PD-1 immunotherapy significantly improved survival of mice bearing LC-BrMs. Patients with a higher expression of mitochondrial metabolism genes but a lower expression of immune genes in their LC-BrM lesions tended to have a worse survival outcome. CONCLUSIONS In conclusion, our findings not only provide comprehensive and integrated perspectives of molecular underpinnings of LC-BrMs but also contribute to the development of a potential, rationale-based combinatorial therapeutic strategy with the goal of translating it into clinical trials for patients with LC-BrMs.
Collapse
Affiliation(s)
- Hao Duan
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jianlan Ren
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Shiyou Wei
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Yang
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Li
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenning Wang
- Department of Neurosurgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Meichen Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi Wei
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Yu Liu
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China
| | - Xiuqi Wang
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China
| | - Hongbin Lan
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China
| | - Zhen Zeng
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan Xie
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Suwen Wu
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wanming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangheng Zhang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lun Liang
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Chengwei Yu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University Lingnan Hospital, Guangzhou, 510530, China
| | - Yanhao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Houde Li
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Eric Sugarman
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, 19131, USA
| | - Rebecca A Deek
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaohui Chen
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China.
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Lunxu Liu
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gao Zhang
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China.
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Yin Q, Hu Y, Dong Z, Lu J, Wang H. Cellular, Structural Basis, and Recent Progress for Targeting Murine Double Minute X (MDMX) in Tumors. J Med Chem 2024; 67:14723-14741. [PMID: 39185935 DOI: 10.1021/acs.jmedchem.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Murine double minute X (MDMX) is an oncoprotein that mainly has a negative regulatory effect on the tumor suppressor p53 to induce tumorigenesis. As MDMX is highly expressed in various types of tumor cells, targeting and inhibiting MDMX are becoming a promising strategy for treating cancers. However, the high degree of structural homology between MDMX and its homologous protein murine double minute 2 (MDM2) is a great challenge for the development of MDMX-targeted therapies. This review introduces the structure, distribution, and regulation of the MDMX, summarizes the structural features and structure-activity relationships (SARs) of MDMX ligands, and focuses on the differences between MDMX and MDM2 in these aspects. Our purpose of this work is to propose potential strategies to achieve the specific targeting of MDMX.
Collapse
Affiliation(s)
- Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhiwen Dong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
6
|
de Queiroz RM, Efe G, Guzman A, Hashimoto N, Kawashima Y, Tanaka T, Rustgi AK, Prives C. Mdm2 requires Sprouty4 to regulate focal adhesion formation and metastasis independent of p53. Nat Commun 2024; 15:7132. [PMID: 39164253 PMCID: PMC11336179 DOI: 10.1038/s41467-024-51488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Although the E3 ligase Mdm2 and its homologue and binding partner MdmX are the major regulators of the p53 tumor suppressor protein, it is now evident that Mdm2 and MdmX have multiple functions that do not involve p53. As one example, it is known that Mdm2 can regulate cell migration, although mechanistic insight into this function is still lacking. Here we show in cells lacking p53 expression that knockdown of Mdm2 or MdmX, as well as pharmacological inhibition of the Mdm2/MdmX complex, not only reduces cell migration and invasion, but also impairs cell spreading and focal adhesion formation. In addition, Mdm2 knockdown decreases metastasis in vivo. Interestingly, Mdm2 downregulates the expression of Sprouty4, which is required for the Mdm2 mediated effects on cell migration, focal adhesion formation and metastasis. Further, our findings indicate that Mdm2 dampening of Sprouty4 is a prerequisite for maintaining RhoA levels in the cancer cells that we have studied. Taken together we describe a molecular mechanism whereby the Mdm2/MdmX complex through Sprouty4 regulates cellular processes leading to increase metastatic capability independently of p53.
Collapse
Affiliation(s)
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Asja Guzman
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
7
|
Lin W, Yan Y, Huang Q, Zheng D. MDMX in Cancer: A Partner of p53 and a p53-Independent Effector. Biologics 2024; 18:61-78. [PMID: 38318098 PMCID: PMC10839028 DOI: 10.2147/btt.s436629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
The p53 tumor suppressor protein plays an important role in physiological and pathological processes. MDM2 and its homolog MDMX are the most important negative regulators of p53. Many studies have shown that MDMX promotes the growth of cancer cells by influencing the regulation of the downstream target gene of tumor suppressor p53. Studies have found that inhibiting the MDMX-p53 interaction can effectively restore the tumor suppressor activity of p53. MDMX has growth-promoting activities without p53 or in the presence of mutant p53. Therefore, it is extremely important to study the function of MDMX in tumorigenesis, progression and prognosis. This article mainly reviews the current research progress and mechanism on MDMX function, summarizes known MDMX inhibitors and provides new ideas for the development of more specific and effective MDMX inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Wu Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Qingling Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
8
|
Ellison V, Polotskaia A, Xiao G, Leybengrub P, Qiu W, Lee R, Hendrickson R, Hu W, Bargonetti J. A CANCER PERSISTENT DNA REPAIR CIRCUIT DRIVEN BY MDM2, MDM4 (MDMX), AND MUTANT P53 FOR RECRUITMENT OF MDC1 AND 53BP1 TO CHROMATIN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576487. [PMID: 38328189 PMCID: PMC10849484 DOI: 10.1101/2024.01.20.576487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The influence of the metastasis promoting proteins mutant p53 (mtp53) and MDM2 on Cancer Persistent Repair (CPR) to promote cancer cell survival is understudied. Interactions between the DNA repair choice protein 53BP1 and wild type tumor suppressor protein p53 (wtp53) regulates cell cycle control. Cancer cells often express elevated levels of transcriptionally inactive missense mutant p53 (mtp53) that interacts with MDM2 and MDM4/MDMX (herein called MDMX). The ability of mtp53 to maintain a 53BP1 interaction while in the context of interactions with MDM2 and MDMX has not been described. We asked if MDM2 regulates chromatin-based phosphorylation events in the context of mtp53 by comparing the chromatin of T47D breast cancer cells with and without MDM2 in a phospho-peptide stable isotope labeling in cell culture (SILAC) screen. We found reduced phospho-53BP1 chromatin association, which we confirmed by chromatin fractionation and immunofluorescence in multiple breast cancer cell lines. We used the Proximity Ligation Assay (PLA) in breast cancer cell lines and detected 53BP1 in close proximity to mtp53, MDM2, and the DNA repair protein MDC1. Through disruption of the mtp53-MDM2 interaction, by either Nutlin 3a or a mtp53 R273H C-terminal deletion, we uncovered that mtp53 was required for MDM2-53BP1 interaction foci. Our data suggests that mtp53 works with MDM2 and 53BP1 to promote CPR and cell survival.
Collapse
Affiliation(s)
- Viola Ellison
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
| | - Alla Polotskaia
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
| | - Gu Xiao
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
| | - Pamella Leybengrub
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
| | - Weigang Qiu
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
| | - Rusia Lee
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
- The Graduate Center City University of New York, Departments of Biology and Biochemistry, New York, NY
| | | | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Jill Bargonetti
- Hunter College, The Department of Biological Sciences, Belfer Research Building, New York, NY
- The Graduate Center City University of New York, Departments of Biology and Biochemistry, New York, NY
- Weill Cornell Medical College, Department of Cell and Developmental Biology, New York, NY
| |
Collapse
|
9
|
Franco AFDV, Malinverni ACM, Waitzberg AFL. Immunoexpression of HER2 pathway related markers in HER2 invasive breast carcinomas treated with trastuzumab. Pathol Res Pract 2023; 252:154917. [PMID: 37977031 DOI: 10.1016/j.prp.2023.154917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE We evaluated the immunoexpression of potential markers involved in the HER2 pathway in invasive breast carcinoma with HER2 amplification treated with trastuzumab. METHODS Samples of ninety patients diagnosed and treated at two public Brazilian hospitals with overexpressed invasive carcinoma between 2009 and 2018 were included. Several markers (Bcl-2, CDK4, cyclin D1, EGFR, IGF1, IGF-1R, MDM2, MUC4, p16, p21, p27, p53, PTEN, RA, TNFα, and VEGF) were immune analyzed in the tumor by immunohistochemistry and then correlated with clinicopathological variables. RESULTS Tumor sample expression results determined potential markers of good prognosis with statistically significant values: cyclin D1 with a nuclear grade, and recurrence; IGF-1 with tumor size, and death; p16 with a response after treatment; PTEN with a response after treatment, and death. Markers of poor prognosis: p53 with histological, and nuclear grade; IGF-1R with a compromised lymph node. The treatment resistance rate after trastuzumab was 40%; the overall survival was 4.13 years (95% CI 5.1-12.5) and the disease-free survival was 3.6 years (95% CI 5.1-13.1). CONCLUSIONS The tumor samples profile demonstrated that cyclin D1, IGF-1, p16, and PTEN presented the potential for a good prognosis and p53 and IGF-1R for worse.
Collapse
Affiliation(s)
- Andreia Fabiana do Vale Franco
- Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil.
| | - Andrea Cristina Moraes Malinverni
- Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil
| | - Angela Flavia Logullo Waitzberg
- Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Zheng J, Miao F, Wang Z, Ma Y, Lin Z, Chen Y, Kong X, Wang Y, Zhuang A, Wu T, Li W. Identification of MDM2 as a prognostic and immunotherapeutic biomarker in a comprehensive pan-cancer analysis: A promising target for breast cancer, bladder cancer and ovarian cancer immunotherapy. Life Sci 2023; 327:121832. [PMID: 37276911 DOI: 10.1016/j.lfs.2023.121832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND The murine double minute 2 (MDM2) gene is a crucial factor in the development and progression of various cancer types. Multiple rigorous scientific studies have consistently shown its involvement in tumorigenesis and cancer progression in a wide range of cancer types. However, a comprehensive analysis of the role of MDM2 in human cancer has yet to be conducted. METHODS We used various databases, including TIMER2.0, TCGA, GTEx and STRING, to analyze MDM2 expression and its correlation with clinical outcomes, interacting genes and immune cell infiltration. We also investigated the association of MDM2 with immune checkpoints and performed gene enrichment analysis using DAVID tools. RESULTS The pan-cancer MDM2 analysis found that MDM2 expression and mutation status were observably different in 25 types of cancer tissue compared with healthy tissues, and prognosis analysis showed that there was a significant correlation between MDM2 expression and patient prognosis. Furthermore, correlation analysis showed that MDM2 expression was correlated with tumor mutational burden, microsatellite instability and drug sensitivity in certain cancer types. We found that there was an association between MDM2 expression and immune cell infiltration across cancer types, and MDM2 inhibitors might enhance the effect of immunotherapy on breast cancer, bladder cancer and ovarian cancer. CONCLUSIONS The first systematic pan-cancer analysis of MDM2 was conducted, and it demonstrated that MDM2 was a reliable prognostic biomarker and was closely related to cancer immunity, providing a potential immunotherapeutic target for breast cancer, bladder cancer and ovarian cancer.
Collapse
Affiliation(s)
- Jialiang Zheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fenglin Miao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuan Ma
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenhang Lin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yaqin Chen
- Nursing Department of Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xu Kong
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Aobo Zhuang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ting Wu
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Wengang Li
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
11
|
Nguyen HM, Paulishak W, Oladejo M, Wood L. Dynamic tumor microenvironment, molecular heterogeneity, and distinct immunologic portrait of triple-negative breast cancer: an impact on classification and treatment approaches. Breast Cancer 2023; 30:167-186. [PMID: 36399321 DOI: 10.1007/s12282-022-01415-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
Heterogeneity of the tumor microenvironment (TME) and the lack of a definite targetable receptor in triple-negative breast cancer (TNBC) has carved a niche for this cancer as a particularly therapeutically challenging form of breast cancer. However, recent advances in high-throughput genomic analysis have provided new insights into the unique microenvironment and defining characteristics of various subsets of TNBC. This improved understanding has contributed to the development of novel therapeutic strategies including targeted therapies such as PARP inhibitors and CDK inhibitors. Moreover, the recent FDA approval of the immune checkpoint inhibitor against programmed cell death protein 1 (PD-1), pembrolizumab and atezolizumab, holds the promise of improving the quality of life and increasing the overall survival of TNBC patients. This recent approval is one of the many therapeutically novel strategies that are currently being exploited in clinical trials toward eventual contribution to the oncologist's toolbox against TNBC. In this review, we comprehensively discuss TNBC's distinct TME and its immunophenotype. Furthermore, we highlight the histological and molecular classification of this cancer. More importantly, we describe how these characteristics and classifications contribute to the current standards of care and how they steer the development of newer and more targeted therapies toward achieving peak therapeutic goals in the treatment of TNBC.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA
| | - Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA.
| |
Collapse
|
12
|
MDM4: What do we know about the association between its polymorphisms and cancer? MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:61. [PMID: 36566308 DOI: 10.1007/s12032-022-01929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
MDM4 is an important p53-negative regulator, consequently, it is involved in cell proliferation, DNA repair, and apoptosis regulation. MDM4 overexpression and amplification are described to lead to cancer formation, metastasis, and poor disease prognosis. Several MDM4 SNPs are in non-coding regions, and some affect the MDM4 regulation by disrupting the micro RNA binding site in 3'UTR (untranslated region). Here, we gathered several association studies with different MDM4 SNPs and populations to understand the relationship between its SNPs and solid tumor risk. Many studies failed to replicate their results regarding different populations, cancer types, and risk genotypes, leading to conflicting conclusions. We suggested that distinct haplotype patterns in different populations might affect the association between MDM4 SNPs and cancer risk. Thus, we propose to investigate some linkage SNPs in specific haplotypes to provide informative MDM4 markers for association studies with cancer.
Collapse
|
13
|
Mejía-Hernández JO, Raghu D, Caramia F, Clemons N, Fujihara K, Riseborough T, Teunisse A, Jochemsen AG, Abrahmsén L, Blandino G, Russo A, Gamell C, Fox SB, Mitchell C, Takano EA, Byrne D, Miranda PJ, Saleh R, Thorne H, Sandhu S, Williams SG, Keam SP, Haupt Y, Haupt S. Targeting MDM4 as a Novel Therapeutic Approach in Prostate Cancer Independent of p53 Status. Cancers (Basel) 2022; 14:3947. [PMID: 36010941 PMCID: PMC9405814 DOI: 10.3390/cancers14163947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dinesh Raghu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Franco Caramia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas Clemons
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Fujihara
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Riseborough
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amina Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | | | - Giovanni Blandino
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Andrea Russo
- Surgical Pathology Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Cristina Gamell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen B. Fox
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Catherine Mitchell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Elena A. Takano
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - David Byrne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Panimaya Jeffreena Miranda
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Reem Saleh
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Scott G. Williams
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Simon P. Keam
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ygal Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sue Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
14
|
Shivam V, Boobalan A, Nallusamy S, Ponnusamy K, Veluchamy P, Siva P. Genomic approach to identify association of environmental bisphenol-A (BPA) in daily use plastics as molecular disruptors in breast cancer. Meta Gene 2022. [DOI: 10.1016/j.mgene.2022.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
15
|
Wang Y, Dai J, Zeng Y, Guo J, Lan J. E3 Ubiquitin Ligases in Breast Cancer Metastasis: A Systematic Review of Pathogenic Functions and Clinical Implications. Front Oncol 2021; 11:752604. [PMID: 34745984 PMCID: PMC8569917 DOI: 10.3389/fonc.2021.752604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Female breast cancer has become the most commonly occurring cancer worldwide. Although it has a good prognosis under early diagnosis and appropriate treatment, breast cancer metastasis drastically causes mortality. The process of metastasis, which includes cell epithelial–mesenchymal transition, invasion, migration, and colonization, is a multistep cascade of molecular events directed by gene mutations and altered protein expressions. Ubiquitin modification of proteins plays a common role in most of the biological processes. E3 ubiquitin ligase, the key regulator of protein ubiquitination, determines the fate of ubiquitinated proteins. E3 ubiquitin ligases target a broad spectrum of substrates. The aberrant functions of many E3 ubiquitin ligases can affect the biological behavior of cancer cells, including breast cancer metastasis. In this review, we provide an overview of these ligases, summarize the metastatic processes in which E3s are involved, and comprehensively describe the roles of E3 ubiquitin ligases. Furthermore, we classified E3 ubiquitin ligases based on their structure and analyzed them with the survival of breast cancer patients. Finally, we consider how our knowledge can be used for E3s’ potency in the therapeutic intervention or prognostic assessment of metastatic breast cancer.
Collapse
Affiliation(s)
- Yingshuang Wang
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Dai
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youqin Zeng
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Lan
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Yu D, Xu Z, Cheng X, Qin J. The role of miRNAs in MDMX-p53 interplay. J Evid Based Med 2021; 14:152-160. [PMID: 33988919 DOI: 10.1111/jebm.12428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs of 19-24 nucleotides in length and are tightly related to tumorigenesis and progression. Recent studies have demonstrated that the tumor suppressor p53 and its negative controller MDMX are regulated by miRNAs in different ways. Some miRNAs directly target p53 and regulate its expression and function, whereas some miRNAs target MDMX and regulate p53's activity indirectly. The overexpression of several miRNAs can restore the activity of p53 by negatively regulating MDMX in cancer cells. Therefore, a better understanding of the miRNAs-MDMX-p53 network will put forward potential research directions for developing anticancer therapeutics. In the present review, we mainly focus on the regulatory effects of miRNAs on the MDMX-p53 interplay as well as the role of the miRNAs-MDMX-p53 network in human cancer.
Collapse
Affiliation(s)
- Dehua Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyuan Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiangdong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jiangjiang Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
17
|
Identification of Potential Prognostic Biomarkers for Breast Cancer Based on lncRNA-TF-Associated ceRNA Network and Functional Module. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5257896. [PMID: 32802855 PMCID: PMC7411464 DOI: 10.1155/2020/5257896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022]
Abstract
Breast cancer leads to most of cancer deaths among women worldwide. Systematically analyzing the competing endogenous RNA (ceRNA) network and their functional modules may provide valuable insight into the pathogenesis of breast cancer. In this study, we constructed a lncRNA-TF-associated ceRNA network via combining all the significant lncRNA-TF ceRNA pairs and TF-TF PPI pairs. We computed important topological features of the network, such as degree and average path length. Hub nodes in the lncRNA-TF-associated ceRNA network were extracted to detect differential expression in different subtypes and tumor stages of breast cancer. MCODE was used for identifying the closely connected modules from the ceRNA network. Survival analysis was further used for evaluating whether the modules had prognosis effects on breast cancer. TF motif searching analysis was performed for investigating the binding potentials between lncRNAs and TFs. As a result, a lncRNA-TF-associated ceRNA network in breast cancer was constructed, which had a scale-free property. Hub nodes such as MDM4, ZNF410, AC0842-19, and CTB-89H12 were differentially expressed between cancer and normal sample in different subtypes and tumor stages. Two closely connected modules were identified to significantly classify patients into a low-risk group and high-risk group with different clinical outcomes. TF motif searching analysis suggested that TFs, such as NFAT5, might bind to the promoter and enhancer regions of hub lncRNAs and function in breast cancer biology. The results demonstrated that the synergistic, competitive lncRNA-TF ceRNA network and their functional modules played important roles in the biological processes and molecular functions of breast cancer.
Collapse
|
18
|
Klein AM, de Queiroz RM, Venkatesh D, Prives C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev 2021; 35:575-601. [PMID: 33888565 PMCID: PMC8091979 DOI: 10.1101/gad.347872.120] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, Klein et al. discuss the p53-independent roles of MDM2 and MDMX. First, they review the structural and functional features of MDM2 and MDMX proteins separately and together that could be relevant to their p53-independent activities. Following this, they summarize how these two proteins are regulated and how they can function in cells that lack p53. Most well studied as proteins that restrain the p53 tumor suppressor protein, MDM2 and MDMX have rich lives outside of their relationship to p53. There is much to learn about how these two proteins are regulated and how they can function in cells that lack p53. Regulation of MDM2 and MDMX, which takes place at the level of transcription, post-transcription, and protein modification, can be very intricate and is context-dependent. Equally complex are the myriad roles that these two proteins play in cells that lack wild-type p53; while many of these independent outcomes are consistent with oncogenic transformation, in some settings their functions could also be tumor suppressive. Since numerous small molecules that affect MDM2 and MDMX have been developed for therapeutic outcomes, most if not all designed to prevent their restraint of p53, it will be essential to understand how these diverse molecules might affect the p53-independent activities of MDM2 and MDMX.
Collapse
Affiliation(s)
- Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | | | - Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
19
|
Bartnykaitė A, Savukaitytė A, Ugenskienė R, Daukšaitė M, Korobeinikova E, Gudaitienė J, Juozaitytė E. Associations of MDM2 and MDM4 Polymorphisms with Early-Stage Breast Cancer. J Clin Med 2021; 10:jcm10040866. [PMID: 33669778 PMCID: PMC7922970 DOI: 10.3390/jcm10040866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 01/09/2023] Open
Abstract
Breast cancer is one of the most common cancers worldwide. Single nucleotide polymorphisms (SNPs) in MDM2 and MDM4 have been associated with various cancers. However, the influence on clinical characteristics of breast cancer has not been sufficiently investigated yet. Thus, this study aimed to investigate the relationship between SNPs in MDM2 (rs2279744, rs937283, rs937282) and MDM4 (rs1380576, rs4245739) and I-II stage breast cancer. For analysis, the genomic DNA was extracted from 100 unrelated women peripheral blood. Polymorphisms were analyzed with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The study showed that MDM2 rs937283 and rs937282 were significantly associated with estrogen receptor status and human epidermal growth factor receptor 2 (HER2) status. SNPs rs1380576 and rs4245739, located in MDM4, were significantly associated with status of estrogen and progesterone receptors. Our findings suggest that rs937283 AG, rs937282 CG, rs1380576 CC, and rs4245739 AA genotypes were linked to hormonal receptor positive breast cancer and may be useful genetic markers for disease assessment.
Collapse
Affiliation(s)
- Agnė Bartnykaitė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
- Correspondence: ; Tel.: +3-703-778-7317
| | - Aistė Savukaitytė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
| | - Rasa Ugenskienė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
| | - Monika Daukšaitė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
| | - Erika Korobeinikova
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| | - Jurgita Gudaitienė
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| | - Elona Juozaitytė
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| |
Collapse
|
20
|
Daniele S, La Pietra V, Piccarducci R, Pietrobono D, Cavallini C, D'Amore VM, Cerofolini L, Giuntini S, Russomanno P, Puxeddu M, Nalli M, Pedrini M, Fragai M, Luchinat C, Novellino E, Taliani S, La Regina G, Silvestri R, Martini C, Marinelli L. CXCR4 antagonism sensitizes cancer cells to novel indole-based MDM2/4 inhibitors in glioblastoma multiforme. Eur J Pharmacol 2021; 897:173936. [PMID: 33581134 DOI: 10.1016/j.ejphar.2021.173936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma Multiforme (GBM) is a highly invasive primary brain tumour characterized by chemo- and radio-resistance and poor overall survival. GBM can present an aberrant functionality of p53, caused by the overexpression of the murine double minute 2 protein (MDM2) and its analogue MDM4, which may influence the response to conventional therapies. Moreover, tumour resistance/invasiveness has been recently attributed to an overexpression of the chemokine receptor CXCR4, identified as a pivotal mediator of glioma neovascularization. Notably, CXCR4 and MDM2-4 cooperate in promoting tumour invasion and progression. Although CXCR4 actively promotes MDM2 activation leading to p53 inactivation, MDM2-4 knockdown induces the downregulation of CXCR4 gene transcription. Our study aimed to assess if the CXCR4 signal blockade could enhance glioma cells' sensitivity to the inhibition of the p53-MDMs axis. Rationally designed inhibitors of MDM2/4 were combined with the CXCR4 antagonist, AMD3100, in human GBM cells and GBM stem-like cells (neurospheres), which are crucial for tumour recurrence and chemotherapy resistance. The dual MDM2/4 inhibitor RS3594 and the CXCR4 antagonist AMD3100 reduced GBM cell invasiveness and migration in single-agent treatment and mainly in combination. AMD3100 sensitized GBM cells to the antiproliferative activity of RS3594. It is noteworthy that these two compounds present synergic effects on cancer stem components: RS3594 inhibited the growth and formation of neurospheres, AMD3100 induced differentiation of neurospheres while enhancing RS3594 effectiveness preventing their proliferation/clonogenicity. These results confirm that blocking CXCR4/MDM2/4 represents a valuable strategy to reduce GBM proliferation and invasiveness, acting on the stem cell component too.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy
| | | | | | | | | | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, And Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P), 50019, Sesto Fiorentino (FI), Italy
| | - Stefano Giuntini
- Department of Chemistry "Ugo Schiff″, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Pasquale Russomanno
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Marianna Nalli
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Martina Pedrini
- Department of Chemistry, University of Milan, 20133, Milano, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, And Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P), 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry "Ugo Schiff″, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, And Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P), 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry "Ugo Schiff″, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Roma, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy.
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", 80131, Napoli, Italy.
| |
Collapse
|
21
|
Yu S, Wang X, Zhu L, Xie P, Zhou Y, Jiang S, Chen H, Liao X, Pu S, Lei Z, Wang B, Ren Y. A systematic analysis of a potential metabolism-related prognostic signature for breast cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:330. [PMID: 33708957 PMCID: PMC7944328 DOI: 10.21037/atm-20-7600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Metabolic pathways play an essential role in breast cancer. However, the role of metabolism-related genes in the early diagnosis of breast cancer remains unknown. Methods In our study, RNA sequencing (RNA-seq) expression data and clinicopathological information from The Cancer Genome Atlas (TCGA) and GSE20685 were obtained. Univariate cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed on the differentially expressed metabolism-related genes. Then, the formula of the metabolism-related risk model was composed, and the risk score of each patient was calculated. The breast cancer patients were divided into high-risk and low-risk groups with a cutoff of the median expression value of the risk score, and the prognostic analysis was also used to analyze the survival time between these two groups. In the end, we also analyzed the expression, interaction, and correlation among genes in the metabolism-related gene risk model. Results The results from the prognostic analysis indicated that the survival was significantly poorer in the high-risk group than in the low-risk group in both TCGA and GSE20685 datasets. In addition, after adjusting for different clinicopathological features in multivariate analysis, the metabolism-related risk model remained an independent prognostic indicator in TCGA dataset. Conclusions In summary, we systematically developed a potential metabolism-related gene risk model for predicting prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Shibo Yu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaowen Wang
- Department of Second Breast surgery, the Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Lizhe Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peiling Xie
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yudong Zhou
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Siyuan Jiang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heyan Chen
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqin Liao
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengyu Pu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhenzhen Lei
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Ren
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Shebli WTY, Alotibi MKH, Al-Raddadi RI, Al-Amri RJ, Fallatah EIY, Alhujaily AS, Mohamed HS. Murine Double Minute 2 Gene ( MDM2) rs937283A/G variant significantly increases the susceptibility to breast cancer in Saudi Women. Saudi J Biol Sci 2021; 28:2272-2277. [PMID: 33911942 PMCID: PMC8071807 DOI: 10.1016/j.sjbs.2021.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 01/09/2023] Open
Abstract
Breast cancer is predominant causes of mortality in women worldwide. Genetic polymorphisms have a significant role in breast cancer aetiology. TP53 and its inhibitor the murine double minute 2 (MDM2) genes encode proteins that have crucial functions in the DNA damage response. The allelic variations within these genes could influence the susceptibility to breast cancer. MDM2 promotor polymorphism rs937283A/G has a role in susceptibility to cancer and modifies the promoter activity. In the present case-control study, the association of MDM2 rs937283A/G polymorphism and breast cancer susceptibility in Saudi women with samples of 137 breast cancer patients, and 98 healthy controls were explored. MDM2 gene polymorphism rs937283A/G was genotyped by polymerase chain reaction restriction fragment length polymorphism and confirmed by sequencing. The results revealed that rs937283A/G variant is significantly increases the risk of breast cancer in Saudi women (p-value = 0.0078). Moreover, rs937283A/G polymorphism was associated with high risk of breast cancer in estrogen positive breast cancer patients (p-value = 0.0088), progesterone positive breast cancer patients (p-value = 0.0043), human epidermal growth factor receptor 2 negative breast cancer patients (p-value = 0.0026), and triple negative breast cancer patients where (p-value = 0.0003). Positive association between increased breast cancer risk and rs937283 variant in premenopausal Saudi women, below 50 years of age, was demonstrated (p-value = 0.0023). Collectively, MDM2 rs937283A/G polymorphism could act as a possible biomarker for breast cancer susceptibility in Saudi women.
Collapse
Affiliation(s)
| | | | | | - Razan Jamaan Al-Amri
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| | | | | | - Hiba Salaheldin Mohamed
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia.,Institute of Endemic Diseases, University of Khartoum, Sudan
| |
Collapse
|
23
|
Lymphatic Metastasis of NSCLC Involves Chemotaxis Effects of Lymphatic Endothelial Cells through the CCR7-CCL21 Axis Modulated by TNF-α. Genes (Basel) 2020; 11:genes11111309. [PMID: 33158173 PMCID: PMC7694274 DOI: 10.3390/genes11111309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Metastasis and recurrence are the main causes of lung adenocarcinoma patients’ death. Lymphatic metastasis is the main way of non-small cell lung cancer (NSCLC) metastasis. C-C chemokine receptor type 7 (CCR7) overexpression has been demonstrated to mediate occurrence and progression of NSCLC. Moreover, Chemokine ligand 21 (CCL21) was used to activate CCR7. The CCR7–CCL21 axis is one of the most common “chemokine-receptor” modes of action in the development and metastasis of multiple tumors. However, the role of the CCR7–CCL21 axis in lymphatic metastasis of NSCLC is poorly understood. The study was conducted to investigate the molecular mechanism underlying CCR7–CCL21 axis-mediated lymphatic metastasis of NSCLC A549 cells. Tumor necrosis factor α (TNF-α) could regulate the tumor microenvironment balance by promoting chemokine secretion. Our study demonstrated that TNF-α promoted CCL21 production in human lymphatic endothelial cells (HLEC). Results further showed that TNF-α significantly activated the NF-κB pathway in HLEC. NF–κB pathway inhibition with ammonium pyrrolidinedithiocarbamate (PDTC) caused a significant decrease in CCL21 secretion, suggesting that TNF-α-induced CCL21 secretion in HLEC was through NF–κB pathway. Co-culture of A549 cells and TNF-α-treated HLEC confirmed that the metastasis of A549 cells was enhanced, meanwhile, apoptosis-related proteins were hardly affected. The data proved that a co-culture system prevented cell apoptosis while inducing the lymphatic metastasis of A549 cells. However, the situation was reversed after neutralizing CCL21 expression, suggesting that TNF-α-induced CCL21 secretion in HLEC is involved in A549 cells metastasis. Collectively, our finding demonstrated that NF-κB pathway-controlled CCL21 secretion of HLEC contributing to the lymphatic metastasis of A549 cells via the CCR7–CCL21 axis, validating the CCR7–CCL21 axis as a potential target to inhibit metastasis of NSCLC.
Collapse
|
24
|
Exosomal miR-1246 and miR-155 as predictive and prognostic biomarkers for trastuzumab-based therapy resistance in HER2-positive breast cancer. Cancer Chemother Pharmacol 2020; 86:761-772. [PMID: 33068176 DOI: 10.1007/s00280-020-04168-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE This study aimed to investigate the predictive and prognostic roles of circulating exosomal miRNAs in breast cancer treated with trastuzumab-based chemotherapy. METHODS Circulating exosomal miRNAs from trastuzumab-resistant (n = 4) and -sensitive (n = 4) patients were profiled using miRNA microarray. The predictive and prognostic roles of filtered miRNAs were validated in 107 early-stage and 68 metastatic patients treated with trastuzumab-based chemotherapy through receiver-operating characteristic (ROC) curve analysis, logistic regression and Cox proportional hazards regression analysis, and Kaplan-Meier survival analysis. RESULTS MiRNA microarray analysis revealed miR-1246 and miR-155 were the most up-regulated miRs in trastuzumab-resistant HER2-positive breast cancer patients, which were further validated in trastuzumab-resistant patient samples (n = 32) compared with trastuzumab sensitive ones (n = 36). MiR-1246 showed a ROC curve area of 0.750 with 78.1% sensitivity and 75% specificity in discriminating resistant from sensitive patients (p < 0.001), while miR-155 showed a ROC curve area of 0.877 with 68.8% sensitivity and 97.2% specificity (p < 0.001). Predictive factors and multivariate analysis showed that high levels of miR-1246 and miR-155 strongly predicted poor event-free survival (EFS) for early-stage patients, and poor progression-free survival (PFS) for metastatic patients. However, both miRNAs were revealed not to be associated with overall survival (OS). In addition, Kaplan-Meier survival analysis demonstrated that early-stage and metastatic patients with high expression of miR-1246 and miR-155 had poorer EFS or PFS, respectively, than those with decreased expression of both miRs. CONCLUSIONS This study demonstrated the valuable roles of circulating exosomal miR-1246 and miR-155 in distinguishing trastuzumab resistant from sensitive patients.
Collapse
|
25
|
Faldoni FLC, Villacis RAR, Canto LM, Fonseca-Alves CE, Cury SS, Larsen SJ, Aagaard MM, Souza CP, Scapulatempo-Neto C, Osório CABT, Baumbach J, Marchi FA, Rogatto SR. Inflammatory Breast Cancer: Clinical Implications of Genomic Alterations and Mutational Profiling. Cancers (Basel) 2020; 12:2816. [PMID: 33007869 PMCID: PMC7650681 DOI: 10.3390/cancers12102816] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive type of breast cancer whose molecular basis is poorly understood. We performed a comprehensive molecular analysis of 24 IBC biopsies naïve of treatment, using a high-resolution microarray platform and targeted next-generation sequencing (105 cancer-related genes). The genes more frequently affected by gains were MYC (75%) and MDM4 (71%), while frequent losses encompassed TP53 (71%) and RB1 (58%). Increased MYC and MDM4 protein expression levels were detected in 18 cases. These genes have been related to IBC aggressiveness, and MDM4 is a potential therapeutic target in IBC. Functional enrichment analysis revealed genes associated with inflammatory regulation and immune response. High homologous recombination (HR) deficiency scores were detected in triple-negative and metastatic IBC cases. A high telomeric allelic imbalance score was found in patients having worse overall survival (OS). The mutational profiling was compared with non-IBC (TCGA, n = 250) and IBC (n = 118) from four datasets, validating our findings. Higher frequency of TP53 and BRCA2 variants were detected compared to non-IBC, while PIKC3A showed similar frequency. Variants in mismatch repair and HR genes were associated with worse OS. Our study provided a framework for improved diagnosis and therapeutic alternatives for this aggressive tumor type.
Collapse
Affiliation(s)
- Flávia L. C. Faldoni
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.L.C.F.); (F.A.M.)
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Rolando A. R. Villacis
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília-UnB, Brasília 70910-900, Brazil;
| | - Luisa M. Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Carlos E. Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu 18618-681, Brazil;
| | - Sarah S. Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-689, Brazil;
| | - Simon J. Larsen
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark; (S.J.L.); (J.B.)
| | - Mads M. Aagaard
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Cristiano P. Souza
- Department of Breast and Gynecologic Oncology, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14784-390, Brazil;
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos SP 14784-400, Brazil;
- Diagnósticos da América (DASA), Barueri 01525-001, Brazil
| | | | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark; (S.J.L.); (J.B.)
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Fabio A. Marchi
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.L.C.F.); (F.A.M.)
| | - Silvia R. Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
- Institute of Regional Health Research, University of Southern Denmark, 500 Odense, Denmark
| |
Collapse
|
26
|
Heidrich I, Ačkar L, Mossahebi Mohammadi P, Pantel K. Liquid biopsies: Potential and challenges. Int J Cancer 2020; 148:528-545. [PMID: 32683679 DOI: 10.1002/ijc.33217] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
The analysis of tumor cells or tumor cell products obtained from blood or other body fluids ("liquid biopsy" [LB]) provides a broad range of opportunities in the field of oncology. Clinical application areas include early detection of cancer or tumor recurrence, individual risk assessment and therapy monitoring. LB allows to portray the entire disease as tumor cells or tumor cell products are released from all metastatic or primary tumor sites, providing comprehensive and real-time information on tumor cell evolution, therapeutic targets and mechanisms of resistance to therapy. Here, we focus on the most prominent LB markers, circulating tumor cells (CTCs) and circulating tumor-derived DNA (ctDNA), in the blood of patients with breast, prostate, lung and colorectal cancer, as the four most frequent tumor types in Europe. After a brief introduction of key technologies used to detect CTCs and ctDNA, we discuss recent clinical studies on these biomarkers for early detection and prognostication of cancer as well as prediction and monitoring of cancer therapies. We also point out current methodological and biological limitations that still hamper the implementation of LB into clinical practice.
Collapse
Affiliation(s)
- Isabel Heidrich
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lucija Ačkar
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Parinaz Mossahebi Mohammadi
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Huang Q, Chen L, Schonbrunn E, Chen J. MDMX inhibits casein kinase 1α activity and stimulates Wnt signaling. EMBO J 2020; 39:e104410. [PMID: 32511789 DOI: 10.15252/embj.2020104410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Casein kinase 1 alpha (CK1α) is a serine/threonine kinase with numerous functions, including regulating the Wnt/β-catenin and p53 pathways. CK1α has a well-established role in inhibiting the p53 tumor suppressor by binding to MDMX and stimulating MDMX-p53 interaction. MDMX purified from cells contains near-stoichiometric amounts of CK1α, suggesting that MDMX may in turn regulate CK1α function. We present evidence that MDMX is a potent competitive inhibitor of CK1α kinase activity (Ki = 8 nM). Depletion of MDMX increases CK1α activity and β-catenin S45 phosphorylation, whereas ectopic MDMX expression inhibits CK1α activity and β-catenin phosphorylation. The MDMX acidic domain and zinc finger are necessary and sufficient for binding and inhibition of CK1α. P53 binding to MDMX disrupts an intramolecular auto-regulatory interaction and enhances its ability to inhibit CK1α. P53-null mice expressing the MDMXW 200S/W201G mutant, defective in CK1α binding, exhibit reduced Wnt/β-catenin target gene expression and delayed tumor development. Therefore, MDMX is a physiological inhibitor of CK1α and has a role in modulating cellular response to Wnt signaling. The MDMX-CK1α interaction may account for certain p53-independent functions of MDMX.
Collapse
Affiliation(s)
- Qingling Huang
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Lihong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Ernst Schonbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
28
|
Wang Y, Zhao J, Zhang C, Wang P, Huang C, Peng H. MiR-219a-2-3p suppresses cell proliferation and promotes apoptosis by targeting MDM2/p53 in pituitary adenomas cells. Biosci Biotechnol Biochem 2020; 84:911-918. [PMID: 31959058 DOI: 10.1080/09168451.2020.1715780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pituitary adenomas constitute one of the most common intracranial tumors. MicroRNAs play an important role in development and progression of pituitary adenomas. In this study, we showed that miR-219a-2-3p was significantly down-regulated in pituitary adenomas cells. Overexpression of miR-219a-2-3p suppressed the proliferation and promoted apoptosis of pituitary adenomas cells. After bioinformatics analysis, we found that MDM2 was one of the downstream targets of miR-219a-2-3p. Further researches showed that miR-219a-2-3p could reduce the protein level of MDM2 by binding to the 3'-UTR of MDM2 and promoted p53 expression. Then, we overexpressed both miR-219a-2-3p and MDM2 in the same group and found that it could counteract the effect of overexpressing miR-219a-2-3p alone on proliferation and apoptosis of pituitary adenoma cells. Taken together, these results suggested that miR-219a-2-3p regulated the proliferation and apoptosis by targeting MDM2/p53 in pituitary adenomas. Therefore, miR-219a-2-3p may serve as a novel marker and therapeutic target for pituitary adenomas.
Collapse
Affiliation(s)
- Yibiao Wang
- Department of Neurosurgery, Hainan General Hospital, Haikou, P.R. China
| | - Jiaonong Zhao
- Department of Neurosurgery, Hainan General Hospital, Haikou, P.R. China
| | - Chaocai Zhang
- Department of Neurosurgery, Hainan General Hospital, Haikou, P.R. China
| | - Pengcheng Wang
- Department of Neurosurgery, Hainan General Hospital, Haikou, P.R. China
| | - Chuixue Huang
- Department of Neurosurgery, Hainan General Hospital, Haikou, P.R. China
| | - Hao Peng
- Department of Neurosurgery, Hainan General Hospital, Haikou, P.R. China
| |
Collapse
|
29
|
Mahmoud NN, Abu-Dahab R, Hamadneh LA, Abuarqoub D, Jafar H, Khalil EA. Insights into the Cellular Uptake, Cytotoxicity, and Cellular Death Modality of Phospholipid-Coated Gold Nanorods toward Breast Cancer Cell Lines. Mol Pharm 2019; 16:4149-4164. [PMID: 31398052 DOI: 10.1021/acs.molpharmaceut.9b00470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gold nanorods (GNRs) have gained pronounced recognition in the diagnosis and treatment of cancers driven by their distinctive properties. Herein, a gold-based nanosystem was prepared by utilizing a phospholipid moiety linked to thiolated polyethylene glycol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG-SH, as a surface decorating agent. The synthesized phospholipid-PEG-GNRs displayed good colloidal stability upon exposure to the tissue culture medium. Cytotoxicity of phospholipid-PEG-GNRs was investigated toward MCF-7 and T47D breast cancer cells using sulforhodamine B test. The results revealed that phospholipid-PEG-GNRs demonstrated high cytotoxicity to MCF-7 cells compared to T47D cells, and minimal cytotoxicity to human dermal fibroblasts. The cellular uptake studies performed by imaging and quantitative analysis demonstrated massive internalization of phospholipid-coated GNRs into MCF-7 cells in comparison to T47D cells. The cellular death modality of cancer cells after treatment with phospholipid-PEG-GNRs was evaluated using mitochondrial membrane potential assay (JC-1 dye), gene expression analysis, and flow cytometry study. The overall results suggest that phospholipid-modified GNRs enhanced mainly the cellular apoptotic events in MCF-7 cells in addition to necrosis, whereas cellular necrosis and suppression of cellular invasion contributed to the cellular death modality in the T47D cell line upon treatment with phospholipid-PEG-GNRs. The phospholipid-coated GNRs interact in a different manner with breast cancer cell lines and could be considered for breast cancer treatment.
Collapse
Affiliation(s)
- Nouf N Mahmoud
- Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman 11733 , Jordan
| | | | - Lama A Hamadneh
- Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman 11733 , Jordan
| | | | | | | |
Collapse
|
30
|
Gao C, Xiao G, Bargonetti J. Contemplations on MDMX (MDM4) driving triple negative breast cancer circulating tumor cells and metastasis. Oncotarget 2019; 10:5007-5010. [PMID: 31489110 PMCID: PMC6707941 DOI: 10.18632/oncotarget.27134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/25/2022] Open
Abstract
MDMX (MDM4) is emerging as an important breast cancer (BC) biomarker, and oncoprotein, that can be targeted in combination with its well-known family member MDM2. While MDM2 has previously been implicated in driving BC metastasis, information about the role of MDMX in driving circulating tumor cells (CTCs) and BC metastasis is lacking. BCs often have alterations of MDM2, MDMX, and mutant p53 (mtp53). Therefore, the role of MDM2 and MDMX in the context of mtp53 in BCs requires further clarification. Our group has recently reported that triple negative breast cancer (TNBC) metastasis is dependent on both MDM2 and MDMX, and depleting MDM2 results in increased MDMX, but depleting MDMX does not cause an increase in MDM2. In the context of human TNBC expressing mtp53 in an orthotopic mouse model the down-regulation of MDMX virtually cleared CTCs from the blood. Contemplations, using the available literature, suggest that disrupting the stability and/or function of MDMX protein (and its downstream targets), in the context of mtp53 expressing BCs, might be beneficial for patient survival. It remains to be determined if blocking mtp53-MDMX pathways can inhibit early stage TNBC and eliminate CTCs that have the potential to form metastatic lesions.
Collapse
Affiliation(s)
- Chong Gao
- The Department of Biological Sciences at Hunter College, Belfer Building, City University of New York, New York, NY, USA.,The Graduate Center Biology Program of City University of New York, New York, NY, USA
| | - Gu Xiao
- The Department of Biological Sciences at Hunter College, Belfer Building, City University of New York, New York, NY, USA
| | - Jill Bargonetti
- The Department of Biological Sciences at Hunter College, Belfer Building, City University of New York, New York, NY, USA.,The Graduate Center Biology Program of City University of New York, New York, NY, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College New York, New York, NY, USA
| |
Collapse
|
31
|
Zhang L, Wang K, Wu Q, Jin L, Lu H, Shi Y, Liu L, Yang L, Lv L. Let-7 inhibits the migration and invasion of extravillous trophoblast cell via targeting MDM4. Mol Cell Probes 2019; 45:48-56. [DOI: 10.1016/j.mcp.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023]
|