1
|
Lago S, Poli V, Fol L, Botteon M, Busi F, Turdo A, Gaggianesi M, Ciani Y, D'Amato G, Fagnocchi L, Fasciani A, Demichelis F, Todaro M, Zippo A. ANP32E drives vulnerability to ATR inhibitors by inducing R-loops-dependent transcription replication conflicts in triple negative breast cancer. Nat Commun 2025; 16:4602. [PMID: 40382323 PMCID: PMC12085574 DOI: 10.1038/s41467-025-59804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/02/2025] [Indexed: 05/20/2025] Open
Abstract
Oncogene-induced replicative stress (RS) drives tumor progression by disrupting genome stability, primarily through transcription-replication conflicts (TRCs), which promote R-loop accumulation and trigger the DNA damage response (DDR). In this study, we investigate the role of chromatin regulators in exacerbating TRCs and R-loop accumulation in cancer. We find that in breast cancer patients, the simultaneous upregulation of MYC and the H2A.Z-specific chaperone ANP32E correlates with increased genomic instability. Genome-wide analyses reveal that ANP32E-driven H2A.Z turnover alters RNA polymerase II processivity, leading to the accumulation of long R-loops at TRC sites. Furthermore, we show that ANP32E overexpression enhances TRC formation and activates an ATR-dependent DDR, predisposing cancer cells to R-loop-mediated genomic fragility. By exploiting the vulnerability of ANP32E-expressing cancer cells to ATR inhibitors, we find that tumors relied on this DDR pathway, whose inhibition halts their pro-metastatic capacity. These findings identify ANP32E as a key driver of TRC-induced genomic instability, indicating ATR inhibition as a potential therapeutic strategy for ANP32E-overexpressing tumors.
Collapse
Affiliation(s)
- Sara Lago
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Vittoria Poli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Lisa Fol
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Mattia Botteon
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Federica Busi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127, Palermo, Italy
| | - Yari Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Giacomo D'Amato
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Luca Fagnocchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessandra Fasciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| |
Collapse
|
2
|
Dang H, Lucci A, Barry A, Johnson V, Ruiz B, Reynolds L, Wojnar A, Chewe K, Pomyen Y, Eckert C, Zhang K, Hill J, Shah A, Bodzin A, Grabocka E, Gaida M, Fawzi N. Phase separation of NELFE modulates chromatin accessibility to promote dichotomous signaling pathways in hepatocellular carcinoma. RESEARCH SQUARE 2025:rs.3.rs-5843408. [PMID: 40313774 PMCID: PMC12045374 DOI: 10.21203/rs.3.rs-5843408/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Biomolecular condensates partition various cellular processes including transcription, DNA repair, and RNA metabolism. We report NELFE, a member of the Negative Elongation Factor complex required for Polymerase II (Pol II) pausing, forms distinct foci mediated by two low complexity sequences. We show NELFE is oncogenic in hepatocellular carcinoma (HCC) by undergoing liquid-liquid phase separation (LLPS) with SMARCB1 to modulate chromatin accessibility to downregulate pro-apoptotic genes through Pol II pausing while activating pro-growth signals to promote HCC progression. Our work highlights the importance of NELFE LLPS as a mechanism of chromatin accessibility to regulate both paused and non-paused genes to drive tumorigenesis in hepatocellular carcinoma.
Collapse
|
3
|
Ruiz SE, Maul RW, Gearhart PJ. Optimized CUT&RUN protocol for activated primary mouse B cells. PLoS One 2025; 20:e0322139. [PMID: 40273386 PMCID: PMC12021426 DOI: 10.1371/journal.pone.0322139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
ChIP-seq has long been the standard for study of chromatin-protein interactions. However, development of a new technique, CUT&RUN, showed substantial advantages compared to ChIP-seq including higher quality signal while using substantially less sample. While a powerful technique, the original protocol was designed using cell lines and histones as targets. Due to their fragility, this was unsuitable for obtaining high-quality data from activated primary B lymphocytes. To adapt this protocol for B cells, cells were fixed prior to nuclear isolation, and several critical adjustments were introduced to the procedure and reagents. We measured binding of H3K4me3 histone and RNA Polymerase II, detecting robust peaks with as little as 100k nuclei. Additionally, freeze-thaw of B cells prior to processing did not affect results, emphasizing the flexibility of this modified technique. Using the protocol described here will allow one to quantify non-histone proteins bound to DNA from limited numbers of B cells with more efficiency than can be achieved from the current standard, ChIP-seq.
Collapse
Affiliation(s)
- Stormy E. Ruiz
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Patricia J. Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Wu L, Yadavalli AD, Senigl F, Matos-Rodrigues G, Xu D, Pintado-Urbanc AP, Simon MD, Wu W, Nussenzweig A, Schatz DG. Transcription elongation factor ELOF1 is required for efficient somatic hypermutation and class switch recombination. Mol Cell 2025; 85:1296-1310.e7. [PMID: 40049160 PMCID: PMC11972161 DOI: 10.1016/j.molcel.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/11/2024] [Accepted: 02/11/2025] [Indexed: 03/12/2025]
Abstract
Somatic hypermutation (SHM) and class switch recombination (CSR) diversify immunoglobulin (Ig) genes and are initiated by the activation-induced deaminase (AID), a single-stranded DNA cytidine deaminase thought to engage its substrate during RNA polymerase II (RNAPII) transcription. Through a genetic screen, we identified numerous potential factors involved in SHM, including elongation factor 1 homolog (ELOF1), a component of the RNAPII elongation complex that functions in transcription-coupled nucleotide excision repair (TC-NER) and transcription elongation. Loss of ELOF1 compromises SHM, CSR, and AID action in mammalian B cells and alters RNAPII transcription by reducing RNAPII pausing downstream of transcription start sites and levels of serine 5 but not serine 2 phosphorylated RNAPII throughout transcribed genes. ELOF1 must bind to RNAPII to be a proximity partner for AID and to function in SHM and CSR, and TC-NER is not required for SHM. We propose that ELOF1 helps create the appropriate stalled RNAPII substrate on which AID acts.
Collapse
Affiliation(s)
- Lizhen Wu
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Anurupa Devi Yadavalli
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Filip Senigl
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | | | - Dijin Xu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, New Haven, CT, USA
| | - Andreas P Pintado-Urbanc
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA; Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA; Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Wei Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA.
| |
Collapse
|
5
|
Morival J, Hazelwood A, Lammerding J. Feeling the force from within - new tools and insights into nuclear mechanotransduction. J Cell Sci 2025; 138:JCS263615. [PMID: 40059756 PMCID: PMC11959624 DOI: 10.1242/jcs.263615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
The ability of cells to sense and respond to mechanical signals is essential for many biological processes that form the basis of cell identity, tissue development and maintenance. This process, known as mechanotransduction, involves crucial feedback between mechanical force and biochemical signals, including epigenomic modifications that establish transcriptional programs. These programs, in turn, reinforce the mechanical properties of the cell and its ability to withstand mechanical perturbation. The nucleus has long been hypothesized to play a key role in mechanotransduction due to its direct exposure to forces transmitted through the cytoskeleton, its role in receiving cytoplasmic signals and its central function in gene regulation. However, parsing out the specific contributions of the nucleus from those of the cell surface and cytoplasm in mechanotransduction remains a substantial challenge. In this Review, we examine the latest evidence on how the nucleus regulates mechanotransduction, both via the nuclear envelope (NE) and through epigenetic and transcriptional machinery elements within the nuclear interior. We also explore the role of nuclear mechanotransduction in establishing a mechanical memory, characterized by a mechanical, epigenetic and transcriptomic cell state that persists after mechanical stimuli cease. Finally, we discuss current challenges in the field of nuclear mechanotransduction and present technological advances that are poised to overcome them.
Collapse
Affiliation(s)
- Julien Morival
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Anna Hazelwood
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
6
|
Lysakovskaia K, Devadas A, Schwalb B, Lidschreiber M, Cramer P. Promoter-proximal RNA polymerase II termination regulates transcription during human cell type transition. Nat Struct Mol Biol 2025:10.1038/s41594-025-01486-9. [PMID: 39934431 DOI: 10.1038/s41594-025-01486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Metazoan gene transcription by RNA polymerase II (Pol II) is regulated in the promoter-proximal region. Pol II can undergo termination in the promoter-proximal region but whether this can contribute to transcription regulation in cells remains unclear. Here we extend our previous multiomics analysis to quantify changes in transcription kinetics during a human cell type transition event. We observe that upregulation of transcription involves an increase in initiation frequency and, at a set of genes, a decrease in promoter-proximal termination. In turn, downregulation of transcription involves a decrease in initiation frequency and an increase in promoter-proximal termination. Thus, promoter-proximal termination of Pol II contributes to the regulation of human gene transcription.
Collapse
Affiliation(s)
- Kseniia Lysakovskaia
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Arjun Devadas
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
7
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2025; 26:82-104. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
8
|
Chen X, Shibu G, Sokolsky BA, Soussana TN, Fisher L, Deochand DK, Dacic M, Mantel I, Ramirez DC, Bell RD, Zhang T, Donlin LT, Goodman SM, Gray NS, Chinenov Y, Fisher RP, Rogatsky I. Disrupting the RNA polymerase II transcription cycle through CDK7 inhibition ameliorates inflammatory arthritis. Sci Transl Med 2024; 16:eadq5091. [PMID: 39565872 PMCID: PMC11756345 DOI: 10.1126/scitranslmed.adq5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Macrophages are key drivers of inflammation and tissue damage in autoimmune diseases including rheumatoid arthritis. The rate-limiting step for transcription of more than 70% of inducible genes in macrophages is RNA polymerase II (Pol II) promoter-proximal pause release; however, the specific role of Pol II early elongation control in inflammation, and whether it can be modulated therapeutically, is unknown. Genetic ablation of a pause-stabilizing negative elongation factor (NELF) in macrophages did not affect baseline Pol II occupancy but enhanced the transcriptional response of paused anti-inflammatory genes to lipopolysaccharide followed by secondary attenuation of inflammatory signaling in vitro and in the K/BxN serum transfer mouse model of arthritis. To pharmacologically disrupt the Pol II transcription cycle, we used two covalent inhibitors of the transcription factor II H-associated cyclin-dependent kinase 7 (CDK7), THZ1 and YKL-5-124. Both reduced Pol II pausing in murine and human macrophages, broadly suppressed induction of pro- but not anti-inflammatory genes, and rapidly reversed preestablished inflammatory macrophage polarization. In mice, CDK7 inhibition ameliorated both acute and chronic progressive inflammatory arthritis. Lastly, CDK7 inhibition down-regulated a pathogenic gene expression signature in synovial explants from patients with rheumatoid arthritis. We propose that interfering with Pol II early elongation by targeting CDK7 represents a therapeutic opportunity for rheumatoid arthritis and other inflammatory diseases.
Collapse
Affiliation(s)
- Xi Chen
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gayathri Shibu
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Baila A. Sokolsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Logan Fisher
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dinesh K. Deochand
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marija Dacic
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ian Mantel
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel C. Ramirez
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY 10021, USA
| | - Richard D. Bell
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laura T. Donlin
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Susan M. Goodman
- Division of Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yurii Chinenov
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| | - Inez Rogatsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
9
|
Tetik-Elsherbiny N, Elsherbiny A, Setya A, Gahn J, Tang Y, Gupta P, Dou Y, Serke H, Wieland T, Dubrac A, Heineke J, Potente M, Cordero J, Ola R, Dobreva G. RNF20-mediated transcriptional pausing and VEGFA splicing orchestrate vessel growth. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1199-1216. [PMID: 39322771 PMCID: PMC11473366 DOI: 10.1038/s44161-024-00546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Signal-responsive gene expression is essential for vascular development, yet the mechanisms integrating signaling inputs with transcriptional activities are largely unknown. Here we show that RNF20, the primary E3 ubiquitin ligase for histone H2B, plays a multifaceted role in sprouting angiogenesis. RNF20 mediates RNA polymerase (Pol II) promoter-proximal pausing at genes highly paused in endothelial cells, involved in VEGFA signaling, stress response, cell cycle control and mRNA splicing. It also orchestrates large-scale mRNA processing events that alter the bioavailability and function of critical pro-angiogenic factors, such as VEGFA. Mechanistically, RNF20 restricts ERG-dependent Pol II pause release at highly paused genes while binding to Notch1 to promote H2B monoubiquitination at Notch target genes and Notch-dependent gene expression. This balance is crucial, as loss of Rnf20 leads to uncontrolled tip cell specification. Our findings highlight the pivotal role of RNF20 in regulating VEGF-Notch signaling circuits during vessel growth, underscoring its potential for therapeutic modulation of angiogenesis.
Collapse
Affiliation(s)
- Nalan Tetik-Elsherbiny
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Adel Elsherbiny
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Aadhyaa Setya
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Gahn
- Cardiovascular Pharmacology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yongqin Tang
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Purnima Gupta
- Cardiovascular Pharmacology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yanliang Dou
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Serke
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Thomas Wieland
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- Experimental Pharmacology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Joerg Heineke
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Potente
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- Angiogenesis & Metabolism Laboratory, Center of Vascular Biomedicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany
| | - Julio Cordero
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany.
| | - Roxana Ola
- Cardiovascular Pharmacology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany.
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany.
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
10
|
Cebola I, Birdsey GM, Randi AM. Transcriptional pausing as a molecular mechanism of sprouting angiogenesis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1184-1186. [PMID: 39375478 DOI: 10.1038/s44161-024-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Affiliation(s)
- Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Graeme M Birdsey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
11
|
Wu L, Yadavalli AD, Matos-Rodrigues G, Xu D, Pintado-Urbanc AP, Simon MD, Wu W, Nussenzweig A, Schatz DG. Transcription elongation factor ELOF1 is required for efficient somatic hypermutation and class switch recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614732. [PMID: 39386505 PMCID: PMC11463689 DOI: 10.1101/2024.09.24.614732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Somatic hypermutation (SHM) and class switch recombination (CSR) diversify immunoglobulin (Ig) genes and are initiated by the activation induced deaminase (AID), a single-stranded DNA cytidine deaminase that is thought to engage its substrate in the context of RNA polymerase II (RNAPII) transcription. Through a loss of function genetic screen, we identified numerous potential factors involved in SHM including ELOF1, a component of the RNAPII elongation complex that has been shown to function in DNA repair and transcription elongation. Loss of ELOF1 strongly compromises SHM, CSR, and AID targeting and alters RNAPII transcription by reducing RNAPII pausing downstream of transcription start sites and levels of serine 5 but not serine 2 phosphorylated RNAPII throughout transcribed genes. ELOF1 must bind to RNAPII to be a proximity partner for AID and to function in SHM and CSR. We propose that ELOF1 helps create the appropriate stalled RNAPII substrate on which AID acts.
Collapse
Affiliation(s)
- Lizhen Wu
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Anurupa Devi Yadavalli
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | | | - Dijin Xu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Andreas P. Pintado-Urbanc
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Wei Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - David G. Schatz
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
- Lead contact
| |
Collapse
|
12
|
Zhang Q, Kim W, Panina SB, Mayfield JE, Portz B, Zhang YJ. Variation of C-terminal domain governs RNA polymerase II genomic locations and alternative splicing in eukaryotic transcription. Nat Commun 2024; 15:7985. [PMID: 39266551 PMCID: PMC11393077 DOI: 10.1038/s41467-024-52391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
The C-terminal domain of RPB1 (CTD) orchestrates transcription by recruiting regulators to RNA Pol II upon phosphorylation. With CTD driving condensate formation on gene loci, the molecular mechanism behind how CTD-mediated recruitment of transcriptional regulators influences condensates formation remains unclear. Our study unveils that phosphorylation reversibly dissolves phase separation induced by the unphosphorylated CTD. Phosphorylated CTD, upon specific association with transcription regulators, forms distinct condensates from unphosphorylated CTD. Functional studies demonstrate CTD variants with diverse condensation properties exhibit differences in promoter binding and mRNA co-processing in cells. Notably, varying CTD lengths influence the assembly of RNA processing machinery and alternative splicing outcomes, which in turn affects cellular growth, linking the evolution of CTD variation/length with the complexity of splicing from yeast to human. These findings provide compelling evidence for a model wherein post-translational modification enables the transition of functionally specialized condensates, highlighting a co-evolution link between CTD condensation and splicing.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Svetlana B Panina
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Joshua E Mayfield
- Department of Pharmacology, Pathology, Chemistry, and Biochemistry, and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Y Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA.
| |
Collapse
|
13
|
Yin X, Zeng D, Liao Y, Tang C, Li Y. The Function of H2A Histone Variants and Their Roles in Diseases. Biomolecules 2024; 14:993. [PMID: 39199381 PMCID: PMC11352661 DOI: 10.3390/biom14080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation, which is characterized by reversible and heritable genetic alterations without changing DNA sequences, has recently been increasingly studied in diseases. Histone variant regulation is an essential component of epigenetic regulation. The substitution of canonical histones by histone variants profoundly alters the local chromatin structure and modulates DNA accessibility to regulatory factors, thereby exerting a pivotal influence on gene regulation and DNA damage repair. Histone H2A variants, mainly including H2A.Z, H2A.B, macroH2A, and H2A.X, are the most abundant identified variants among all histone variants with the greatest sequence diversity. Harboring varied chromatin occupancy and structures, histone H2A variants perform distinct functions in gene transcription and DNA damage repair. They are implicated in multiple pathophysiological mechanisms and the emergence of different illnesses. Cancer, embryonic development abnormalities, neurological diseases, metabolic diseases, and heart diseases have all been linked to histone H2A variant alterations. This review focuses on the functions of H2A histone variants in mammals, including H2A.Z, H2A.B, macroH2A, and H2A.X, and their current roles in various diseases.
Collapse
Affiliation(s)
- Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yingjun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
14
|
Ng RR, Lin Z, Zhang Y, Ti SC, Javed A, Wong JWH, Fang Q, Leung JWC, Tang AHN, Huen MSY. R-loop resolution by ARIP4 helicase promotes androgen-mediated transcription induction. SCIENCE ADVANCES 2024; 10:eadm9577. [PMID: 39028815 PMCID: PMC11259169 DOI: 10.1126/sciadv.adm9577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Pausing of RNA polymerase II (Pol II) at transcription start sites (TSSs) primes target genes for productive elongation. Coincidentally, DNA double-strand breaks (DSBs) enrich at highly transcribed and Pol II-paused genes, although their interplay remains undefined. Using androgen receptor (AR) signaling as a model, we have uncovered AR-interacting protein 4 (ARIP4) helicase as a driver of androgen-dependent transcription induction. Chromatin immunoprecipitation sequencing analysis revealed that ARIP4 preferentially co-occupies TSSs with paused Pol II. Moreover, we found that ARIP4 complexes with topoisomerase II beta and mediates transient DSB formation upon hormone stimulation. Accordingly, ARIP4 deficiency compromised release of paused Pol II and resulted in R-loop accumulation at a panel of highly transcribed AR target genes. Last, we showed that ARIP4 binds and unwinds R-loops in vitro and that its expression positively correlates with prostate cancer progression. We propose that androgen stimulation triggers ARIP4-mediated unwinding of R-loops at TSSs, enforcing Pol II pause release to effectively drive an androgen-dependent expression program.
Collapse
Affiliation(s)
- Raissa Regina Ng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Zhongyang Lin
- Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Yanmin Zhang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Shih Chieh Ti
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Asif Javed
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Qingming Fang
- Department of Biochemistry and Structural Biology and Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Justin Wai Chung Leung
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alex Hin Ning Tang
- Department of Pathology, School of Clinical Medicine LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Michael Shing Yan Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| |
Collapse
|
15
|
Abe K, Maunze B, Lopez PA, Xu J, Muhammad N, Yang GY, Katz D, Liu Y, Lauberth SM. Downstream-of-gene (DoG) transcripts contribute to an imbalance in the cancer cell transcriptome. SCIENCE ADVANCES 2024; 10:eadh9613. [PMID: 38959318 PMCID: PMC11221514 DOI: 10.1126/sciadv.adh9613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Downstream-of-gene (DoG) transcripts are an emerging class of noncoding RNAs. However, it remains largely unknown how DoG RNA production is regulated and whether alterations in DoG RNA signatures exist in major cancers. Here, through transcriptomic analyses of matched tumors and nonneoplastic tissues and cancer cell lines, we reveal a comprehensive catalog of DoG RNA signatures. Through separate lines of evidence, we support the biological importance of DoG RNAs in carcinogenesis. First, we show tissue-specific and stage-specific differential expression of DoG RNAs in tumors versus paired normal tissues with their respective host genes involved in tumor-promoting versus tumor-suppressor pathways. Second, we identify that differential DoG RNA expression is associated with poor patient survival. Third, we identify that DoG RNA induction is a consequence of treating colon cancer cells with the topoisomerase I (TOP1) poison camptothecin and following TOP1 depletion. Our results underlie the significance of DoG RNAs and TOP1-dependent regulation of DoG RNAs in diversifying and modulating the cancer transcriptome.
Collapse
Affiliation(s)
- Kouki Abe
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brian Maunze
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pedro-Avila Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica Xu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nefertiti Muhammad
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - David Katz
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yaping Liu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
16
|
Vemuri K, Kumar S, Chen L, Verzi MP. Dynamic RNA polymerase II occupancy drives differentiation of the intestine under the direction of HNF4. Cell Rep 2024; 43:114242. [PMID: 38768033 PMCID: PMC11264335 DOI: 10.1016/j.celrep.2024.114242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Terminal differentiation requires massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4,000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identify dynamic occupancy of RNA polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II occupancy and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of-function, chromatin immunoprecipitation sequencing (ChIP-seq), and immunoprecipitation (IP) mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II occupancy at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms that drive differentiation gene expression and find that pause-release of Pol II and post-transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in renewing adult tissue.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Sneha Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ 08901, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI, Piscataway, NJ 08854, USA.
| |
Collapse
|
17
|
Ajit K, Alagia A, Burger K, Gullerova M. Tyrosine 1-phosphorylated RNA polymerase II transcribes PROMPTs to facilitate proximal promoter pausing and induce global transcriptional repression in response to DNA damage. Genome Res 2024; 34:201-216. [PMID: 38467418 PMCID: PMC10984383 DOI: 10.1101/gr.278644.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
DNA damage triggers a complex transcriptional response that involves both activation and repression of gene expression. In this study, we investigated global changes in transcription in response to ionizing irradiation (IR), which induces double-strand breaks in DNA. We used mNET-seq to profile nascent transcripts bound to different phosphorylated forms of the RNA polymerase II (RNA Pol II) C-terminal domain (CTD). We found that IR leads to global transcriptional repression of protein-coding genes, accompanied by an increase in antisense transcripts near promoters, called PROMPTs, transcribed by RNA Pol II phosphorylated on tyrosine 1 (Y1P) residue of the CTD. These Y1P-transcribed PROMPTs are enriched for PRC2 binding sites and associated with RNA Pol II proximal promoter pausing. We show the interaction between Y1P RNA Pol II and PRC2, as well as PRC2 binding to PROMPTs. Inhibition of PROMPTs or depletion of PRC2 leads to loss of transcriptional repression. Our results reveal a novel function of Y1P-dependent PROMPTs in mediating PRC2 recruitment to chromatin and RNA Pol II promoter pausing in response to DNA damage.
Collapse
Affiliation(s)
- Kamal Ajit
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom
| | - Adele Alagia
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom
| | - Kaspar Burger
- Mildred Scheel Early Career Center for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Monika Gullerova
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom;
| |
Collapse
|
18
|
Luo H, Lao L, Au KS, Northrup H, He X, Forget D, Gauthier MS, Coulombe B, Bourdeau I, Shi W, Gagliardi L, Fragoso MCBV, Peng J, Wu J. ARMC5 controls the degradation of most Pol II subunits, and ARMC5 mutation increases neural tube defect risks in mice and humans. Genome Biol 2024; 25:19. [PMID: 38225631 PMCID: PMC10789052 DOI: 10.1186/s13059-023-03147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are caused by genetic and environmental factors. ARMC5 is part of a novel ubiquitin ligase specific for POLR2A, the largest subunit of RNA polymerase II (Pol II). RESULTS We find that ARMC5 knockout mice have increased incidence of NTDs, such as spina bifida and exencephaly. Surprisingly, the absence of ARMC5 causes the accumulation of not only POLR2A but also most of the other 11 Pol II subunits, indicating that the degradation of the whole Pol II complex is compromised. The enlarged Pol II pool does not lead to generalized Pol II stalling or a generalized decrease in mRNA transcription. In neural progenitor cells, ARMC5 knockout only dysregulates 106 genes, some of which are known to be involved in neural tube development. FOLH1, critical in folate uptake and hence neural tube development, is downregulated in the knockout intestine. We also identify nine deleterious mutations in the ARMC5 gene in 511 patients with myelomeningocele, a severe form of spina bifida. These mutations impair the interaction between ARMC5 and Pol II and reduce Pol II ubiquitination. CONCLUSIONS Mutations in ARMC5 increase the risk of NTDs in mice and humans. ARMC5 is part of an E3 controlling the degradation of all 12 subunits of Pol II under physiological conditions. The Pol II pool size might have effects on NTD pathogenesis, and some of the effects might be via the downregulation of FOLH1. Additional mechanistic work is needed to establish the causal effect of the findings on NTD pathogenesis.
Collapse
Affiliation(s)
- Hongyu Luo
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| | - Linjiang Lao
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Xiao He
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Diane Forget
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Bourdeau
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
- Division of Endocrinology, CHUM, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Wei Shi
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Lucia Gagliardi
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
- Endocrine and Diabetes Unit, Queen Elizabeth Hospital, Adelaide, Australia
| | - Maria Candida Barisson Villares Fragoso
- Unidade de Suprarrenal Disciplina de Endocrinologia E Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Junzheng Peng
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Jiangping Wu
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.
- Division of Nephrology, CHUM, Montreal, QC, Canada.
| |
Collapse
|
19
|
Liu H, Fu H, Yu C, Zhang N, Huang C, Lv L, Hu C, Chen F, Xiao Z, Zhang Z, Lu H, Yuan K. Transcriptional pausing induced by ionizing radiation enables the acquisition of radioresistance in nasopharyngeal carcinoma. J Mol Cell Biol 2024; 15:mjad044. [PMID: 37407287 PMCID: PMC10960568 DOI: 10.1093/jmcb/mjad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/24/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Lesions on the DNA template can impact transcription via distinct regulatory pathways. Ionizing radiation (IR) as the mainstay modality for many malignancies elicits most of the cytotoxicity by inducing a variety of DNA damages in the genome. How the IR treatment alters the transcription cycle and whether it contributes to the development of radioresistance remain poorly understood. Here, we report an increase in the paused RNA polymerase II (RNAPII), as indicated by the phosphorylation at serine 5 residue of its C-terminal domain, in recurrent nasopharyngeal carcinoma (NPC) patient samples after IR treatment and cultured NPC cells developing IR resistance. Reducing the pool of paused RNAPII by either inhibiting TFIIH-associated CDK7 or stimulating the positive transcription elongation factor b, a CDK9-CycT1 heterodimer, attenuates IR resistance of NPC cells. Interestingly, the poly(ADP-ribosyl)ation of CycT1, which disrupts its phase separation, is elevated in the IR-resistant cells. Mutation of the major poly(ADP-ribosyl)ation sites of CycT1 decreases RNAPII pausing and restores IR sensitivity. Genome-wide chromatin immunoprecipitation followed by sequencing analyses reveal that several genes involved in radiation response and cell cycle control are subject to the regulation imposed by the paused RNAPII. Particularly, we identify the NIMA-related kinase NEK7 under such regulation as a new radioresistance factor, whose downregulation results in the increased chromosome instability, enabling the development of IR resistance. Overall, our results highlight a novel link between the alteration in the transcription cycle and the acquisition of IR resistance, opening up new opportunities to increase the efficacy of radiotherapy and thwart radioresistance in NPC.
Collapse
Affiliation(s)
- Honglu Liu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huanyi Fu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Na Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Canhua Huang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Biobank of Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
20
|
Zhang Q, Kim W, Panina S, Mayfield JE, Portz B, Zhang YJ. Variation of C-terminal domain governs RNA polymerase II genomic locations and alternative splicing in eukaryotic transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573828. [PMID: 38260389 PMCID: PMC10802280 DOI: 10.1101/2024.01.01.573828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The C-terminal domain of RPB1 (CTD) orchestrates transcription by recruiting regulators to RNA Pol II upon phosphorylation. Recent insights highlight the pivotal role of CTD in driving condensate formation on gene loci. Yet, the molecular mechanism behind how CTD-mediated recruitment of transcriptional regulators influences condensates formation remains unclear. Our study unveils that phosphorylation reversibly dissolves phase separation induced by the unphosphorylated CTD. Phosphorylated CTD, upon specific association with transcription regulatory proteins, forms distinct condensates from unphosphorylated CTD. Function studies demonstrate CTD variants with diverse condensation properties in vitro exhibit difference in promoter binding and mRNA co-processing in cells. Notably, varying CTD lengths lead to alternative splicing outcomes impacting cellular growth, linking the evolution of CTD variation/length with the complexity of splicing from yeast to human. These findings provide compelling evidence for a model wherein post-translational modification enables the transition of functionally specialized condensates, highlighting a co-evolution link between CTD condensation and splicing.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Molecular Biosciences, University of Texas, Austin, Texas, 78712
| | - Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas, Austin, Texas, 78712
| | - Svetlana Panina
- Department of Molecular Biosciences, University of Texas, Austin, Texas, 78712
| | - Joshua E. Mayfield
- Department of Pharmacology, Chemistry, and Biochemistry, and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093
| | - Bede Portz
- Dewpoint Therapeutics, 451 D Street, Boston, Massachusetts 02210
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, Texas, 78712
| |
Collapse
|
21
|
Mustafa EH, Laven-Law G, Kikhtyak Z, Nguyen V, Ali S, Pace AA, Iggo R, Kebede A, Noll B, Wang S, Winter JM, Dwyer AR, Tilley WD, Hickey TE. Selective inhibition of CDK9 in triple negative breast cancer. Oncogene 2024; 43:202-215. [PMID: 38001268 PMCID: PMC10786725 DOI: 10.1038/s41388-023-02892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Targeted therapy for triple-negative breast cancers (TNBC) remains a clinical challenge due to tumour heterogeneity. Since TNBC have key features of transcriptionally addicted cancers, targeting transcription via regulators such as cyclin-dependent kinase 9 (CDK9) has potential as a therapeutic strategy. Herein, we preclinically tested a new selective CDK9 inhibitor (CDDD11-8) in TNBC using cell line, patient-derived organoid, and patient-derived explant models. In vitro, CDDD11-8 dose-dependently inhibited proliferation (IC50 range: 281-734 nM), induced cell cycle arrest, and increased apoptosis of cell lines, which encompassed the three major molecular subtypes of TNBC. On target inhibition of CDK9 activity was demonstrated by reduced RNAPII phosphorylation at a CDK9 target peptide and down-regulation of the MYC and MCL1 oncogenes at the mRNA and protein levels in all cell line models. Drug induced RNAPII pausing was evident at gene promoters, with strongest pausing at MYC target genes. Growth of five distinct patient-derived organoid models was dose-dependently inhibited by CDDD11-8 (IC50 range: 272-771 nM), including three derived from MYC amplified, chemo-resistant TNBC metastatic lesions. Orally administered CDDD11-8 also inhibited growth of mammary intraductal TNBC xenograft tumours with no overt toxicity in vivo (mice) or ex vivo (human breast tissues). In conclusion, our studies indicate that CDK9 is a viable therapeutic target in TNBC and that CDDD11-8, a novel selective CDK9 inhibitor, has efficacy in TNBC without apparent toxicity to normal tissues.
Collapse
Affiliation(s)
- Ebtihal H Mustafa
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Van Nguyen
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Simak Ali
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Alex A Pace
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Richard Iggo
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Institut Bergonié, University of Bordeaux, Bordeaux, France
| | - Alemwork Kebede
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ben Noll
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jean M Winter
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Amy R Dwyer
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
22
|
Lv X, Murphy K, Murphy Z, Getman M, Rahman N, Nakamura Y, Blanc L, Gallagher PG, Palis J, Mohandas N, Steiner LA. HEXIM1 is an essential transcription regulator during human erythropoiesis. Blood 2023; 142:2198-2215. [PMID: 37738561 PMCID: PMC10733840 DOI: 10.1182/blood.2022019495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023] Open
Abstract
ABSTRACT Regulation of RNA polymerase II (RNAPII) activity is an essential process that governs gene expression; however, its contribution to the fundamental process of erythropoiesis remains unclear. hexamethylene bis-acetamide inducible 1 (HEXIM1) regulates RNAPII activity by controlling the location and activity of positive transcription factor β. We identified a key role for HEXIM1 in controlling erythroid gene expression and function, with overexpression of HEXIM1 promoting erythroid proliferation and fetal globin expression. HEXIM1 regulated erythroid proliferation by enforcing RNAPII pausing at cell cycle check point genes and increasing RNAPII occupancy at genes that promote cycle progression. Genome-wide profiling of HEXIM1 revealed that it was increased at both repressed and activated genes. Surprisingly, there were also genome-wide changes in the distribution of GATA-binding factor 1 (GATA1) and RNAPII. The most dramatic changes occurred at the β-globin loci, where there was loss of RNAPII and GATA1 at β-globin and gain of these factors at γ-globin. This resulted in increased expression of fetal globin, and BGLT3, a long noncoding RNA in the β-globin locus that regulates fetal globin expression. GATA1 was a key determinant of the ability of HEXIM1 to repress or activate gene expression. Genes that gained both HEXIM1 and GATA1 had increased RNAPII and increased gene expression, whereas genes that gained HEXIM1 but lost GATA1 had an increase in RNAPII pausing and decreased expression. Together, our findings reveal a central role for universal transcription machinery in regulating key aspects of erythropoiesis, including cell cycle progression and fetal gene expression, which could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiurui Lv
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Kristin Murphy
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Zachary Murphy
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Michael Getman
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Nabil Rahman
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Yukio Nakamura
- Rikagaku Kenkyūjyo (RIKEN) BioResource Research Center, Tsukuba Campus, Ibaraki, Japan
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | | | - James Palis
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Narla Mohandas
- Red Cell Physiology Laboratory, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Laurie A. Steiner
- Center for Child Health Research, University of Rochester, Rochester, NY
- Center for RNA Biology, University of Rochester, Rochester, NY
| |
Collapse
|
23
|
Vemuri K, Kumar S, Chen L, Verzi MP. Dynamic RNA Polymerase II Recruitment Drives Differentiation of the Intestine under the direction of HNF4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566322. [PMID: 37986803 PMCID: PMC10659318 DOI: 10.1101/2023.11.08.566322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Terminal differentiation requires a massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identified dynamic recruitment of RNA Polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II recruitment and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of- function, ChIP-seq and IP mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II recruitment at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms which drive differentiation gene expression and find pause-release of Pol II and post- transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in a renewing adult tissue.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Sneha Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ 08901, USA
- NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, NJ 08854, USA
- Lead Contact
| |
Collapse
|
24
|
Keller SH, Deng H, Lim B. Regulation of the dynamic RNA Pol II elongation rate in Drosophila embryos. Cell Rep 2023; 42:113225. [PMID: 37837623 PMCID: PMC10842316 DOI: 10.1016/j.celrep.2023.113225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023] Open
Abstract
An increasing number of studies have shown the key role that RNA polymerase II (RNA Pol II) elongation plays in gene regulation. We systematically examine how various enhancers, promoters, and gene body composition influence the RNA Pol II elongation rate through a single-cell-resolution live imaging assay. By using reporter constructs containing 5' MS2 and 3' PP7 repeating stem loops, we quantify the rate of RNA Pol II elongation in live Drosophila embryos. We find that promoters and exonic gene lengths have no effect on elongation rate, while enhancers and the presence of long introns may significantly change how quickly RNA Pol II moves across a gene. Furthermore, we observe in multiple constructs that the RNA Pol II elongation rate accelerates after the transcriptional onset of nuclear cycle 14 in Drosophila embryos. Our study provides a single-cell view of various mechanisms that affect the dynamic RNA Pol II elongation rate, ultimately affecting the rate of mRNA production.
Collapse
Affiliation(s)
- Samuel H Keller
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Deng
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bomyi Lim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Cameron DP, Grosser J, Ladigan S, Kuzin V, Iliopoulou E, Wiegard A, Benredjem H, Jackson K, Liffers ST, Lueong S, Cheung PF, Vangala D, Pohl M, Viebahn R, Teschendorf C, Wolters H, Usta S, Geng K, Kutter C, Arsenian-Henriksson M, Siveke JT, Tannapfel A, Schmiegel W, Hahn SA, Baranello L. Coinhibition of topoisomerase 1 and BRD4-mediated pause release selectively kills pancreatic cancer via readthrough transcription. SCIENCE ADVANCES 2023; 9:eadg5109. [PMID: 37831776 PMCID: PMC10575591 DOI: 10.1126/sciadv.adg5109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release. Comparing the nascent transcriptome with the recruitment of elongation and termination factors, we found that coinhibition of TOP1 and BRD4 disrupts recruitment of transcription termination factors. Thus, RNA polymerases transcribe downstream of genes for hundreds of kilobases leading to readthrough transcription. This occurs during replication, perturbing replisome progression and inducing DNA damage. The synergistic effect of TOP1 + BRD4 inhibition is specific to cancer cells leaving normal cells unaffected, highlighting the tumor's vulnerability to transcriptional defects. This preclinical study provides a mechanistic understanding of the benefit of combining TOP1 and BRD4 inhibitors to treat pancreatic carcinomas addicted to oncogenic drivers of transcription and replication.
Collapse
Affiliation(s)
- Donald P. Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Grosser
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Swetlana Ladigan
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Evanthia Iliopoulou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anika Wiegard
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hajar Benredjem
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kathryn Jackson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sven T. Liffers
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Smiths Lueong
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Phyllis F. Cheung
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Deepak Vangala
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Michael Pohl
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Richard Viebahn
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Surgery, Bochum, Germany
| | | | - Heiner Wolters
- Department of Visceral and General Surgery, St. Josef-Hospital, Dortmund, Germany
| | - Selami Usta
- Department of Visceral and General Surgery, St. Josef-Hospital, Dortmund, Germany
| | - Keyi Geng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | - Jens T. Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | - Wolff Schmiegel
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Stephan A. Hahn
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Xu W, Li X. Regulation of Pol II Pausing during Daily Gene Transcription in Mouse Liver. BIOLOGY 2023; 12:1107. [PMID: 37626993 PMCID: PMC10452108 DOI: 10.3390/biology12081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Cell autonomous circadian oscillation is present in central and various peripheral tissues. The intrinsic tissue clock and various extrinsic cues drive gene expression rhythms. Transcription regulation is thought to be the main driving force for gene rhythms. However, how transcription rhythms arise remains to be fully characterized due to the fact that transcription is regulated at multiple steps. In particular, Pol II recruitment, pause release, and premature transcription termination are critical regulatory steps that determine the status of Pol II pausing and transcription output near the transcription start site (TSS) of the promoter. Recently, we showed that Pol II pausing exhibits genome-wide changes during daily transcription in mouse liver. In this article, we review historical as well as recent findings on the regulation of transcription rhythms by the circadian clock and other transcription factors, and the potential limitations of those results in explaining rhythmic transcription at the TSS. We then discuss our results on the genome-wide characteristics of daily changes in Pol II pausing, the possible regulatory mechanisms involved, and their relevance to future research on circadian transcription regulation.
Collapse
Affiliation(s)
| | - Xiaodong Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
27
|
Pal S, Biswas D. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation. Gene 2023:147571. [PMID: 37331491 DOI: 10.1016/j.gene.2023.147571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for thefine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
28
|
Weiß E, Hennig T, Graßl P, Djakovic L, Whisnant AW, Jürges CS, Koller F, Kluge M, Erhard F, Dölken L, Friedel CC. HSV-1 Infection Induces a Downstream Shift of Promoter-Proximal Pausing for Host Genes. J Virol 2023; 97:e0038123. [PMID: 37093003 PMCID: PMC10231138 DOI: 10.1128/jvi.00381-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infection exerts a profound shutoff of host gene expression at multiple levels. Recently, HSV-1 infection was reported to also impact promoter-proximal RNA polymerase II (Pol II) pausing, a key step in the eukaryotic transcription cycle, with decreased and increased Pol II pausing observed for activated and repressed genes, respectively. Here, we demonstrate that HSV-1 infection induces more complex alterations in promoter-proximal pausing than previously suspected for the vast majority of cellular genes. While pausing is generally retained, it is shifted to more downstream and less well-positioned sites for most host genes. The downstream shift of Pol II pausing was established between 1.5 and 3 h of infection, remained stable until at least 6 hours postinfection, and was observed in the absence of ICP22. The shift in Pol II pausing does not result from alternative de novo transcription initiation at downstream sites or read-in transcription originating from disruption of transcription termination of upstream genes. The use of downstream secondary pause sites associated with +1 nucleosomes was previously observed upon negative elongation factor (NELF) depletion. However, downstream shifts of Pol II pausing in HSV-1 infection were much more pronounced than observed upon NELF depletion. Thus, our study reveals a novel aspect in which HSV-1 infection fundamentally reshapes host transcriptional processes, providing new insights into the regulation of promoter-proximal Pol II pausing in eukaryotic cells. IMPORTANCE This study provides a genome-wide analysis of changes in promoter-proximal polymerase II (Pol II) pausing on host genes induced by HSV-1 infection. It shows that standard measures of pausing, i.e., pausing indices, do not properly capture the complex and unsuspected alterations in Pol II pausing occurring in HSV-1 infection. Instead of a reduction of pausing with increased elongation, as suggested by pausing index analysis, HSV-1 infection leads to a shift of pausing to downstream and less well-positioned sites than in uninfected cells for the majority of host genes. Thus, HSV-1 infection fundamentally reshapes a key regulatory step at the beginning of the host transcriptional cycle on a genome-wide scale.
Collapse
Affiliation(s)
- Elena Weiß
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Pilar Graßl
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Adam W. Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christopher S. Jürges
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Franziska Koller
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Kluge
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
29
|
Akcan TS, Vilov S, Heinig M. Predictive model of transcriptional elongation control identifies trans regulatory factors from chromatin signatures. Nucleic Acids Res 2023; 51:1608-1624. [PMID: 36727445 PMCID: PMC9976927 DOI: 10.1093/nar/gkac1272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Promoter-proximal Polymerase II (Pol II) pausing is a key rate-limiting step for gene expression. DNA and RNA-binding trans-acting factors regulating the extent of pausing have been identified. However, we lack a quantitative model of how interactions of these factors determine pausing, therefore the relative importance of implicated factors is unknown. Moreover, previously unknown regulators might exist. Here we address this gap with a machine learning model that accurately predicts the extent of promoter-proximal Pol II pausing from large-scale genome and transcriptome binding maps and gene annotation and sequence composition features. We demonstrate high accuracy and generalizability of the model by validation on an independent cell line which reveals the model's cell line agnostic character. Model interpretation in light of prior knowledge about molecular functions of regulatory factors confirms the interconnection of pausing with other RNA processing steps. Harnessing underlying feature contributions, we assess the relative importance of each factor, quantify their predictive effects and systematically identify previously unknown regulators of pausing. We additionally identify 16 previously unknown 7SK ncRNA interacting RNA-binding proteins predictive of pausing. Our work provides a framework to further our understanding of the regulation of the critical early steps in transcriptional elongation.
Collapse
Affiliation(s)
- Toray S Akcan
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany
| | - Sergey Vilov
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| |
Collapse
|
30
|
Niewiadomska-Cimicka A, Hache A, Le Gras S, Keime C, Ye T, Eisenmann A, Harichane I, Roux MJ, Messaddeq N, Clérin E, Léveillard T, Trottier Y. Polyglutamine-expanded ATXN7 alters a specific epigenetic signature underlying photoreceptor identity gene expression in SCA7 mouse retinopathy. J Biomed Sci 2022; 29:107. [PMID: 36539812 PMCID: PMC9768914 DOI: 10.1186/s12929-022-00892-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder that primarily affects the cerebellum and retina. SCA7 is caused by a polyglutamine expansion in the ATXN7 protein, a subunit of the transcriptional coactivator SAGA that acetylates histone H3 to deposit narrow H3K9ac mark at DNA regulatory elements of active genes. Defective histone acetylation has been presented as a possible cause for gene deregulation in SCA7 mouse models. However, the topography of acetylation defects at the whole genome level and its relationship to changes in gene expression remain to be determined. METHODS We performed deep RNA-sequencing and chromatin immunoprecipitation coupled to high-throughput sequencing to examine the genome-wide correlation between gene deregulation and alteration of the active transcription marks, e.g. SAGA-related H3K9ac, CBP-related H3K27ac and RNA polymerase II (RNAPII), in a SCA7 mouse retinopathy model. RESULTS Our analyses revealed that active transcription marks are reduced at most gene promoters in SCA7 retina, while a limited number of genes show changes in expression. We found that SCA7 retinopathy is caused by preferential downregulation of hundreds of highly expressed genes that define morphological and physiological identities of mature photoreceptors. We further uncovered that these photoreceptor genes harbor unusually broad H3K9ac profiles spanning the entire gene bodies and have a low RNAPII pausing. This broad H3K9ac signature co-occurs with other features that delineate superenhancers, including broad H3K27ac, binding sites for photoreceptor specific transcription factors and expression of enhancer-related non-coding RNAs (eRNAs). In SCA7 retina, downregulated photoreceptor genes show decreased H3K9 and H3K27 acetylation and eRNA expression as well as increased RNAPII pausing, suggesting that superenhancer-related features are altered. CONCLUSIONS Our study thus provides evidence that distinctive epigenetic configurations underlying high expression of cell-type specific genes are preferentially impaired in SCA7, resulting in a defect in the maintenance of identity features of mature photoreceptors. Our results also suggest that continuous SAGA-driven acetylation plays a role in preserving post-mitotic neuronal identity.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Antoine Hache
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Stéphanie Le Gras
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Céline Keime
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Tao Ye
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Aurelie Eisenmann
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Imen Harichane
- grid.462844.80000 0001 2308 1657Department of Genetics, INSERM, CNRS, Institut de la Vision, Sorbonne University, 75012 Paris, France
| | - Michel J. Roux
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Nadia Messaddeq
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| | - Emmanuelle Clérin
- grid.462844.80000 0001 2308 1657Department of Genetics, INSERM, CNRS, Institut de la Vision, Sorbonne University, 75012 Paris, France
| | - Thierry Léveillard
- grid.462844.80000 0001 2308 1657Department of Genetics, INSERM, CNRS, Institut de la Vision, Sorbonne University, 75012 Paris, France
| | - Yvon Trottier
- grid.11843.3f0000 0001 2157 9291Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, 67404 Illkirch, France
| |
Collapse
|
31
|
ERK-mediated NELF-A phosphorylation promotes transcription elongation of immediate-early genes by releasing promoter-proximal pausing of RNA polymerase II. Nat Commun 2022; 13:7476. [PMID: 36463234 PMCID: PMC9719515 DOI: 10.1038/s41467-022-35230-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Growth factor-induced, ERK-mediated induction of immediate-early genes (IEGs) is crucial for cell growth and tumorigenesis. Although IEG expression is mainly regulated at the level of transcription elongation by RNA polymerase-II (Pol-II) promoter-proximal pausing and its release, the role of ERK in this process remains unknown. Here, we identified negative elongation factor (NELF)-A as an ERK substrate. Upon growth factor stimulation, ERK phosphorylates NELF-A, which dissociates NELF from paused Pol-II at the promoter-proximal regions of IEGs, allowing Pol-II to resume elongation and produce full-length transcripts. Furthermore, we found that in cancer cells, PP2A efficiently dephosphorylates NELF-A, thereby preventing aberrant IEG expression induced by ERK-activating oncogenes. However, when PP2A inhibitor proteins are overexpressed, as is frequently observed in cancers, decreased PP2A activity combined with oncogene-mediated ERK activation conspire to induce NELF-A phosphorylation and IEG upregulation, resulting in tumor progression. Our data delineate previously unexplored roles of ERK and PP2A inhibitor proteins in carcinogenesis.
Collapse
|
32
|
The PNUTS-PP1 complex acts as an intrinsic barrier to herpesvirus KSHV gene expression and replication. Nat Commun 2022; 13:7447. [PMID: 36460671 PMCID: PMC9718767 DOI: 10.1038/s41467-022-35268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Control of RNA Polymerase II (pol II) elongation is a critical component of gene expression in mammalian cells. The PNUTS-PP1 complex controls elongation rates, slowing pol II after polyadenylation sites to promote termination. The Kaposi's sarcoma-associated herpesvirus (KSHV) co-opts pol II to express its genes, but little is known about its regulation of pol II elongation. We identified PNUTS as a suppressor of a KSHV reporter gene in a genome-wide CRISPR screen. PNUTS depletion enhances global KSHV gene expression and overall viral replication. Mechanistically, PNUTS requires PP1 interaction, binds viral RNAs downstream of polyadenylation sites, and restricts transcription readthrough of viral genes. Surprisingly, PNUTS also represses productive elongation at the 5´ ends of the KSHV reporter and the KSHV T1.4 RNA. From these data, we conclude that PNUTS' activity constitutes an intrinsic barrier to KSHV replication likely by suppressing pol II elongation at promoter-proximal regions.
Collapse
|
33
|
Scaffa A, Tollefson GA, Yao H, Rizal S, Wallace J, Oulhen N, Carr JF, Hegarty K, Uzun A, Dennery PA. Identification of Heme Oxygenase-1 as a Putative DNA-Binding Protein. Antioxidants (Basel) 2022; 11:2135. [PMID: 36358506 PMCID: PMC9686683 DOI: 10.3390/antiox11112135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 09/30/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is a rate-limiting enzyme in degrading heme into biliverdin and iron. HO-1 can also enter the nucleus and regulate gene transcription independent of its enzymatic activity. Whether HO-1 can alter gene expression through direct binding to target DNA remains unclear. Here, we performed HO-1 CHIP-seq and then employed 3D structural modeling to reveal putative HO-1 DNA binding domains. We identified three probable DNA binding domains on HO-1. Using the Proteinarium, we identified several genes as the most highly connected nodes in the interactome among the HO-1 gene binding targets. We further demonstrated that HO-1 modulates the expression of these key genes using Hmox1 deficient cells. Finally, mutation of four conserved amino acids (E215, I211, E201, and Q27) within HO-1 DNA binding domain 1 significantly increased expression of Gtpbp3 and Eif1 genes that were identified within the top 10 binding hits normalized by gene length predicted to bind this domain. Based on these data, we conclude that HO-1 protein is a putative DNA binding protein, and regulates targeted gene expression. This provides the foundation for developing specific inhibitors or activators targeting HO-1 DNA binding domains to modulate targeted gene expression and corresponding cellular function.
Collapse
Affiliation(s)
- Alejandro Scaffa
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - George A. Tollefson
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI 02903, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Salu Rizal
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Joselynn Wallace
- Center for Computational Biology of Human Disease, and Center for Computation and Visualization, Brown University, Providence, RI 02906, USA
| | - Nathalie Oulhen
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Jennifer F. Carr
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Katy Hegarty
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Alper Uzun
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI 02905, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02906, USA
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
34
|
Integrative analysis reveals histone demethylase LSD1 promotes RNA polymerase II pausing. iScience 2022; 25:105049. [PMID: 36124234 PMCID: PMC9482124 DOI: 10.1016/j.isci.2022.105049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is well-known for its role in decommissioning enhancers during mouse embryonic stem cell (ESC) differentiation. Its role in gene promoters remains poorly understood despite its widespread presence at these sites. Here, we report that LSD1 promotes RNA polymerase II (RNAPII) pausing, a rate-limiting step in transcription regulation, in ESCs. We found the knockdown of LSD1 preferentially affects genes with higher RNAPII pausing. Next, we demonstrate that the co-localization sites of LSD1 and MYC, a factor known to regulate pause-release, are enriched for other RNAPII pausing factors. We show that LSD1 and MYC directly interact and MYC recruitment to genes co-regulated with LSD1 is dependent on LSD1 but not vice versa. The co-regulated gene set is significantly enriched for housekeeping processes and depleted of transcription factors compared to those bound by LSD1 alone. Collectively, our integrative analysis reveals a pleiotropic role of LSD1 in promoting RNAPII pausing. LSD1 promotes RNA polymerase II pausing in mouse embryonic stem cells LSD1 knockdown causes global reduction of RNAPII pausing Co-localized sites of LSD1 and MYC are enriched for RNAPII pausing and releasing factors MYC recruitment to co-regulated genes is dependent on LSD1 but not vice versa
Collapse
|
35
|
Mohamed AA, Vazquez Nunez R, Vos SM. Structural advances in transcription elongation. Curr Opin Struct Biol 2022; 75:102422. [PMID: 35816930 PMCID: PMC9398977 DOI: 10.1016/j.sbi.2022.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Transcription is the first step of gene expression and involves RNA polymerases. After transcription initiation, RNA polymerase enters elongation followed by transcription termination at the end of the gene. Only recently, structures of transcription elongation complexes bound to key transcription elongation factors have been determined in bacterial and eukaryotic systems. These structures have revealed numerous insights including the basis for transcriptional pausing, RNA polymerase interaction with large complexes such as the ribosome and the spliceosome, and the transition into productive elongation. Here, we review these structures and describe areas for future research.
Collapse
Affiliation(s)
- Abdallah A Mohamed
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/AMohamed_98
| | - Roberto Vazquez Nunez
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/rjareth
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Deng N, Zhang Y, Ma Z, Lin R, Cheng TH, Tang H, Snyder M, Cohen S. DSIF modulates RNA polymerase II occupancy according to template G + C content. NAR Genom Bioinform 2022; 4:lqac054. [PMID: 35910045 PMCID: PMC9326580 DOI: 10.1093/nargab/lqac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
The DSIF complex comprising the Supt4h and Supt5h transcription elongation proteins clamps RNA polymerase II (RNAPII) onto DNA templates, facilitating polymerase processivity. Lowering DSIF components can differentially decrease expression of alleles containing nucleotide repeat expansions, suggesting that RNAPII transit through repeat expansions is dependent on DSIF functions. To globally identify sequence features that affect dependence of the polymerase on DSIF in human cells, we used ultra-deep ChIP-seq analysis and RNA-seq to investigate and quantify the genome-wide effects of Supt4h loss on template occupancy and transcript production. Our results indicate that RNAPII dependence on Supt4h varies according to G + C content. Effects of DSIF knockdown were prominent during transcription of sequences high in G + C but minimal for sequences low in G + C and were particularly evident for G + C-rich segments of long genes. Reanalysis of previously published ChIP-seq data obtained from mouse cells showed similar effects of template G + C composition on Supt5h actions. Our evidence that DSIF dependency varies globally in different template regions according to template sequence composition suggests that G + C content may have a role in the selectivity of Supt4h knockdown and Supt5h knockdown during transcription of gene alleles containing expansions of G + C-rich repeats.
Collapse
Affiliation(s)
- Ning Deng
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Yue Zhang
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Richard Lin
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Tzu-Hao Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University , Taipei 112, Taiwan
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| | - Stanley N Cohen
- Department of Genetics, Stanford University School of Medicine , Stanford, CA 94305, USA
| |
Collapse
|
37
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
38
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
39
|
Differences in RNA polymerase II complexes and their interactions with surrounding chromatin on human and cytomegalovirus genomes. Nat Commun 2022; 13:2006. [PMID: 35422111 PMCID: PMC9010409 DOI: 10.1038/s41467-022-29739-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
Interactions of the RNA polymerase II (Pol II) preinitiation complex (PIC) and paused early elongation complexes with the first downstream (+1) nucleosome are thought to be functionally important. However, current methods are limited for investigating these relationships, both for cellular chromatin and the human cytomegalovirus (HCMV) genome. Digestion with human DNA fragmentation factor (DFF) before immunoprecipitation (DFF-ChIP) precisely revealed both similarities and major differences in PICs driven by TBP on the host genome in comparison with PICs driven by TBP or the viral-specific, late initiation factor UL87 on the viral genome. Host PICs and paused Pol II complexes are frequently found in contact with the +1 nucleosome and paused Pol II can also be found in a complex involved in the initial invasion of the +1 nucleosome. In contrast, viral transcription complexes have very limited nucleosomal interactions, reflecting a relative lack of chromatinization of transcriptionally active regions of HCMV genomes. Here the authors digested chromatin with DNA fragmentation factor (DFF) prior to chromatin immunoprecipitation (DFF-ChIP) to depict transcription complex interactions with neighboring nucleosomes in cells. Applying this method to human cytomegalovirus (HMCV)-infected cells, they find that the viral genome is underchromatinized, leading to fewer transcription complex interactions with nucleosomes.
Collapse
|
40
|
Recoules L, Heurteau A, Raynal F, Karasu N, Moutahir F, Bejjani F, Jariel-Encontre I, Cuvier O, Sexton T, Lavigne AC, Bystricky K. The histone variant macroH2A1.1 regulates RNA Polymerase II paused genes within defined chromatin interaction landscapes. J Cell Sci 2022; 135:275002. [PMID: 35362516 PMCID: PMC9016624 DOI: 10.1242/jcs.259456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
The histone variant macroH2A1.1 plays a role in cancer development and metastasis. To determine the underlying molecular mechanisms, we mapped the genome-wide localization of endogenous macroH2A1.1 in the human breast cancer cell line MDA-MB-231. We demonstrate that macroH2A1.1 specifically binds to active promoters and enhancers in addition to facultative heterochromatin. Selective knock down of macroH2A1.1 deregulates the expression of hundreds of highly active genes. Depending on the chromatin landscape, macroH2A1.1 acts through two distinct molecular mechanisms. The first mitigates excessive transcription by binding over domains including the promoter and the gene body. The second stimulates expression of RNA polymerase II (Pol II)-paused genes, including genes regulating mammary tumor cell migration. In contrast to the first mechanism, macroH2A1.1 specifically associates with the transcription start site of Pol II-paused genes. These processes occur in a predefined local 3D genome landscape, but do not require rewiring of enhancer-promoter contacts. We thus propose that macroH2A1.1 serves as a transcriptional modulator with a potential role in assisting the conversion of promoter-locked Pol II into a productive, elongating Pol II. Summary: Histone variant macroH2A1.1 binding to the TSS of genes dependent on Pol II pausing stimulates transcription by promoting Pol II release in a human triple-negative breast cancer cell model.
Collapse
Affiliation(s)
- Ludmila Recoules
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Alexandre Heurteau
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Flavien Raynal
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Nezih Karasu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); CNRS, UMR7104; INSERM U1258; University of Strasbourg; Illkirch, France
| | - Fatima Moutahir
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Fabienne Bejjani
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, F-34293 3# Equipe Labellisée Ligue Nationale contre le Cancer, France
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, F-34293 3# Equipe Labellisée Ligue Nationale contre le Cancer, France
| | - Olivier Cuvier
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Thomas Sexton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); CNRS, UMR7104; INSERM U1258; University of Strasbourg; Illkirch, France
| | - Anne-Claire Lavigne
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Kerstin Bystricky
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France.,Institut Universitaire de France (IUF), France
| |
Collapse
|
41
|
Hunter S, Sigauke RF, Stanley JT, Allen MA, Dowell RD. Protocol variations in run-on transcription dataset preparation produce detectable signatures in sequencing libraries. BMC Genomics 2022; 23:187. [PMID: 35255806 PMCID: PMC8900324 DOI: 10.1186/s12864-022-08352-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background A variety of protocols exist for producing whole genome run-on transcription datasets. However, little is known about how differences between these protocols affect the signal within the resulting libraries. Results Using run-on transcription datasets generated from the same biological system, we show that a variety of GRO- and PRO-seq preparation methods leave identifiable signatures within each library. Specifically we show that the library preparation method results in differences in quality control metrics, as well as differences in the signal distribution at the 5 ′ end of transcribed regions. These shifts lead to disparities in eRNA identification, but do not impact analyses aimed at inferring the key regulators involved in changes to transcription. Conclusions Run-on sequencing protocol variations result in technical signatures that can be used to identify both the enrichment and library preparation method of a particular data set. These technical signatures are batch effects that limit detailed comparisons of pausing ratios and eRNAs identified across protocols. However, these batch effects have only limited impact on our ability to infer which regulators underlie the observed transcriptional changes. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08352-8).
Collapse
Affiliation(s)
- Samuel Hunter
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
| | - Rutendo F Sigauke
- Computational Bioscience Program, Anschutz Medical Campus, University of Colorado, Aurora, 80045, USA
| | - Jacob T Stanley
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA. .,Computational Bioscience Program, Anschutz Medical Campus, University of Colorado, Aurora, 80045, USA. .,Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA. .,Department of Computer Science, University of Colorado, Boulder, 80309, USA.
| |
Collapse
|
42
|
Wiegard A, Kuzin V, Cameron DP, Grosser J, Ceribelli M, Mehmood R, Ballarino R, Valant F, Grochowski R, Karabogdan I, Crosetto N, Lindqvist A, Bizard AH, Kouzine F, Natsume T, Baranello L. Topoisomerase 1 activity during mitotic transcription favors the transition from mitosis to G1. Mol Cell 2021; 81:5007-5024.e9. [PMID: 34767771 DOI: 10.1016/j.molcel.2021.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/26/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
As cells enter mitosis, chromatin compacts to facilitate chromosome segregation yet remains transcribed. Transcription supercoils DNA to levels that can impede further progression of RNA polymerase II (RNAPII) unless it is removed by DNA topoisomerase 1 (TOP1). Using ChIP-seq on mitotic cells, we found that TOP1 is required for RNAPII translocation along genes. The stimulation of TOP1 activity by RNAPII during elongation allowed RNAPII clearance from genes in prometaphase and enabled chromosomal segregation. Disruption of the TOP1-RNAPII interaction impaired RNAPII spiking at promoters and triggered defects in the post-mitotic transcription program. This program includes factors necessary for cell growth, and cells with impaired TOP1-RNAPII interaction are more sensitive to inhibitors of mTOR signaling. We conclude that TOP1 is necessary for assisting transcription during mitosis with consequences for growth and gene expression long after mitosis is completed. In this sense, TOP1 ensures that cellular memory is preserved in subsequent generations.
Collapse
Affiliation(s)
- Anika Wiegard
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Donald P Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jan Grosser
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Michele Ceribelli
- Division of Pre-Clinical Innovation, NCATS, National Institutes of Health, Rockville, MD 20850, USA
| | - Rashid Mehmood
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Software Engineering, University of Kotli, AJ&K, 45320 Kotli Azad Kashmir, Pakistan
| | - Roberto Ballarino
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Francesco Valant
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Radosław Grochowski
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | | | - Nicola Crosetto
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anna Helene Bizard
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Fedor Kouzine
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Shizuoka 411-8540, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
43
|
Colino-Sanguino Y, Clark SJ, Valdes-Mora F. The H2A.Z-nuclesome code in mammals: emerging functions. Trends Genet 2021; 38:273-289. [PMID: 34702577 DOI: 10.1016/j.tig.2021.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
H2A.Z is a histone variant that provides specific structural and docking-side properties to the nucleosome, resulting in diverse and specialised molecular and cellular functions. In this review, we discuss the latest studies uncovering new functional aspects of mammalian H2A.Z in gene transcription, including pausing and elongation of RNA polymerase II (RNAPII) and enhancer activity; DNA repair; DNA replication; and 3D chromatin structure. We also review the recently described role of H2A.Z in embryonic development, cell differentiation, neurodevelopment, and brain function. In conclusion, our cumulative knowledge of H2A.Z over the past 40 years, in combination with the implementation of novel molecular technologies, is unravelling an unexpected and complex role of histone variants in gene regulation and disease.
Collapse
Affiliation(s)
- Yolanda Colino-Sanguino
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, University of NSW Sydney, Sydney, NSW, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
44
|
Guo H, Golczer G, Wittner BS, Langenbucher A, Zachariah M, Dubash TD, Hong X, Comaills V, Burr R, Ebright RY, Horwitz E, Vuille JA, Hajizadeh S, Wiley DF, Reeves BA, Zhang JM, Niederhoffer KL, Lu C, Wesley B, Ho U, Nieman LT, Toner M, Vasudevan S, Zou L, Mostoslavsky R, Maheswaran S, Lawrence MS, Haber DA. NR4A1 regulates expression of immediate early genes, suppressing replication stress in cancer. Mol Cell 2021; 81:4041-4058.e15. [PMID: 34624217 PMCID: PMC8549465 DOI: 10.1016/j.molcel.2021.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 09/12/2021] [Indexed: 01/14/2023]
Abstract
Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antineoplastic Agents/pharmacology
- Binding Sites
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation/drug effects
- Chromatin Assembly and Disassembly
- Female
- Gene Expression Regulation, Neoplastic
- Genomic Instability
- HEK293 Cells
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Indoles/pharmacology
- MCF-7 Cells
- Mice, Inbred NOD
- Mice, SCID
- Mitosis/drug effects
- Neoplastic Cells, Circulating/drug effects
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenylacetates/pharmacology
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- R-Loop Structures
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- Signal Transduction
- Transcription Elongation, Genetic
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hongshan Guo
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Gabriel Golczer
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | | | | | - Xin Hong
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Risa Burr
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Elad Horwitz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Joanna A Vuille
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Devon F Wiley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Chenyue Lu
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Benjamin Wesley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Uyen Ho
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Linda T Nieman
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine and Shriners Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
45
|
Parrello D, Vlasenok M, Kranz L, Nechaev S. Targeting the Transcriptome Through Globally Acting Components. Front Genet 2021; 12:749850. [PMID: 34603400 PMCID: PMC8481634 DOI: 10.3389/fgene.2021.749850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription is a step in gene expression that defines the identity of cells and its dysregulation is associated with diseases. With advancing technologies revealing molecular underpinnings of the cell with ever-higher precision, our ability to view the transcriptomes may have surpassed our knowledge of the principles behind their organization. The human RNA polymerase II (Pol II) machinery comprises thousands of components that, in conjunction with epigenetic and other mechanisms, drive specialized programs of development, differentiation, and responses to the environment. Parts of these programs are repurposed in oncogenic transformation. Targeting of cancers is commonly done by inhibiting general or broadly acting components of the cellular machinery. The critical unanswered question is how globally acting or general factors exert cell type specific effects on transcription. One solution, which is discussed here, may be among the events that take place at genes during early Pol II transcription elongation. This essay turns the spotlight on the well-known phenomenon of promoter-proximal Pol II pausing as a step that separates signals that establish pausing genome-wide from those that release the paused Pol II into the gene. Concepts generated in this rapidly developing field will enhance our understanding of basic principles behind transcriptome organization and hopefully translate into better therapies at the bedside.
Collapse
Affiliation(s)
- Damien Parrello
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Maria Vlasenok
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lincoln Kranz
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| |
Collapse
|
46
|
Mylonas C, Lee C, Auld AL, Cisse II, Boyer LA. A dual role for H2A.Z.1 in modulating the dynamics of RNA polymerase II initiation and elongation. Nat Struct Mol Biol 2021; 28:435-442. [PMID: 33972784 DOI: 10.1038/s41594-021-00589-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
RNA polymerase II (RNAPII) pausing immediately downstream of the transcription start site is a critical rate-limiting step for the expression of most metazoan genes. During pause release, RNAPII encounters a highly conserved +1 H2A.Z nucleosome, yet how this histone variant contributes to transcription is poorly understood. Here, using an inducible protein degron system combined with genomic approaches and live cell super-resolution microscopy, we show that H2A.Z.1 modulates RNAPII dynamics across most genes in murine embryonic stem cells. Our quantitative analysis shows that H2A.Z.1 slows the rate of RNAPII pause release and consequently impacts negative elongation factor dynamics as well as nascent transcription. Consequently, H2A.Z.1 also impacts re-loading of the pre-initiation complex components TFIIB and TBP. Altogether, this work provides a critical mechanistic link between H2A.Z.1 and the proper induction of mammalian gene expression programs through the regulation of RNAPII dynamics and pause release.
Collapse
Affiliation(s)
- Constantine Mylonas
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Choongman Lee
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander L Auld
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ibrahim I Cisse
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
47
|
Herrero-Ruiz A, Martínez-García PM, Terrón-Bautista J, Millán-Zambrano G, Lieberman JA, Jimeno-González S, Cortés-Ledesma F. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing. Cell Rep 2021; 35:108977. [PMID: 33852840 PMCID: PMC8052185 DOI: 10.1016/j.celrep.2021.108977] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulation of topological stress in the form of DNA supercoiling is inherent to the advance of RNA polymerase II (Pol II) and needs to be resolved by DNA topoisomerases to sustain productive transcriptional elongation. Topoisomerases are therefore considered positive facilitators of transcription. Here, we show that, in contrast to this general assumption, human topoisomerase IIα (TOP2A) activity at promoters represses transcription of immediate early genes such as c-FOS, maintaining them under basal repressed conditions. Thus, TOP2A inhibition creates a particular topological context that results in rapid release from promoter-proximal pausing and transcriptional upregulation, which mimics the typical bursting behavior of these genes in response to physiological stimulus. We therefore describe the control of promoter-proximal pausing by TOP2A as a layer for the regulation of gene expression, which can act as a molecular switch to rapidly activate transcription, possibly by regulating the accumulation of DNA supercoiling at promoter regions.
Collapse
Affiliation(s)
- Andrés Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | | | - Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain.
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
48
|
Understanding transcription across scales: From base pairs to chromosomes. Mol Cell 2021; 81:1601-1616. [PMID: 33770487 DOI: 10.1016/j.molcel.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The influence of genome organization on transcription is central to our understanding of cell type specification. Higher-order genome organization is established through short- and long-range DNA interactions. Coordination of these interactions, from single atoms to entire chromosomes, plays a fundamental role in transcriptional control of gene expression. Loss of this coupling can result in disease. Analysis of transcriptional regulation typically involves disparate experimental approaches, from structural studies that define angstrom-level interactions to cell-biological and genomic approaches that assess mesoscale relationships. Thus, to fully understand the mechanisms that regulate gene expression, it is critical to integrate the findings gained across these distinct size scales. In this review, I illustrate fundamental ways in which cells regulate transcription in the context of genome organization.
Collapse
|
49
|
Negative elongation factor regulates muscle progenitor expansion for efficient myofiber repair and stem cell pool repopulation. Dev Cell 2021; 56:1014-1029.e7. [PMID: 33735618 DOI: 10.1016/j.devcel.2021.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/08/2021] [Accepted: 02/19/2021] [Indexed: 11/24/2022]
Abstract
Negative elongation factor (NELF) is a critical transcriptional regulator that stabilizes paused RNA polymerase to permit rapid gene expression changes in response to environmental cues. Although NELF is essential for embryonic development, its role in adult stem cells remains unclear. In this study, through a muscle-stem-cell-specific deletion, we showed that NELF is required for efficient muscle regeneration and stem cell pool replenishment. In mechanistic studies using PRO-seq, single-cell trajectory analyses and myofiber cultures revealed that NELF works at a specific stage of regeneration whereby it modulates p53 signaling to permit massive expansion of muscle progenitors. Strikingly, transplantation experiments indicated that these progenitors are also necessary for stem cell pool repopulation, implying that they are able to return to quiescence. Thus, we identified a critical role for NELF in the expansion of muscle progenitors in response to injury and revealed that progenitors returning to quiescence are major contributors to the stem cell pool repopulation.
Collapse
|
50
|
Li J, Xu X, Tiwari M, Chen Y, Fuller M, Bansal V, Tamayo P, Das S, Ghosh P, Sen GL. SPT6 promotes epidermal differentiation and blockade of an intestinal-like phenotype through control of transcriptional elongation. Nat Commun 2021; 12:784. [PMID: 33542242 PMCID: PMC7862286 DOI: 10.1038/s41467-021-21067-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
In adult tissue, stem and progenitor cells must tightly regulate the balance between proliferation and differentiation to sustain homeostasis. How this exquisite balance is achieved is an area of active investigation. Here, we show that epidermal genes, including ~30% of induced differentiation genes already contain stalled Pol II at the promoters in epidermal stem and progenitor cells which is then released into productive transcription elongation upon differentiation. Central to this process are SPT6 and PAF1 which are necessary for the elongation of these differentiation genes. Upon SPT6 or PAF1 depletion there is a loss of human skin differentiation and stratification. Unexpectedly, loss of SPT6 also causes the spontaneous transdifferentiation of epidermal cells into an intestinal-like phenotype due to the stalled transcription of the master regulator of epidermal fate P63. Our findings suggest that control of transcription elongation through SPT6 plays a prominent role in adult somatic tissue differentiation and the inhibition of alternative cell fate choices.
Collapse
Affiliation(s)
- Jingting Li
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Xiaojun Xu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Manisha Tiwari
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Mackenzie Fuller
- Departments of Medicine and Cellular and Molecular Medicine, HUMANOID Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, HUMANOID Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Varun Bansal
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Division of Medical Genetics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Soumita Das
- Department of Pathology, HUMANOID Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Departments of Medicine and Cellular and Molecular Medicine, HUMANOID Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - George L Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|