1
|
Zhao X, Wang S, Wang J, Bai X, Yang Z, Guo H, Wu L, Liu C, Yu X, Du J. Construction of a thiophene-based conjugated polymer/TP-PCN S-scheme to enhance visible-light-driven photocatalytic activity: Promotion of wound healing in super-resistant bacterial infections. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137429. [PMID: 39892129 DOI: 10.1016/j.jhazmat.2025.137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
S-scheme heterojunctions have garnered significant attention in the field of photocatalytic antimicrobials due to their superior charge separation efficiency and higher redox capacity. In this study, an innovative linear conjugated polymer (PCO) was combined with fragmented carbon nitride (TP-PCN) to create PCO/TP-PCN organic-organic S-scheme heterojunctions, which markedly enhanced the photocatalytic antimicrobial performance. The composite (PCO-7/TP-PCN) demonstrated the ability to combat bacterial infections under visible light irradiation, effectively eradicating approximately 2.16 × 107 cfu/ml MRSA within 6 min. This exceptional photocatalytic performance can be attributed to the successful formation of an S-scheme heterojunction between PCO and TP-PCN, as well as the interaction of surface functional groups of PCO-7/TP-PCN with bacteria. Results from UV-Vis-NIR DRS and in situ-XPS experiments indicated a significant enhancement in carrier transport rate through the establishment of a built-in electric field and energy band bending at the interface. In vitro and in vivo experiments further demonstrated that PCO-7/TP-PCN not only exhibited potent antimicrobial activity under visible light irradiation but also promoted angiogenesis to inhibit inflammatory responses. Therefore, it can be concluded that this organic-organic S-scheme heterojunction photocatalyst holds great potential for development as a promising new generation of efficient antimicrobial materials, which could aid in preventing bacterial infection of wounds and ensuring effective wound healing.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, PR China; College of Chemistry, Jilin Normal University, Siping 136000, PR China
| | - Simiao Wang
- College of Chemistry, Jilin Normal University, Siping 136000, PR China
| | - Jiayu Wang
- Department of Biological Science, School of Life Science, Jilin Normal University, Siping, Jilin 136000, PR China
| | - Xinyue Bai
- College of Chemistry, Jilin Normal University, Siping 136000, PR China
| | - Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China
| | - Haiyong Guo
- Department of Biological Science, School of Life Science, Jilin Normal University, Siping, Jilin 136000, PR China
| | - Lina Wu
- College of Chemistry, Baicheng Normal University, Baicheng 137000, PR China.
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, PR China; College of Engineering, Jilin Normal University, Siping 136000, PR China.
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China.
| | - Juan Du
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, PR China; College of Chemistry, Jilin Normal University, Siping 136000, PR China.
| |
Collapse
|
2
|
Prabha S, Chauhan P, Warkare S, Pandey KM. A computational investigation of potential plant-based bioactive compounds against drug-resistant Staphylococcus aureus of multiple target proteins. J Biomol Struct Dyn 2025; 43:3311-3329. [PMID: 38133950 DOI: 10.1080/07391102.2023.2297009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Drug-resistant Staphylococcus aureus (DRSA) poses a significant global health threat, like bacteremia, endocarditis, skin, soft tissue, bone, and joint infections. Nowadays, the resistance against conventional drugs has been a prompt and focused medical concern. The present study aimed to explore the inhibitory potential of plant-based bioactive compounds (PBBCs) against effective target proteins using a computational approach. We retrieved and verified 22 target proteins associated with DRSA and conducted a screening process that involved testing 87 PBBCs. Molecular docking was performed between screened PBBCs and reference drugs with selected target proteins via AutoDock. Subsequently, we filtered the target proteins and top PBBCs based on their binding affinity scores. Furthermore, molecular dynamic simulation was carried out through GROMACS for a duration of 100 ns, and the binding free energy was calculated using the gmx_MMPBSA. The result showed consistent hydrogen bonding interactions among the amino acid residues Ser 149, Arg 151, Thr 165, Thr 216, Glu 239, Ser 240, Ile 14, as well as Asn 18, Gln 19, Lys 45, Thr 46, Tyr 109, with their respective target proteins of the penicillin-binding protein and dihydrofolate reductase complex. Additionally, we assessed the pharmacokinetic properties of screened PBBCs via SwissADME and AdmetSAR. The findings suggest that β-amyrin, oleanolic acid, kaempferol, quercetin, and friedelin have the potential to inhibit the selected target proteins. In future research, both in vitro and in vivo, experiments will be needed to establish these PBBCs as potent antimicrobial drugs for DRSA.
Collapse
Affiliation(s)
- Sarit Prabha
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | | | - Sudeesh Warkare
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Khushhali M Pandey
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| |
Collapse
|
3
|
Post V, Pascoe B, Hitchings MD, Erichsen C, Fischer J, Morgenstern M, Richards RG, Sheppard SK, Moriarty TF. Methicillin-sensitive Staphylococcus aureus lineages contribute towards poor patient outcomes in orthopaedic device-related infections. Microb Genom 2025; 11. [PMID: 40238650 DOI: 10.1099/mgen.0.001390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Staphylococci are the most common cause of orthopaedic device-related infections (ODRIs), with Staphylococcus aureus responsible for a third or more of cases. This prospective clinical and laboratory study investigated the association of genomic and phenotypic variation with treatment outcomes in ODRI isolates. Eighty-six invasive S. aureus isolates were collected from patients with ODRI, and clinical outcome was assessed after a follow-up examination of 24 months. Each patient was then considered to have been 'cured' or 'not cured' based on predefined clinical criteria. Whole-genome sequencing and molecular characterization identified isolates belonging to globally circulating community- and hospital-acquired lineages. Most isolates were phenotypically susceptible to methicillin and lacked the staphylococcal cassette chromosome mec cassette [methicillin-susceptible S. aureus (MSSA); 94%] but contained several virulence genes, including toxins and biofilm genes. Whilst recognizing the role of the host immune response, we identified genetic variance, which could be associated with the infection severity or clinical outcome. Whilst this and several other studies reinforce the role antibiotic resistance [e.g. methicillin-resistant S. aureus (MRSA) infection] has on treatment failure, it is important not to overlook MSSA that can cause equally destructive infections and lead to poor patient outcomes.
Collapse
Affiliation(s)
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | | | | | - Julian Fischer
- Centrum of Orthopedic Isartal, Pullach im Isartal, Germany
| | - Mario Morgenstern
- Department of Orthopedic and Trauma Surgery, University Hospital, Basel, Switzerland
| | | | - Samuel K Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - T Fintan Moriarty
- AO Research Institute Davos, Davos, Switzerland
- Department of Orthopedic and Trauma Surgery, University Hospital, Basel, Switzerland
| |
Collapse
|
4
|
Nataraj BH, Ramesh C, Mallappa RH. Probiotic and postbiotic interference exhibit anti-adhesion effects against clinical methicillin-resistant Staphylococcus aureus (MRSA) and impede MRSA-induced intestinal epithelial hyper-permeability in HT-29 cell line. Microb Pathog 2025; 199:107215. [PMID: 39647539 DOI: 10.1016/j.micpath.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
This study investigates the dynamics of MRSA de-colonization on HT-29 cell line using effective strategies like probiotics and postbiotics. Exploring novel alternatives to combat infections caused by antibiotic-resistant pathogens is an urgent need. Harnessing the antagonistic properties of live probiotics and their heat-killed preparations (postbiotics) to curb the growth of AMR pathogens represents a promising and essential area of contemporary research. This study was designed to evaluate the anti-adhesion properties of indigenous probiotics (Limosilactobacillus fermentum Lf1 and Lactiplantibacillus plantarum A5), as well as standard reference strains (Lacticaseibacillus rhamnosus GG and Lactobacillus acidophilus NCFM), and their heat-killed postbiotic preparations against clinical MRSA isolates (MRSA12/206 and 5/255) on the HT-29 cell line. ATR-FTIR-based functional group characterization of the postbiotic preparations revealed the heat-induced alterations in cell surface molecules and architecture. Both probiotic and postbiotic preparations were non-cytotoxic to HT-29 cells. The probiotic intervention, via protective, competitive, and displacement modes, significantly (p < 0.05) reduced the adhesion of MRSA isolates to HT-29 cells, with the protective and competitive modes showing greater efficacy. In contrast, heat-killed probiotics demonstrated notable anti-MRSA adhesion effects across all three modes (protective, competitive, and displacement). In comparison, heat-killed cells exhibited a superior anti-adhesion capability compared to live cells, likely due to the enhanced accessibility of microbe-associated molecular patterns and adhesion sites following heat treatment. Furthermore, co-treatment of MRSA with probiotic strains substantially (p < 0.05) reduced FITC-dextran transflux across the HT-29 cell monolayer. In conclusion, this study highlights the superior anti-adhesion efficacy of heat-killed postbiotics over live probiotic cells against MRSA isolates. It underscores the further need for pre-clinical and in-vivo investigations to validate the anti-MRSA colonization and gut barrier prophylactic or therapeutic potential of the investigated probiotics and postbiotics. Thus, the present study documents and supports the alternative to antibiotics potential of probiotics and postbiotics.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India; Dairy Bacteriology Section, Southern Regional Station, ICAR-National Dairy Research Institute, Adugodi, 560030, Bengaluru, Karnataka, India.
| | - Chette Ramesh
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India; Dairy Bacteriology Section, Southern Regional Station, ICAR-National Dairy Research Institute, Adugodi, 560030, Bengaluru, Karnataka, India.
| |
Collapse
|
5
|
Kaul A, Souque C, Holland M, Baym M. Genomic resistance in historical clinical isolates increased in frequency and mobility after the age of antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633422. [PMID: 39868160 PMCID: PMC11761691 DOI: 10.1101/2025.01.16.633422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Antibiotic resistance is frequently observed shortly after the clinical introduction of an antibiotic. Whether and how frequently that resistance occurred before the introduction is harder to determine, as isolates could not have been tested for resistance before an antibiotic was discovered. Historical collections, like the British National Collection of Type Cultures (NCTC), stretching back to 1885, provide a window into this history. Here we match 1,817 sequenced high-quality genomes from the NCTC collection to their respective year of isolation to study resistance genes before and concurrent with the age of antibiotics. Concordant with previous work, we find resistance genes in both pathogens and environmental samples before the age of antibiotics. While generally rare before the introduction of an antibiotic, we find an associated increase in frequency with antibiotic introduction. Finally, we observe a trend of resistance elements becoming both increasingly mobile and nested within multiple mobile elements as time goes on. More broadly, our findings suggest that likely-functional antibiotic resistance genes were circulating in clinically relevant isolates before the age of antibiotics, but human usage is associated with increasing both their overall prevalence and mobility.
Collapse
Affiliation(s)
- Arya Kaul
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Célia Souque
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213 Oslo, Norway
| | - Mische Holland
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Aniba R, Dihmane A, Raqraq H, Ressmi A, Nayme K, Timinouni M, Barguigua A. Exploring staphylococcus in urinary tract infections: A systematic review and meta-analysis on the epidemiology, antibiotic resistance and biofilm formation. Diagn Microbiol Infect Dis 2024; 110:116470. [PMID: 39180785 DOI: 10.1016/j.diagmicrobio.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
This study aimed to determine the epidemiology, biofilm formation and antibiotic resistance of staphylococci collected worldwide in the context of UTIs. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Forty studies from 23 countries were selected for quantitative review. Electronic databases (PubMed, Scopus, Google Scholar, and Web of Sciences) were searched for articles published between 2010 and 2024 on the epidemiology, biofilm formation, and antibiotic resistance of uropathogenic staphylococci. Strict inclusion and exclusion standards were applied during the review of the articles. Forty articles were included in this systematic review. The prevalence of uropathogenic staphylococci varies from country to country, with the pooled prevalence of S. aureus and coagulase-negative staphylococci (CoNS) being 8.71 % (95 %CI: 6.145-11.69) and 13.17 % (95 %CI: 8.08-19.27) respectively. Among CoNS isolates, S. epidermidis was the most common with 19.3 % (95 %CI: 5.88-38.05). The prevalence of methicillin-resistant S. aureus isolates increased significantly from 23 % in 2010-2015 to 47 % in 2021-2024 (p = 0.03). S. haemolyticus is the most antibiotic-resistant species in CoNS, with 45 % of isolates resistant to methicillin, 33 % to gentamicin, and 29 % to tetracycline. Eighty-eight S. aureus strains were biofilm producers, including 35 % moderate biofilm producers and 48 % strong biofilm producers. The combined frequencies of icaA, clfA and fnbpA were 100, 99, and 89 %, respectively. The development of antibiotic resistance and biofilm formation by staphylococci involved in UTIs explains the need for periodic regional surveillance of these infections, which poses a serious public health problem.
Collapse
Affiliation(s)
- Rafik Aniba
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco; Molecular Bacteriology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco.
| | - Asmaa Dihmane
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Habiba Raqraq
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Amina Ressmi
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Kaotar Nayme
- Molecular Bacteriology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Mohammed Timinouni
- Laboratoire de Biotechnologie et bio-informatique: Ecole des Hautes Etudes de Biotechnologie et de santé (EHEB), Casablanca, Morocco
| | - Abouddihaj Barguigua
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
7
|
Sharkey M, Stubbings WA, Harrad S, Healy MG, Wang S, Jin J, Coggins AM. Antibiotics residues in inland and transitional sediments. CHEMOSPHERE 2024; 369:143793. [PMID: 39580089 DOI: 10.1016/j.chemosphere.2024.143793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
This study assesses the concentrations of a range of antibiotics in riverine and transitional sediments in Ireland. A selection of 12 macrolide, fluoroquinolone, sulphonamide, and diaminopyrimidine antibiotics were quantified in 80 grab surficial sediment samples from around Ireland, selected to investigate areas of potentially higher pollution risk (agriculture, aquaculture, industrial emissions, and wastewater emission points) as well as isolated areas where there are no known pollution sources. Several of the macrolides and sulphonamides/trimethoprim were generally detected more frequently above limits of quantification (LoQ). Fluoroquinolones, while frequently detected above limits of detection (LoD), concentrations were mostly below method LOQs. The most prevalent antibiotic detected was clarithromycin, found at the highest mean concentration (6.65 ng/g) and detected in ∼90 % of samples. Comparing levels of quantified antibiotics to levels reported internationally, Ireland is at the lower end for all quantified antibiotics. This is with the notable exception of clarithromycin, which is higher than levels found in comparable studies in Italy, Spain, France, and Argentina. Higher levels of total antibiotics (49.3 ± 24.7 ng/g) were found to be present immediately adjacent to wastewater emission points while moderate degrees of contamination (9.0 ± 9.7 ng/g) were also linked to wastewater, aquaculture, or agricultural pressures. Based on risk quotients calculated from available sediment PNECs taken from the NORMAN ecotoxicology database, clarithromycin was also the only compound to be present at concentrations indicative of a "moderate" degree of environmental risk, with most of the remaining falling below this threshold. Ciprofloxacin was ostensibly found to be of a "high" degree of environmental risk; however, this is based on only a single sample quantified above the LoQ. Overall, antibiotic sediment concentrations suggest a low ecotoxicological risk for most of the target antibiotics, although clarithromycin, ciprofloxacin, and sulfamethoxazole warrant further monitoring in sediments. A final notable finding is the differences in partitioning behaviour of antibiotics between water and sediment: clarithromycin is more likely to be detected in sediment while sulfamethoxazole partitions more to water. Such partitioning behaviour should therefore be taken into consideration for any subsequent monitoring programmes.
Collapse
Affiliation(s)
- Martin Sharkey
- Physics, School of Natural Sciences, University of Galway, Galway City, H91 CF50, Republic of Ireland.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Mark G Healy
- Civil Engineering, College of Engineering and Informatics, University of Galway, Galway City, H91 HX31, Republic of Ireland
| | - Shijie Wang
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jingxi Jin
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Ann Marie Coggins
- Physics, School of Natural Sciences, University of Galway, Galway City, H91 CF50, Republic of Ireland
| |
Collapse
|
8
|
Zhang Z, Chen G, Hussain W, Pan Y, Yang Z, Liu Y, Li E. Machine learning and network analysis with focus on the biofilm in Staphylococcus aureus. Comput Struct Biotechnol J 2024; 23:4148-4160. [PMID: 39640530 PMCID: PMC11617897 DOI: 10.1016/j.csbj.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Research on biofilm formation in Staphylococcus aureus has greatly benefited from the generation of high-throughput sequencing data to drive molecular analysis. The accumulation of high-throughput sequencing data, particularly transcriptomic data, offers a unique opportunity to unearth the network and constituent genes involved in biofilm formation using machine learning strategies and co-expression analysis. Herein, the available RNA sequencing data related to Staphylococcus aureus biofilm studies and identified influenced functional pathways and corresponding genes in the process of the transition of bacteria from planktonic to biofilm state by employing machine learning and differential expression analysis. Using weighted gene co-expression analysis and previously developed online prediction platform, important functional modules, potential biofilm-associated proteins, and subnetworks of the biofilm-formation pathway were uncovered. Additionally, several novel protein interactions within these functional modules were identified by constructing a protein-protein interaction (PPI) network. To make this data more straightforward for experimental biologists, an online database named SAdb was developed (http://sadb.biownmcli.info/), which integrates gene annotations, transcriptomics, and proteomics data. Thus, the current study will be of interest to researchers in the field of bacteriology, particularly those studying biofilms, which play a crucial role in bacterial growth, pathogenicity, and drug resistance.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu 241000, China
| | - Guozhong Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Wajid Hussain
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanyuan Pan
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu 241000, China
| | - Zhu Yang
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Yin Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Erguang Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
9
|
Harrison E. Bacteria divide to conquer antibiotics. Science 2024; 386:494-495. [PMID: 39480952 DOI: 10.1126/science.adt0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
High-level resistance to methicillin requires a distinct form of cell division.
Collapse
Affiliation(s)
- Ewan Harrison
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Ribinskas T, Vitkauskiene A, Kareiviene V, Zevzikoviene A. Antimicrobial Activity of Euphorbia helioscopia L. Against Methicillin-Resistant Staphylococcus aureus (MRSA) In Vitro. Cureus 2024; 16:e69840. [PMID: 39435254 PMCID: PMC11492979 DOI: 10.7759/cureus.69840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Antimicrobial resistance is currently one of the most significant threats to medical science, necessitating the exploration of new antimicrobial agents. Methicillin-resistant Staphylococcus aureus (MRSA) can lead to various severe conditions such as endocarditis, meningitis, abscesses, and sepsis, and conventional antibiotics such as beta-lactams are ineffective for treating these diseases. Therefore, it is imperative to search for novel chemical substances with antimicrobial effects against MRSA. This study aimed to investigate the bioactive chemical compound extracts isolated from Euphorbia helioscopia L. plant material against clinical samples of MRSA collected from the Hospital of Lithuanian University of Health Sciences Kaunas Clinics. Methodology: Bioactive compounds from the aboveground parts of Euphorbia helioscopia L. were isolated using methanol extraction of herbal material followed by lyophilization. The total phenolic compound concentration was determined using the Folin-Ciocalteu method. Antioxidant power was assessed through the ferric reducing antioxidant power (FRAP) assay, chemical composition was analyzed via high-performance liquid chromatography (HPLC), and antimicrobial activity against MRSA was evaluated using the disc diffusion method. RESULTS The lyophilized extract of Euphorbia helioscopia L. exhibited antimicrobial activity against two out of five strains of MRSA. Seven phenolic compounds were identified, three of which were not previously reported as constituents of Euphorbia helioscopia L. More than a third of the isolated compounds were phenolic compounds. Conclusion: Euphorbia helioscopia L. exhibits antimicrobial properties effective against certain strains of MRSA.
Collapse
Affiliation(s)
- Tautvydas Ribinskas
- Medical School, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LTU
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LTU
| | - Violeta Kareiviene
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LTU
| | - Augusta Zevzikoviene
- Department of Analytical and Toxicological Chemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LTU
| |
Collapse
|
11
|
Chen W, Zhang J, Wei H, Su J, Lin J, Liang X, Chen J, Zhou R, Li L, Lu Z, Sun G. Rapid and sensitive detection of methicillin-resistant Staphylococcus aureus through the RPA- PfAgo system. Front Microbiol 2024; 15:1422574. [PMID: 39234537 PMCID: PMC11371615 DOI: 10.3389/fmicb.2024.1422574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Both the incidence and mortality rates associated with methicillin-resistant Staphylococcus aureus (MRSA) have progressively increased worldwide. A nucleic acid testing system was developed in response, enabling swift and precise detection of Staphylococcus aureus (S. aureus) and its MRSA infection status. This facilitates improved prevention and control of MRSA infections. Methods In this work, we introduce a novel assay platform developed by integrating Pyrococcus furiosus Argonaute (PfAgo) with recombinase polymerase amplification (RPA), which was designed for the simultaneous detection of the nuc and mecA genes in MRSA. Results This innovative approach enables visual MRSA detection within 55 mins, boasting a detection limit of 102 copies/μL. Characterized by its high specificity, the platform accurately identifies MRSA infections without cross-reactivity to other clinical pathogens, highlighting its unique capability for S. aureus infection diagnostics amidst bacterial diversity. Validation of this method was performed on 40 clinical isolates, demonstrating a 95.0% accuracy rate in comparison to the established Vitek2-COMPACT system. Discussion The RPA-PfAgo platform has emerged as a superior diagnostic tool, offering enhanced sensitivity, specificity, and identification efficacy for MRSA detection. Our findings underscore the potential of this platform to significantly improve the diagnosis and management of MRSA infection.
Collapse
Affiliation(s)
- Weizhong Chen
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Jiexiu Zhang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Huagui Wei
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baize, China
| | - Jie Su
- Department of Laboratory, Chaozhou Central Hospital, Chaozhou, China
| | - Jie Lin
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Xueyan Liang
- Department of Laboratory, Huizhou Central Hospital, Huizhou, China
| | - Jiangtao Chen
- Department of Laboratory, Huizhou Central Hospital, Huizhou, China
| | - Rong Zhou
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Lin Li
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Zefang Lu
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Guangyu Sun
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| |
Collapse
|
12
|
Blechman SE, Wright ES. Vancomycin-resistant Staphylococcus aureus (VRSA) can overcome the cost of antibiotic resistance and may threaten vancomycin's clinical durability. PLoS Pathog 2024; 20:e1012422. [PMID: 39207957 PMCID: PMC11361437 DOI: 10.1371/journal.ppat.1012422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Vancomycin has proven remarkably durable to resistance evolution by Staphylococcus aureus despite widespread treatment with vancomycin in the clinic. Only 16 cases of vancomycin-resistant S. aureus (VRSA) have been documented in the United States. It is thought that the failure of VRSA to spread is partly due to the fitness cost imposed by the vanA operon, which is the only known means of high-level resistance. Here, we show that the fitness cost of vanA-mediated resistance can be overcome through laboratory evolution of VRSA in the presence of vancomycin. Adaptation to vancomycin imposed a tradeoff such that fitness in the presence of vancomycin increased, while fitness in its absence decreased in evolved lineages. Comparing the genomes of vancomycin-exposed and vancomycin-unexposed lineages pinpointed the D-alanine:D-alanine ligase gene (ddl) as the target of loss-of-function mutations, which were associated with the observed fitness tradeoff. Vancomycin-exposed lineages exhibited vancomycin dependence and abnormal colony morphology in the absence of drug, which were associated with mutations in ddl. However, further evolution of vancomycin-exposed lineages in the absence of vancomycin enabled some evolved lineages to escape this fitness tradeoff. Many vancomycin-exposed lineages maintained resistance in the absence of vancomycin, unlike their ancestral VRSA strains. These results indicate that VRSA might be able to compensate for the fitness deficit associated with vanA-mediated resistance, which may pose a threat to the prolonged durability of vancomycin in the clinic. Our results also suggest vancomycin treatment should be immediately discontinued in patients after VRSA is identified to mitigate potential adaptations.
Collapse
Affiliation(s)
- Samuel E. Blechman
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Erik S. Wright
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Wang H, Hu S, Pei Y, Sun H. Nordalbergin Synergizes with Novel β-Lactam Antibiotics against MRSA Infection. Int J Mol Sci 2024; 25:7704. [PMID: 39062947 PMCID: PMC11277203 DOI: 10.3390/ijms25147704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The synergetic strategy has created tremendous advantages in drug-resistance bacterial infection treatment, whereas challenges related to novel compound discovery and identifying drug-binding targets still remain. The mechanisms of antimicrobial resistance involving β-lactamase catalysis and the degradation of β-lactam antibiotics are being revealed, with relevant therapies promising to improve the efficacy of existing major classes of antibiotics in the foreseeable future. In this study, it is demonstrated that nordalbergin, a coumarin isolated from the wood bark of Dalbergia sissoo, efficiently potentiated the activities of β-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) by suppressing β-lactamase performance and improving the bacterial biofilm susceptibility to antibiotics. Nordalbergin was found to destabilize the cell membrane and promote its permeabilization. Moreover, nordalbergin efficiently improved the therapeutic efficacy of amoxicillin against MRSA pneumonia in mice, as supported by the lower bacterial load, attenuated pathological damage, and decreased inflammation level. These results demonstrate that nordalbergin might be a promising synergist of amoxicillin against MRSA infections. This study provided a new approach for developing potentiators for β-lactam antibiotics against MRSA infections.
Collapse
Affiliation(s)
- Haiting Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Sangyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (S.H.); (Y.P.)
- Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuzhu Pei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (S.H.); (Y.P.)
- Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
14
|
Hyeon JY, Kim J, Chung DH, Helal ZH, Polkowski R, Lee DH, Risatti GR. Genome analysis of Streptococcus spp. isolates from animals in pre-antibiotic era with respect to antibiotic susceptibility and virulence gene profiles. Vet Res 2024; 55:51. [PMID: 38622639 PMCID: PMC11017511 DOI: 10.1186/s13567-024-01302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Lyophilized Streptococcus spp. isolates (n = 50) from animal samples submitted to the diagnostic laboratory at the University of Connecticut in the 1940s were revivified to investigate the genetic characteristics using whole-genome sequencing (WGS). The Streptococcus spp. isolates were identified as follows; S. agalactiae (n = 14), S. dysgalactiae subsp. dysgalactiae (n = 10), S. dysgalactiae subsp. equisimils (n = 5), S. uberis (n = 8), S. pyogenes (n = 7), S. equi subsp. zooepidemicus (n = 4), S. oralis (n = 1), and S. pseudoporcinus (n = 1). We identified sequence types (ST) of S. agalactiae, S. dysgalactiae, S. uberis, S. pyogenes, and S. equi subsp. zooepidemicus and reported ten novel sequence types of those species. WGS analysis revealed that none of Streptococcus spp. carried antibiotic resistance genes. However, tetracycline resistance was observed in four out of 15 S. dysgalactiae isolates and in one out of four S. equi subsp. zooepidemicus isolate. This data highlights that antimicrobial resistance is pre-existed in nature before the use of antibiotics. The draft genome sequences of isolates from this study and 426 complete genome sequences of Streptococcus spp. downloaded from BV-BRC and NCBI GenBank database were analyzed for virulence gene profiles and phylogenetic relationships. Different Streptococcus species demonstrated distinct virulence gene profiles, with no time-related variations observed. Phylogenetic analysis revealed high genetic diversity of Streptococcus spp. isolates from the 1940s, and no clear spatio-temporal clustering patterns were observed among Streptococcus spp. analyzed in this study. This study provides an invaluable resource for studying the evolutionary aspects of antibiotic resistance acquisition and virulence in Streptococcus spp.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Junwon Kim
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - David H Chung
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Zeinab H Helal
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Robert Polkowski
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| | - Guillermo R Risatti
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA.
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
15
|
Das S, Malik M, Dastidar DG, Roy R, Paul P, Sarkar S, Chakraborty P, Maity A, Dasgupta M, Gupta AD, Chatterjee S, Sarker RK, Maiti D, Tribedi P. Piperine, a phytochemical prevents the biofilm city of methicillin-resistant Staphylococcus aureus: A biochemical approach to understand the underlying mechanism. Microb Pathog 2024; 189:106601. [PMID: 38423404 DOI: 10.1016/j.micpath.2024.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a drug-resistant human pathogen causes several nosocomial as well as community-acquired infections involving biofilm machinery. Hence, it has gained a wide interest within the scientific community to impede biofilm-induced MRSA-associated health complications. The current study focuses on the utilization of a natural bioactive compound called piperine to control the biofilm development of MRSA. Quantitative assessments like crystal violet, total protein recovery, and fluorescein-di-acetate (FDA) hydrolysis assays, demonstrated that piperine (8 and 16 μg/mL) could effectively compromise the biofilm formation of MRSA. Light and scanning electron microscopic image analysis confirmed the same. Further investigation revealed that piperine could reduce extracellular polysaccharide production by down-regulating the expression of icaA gene. Besides, piperine could reduce the cell-surface hydrophobicity of MRSA, a crucial factor of biofilm formation. Moreover, the introduction of piperine could interfere with microbial motility indicating the interaction of piperine with the quorum-sensing components. A molecular dynamics study showed a stable binding between piperine and AgrA protein (regulator of quorum sensing) suggesting the possible meddling of piperine in quorum-sensing of MRSA. Additionally, the exposure to piperine led to the accumulation of intracellular reactive oxygen species (ROS) and potentially heightened cell membrane permeability in inhibiting microbial biofilm formation. Besides, piperine could reduce the secretion of diverse virulence factors from MRSA. Further exploration revealed that piperine interacted with extracellular DNA (e-DNA), causing disintegration by weakening the biofilm architecture. Conclusively, this study suggests that piperine could be a potential antibiofilm molecule against MRSA-associated biofilm infections.
Collapse
Affiliation(s)
- Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata, West Bengal, 700114, India.
| | - Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Monikankana Dasgupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Anirban Das Gupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Ranojit Kumar Sarker
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Debasish Maiti
- Department of Human Physiology, Tripura University, Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
16
|
Xu W, Pan Z, Wu Y, An XL, Wang W, Adamovich B, Zhu YG, Su JQ, Huang Q. A database on the abundance of environmental antibiotic resistance genes. Sci Data 2024; 11:250. [PMID: 38413616 PMCID: PMC10899624 DOI: 10.1038/s41597-024-03084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a severe threat to global health. The wide distribution of environmental antibiotic resistance genes (ARGs), which can be transferred between microbiota, especially clinical pathogens and human commensals, contributed significantly to AMR. However, few databases on the spatiotemporal distribution, abundance, and health risk of ARGs from multiple environments have been developed, especially on the absolute level. In this study, we compiled the ARG occurrence data generated by a high-throughput quantitative PCR platform from 1,403 samples in 653 sampling sites across 18 provinces in China. The database possessed 291,870 records from five types of habitats on the abundance of 290 ARGs, as well as 8,057 records on the abundance of 30 mobile genetic elements (MGEs) from 2013 to 2020. These ARGs conferred resistance to major common types of antibiotics (a total of 15 types) and represented five major resistance mechanisms, as well as four risk ranks. The database can provide information for studies on the dynamics of ARGs and is useful for the health risk assessment of AMR.
Collapse
Affiliation(s)
- Wenjuan Xu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhizhen Pan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yangyu Wu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xin-Li An
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Weiyi Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Boris Adamovich
- Research Laboratory of Aquatic Ecology, Belarusian State University, Minsk, 220030, Belarus
| | - Yong-Guan Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jian-Qiang Su
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- National Basic Science Data Center, Beijing, 100190, China.
| |
Collapse
|
17
|
Benvenga V, Cuénod A, Purushothaman S, Dasen G, Weisser M, Bassetti S, Roloff T, Siegemund M, Heininger U, Bielicki J, Wehrli M, Friderich P, Frei R, Widmer A, Herzog K, Fankhauser H, Nolte O, Bodmer T, Risch M, Dubuis O, Pranghofer S, Calligaris-Maibach R, Graf S, Perreten V, Seth-Smith HMB, Egli A. Historic methicillin-resistant Staphylococcus aureus: expanding current knowledge using molecular epidemiological characterization of a Swiss legacy collection. Genome Med 2024; 16:23. [PMID: 38317199 PMCID: PMC10840241 DOI: 10.1186/s13073-024-01292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Few methicillin-resistant Staphylococcus aureus (MRSA) from the early years of its global emergence have been sequenced. Knowledge about evolutionary factors promoting the success of specific MRSA multi-locus sequence types (MLSTs) remains scarce. We aimed to characterize a legacy MRSA collection isolated from 1965 to 1987 and compare it against publicly available international and local genomes. METHODS We accessed 451 historic (1965-1987) MRSA isolates stored in the Culture Collection of Switzerland, mostly collected from the Zurich region. We determined phenotypic antimicrobial resistance (AMR) and performed whole genome sequencing (WGS) using Illumina short-read sequencing on all isolates and long-read sequencing on a selection with Oxford Nanopore Technology. For context, we included 103 publicly available international assemblies from 1960 to 1992 and sequenced 1207 modern Swiss MRSA isolates from 2007 to 2022. We analyzed the core genome (cg)MLST and predicted SCCmec cassette types, AMR, and virulence genes. RESULTS Among the 451 historic Swiss MRSA isolates, we found 17 sequence types (STs) of which 11 have been previously described. Two STs were novel combinations of known loci and six isolates carried previously unsubmitted MLST alleles, representing five new STs (ST7843, ST7844, ST7837, ST7839, and ST7842). Most isolates (83% 376/451) represented ST247-MRSA-I isolated in the 1960s, followed by ST7844 (6% 25/451), a novel single locus variant (SLV) of ST239. Analysis by cgMLST indicated that isolates belonging to ST7844-MRSA-III cluster within the diversity of ST239-MRSA-III. Early MRSA were predominantly from clonal complex (CC)8. From 1980 to the end of the twentieth century, we observed that CC22 and CC5 as well as CC8 were present, both locally and internationally. CONCLUSIONS The combined analysis of 1761 historic and contemporary MRSA isolates across more than 50 years uncovered novel STs and allowed us a glimpse into the lineage flux between Swiss-German and international MRSA across time.
Collapse
Affiliation(s)
- Vanni Benvenga
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
| | - Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
| | - Srinithi Purushothaman
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
| | | | - Maja Weisser
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Stefano Bassetti
- Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Tim Roloff
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, Lausanne, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Intensive Care Medicine, University Hospital Basel, Basel, Switzerland
| | - Ulrich Heininger
- Infectious Diseases and Hospital Epidemiology, University of Basel Children's Hospital, Basel, Switzerland
| | - Julia Bielicki
- Infectious Diseases and Hospital Epidemiology, University of Basel Children's Hospital, Basel, Switzerland
| | - Marianne Wehrli
- Microbiology Department, Hospital of Schaffhausen, Schaffhausen, Switzerland
| | - Paul Friderich
- Medicinal microbiology department, Hospital of Lucerne, Lucerne, Switzerland
| | - Reno Frei
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Andreas Widmer
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Kathrin Herzog
- Clinical Microbiology, Cantonal Hospital Thurgau, Münsterlingen, Switzerland
| | - Hans Fankhauser
- Clinical Microbiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Oliver Nolte
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
- Clinical Microbiology, Zentrum für Labormedizin St, Gallen, St. Gallen, Switzerland
| | | | | | - Olivier Dubuis
- Clinical Microbiology, Viollier AG, Allschwil, Switzerland
| | | | | | - Susanne Graf
- Clinical Microbiology, Cantonal Hospital Basellandschaft, Liestal, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
- Swiss Pathogen Surveillance Platform (SPSP), Lausanne, Switzerland
| | - Helena M B Seth-Smith
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, Lausanne, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland.
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
- Swiss Pathogen Surveillance Platform (SPSP), Lausanne, Switzerland.
| |
Collapse
|
18
|
Tseng YW, Huang CW, Chen CC, Er TK. Assessment of antibiotic resistance patterns in Central Taiwan during the COVID-19 pandemic: A retrospective study. J Infect Public Health 2024; 17:229-235. [PMID: 38118294 DOI: 10.1016/j.jiph.2023.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a growing worldwide public health issue due to the overuse and inappropriate use of antibiotics. AMR has been more prevalent during the coronavirus pandemic of 2019 (COVID-19) compared to previous periods. Therefore, this study was conducted to evaluate the AMR profile of common bacteria that were isolated for routine analysis during the pandemic of COVID-19 in Central Taiwan. The main goal of this study was to examine and analyze the AMR patterns both before and after the start of the COVID-19 pandemic. METHODS We conducted a retrospective analysis of clinical samples collected from two different time periods: the 1-year period before the onset of the COVID-19 pandemic (January 2019 to December 2019) and the 2-year period following the start of the pandemic (September 2020 to September 2022). The data for this study were obtained from clinical records, and both bacterial identification and antibiotic susceptibility testing were performed using the Phoenix identification system. RESULTS Among the 8152 bacterial isolates obtained during the study period from September 2020 to September 2022, 4022 (49.3%) were Escherichia coli, 1346 (16.5%) were Klebsiella pneumoniae, 1156 (14.2%) were Staphylococcus aureus, 887 (10.9%) were Pseudomonas aeruginosa, 376 (4.6%) were Enterococcus faecium, and 365 (4.5%) were Acinetobacter baumannii. The overall prevalence of resistant bacteria during the COVID-19 pandemic was as follows: vancomycin-resistant Enterococcus, 69%; carbapenem-resistant A. baumannii, 65%; methicillin-resistant S. aureus, 49%; carbapenem-resistant K. pneumoniae, 29%; carbapenem-resistant P. aeruginosa, 17%; and carbapenem-resistant E. coli, 2%. Carbapenem-resistant A. baumannii, vancomycin-resistant Enterococcus, carbapenem-resistant K. pneumoniae, and carbapenem-resistant E. coli increased by 19%, 10%, 2%, and 1%, respectively. On the other hand, carbapenem-resistant P. aeruginosa and methicillin-resistant S. aureus decreased by 6%, respectively. CONCLUSION This study provides a comprehensive assessment of AMR during the COVID-19 pandemic in Central Taiwan. Understanding the prevalence of AMR is crucial for preventing infection and formulating disease prevention policies. Further research is warranted to elucidate the correlation between AMR and the severity of infection in COVID-19 patients.
Collapse
Affiliation(s)
- Yu-Wei Tseng
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung, Taiwan
| | - Chien-Wen Huang
- Division of Chest Medicine, Department of Internal Medicine, Asia University Hospital, Asia University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tze-Kiong Er
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
19
|
Nazli A, Tao W, You H, He X, He Y. Treatment of MRSA Infection: Where are We? Curr Med Chem 2024; 31:4425-4460. [PMID: 38310393 DOI: 10.2174/0109298673249381231130111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 02/05/2024]
Abstract
Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including 'anti-MRSA', 'antibiotic', 'antimicrobial', 'clinical trial', 'clinical phase', clinical studies', and 'pipeline'. The information extracted from articles was compared to information provided on the drug manufacturer's website and Clinical Trials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Hengyao You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
20
|
Abebe AA, Birhanu AG. Methicillin Resistant Staphylococcus aureus: Molecular Mechanisms Underlying Drug Resistance Development and Novel Strategies to Combat. Infect Drug Resist 2023; 16:7641-7662. [PMID: 38111667 PMCID: PMC10726795 DOI: 10.2147/idr.s428103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Antimicrobial resistance (AMR) represents a major threat to global health. Infection caused by Methicillin-resistant Staphylococcus aureus (MRSA) is one of the well-recognized global public health problem globally. In some regions, as many as 90% of S. aureus infections are reported to be MRSA, which cannot be treated with standard antibiotics. WHO reports indicated that MRSA is circulating in every province worldwide, significantly increasing the risk of death by 64% compared to drug-sensitive forms of the infection which is attributed to its antibiotic resistance. The emergence and spread of antibiotic-resistant MRSA strains have contributed to its increased prevalence in both healthcare and community settings. The resistance of S. aureus to methicillin is due to expression of penicillin-binding protein 2a (PBP2a), which renders it impervious to the action of β-lactam antibiotics including methicillin. The other is through the production of beta-lactamases. Although the treatment options for MRSA are limited, there are promising alternatives to antibiotics to combat the infections. Innovative therapeutic strategies with wide range of activity and modes of action are yet to be explored. The review highlights the global challenges posed by MRSA, elucidates the mechanisms underlying its resistance development, and explores mitigation strategies. Furthermore, it focuses on alternative therapies such as bacteriophages, immunotherapy, nanobiotics, and antimicrobial peptides, emphasizing their synergistic effects and efficacy against MRSA. By examining these alternative approaches, this review provides insights into the potential strategies for tackling MRSA infections and combatting the escalating threat of AMR. Ultimately, a multifaceted approach encompassing both conventional and novel interventions is imperative to mitigate the impact of MRSA and ensure a sustainable future for global healthcare.
Collapse
Affiliation(s)
- Assefa Asnakew Abebe
- Department of Molecular Biology, Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical laboratory Sciences, Institute of Health, Bule Hora University, Bule Hora, Ethiopia
| | - Alemayehu Godana Birhanu
- Department of Molecular Biology, Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
21
|
Vaid R, Qader R, Fareed A, Farhat S. Kynomycin: a beacon of hope in the battle against antibiotic resistance. Future Med Chem 2023; 15:2235-2237. [PMID: 38037767 DOI: 10.4155/fmc-2023-0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Rayyan Vaid
- Karachi Medical & Dental College, Karachi, 74600, Pakistan
| | - Rabia Qader
- Karachi Medical & Dental College, Karachi, 74600, Pakistan
| | - Areeba Fareed
- Karachi Medical & Dental College, Karachi, 74600, Pakistan
| | - Solay Farhat
- Faculty of Medical Sciences, Lebanese University, Beirut, 6573/14, Lebanon
| |
Collapse
|
22
|
Shil A, Mukherjee S, Biswas P, Majhi S, Sikdar S, Bishayi B, Sikdar née Bhakta M. Catharanthus roseus (L.) G. Don counteracts the ampicillin resistance in multiple antibiotic-resistant Staphylococcus aureus by downregulation of PBP2a synthesis. Open Life Sci 2023; 18:20220718. [PMID: 37772260 PMCID: PMC10523281 DOI: 10.1515/biol-2022-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023] Open
Abstract
It is essential to revisit the global biodiversity, search for ethnopharmacologically relevant plants, and unveil their untapped potential to overcome the complications associated while treating infections triggered by multiple antibiotic-resistant Staphylococcus aureus. Catharanthus roseus (L.) G. Don of the Apocynaceae family is a medicinal plant used for remedial purposes against infectious diseases from ancient times. In this study, we intended to evaluate the mechanism by which the ethanolic extract of C. roseus root (EECRR) causes the reversal of ampicillin resistance in S. aureus. To achieve this goal, we have stained EECRR-treated S. aureus with acridine orange, analysed DNA damage by comet assay, and studied the alteration of plasmid band pattern and expression of penicillin-binding protein 2a (PBP2a) protein. Experiments revealed better S. aureus killing efficiency of EECRR at its minimum inhibitory concentration (MIC) doses due to DNA damage and reducing plasmid band intensities along with a decline in the expression of PBP2a in EECRR-treated cells at half-MIC dose. EECRR proved to be an efficient growth inhibitor of S. aureus that reduces the expression of PBP2a. Therefore, EECRR can also render ampicillin-resistant S. aureus susceptible to the antibiotic.
Collapse
Affiliation(s)
- Aparna Shil
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Sushmit Mukherjee
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Prerona Biswas
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Sudipta Majhi
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Sima Sikdar
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Kolkata700009, India
| | - Mausumi Sikdar née Bhakta
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| |
Collapse
|
23
|
Wang Z, Pang Y, Chung CR, Wang HY, Cui H, Chiang YC, Horng JT, Lu JJ, Lee TY. A risk assessment framework for multidrug-resistant Staphylococcus aureus using machine learning and mass spectrometry technology. Brief Bioinform 2023; 24:bbad330. [PMID: 37742050 DOI: 10.1093/bib/bbad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023] Open
Abstract
The emergence of multidrug-resistant bacteria is a critical global crisis that poses a serious threat to public health, particularly with the rise of multidrug-resistant Staphylococcus aureus. Accurate assessment of drug resistance is essential for appropriate treatment and prevention of transmission of these deadly pathogens. Early detection of drug resistance in patients is critical for providing timely treatment and reducing the spread of multidrug-resistant bacteria. This study aims to develop a novel risk assessment framework for S. aureus that can accurately determine the resistance to multiple antibiotics. The comprehensive 7-year study involved ˃20 000 isolates with susceptibility testing profiles of six antibiotics. By incorporating mass spectrometry and machine learning, the study was able to predict the susceptibility to four different antibiotics with high accuracy. To validate the accuracy of our models, we externally tested on an independent cohort and achieved impressive results with an area under the receiver operating characteristic curve of 0. 94, 0.90, 0.86 and 0.91, and an area under the precision-recall curve of 0.93, 0.87, 0.87 and 0.81, respectively, for oxacillin, clindamycin, erythromycin and trimethoprim-sulfamethoxazole. In addition, the framework evaluated the level of multidrug resistance of the isolates by using the predicted drug resistance probabilities, interpreting them in the context of a multidrug resistance risk score and analyzing the performance contribution of different sample groups. The results of this study provide an efficient method for early antibiotic decision-making and a better understanding of the multidrug resistance risk of S. aureus.
Collapse
Affiliation(s)
- Zhuo Wang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Yuxuan Pang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - Haiyan Cui
- Department of Clinical Laboratory, Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, China
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33303, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
24
|
Leitão AC, Ferreira TL, Gurgel do Amaral Valente Sá L, Rodrigues DS, de Souza BO, Barbosa AD, Moreira LEA, de Andrade Neto JB, Cabral VPDF, Rios MEF, Cavalcanti BC, Silva J, Marinho ES, Dos Santos HS, de Moraes MO, Júnior HVN, da Silva CR. Antibacterial activity of menadione alone and in combination with oxacillin against methicillin-resistant Staphylococcus aureus and its impact on biofilms. J Med Microbiol 2023; 72. [PMID: 37707372 DOI: 10.1099/jmm.0.001751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.
Collapse
Affiliation(s)
- Amanda Cavalcante Leitão
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thais Lima Ferreira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Oliveira de Souza
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Vitória Pessoa de Farias Cabral
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Jacilene Silva
- Department of Chemistry, Theoretical Chemistry and Electrochemistry Group (GQTE), State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Theoretical Chemistry and Electrochemistry Group (GQTE), State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Hélcio Silva Dos Santos
- Center for Exact Sciences and Technology, Acaraú Valley State University, Sobral, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
25
|
Lade H, Kim JS. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics (Basel) 2023; 12:1362. [PMID: 37760659 PMCID: PMC10525618 DOI: 10.3390/antibiotics12091362] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its low affinity for β-lactam antibiotics, is the main determinant of MRSA. In addition to PBP2a, other genetic factors that regulate cell wall synthesis, cell signaling pathways, and metabolism are required to develop high-level β-lactam resistance in MRSA. Although several genetic factors that modulate β-lactam resistance have been identified, it remains unclear how they alter PBP2a expression and affect antibiotic resistance. This review describes the molecular determinants of β-lactam resistance in MRSA, with a focus on recent developments in our understanding of the role of mecA-encoded PBP2a and on other genetic factors that modulate the level of β-lactam resistance. Understanding the molecular determinants of β-lactam resistance can aid in developing novel strategies to combat MRSA.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| |
Collapse
|
26
|
Bouali N, Haddaji N, Hamadou WS, Ghorbel M, Bechambi O, Mahdhi A, Snoussi M. Methicillin-Resistant Staphylococcus aurous: Epidemiology, Transmission and New Alternative Therapies: A Narrative Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1555-1564. [PMID: 37744540 PMCID: PMC10512127 DOI: 10.18502/ijph.v52i8.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 09/26/2023]
Abstract
Over the last decade, we were facing medical struggle by the emergence of multi-resistant bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). MRSA infections are still causing a growing global concern due to the rapid adaptive multidrug resistance to conventional antibiotics in human, community and veterinary medicine. Here we provide an overview about MRSA epidemiology, transmission and alternative potential treatments particularly new discovered phytochemicals with biological activity. In this narrative review, bibliographic data was collected from literature search databases: Google Scholar, web of science and PubMed/MEDLINE during recent years (2016 to 2021). MRSA is responsible of wide spectrum life threatening infections such us septicemia, endocarditis, and wound infections. It has epidemic potential in hospitals, that is responsible of most nosocomial infections leading to mortality and constitute a real burden for the healthcare systems. Effective preventive strategies for management of MRSA are highly required moreover, the identification and development of novel drugs or active biomolecules through phytochemicals are time challenging to face new resistant strains.
Collapse
Affiliation(s)
- Nouha Bouali
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Najla Haddaji
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Walid Sari Hamadou
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mouna Ghorbel
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Olfa Bechambi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Majdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
27
|
Chang J, Tasellari A, Wagner JL, Scheetz MH. Contemporary pharmacologic treatments of MRSA for hospitalized adults: rationale for vancomycin versus non-vancomycin therapies as first line agents. Expert Rev Anti Infect Ther 2023; 21:1309-1325. [PMID: 37876291 DOI: 10.1080/14787210.2023.2275663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) remains an important pathogen in the hospital setting and causes significant morbidity and mortality each year. Since the initial discovery over 60 years ago, vancomycin has remained a first-line treatment for many different types of MRSA infections. However, significant concerns related to target attainment and nephrotoxicity have spurred efforts to develop more effective agents in the last two decades. AREAS COVERED Newer anti-MRSA antibiotics that have been approved since 2000 include linezolid, daptomycin, and ceftaroline. As clinical evidence has accumulated, these newer agents have become more frequently used, and some are now recommended as co-first-line options (along with vancomycin) in clinical practice guidelines. For this review, a scoping review of the literature was conducted to support our findings and recommendations. EXPERT OPINION Vancomycin remains an important standard of care for MRSA infections but is limited with respect to nephrotoxicity and rapid target attainment. Newer agents such as linezolid, daptomycin, and ceftaroline have specific indications for treating different types of MRSA infections; however, newer agents also have unique attributes which require consideration during therapy.
Collapse
Affiliation(s)
- Jack Chang
- Department of Pharmacy Practice, Midwestern University College of Pharmacy, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University College of Pharmacy, Downers Grove, IL, USA
- Northwestern Memorial Hospital, Department of Pharmacy, Chicago, IL, USA
| | - Ardita Tasellari
- Department of Pharmacy Practice, Midwestern University College of Pharmacy, Downers Grove, IL, USA
| | - Jamie L Wagner
- School of Pharmacy, University of Mississippi, Jackson, MS, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice, Midwestern University College of Pharmacy, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University College of Pharmacy, Downers Grove, IL, USA
- Northwestern Memorial Hospital, Department of Pharmacy, Chicago, IL, USA
| |
Collapse
|
28
|
Mizusawa M, Carroll KC. Recent updates in the development of molecular assays for the rapid identification and susceptibility testing of MRSA. Expert Rev Mol Diagn 2023; 23:679-699. [PMID: 37419696 DOI: 10.1080/14737159.2023.2234823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of healthcare- and community-associated infections. Nasal carriage of MRSA is a risk factor for subsequent MRSA infections. Increased morbidity and mortality are associated with MRSA infections and screening and diagnostic tests for MRSA play an important role in clinical management. AREAS COVERED A literature search was conducted in PubMed and supplemented by citation searching. In this article, we provide a comprehensive review of molecular-based methods for MRSA screening and diagnostic tests including individual nucleic acid detection assays, syndromic panels, and sequencing technologies with a focus on their analytical performance. EXPERT OPINION Molecular based-assays for the detection of MRSA have improved in terms of accuracy and availability. Rapid turnaround enables earlier contact isolation and decolonization for MRSA. The availability of syndromic panel tests that include MRSA as a target has expanded from positive blood cultures to pneumonia and osteoarticular infections. Sequencing technologies allow detailed characterizations of novel methicillin-resistance mechanisms that can be incorporated into future assays. Next generation sequencing is capable of diagnosing MRSA infections that cannot be identified by conventional methods and metagenomic next-generation sequencing (mNGS) assays will likely move closer to implementation as front-line diagnostics in the near future.
Collapse
Affiliation(s)
- Masako Mizusawa
- Monmouth Medical Center, Rutgers University Robert Wood Johnson Medical School, Long Branch, NJ, USA
| | - Karen C Carroll
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Kasela M, Ossowski M, Dzikoń E, Ignatiuk K, Wlazło Ł, Malm A. The Epidemiology of Animal-Associated Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1079. [PMID: 37370398 DOI: 10.3390/antibiotics12061079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains an important etiological factor of human and animal infectious diseases, causing significant economic losses not only in human healthcare but also in the large-scale farming sector. The constantly changing epidemiology of MRSA observed globally affects animal welfare and raises concerns for public health. High MRSA colonization rates in livestock raise questions about the meaning of reservoirs and possible transmission pathways, while the prevalence of MRSA colonization and infection rates among companion animals vary and might affect human health in multiple ways. We present the main findings concerning the circulation of animal-associated MRSA (AA-MRSA) in the environment and factors influencing the direction, mechanisms, and routes of its transmission. Studies have shown it that S. aureus is a multi-host bacterial pathogen; however, its adaptation mechanisms enabling it to colonize and infect both animal and human hosts are still rarely discussed. Finally, we elaborate on the most successful strategies and programs applied limiting the circulation of AA-MRSA among animals and humans. Although MRSA strains colonizing animals rarely infect humans, they undergo host-adaptive evolution enabling them to spread and persist in human populations.
Collapse
Affiliation(s)
- Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Mateusz Ossowski
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Ewelina Dzikoń
- Student's Scientific Circle, Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Katarzyna Ignatiuk
- Student's Scientific Circle, Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Łukasz Wlazło
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| |
Collapse
|
30
|
Shen P, Zheng L, Qin X, Li D, Zhang Z, Zhao J, Lin H, Hong H, Zhou Z, Wu Z. Synthesis of structure-defined β-1,4-GlcNAc-modified wall teichoic acids as potential vaccine against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2023; 258:115553. [PMID: 37336068 DOI: 10.1016/j.ejmech.2023.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a high priority pathogen due to its life-threating infections to human health. Development of prophylactic or therapeutic anti-MRSA vaccine is a potential approach to treat S. aureus infections and overcome the resistance crisis. β-1,4-GlcNAc glycosylated wall teichoic acids (WTAs) derived from S. aureus are a new type of antigen that is closely associated with β-lactam resistance. In this study, structure-defined β-1,4-GlcNAc-modified WTAs varied in chain length and numbers of GlcNAc modification were synthesized by an ionic liquid-supported oligosaccharide synthesis (ILSOS) strategy in high efficiency and chromatography-free approach. Then the obtained WTAs were conjugated with tetanus toxin (TT) as vaccine candidates and were further evaluated in a mouse model to determine the structure-immunogenicity relationship. In vivo immunological studies revealed that the WTAs-TT conjugates provoked robust T cell-dependent responses and elicited high levels of specific anti-WTAs IgG antibodies production associated with the WTAs structure including chain length as well as the β-1,4-GlcNAc modification pattern. Heptamer WTAs conjugate T6, carrying three copy of β-1,4-GlcNAc modified RboP, was identified to elicit the highest titers of specific antibody production. The T6 antisera exhibited the highest recognition and binding affinity and the most potent OP-killing activities to MSSA and MRSA cells. This study demonstrated that β-1,4-GlcNAc glycosylated WTAs are promising antigens for further development against MRSA.
Collapse
Affiliation(s)
- Peng Shen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lele Zheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xinfang Qin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zijiang Zhang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jie Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
31
|
Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A, Constantin GD, Andor M, Folescu R, Muntean D, Danciu C, Dalleur O, Batrina SL, Cretu O, Buda VO. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. Int J Mol Sci 2023; 24:9727. [PMID: 37298678 PMCID: PMC10253476 DOI: 10.3390/ijms24119727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.
Collapse
Affiliation(s)
- Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Adelina Lombrea
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Ana Teodor
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - George D. Constantin
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Roxana Folescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Delia Muntean
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Stefan Laurentiu Batrina
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Valentina Oana Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Ineu City Hospital, 2 Republicii Street, 315300 Ineu, Romania
| |
Collapse
|
32
|
Li X, Xue X, Jia J, Zou X, Guan Y, Zhu L, Wang Z. Nonsteroidal anti-inflammatory drug diclofenac accelerates the emergence of antibiotic resistance via mutagenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121457. [PMID: 36958653 DOI: 10.1016/j.envpol.2023.121457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Overuse of antimicrobial agents are generally considered to be a key factor in the occurrence of antibiotic resistance bacteria (ARB). Nevertheless, it is unclear whether ARB can be induced by non-antibiotic chemicals such as nonsteroidal anti-inflammatory drug (NSAID). Thus, the objective of this study is to investigate whether NSAID diclofenac (DCF) promote the emergence of antibiotic resistance in Escherichia coli K12 MG1655. Our results suggested that DCF induced the occurrence of ARB which showed hereditary stability of resistance. Meanwhile, gene variation was identified on chromosome of the ARB, and DCF can cause bacterial oxidative stress and SOS response. Subsequently, transcriptional levels of antioxidant (soxS, sodA, sodC, gor, katG, ahpF) and SOS (recA, lexA, uvrA, uvrB, ruvA, ruvB, dinB, umuC, polB) system-related genes were enhanced. However, the expression of related genes cannot be increased in high-dosage treatment compared with low-dosage samples because of cytotoxicity and cellular damage. Simultaneously, high-dosage DCF decreased the mutation frequency but enhanced the resistance of mutants. Our findings expand our knowledge of the promoting effect on the emergence of ARB caused by DCF. More attention and regulations should be given to these potential ecological and health risks for widespread DCF.
Collapse
Affiliation(s)
- Xiangju Li
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Xue Xue
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Jia Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaocui Zou
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Yongjing Guan
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Zaizhao Wang
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
33
|
Feyissa N, Alemu T, Jirata Birri D, Desalegn A, Sombo M, Abera S. Isolation and Determination of Antibacterial Sensitivity Characteristics of Staphylococcus aureus from Lactating Cows in West Shewa Zone, Ethiopia. Vet Med Int 2023; 2023:3142231. [PMID: 37025105 PMCID: PMC10072958 DOI: 10.1155/2023/3142231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Staphylococcus (S.) aureus is one of the etiologies of bovine mastitis, hindering milk production and productivity in dairy farms. This study was aimed at assessing the distribution of bovine mastitis and the isolation rate of S. aureus in milked cows of West Shewa Zone. The clinical mastitis was diagnosed by physical methods including observation and palpation, whereas the subclinical mastitis was tested by the California mastitis test (CMT). All of the cows tested for mastitis were aseptically sampled (teat-milk) for bacteriology. The bacterium was primarily identified based on colony characterization, catalase, coagulase tests, and Gram stain reaction. Finally, MALDI-TOF Biotyper confirmed the species. The antibacterial sensitivity characteristics of the isolates to different antibacterial drugs were tested by the disk diffusion method. The drugs were selected based on the frequent usage in veterinary medicine in the study area. By using particular primers, the presence of the resistance (mecA and blaZ), and thermonuclease (nuc) genes were determined by polymerase chain reaction (PCR). The data were analyzed by R statistical software. The associations between the dependent variables (prevalence of mastitis and S. aureus) and the explanatory variables were analysed by chi-square (χ2) and logistic regression tests at a 95% confidence interval (CI). Accordingly, 258 lactating cows were examined, of which 97 (37.6%) were mastitis positive. Of these mastitis positive cows, 59 (60.8%) were subclinical and 38 (39.2%) were clinical. Among the 258 milk samples, 43 (16.7%) were positive for S. aureus. According to the results of the current investigation, subclinical mastitis was significantly more prevalent than clinical mastitis (
). The disease was found varied with the lactation stage of the animal, milking with washed hand, udder washing before milking, and tick infestation of the teat. In comparison to animals from farms with lower number of lactating cows, the prevalence of the bacteria was significantly higher in animals managed in farms with large (OR = 12.58, 95% CI = 2.33–68.54, and
) and medium (OR = 12.58, 95% CI = 2.33–68.54, and
) population of lactating cows per herd. The isoation rate of the bacterium was also found significantly higher in tick-infested cows (OR = 27.69, 95% CI = 9.71–93.01, and
) than tick free cows. The antibiogram tests revealed that the isolates resisted penicillin G and tetracycline group drugs (oxytetracycline and tetracycline). Moreover, the nuc gene was confirmed to be present in all of the examined isolates. However, they were not found harboring blaZ and mecA genes. We concluded that S. aureus is sustaining as a main causative agent of bovine mastitis, and they were resistant to the frequently used antibiotics in public and veterinary medicines in the study areas. Therefore, research-based interventions need to be taken in action to combat the pathogen.
Collapse
|
34
|
Cao X, Chang Y, Tao C, Chen S, Lin Q, Ling C, Huang S, Zhang H. Cas12a/Guide RNA-Based Platforms for Rapidly and Accurately Identifying Staphylococcus aureus and Methicillin-Resistant S. aureus. Microbiol Spectr 2023; 11:e0487022. [PMID: 36943040 PMCID: PMC10100783 DOI: 10.1128/spectrum.04870-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
In order to ensure the prevention and control of methicillin-resistant Staphylococcus aureus (MRSA) infection, rapid and accurate detection of pathogens and their resistance phenotypes is a must. Therefore, this study aimed to develop a fast and precise nucleic acid detection platform for identifying S. aureus and MRSA. We initially constructed a CRISPR-Cas12a detection system by designing single guide RNAs (sgRNAs) specifically targeting the thermonuclease (nuc) and mecA genes. To increase the sensitivity of the CRISPR-Cas12a system, we incorporated PCR, loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA). Subsequently, we compared the sensitivity and specificity of the three amplification methods paired with the CRISPR-Cas12a system. Finally, the clinical performance of the methods was tested by analyzing the fluorescence readout of 111 clinical isolates. In order to visualize the results, lateral-flow test strip technology, which enables point-of-care testing, was also utilized. After comparing the sensitivity and specificity of three different methods, we determined that the nuc-LAMP-Cas12a and mecA-LAMP-Cas12a methods were the optimal detection methods. The nuc-LAMP-Cas12a platform showed a limit of detection (LOD) of 10 aM (~6 copies μL-1), while the mecA-LAMP-Cas12a platform demonstrated a LOD of 1 aM (~1 copy μL-1). The LOD of both platforms reached 4 × 103 fg/μL of genomic DNA. Critical evaluation of their efficiencies on 111 clinical bacterial isolates showed that they were 100% specific and 100% sensitive with both the fluorescence readout and the lateral-flow readout. Total detection time for the present assay was approximately 80 min (based on fluorescence readout) or 85 min (based on strip readout). These results indicated that the nuc-LAMP-Cas12a and mecA-LAMP-Cas12a platforms are promising tools for the rapid and accurate identification of S. aureus and MRSA. IMPORTANCE The spread of methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to global health. Isothermal amplification combined with the trans-cleavage activity of Cas12a has been exploited to generate diagnostic platforms for pathogen detection. Here, we describe the design and clinical evaluation of two highly sensitive and specific platforms, nuc-LAMP-Cas12a and mecA-LAMP-Cas12a, for the detection of S. aureus and MRSA in 111 clinical bacterial isolates. With a limit of detection (LOD) of 4 × 103 fg/μL of genomic DNA and a turnaround time of 80 to 85 min, the present assay was 100% specific and 100% sensitive using either fluorescence or the lateral-flow readout. The present assay promises clinical application for rapid and accurate identification of S. aureus and MRSA in limited-resource settings or at the point of care. Beyond S. aureus and MRSA, similar CRISPR diagnostic platforms will find widespread use in the detection of various infectious diseases, malignancies, pharmacogenetics, food contamination, and gene mutations.
Collapse
Affiliation(s)
- Xiaoying Cao
- Department of Plastic and Burn Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yanbin Chang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, People’s Republic of China
| | - Chunqing Tao
- Department of Plastic and Burn Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Sen Chen
- Department of Plastic and Burn Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qiuxia Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chao Ling
- Department of Clinical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shifeng Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hengshu Zhang
- Department of Plastic and Burn Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
35
|
Memar MY, Yekani M, Farajnia S, Ghadiri Moghaddam F, Nabizadeh E, Sharifi S, Maleki Dizaj S. Antibacterial and biofilm-inhibitory effects of vancomycin-loaded mesoporous silica nanoparticles on methicillin-resistant staphylococcus aureus and gram-negative bacteria. Arch Microbiol 2023; 205:109. [PMID: 36884153 DOI: 10.1007/s00203-023-03447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The present study aimed to prepare and characterize vancomycin-loaded mesoporous silica nanoparticles (Van-MSNs) to detect inhibitory effects on the planktonic and biofilm forms of methicillin-resistant Staphylococcus aureus (MRSA) isolates, and study the biocompatibility and toxicity of Van-MSNs in vitro as well as antibacterial activity of Van-MSNs against Gram-negative bacteria. The inhibitory effects of Van-MSNs were investigated on MRSA using the determination of minimum inhibitory (MIC) and minimum biofilm-inhibitory concentrations (MBIC) as well as the effect on bacterial attachment. Biocompatibility was studied by examining the effect of Van-MSNs on the lysis and sedimentation rate of red blood cells (RBC). The interaction of Van-MSNs with human blood plasma was detected by the SDS-PAGE approach. The cytotoxic effect of the Van-MSNs on human bone marrow mesenchymal stem cells (hBM-MSCs) was evaluated by the MTT assay. The antibacterial effects of vancomycin and Van-MSNs on Gram-negative bacteria were also investigated using MIC determination using the broth microdilution method. Furthermore, bacteria outer membrane (OM) permeabilization was determined. Van-MSNs showed inhibitory effects on planktonic and biofilm forms of bacteria on all isolates at levels lower than MICs and MBICs of free vancomycin, but the antibiofilm effect of Van-MSNs was not significant. However, Van-MSNs did not affect bacterial attachment to surfaces. Van-loaded MSNs did not show a considerable effect on the lysis and sedimentation of RBC. A low interaction of Van-MSNs was detected with albumin (66.5 kDa). The hBM-MSCs viability in exposure to different levels of Van-MSNs was 91-100%. MICs of ≥ 128 µg/mL were observed for vancomycin against all Gram-negative bacteria. In contrast, Van-MSNs exhibited modest antibacterial activity inhibiting the tested Gram-negative bacterial strains, at concentrations of ≤ 16 µg/mL. Van-MSNs increased the OM permeability of bacteria that can increase the antimicrobial effect of vancomycin. According to our findings, Van-loaded MSNs have low cytotoxicity, desirable biocompatibility, and antibacterial effects and can be an option for the battle against planktonic MRSA.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Comparative Genomics Identifies Novel Genetic Changes Associated with Oxacillin, Vancomycin and Daptomycin Susceptibility in ST100 Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2023; 12:antibiotics12020372. [PMID: 36830286 PMCID: PMC9952151 DOI: 10.3390/antibiotics12020372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Infections due to vancomycin-intermediate S. aureus (VISA) and heterogeneous VISA (hVISA) represent a serious concern due to their association with vancomycin treatment failure. However, the underlying molecular mechanism responsible for the hVISA/VISA phenotype is complex and not yet fully understood. We have previously characterized two ST100-MRSA-hVISA clinical isolates recovered before and after 40 days of vancomycin treatment (D1 and D2, respectively) and two in vitro VISA derivatives (D23C9 and D2P11), selected independently from D2 in the presence of vancomycin. This follow-up study was aimed at further characterizing these isogenic strains and obtaining their whole genome sequences to unravel changes associated with antibiotic resistance. It is interesting to note that none of these isogenic strains carry SNPs in the regulatory operons vraUTSR, walKR and/or graXRS. Nonetheless, genetic changes including SNPs, INDELs and IS256 genomic insertions/rearrangements were found both in in vivo and in vitro vancomycin-selected strains. Some were found in the downstream target genes of the aforementioned regulatory operons, which are involved in cell wall and phosphate metabolism, staphylococcal growth and biofilm formation. Some of the genetic changes reported herein have not been previously associated with vancomycin, daptomycin and/or oxacillin resistance in S. aureus.
Collapse
|
37
|
Cao M, Wang F, Zhou B, Chen H, Yuan R, Ma S, Geng H, Li J, Lv W, Wang Y, Xing B. Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130201. [PMID: 36283215 DOI: 10.1016/j.jhazmat.2022.130201] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems.
Collapse
Affiliation(s)
- Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China; School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China.
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Shuai Ma
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Junhong Li
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Wenxiao Lv
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Yan Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
38
|
Staphylococcus aureus Host Spectrum Correlates with Methicillin Resistance in a Multi-Species Ecosystem. Microorganisms 2023; 11:microorganisms11020393. [PMID: 36838358 PMCID: PMC9964919 DOI: 10.3390/microorganisms11020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Although antibiotic resistance is a major issue for both human and animal health, very few studies have investigated the role of the bacterial host spectrum in its dissemination within natural ecosystems. Here, we assessed the prevalence of methicillin resistance among Staphylococcus aureus (MRSA) isolates from humans, non-human primates (NHPs), micromammals and bats in a primatology center located in southeast Gabon, and evaluated the plausibility of four main predictions regarding the acquisition of antibiotic resistance in this ecosystem. MRSA strain prevalence was much higher in exposed species (i.e., humans and NHPs which receive antibiotic treatment) than in unexposed species (micromammals and bats), and in NHP species living in enclosures than those in captivity-supporting the assumption that antibiotic pressure is a risk factor in the acquisition of MRSA that is reinforced by the irregularity of drug treatment. In the two unexposed groups of species, resistance prevalence was high in the generalist strains that infect humans or NHPs, supporting the hypothesis that MRSA strains diffuse to wild species through interspecific transmission of a generalist strain. Strikingly, the generalist strains that were not found in humans showed a higher proportion of MRSA strains than specialist strains, suggesting that generalist strains present a greater potential for the acquisition of antibiotic resistance than specialist strains. The host spectrum is thus a major component of the issue of antibiotic resistance in ecosystems where humans apply strong antibiotic pressure.
Collapse
|
39
|
Menghani SV, Sanchez-Rosario Y, Pok C, Liu R, Gao F, O’Brien H, Neubert MJ, Ochoa K, Durckel M, Hellinger RD, Hackett N, Wang W, Johnson MDL. Novel dithiocarbamate derivatives are effective copper-dependent antimicrobials against Streptococcal species. Front Microbiol 2023; 13:1099330. [PMID: 36741900 PMCID: PMC9894897 DOI: 10.3389/fmicb.2022.1099330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023] Open
Abstract
Despite the availability of several vaccines against multiple disease-causing strains of Streptococcus pneumoniae, the rise of antimicrobial resistance and pneumococcal disease caused by strains not covered by the vaccine creates a need for developing novel antimicrobial strategies. N,N-dimethyldithiocarbamate (DMDC) was found to be a potent copper-dependent antimicrobial against several pathogens, including S. pneumoniae. Here, DMDCs efficacy against Streptococcal pathogens Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus anginosus was tested using bactericidal and inductively coupled plasma - optical emission spectrometry. After confirming DMDC as broad-spectrum streptococcal antimicrobial, DMDC was derivatized into five compounds. The derivatives' effectiveness as copper chelators using DsRed2 and as copper-dependent antimicrobials against S. pneumoniae TIGR4 and tested in bactericidal and animal models. Two compounds, sodium N-benzyl-N-methyldithiocarbamate and sodium N-allyl-N-methyldithiocarbamate (herein "Compound 3" and "Compound 4"), were effective against TIGR4 and further, D39 and ATCC® 6303™ _(a type 3 capsular strain). Both Compound 3 and 4 increased the pneumococcal internal concentrations of copper to the same previously reported levels as with DMDC and copper treatment. However, in an in vivo murine pneumonia model, Compound 3, but not Compound 4, was effective in significantly decreasing the bacterial burden in the blood and lungs of S. pneumoniae-infected mice. These derivatives also had detrimental effects on the other streptococcal species. Collectively, derivatizing DMDC holds promise as potent bactericidal antibiotics against relevant streptococcal pathogens.
Collapse
Affiliation(s)
- Sanjay V. Menghani
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
- Medical Scientist Training MD-PhD Program (MSTP), University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| | - Yamil Sanchez-Rosario
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| | - Chansorena Pok
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
- Department of Microbial Pathogens and Immunity, Rush University, Chicago, IL, United States
| | - Renshuai Liu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Feng Gao
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Henrik O’Brien
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| | - Miranda J. Neubert
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| | - Klariza Ochoa
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| | - Meredythe Durckel
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| | - Riley D. Hellinger
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
- Medical Scientist Training MD-PhD Program (MSTP), University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| | - Nadia Hackett
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Michael D. L. Johnson
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
- Valley Fever Center for Excellence, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
- BIO5 Institute, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
- Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| |
Collapse
|
40
|
Zajmi A, Shiranee F, Gee Hoon Tang S, A.M. Alhoot M, Abdul Karim S. Multidrug-Resistant Staphylococcus aureus as Coloniser in Healthy Individuals. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen that can cause mild superficial infections to deep-seated abscesses and sepsis. One of the characteristics of S. aureus is the ability to colonise healthy individuals while leaving them asymptomatic. These carriers’ risk harbouring an antibiotic-resistant strain that may be harmful to the individual and the community. S. aureus carriage in healthcare personnel is being studied extensively in many parts of the world. However, the relationship between colonisation and disease among those with no previous exposure to healthcare remains untouched. Colonisation of the nasal cavity and its surrounding by pathogenic organisms such as S. aureus leads to the increased risk of infection. Hospital-acquired infections associated with S. aureus infections are common and studies related to these types of infections among various study groups are largely documented. However, over the last decade, an increase in community-associated methicillin-resistant S. aureus has been noted, increasing the need to identify the prevalence of the organism among healthy individuals and assessing the antibiotic resistance patterns. Systemic surveillance of the community for colonisation of S. aureus and identifying the antibiotic-resistant pattern is critical to determine the appropriate empiric antibiotic treatment.
Collapse
|
41
|
Li L, She P, Liu S, Li Y, Li Z, Yang Y, Zhou L, Wu Y. Identification of a small molecule 0390 as a potent antimicrobial agent to combat antibiotic-resistant Escherichia coli. Front Microbiol 2022; 13:1078318. [PMID: 36590392 PMCID: PMC9800007 DOI: 10.3389/fmicb.2022.1078318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Antibiotic resistance has posed a serious challenge to global public health. With the increasing resistance emergence of E. coli and mortality caused by drug-resistant E. coli infections, it is urgent to develop novel antibiotics. Methods By high-throughput screening assay, we found a bioactive molecule, 0390 (6056-0390), which demonstrated antimicrobial effects against E. coli. The antimicrobial effects of 0390 alone or in combination with conventional antibiotics were assessed by scanning electron microscopy, transmission electron microscopy, drug combination assay, and growth inhibition assay. In addition, we investigated the antimicrobial efficacy in subcutaneous infection model in vivo. Results 0390 showed significant synergistic antimicrobial effects in combination with SPR741, a polymyxin B derivative, against E. coli standard strain and extensively drug-resistant (XDR) clinical isolates, and the combination exhibited good safety property in vitro. In addition, we demonstrated that the combinational treatment of 0390 and SPR741 exhibited a considerable antibacterial activity in vivo, and no tissue damage or other toxicity was observed after the therapeutic dose treatment. Discussion To confront the issue of the infectious diseases related to E. coli and its multidrug resistant strains, potential approaches, such as new antibacterial agents with different structures from conventional antibiotics and drug combinations, are urgently needed. In this study, we have determined the in vitro and in vivo antimicrobial potential of 0390 alone or in combination with SPR741, which might be used as a treatment option for E. coli related infections.
Collapse
Affiliation(s)
- Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
42
|
Songnaka N, Lertcanawanichakul M, Hutapea AM, Krobthong S, Yingchutrakul Y, Atipairin A. Purification and Characterization of Novel Anti-MRSA Peptides Produced by Brevibacillus sp. SPR-20. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238452. [PMID: 36500545 PMCID: PMC9738727 DOI: 10.3390/molecules27238452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a high-priority pathogen because its infection is associated with a high mortality rate. It is urgent to search for new agents to treat such an infection. Our previous study isolated a soil bacterium (Brevibacillus sp. SPR-20), showing the highest antimicrobial activity against S. aureus TISTR 517 and MRSA strains. The present study aimed to purify and characterize anti-MRSA substances produced by SPR-20. The result showed that five active substances (P1-P5) were found, and they were identified by LC-MS/MS that provided the peptide sequences of 14-15 residues. Circular dichroism showed that all peptides contained β-strand and disordered conformations as the major secondary structures. Only P1-P4 adopted more α-helix conformations when incubated with 50 mM SDS. These anti-MRSA peptides could inhibit S. aureus and MRSA in concentrations of 2-32 μg/mL. P1 (NH2-VVVNVLVKVLPPPVV-COOH) had the highest activity and was identified as a novel antimicrobial peptide (AMP). The stability study revealed that P1 was stable in response to temperature, proteolytic enzymes, surfactant, and pH. The electron micrograph showed that P1 induced bacterial membrane damage when treated at 1× MIC in the first hour of incubation. The killing kinetics of P1 was dependent on concentration and time. Mechanisms of P1 on tested pathogens involved membrane permeability, leakage of genetic material, and cell lysis. The P1 peptide at a concentration up to 32 μg/mL showed hemolysis of less than 10%, supporting its safety for human erythrocytes. This study provides promising anti-MRSA peptides that might be developed for effective antibiotics in the post-antibiotic era.
Collapse
Affiliation(s)
- Nuttapon Songnaka
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | | | - Albert M. Hutapea
- Faculty of Science, Universitas Advent Indonesia, Bandung 40559, Indonesia
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Omics Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Drug and Cosmetics Excellence Center, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Correspondence: ; Tel.: +66-7567-2832; Fax: +66-7567-2814
| |
Collapse
|
43
|
Edet UO, Nwaokorie FO, Mbim EN, Asanga EE, Agbor YO, Okoroiwu HU, Edet BO, Umoafia N, Nkang A. Evaluation of Annona muricata extract against Staphylococcus aureus isolate and in-silico activity of bioactive compounds against Capsular protein (Cap5O). BMC Complement Med Ther 2022; 22:192. [PMID: 35854286 PMCID: PMC9297590 DOI: 10.1186/s12906-022-03672-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Staphylococcus aureus has prevailed against the majority of antibiotics currently in clinical use, making it a significant global public health problem. As a safer alternative, bioactive compounds have been explored. Annona muricata has been shown to possess antimicrobial activity. However, there are few reports on the molecular activity of A. muricata bioactive compounds against S. aureus. Thus, this study was aimed at evaluating the antimicrobial activity of its crude extract as well as investigating the potential of its bioactive compounds against the Cap5O capsular polysaccharides (CPS) of S. aureus via molecular docking.
Methods
Collection of plant leaves, preparation of extracts, anti-nutrient analysis, phytochemical screening via crude method and gas chromatography-mass spectrophotometer (GC-MS), isolation and characterization of S. aureus and the antimicrobial activity test were all done using standard protocols. Molecular docking was done using the MCULE online tool with emphasis on docking scores, toxicity, and other properties.
Results
Crude screening of the extracts showed the presence of polyphenols, hydroxyanthraquinones, reducing compounds, flavonoids, saponins, glycosides, alkaloids, anthraquinones, phlobatannins and tannins in different concentrations. Anti-nutrient analysis showed the presence of allowable levels of evaluated anti-nutrients. GC-MS revealed a total of twenty-nine (29) bioactive compounds, out of which only 4 (13.80%) docked without toxicity and these were bicyclo[4.1.0]heptan-2-one 6-methyl, trichloromethane, carbonic acid 2-dimethylaminoethyl propyl ester, and 1-methyl-4-phenyl-5-thioxo-1,2,4-triazolidin-3-one on either the NAD-binding or C-terminal substrate binding domain of Cap5O.
Conclusion
Results obtained show that Cap5O could be a potential drug target for multi-drug resistant S. aureus, however, further studies aimed at evaluating these bioactive compounds individually and in combination are highly needed.
Collapse
|
44
|
Allakky A, Ferguson AA, Khan AI, Abuzainah B, Gutlapalli SD, Chaudhuri D, Khan KI, Al Shouli R, Khan S. The Potential Threat of Vertical Transmission in Methicillin-Resistant Staphylococcus Aureus Infection: A Systematic Review 2022. Cureus 2022; 14:e32366. [PMID: 36632271 PMCID: PMC9828026 DOI: 10.7759/cureus.32366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
This systematic review paper aimed to assess and analyze the prevalence of maternal colonization of Staphylococcus aureus (S. aureus) also known as methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) in the peripartum period and its significance on vertical transmission to the neonate and if it is a potential threat to the health of newborns. For this, multiple databases, such as PubMed, MEDLINE, ScienceDirect, and the database of Elsevier, were used to scout for relevant articles, and results were reported adhering to the principles set by Preferred Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines 2020. A specific medical subject headings (MeSH) criterion was designed to search for relevant publications on PubMed. A total of 26 articles were finally selected after a meticulous screening process, including detailed inclusion and exclusion criteria, manual reading of titles and abstracts, and availability of accessible full-text articles. A few articles were also selected after going through the citations section of the initially selected papers. Quality appraisal was done on the selected publications. Maternal colonization of S. aureus is determined to be highly prevalent with the hypothesis that nasal colonization had higher rates than recto-vaginal sites. Increasing maternal age, history of vaginitis, and multiparity were the most common risk factors for MRSA and MSSA colonization. Premature babies were at the highest risk of MRSA colonization. Breast milk is also a risk factor for neonatal MRSA transmission. Through this systematic review, we concluded that although the rate of vertical transmission of MRSA is lower than that of MSSA, we felt that it held significance as neonates with the bug have poor outcomes due to skin and soft tissue infections and there is spread of MRSA to other neonates in the wards and spread to siblings in cases of triplets and quadruplets and even death due to potential MRSA sepsis. Women in Africa and China had high prevalence rates of MRSA and S. aureus which can probably be attributed to a lack of access to adequate healthcare facilities. We recommend screening with regular recto-vaginal swabs and nasal swabs especially in regions with a high burden of MRSA to be performed at regular intervals after confirmation of pregnancy, as prevention and screening are effective to avoid serious complications.
Collapse
Affiliation(s)
- Akhil Allakky
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Asila A Ferguson
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aujala Irfan Khan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Baraa Abuzainah
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Dheeraj Gutlapalli
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Dipabali Chaudhuri
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kokab Irfan Khan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Roba Al Shouli
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
45
|
Pennone V, Prieto M, Álvarez-Ordóñez A, Cobo-Diaz JF. Antimicrobial Resistance Genes Analysis of Publicly Available Staphylococcus aureus Genomes. Antibiotics (Basel) 2022; 11:1632. [PMID: 36421276 PMCID: PMC9686812 DOI: 10.3390/antibiotics11111632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
Staphylococcus aureus is a pathogen that can cause severe illness and express resistance to multiple antimicrobial agents. It is part of the ESKAPE organisms and it has been included by the Centers for Disease Control and Prevention (CDC) of USA in the list of serious threats to humans. Many antimicrobial mechanisms have been identified, and, in particular, antimicrobial resistance genes (ARGs) can be determined by whole genome sequencing. Mobile genetic elements (MGEs) can determine the spread of these ARGs between strains and species and can be identified with bioinformatic analyses. The scope of this work was to analyse publicly available genomes of S. aureus to characterise the occurrence of ARGs present in chromosomes and plasmids in relation to their geographical distribution, isolation sources, clonal complexes, and changes over time. The results showed that from a total of 29,679 S. aureus genomes, 24,765 chromosomes containing 73 different ARGs, and 21,006 plasmidic contigs containing 47 different ARGs were identified. The most abundant ARG in chromosomes was mecA (84%), while blaZ was the most abundant in plasmidic contigs (30%), although it was also abundant in chromosomes (42%). A total of 13 clonal complexes were assigned and differences in ARGs and CC distribution were highlighted among continents. Temporal changes during the past 20 years (from 2001 to 2020) showed that, in plasmids, MRSA and macrolide resistance occurrence decreased, while the occurrence of ARGs associated with aminoglycosides resistance increased. Despite the lack of metadata information in around half of the genomes analysed, the results obtained enable an in-depth analysis of the distribution of ARGs and MGEs throughout different categories to be undertaken through the design and implementation of a relatively simple pipeline, which can be also applied in future works with other pathogens, for surveillance and screening purposes.
Collapse
Affiliation(s)
- Vincenzo Pennone
- Department of Food and Drug, Università degli Studi di Parma, 43121 Parma, Italy
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
- Institute of Food Science and Technology, Universidad de León, 24071 León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
- Institute of Food Science and Technology, Universidad de León, 24071 León, Spain
| | - José F. Cobo-Diaz
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
| |
Collapse
|
46
|
Mahjabeen F, Saha U, Mostafa MN, Siddique F, Ahsan E, Fathma S, Tasnim A, Rahman T, Faruq R, Sakibuzzaman M, Dilnaz F, Ashraf A. An Update on Treatment Options for Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia: A Systematic Review. Cureus 2022; 14:e31486. [DOI: 10.7759/cureus.31486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
|
47
|
Baede VO, Tavakol M, Vos MC, Knight GM, van Wamel WJB. Dehydration Tolerance in Epidemic versus Nonepidemic MRSA Demonstrated by Isothermal Microcalorimetry. Microbiol Spectr 2022; 10:e0061522. [PMID: 35972129 PMCID: PMC9602581 DOI: 10.1128/spectrum.00615-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) clusters are considered epidemic or nonepidemic based on their ability to spread effectively. Successful transmission could be influenced by dehydration tolerance. Current methods for determination of dehydration tolerance lack accuracy. Here, a climate-controlled in vitro dehydration assay using isothermal microcalorimetry (IMC) was developed and linked with mathematical modeling to determine survival of 44 epidemic versus 54 nonepidemic MRSA strains from France, the United Kingdom, and the Netherlands after 1 week of dehydration. For each MRSA strain, the growth parameters time to end of first growth phase (tmax [h]) and maximal exponential growth rate (μm) were deduced from IMC data for 3 experimental replicates, 3 different starting inocula, and before and after dehydration. If the maximal exponential growth rate was within predefined margins (±36% of the mean), a linear relationship between tmax and starting inoculum could be utilized to predict log reduction after dehydration for individual strains. With these criteria, 1,330 of 1,764 heat flow curves (data sets) (75%) could be analyzed to calculate the post-dehydration inoculum size, and thus the log reduction due to dehydration, for 90 of 98 strains (92%). Overall reduction was ~1 log after 1 week. No difference in dehydration tolerance was found between the epidemic and nonepidemic strains. Log reduction was negatively correlated with starting inoculum, indicating better survival of higher inocula. This study presents a framework to quantify bacterial survival. MRSA strains showed great capacity to persist in the environment, irrespective of epidemiological success. This finding strengthens the need for effective surface cleaning to contain MRSA transmission. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of infections globally. While some MRSA clusters have spread worldwide, others are not able to disseminate successfully beyond certain regions despite frequent introduction. Dehydration tolerance facilitates transmission in hospital environments through enhanced survival on surfaces and fomites, potentially explaining differences in transmission success between MRSA clusters. Unfortunately, the currently available techniques to determine dehydration tolerance of cluster-forming bacteria like S. aureus are labor-intensive and unreliable due to their dependence on quantitative culturing. In this study, bacterial survival was assessed in a newly developed assay using isothermal microcalorimetry. With this technique, the effect of drying can be determined without the disadvantages of quantitative culturing. In combination with a newly developed mathematical algorithm, we determined dehydration tolerance of a large number of MRSA strains in a systematic, unbiased, and robust manner.
Collapse
Affiliation(s)
- Valérie O. Baede
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mehri Tavakol
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Margreet C. Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gwenan M. Knight
- Centre for Mathematical Modelling of Infectious Diseases, Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
48
|
Seetswane E, Loeto D, Muzila M, Tshekiso K, Gomba A, Baruti K, Jongman M. Phenotypic and genotypic profiling reveals a high prevalence of methicillin-resistant Staphylococcus aureus isolated from hospitals, houseflies and adjacent informal food retailers in Botswana. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36287593 DOI: 10.1099/mic.0.001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The increasing occurrence of methicillin-resistant Staphylococcus aureus (MRSA) in the environment, food and healthcare systems is a global public health concern. MRSA is reported to cause food poisoning, osteomyelitis and pyogenic infections of the skin, and consequently has been categorized as a high-priority pathogen by the World Health Organization. Here, we determined the presence of MRSA in clinical (n=56), food (n=150) and housefly samples (n=970) collected from two hospitals in Botswana. Characterization based on phenotypic (antimicrobial resistance, biofilm production) and genotypic (antimicrobial resistance genes and integrons) profiles were performed on all isolates. Of the total samples tested, 64 were positive for MRSA following conventional culture methods and PCR amplification of the mecA and mecC genes for confirmation of presumptive MRSA isolates. The confirmed isolates included 71 % (95 % CI 83.2-59.6) from clinical, 9 % (95 % CI 14--4.8) from food, and 1 % (95 % CI 1.6-0.4) collected from housefly samples. In total 89 % (n=57) isolates in the current study showed a multidrug resistance phenotype, among these, resistance to β-lactams and glycoside antibiotic classes were predominant. Genotypic characterization showed the domination of the blatem gene (95 %) followed by fox (63 %) and tetO (19 %) whilst vanA was only reported in 13 % of the isolates. Integrons were detected in 50 % (32/64) of the total MRSA isolates, and we report a high prevalence of etd gene, detected in 67 % (43/64) of the isolates followed by eta 38 % (24/64) whilst tsst-1 (3%) was the least detected genetic determinant. The genes etb and PVL were not detected in a ll the tested MRSA isolates. We provide the first report on the prevalence of MRSA isolated from the clinical-food-vector nexus harbouring biofilm and blatem genes, and antibiotic resistance profiles in Botswana. These results are significant for risk-assessment analysis and the development of improved MRSA infection prevention and control strategies.
Collapse
Affiliation(s)
- Eunicah Seetswane
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Daniel Loeto
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mbaki Muzila
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Kgomotso Tshekiso
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Annancietar Gomba
- National Health Laboratory Services, National Institute of Occupational Health, Johannesburg, South Africa
| | - Kabo Baruti
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana.,Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mosimanegape Jongman
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| |
Collapse
|
49
|
Yao H, Jiang J, Wang H, Wei T, Sangeetha T, Sun P, Jia F, Liu F, Fang F, Guo J. An emerging unrated mobile reservoir for antibiotic resistant genes: Does transportation matter to the spread. ENVIRONMENTAL RESEARCH 2022; 213:113634. [PMID: 35697082 DOI: 10.1016/j.envres.2022.113634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The regional distribution of antibiotic resistance genes has been caused by the use and preference of antibiotics. Not only environmental factors, but also the population movement associated with transportation development might have had a great impact, but yet less is known regarding this issue. This research study has investigated and reported that the high-speed railway train was a possible mobile reservoir of bacteria with antibiotic resistance, based on the occurrence, diversity, and abundance of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and mobile gene elements (MGEs) in untreated train wastewater. High-throughput 16S rRNA sequencing analyses have indicated that opportunistic pathogens like Pseudomonas and Enterococcuss were the predominant bacteria in all samples, especially in cultivable multi-antibiotic resistant bacteria. The further isolated Enterococcus faecalis and Enterococcus faecium exhibited multi-antibiotic resistance ability, potentially being an indicator for disinfection proficiency. Positive correlations amongst ARGs and MGEs were observed, such as between intI1 and tetW, tetA, blaTEM, among Tn916/154 and mefA/F, qnrS, implying a broad dissemination of multi-ARGs during transportation. The study findings suggested that the high-speed railway train wastewater encompassed highly abundant antibiotic-resistant pathogens, and the wastewater discharge without effective treatment may pose severe hazards to human health and ecosystem safety.
Collapse
Affiliation(s)
- Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Jie Jiang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Ting Wei
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Peizhe Sun
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Fangxu Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fang Liu
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fang Fang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
50
|
Feyissa N, Alemu T, Jirata D, Dessalegn A, Hirpa N. Isolation, identification, and determination of antibiogram characteristics of Staphylococcus aureus in cow milk and milk products (yoghurt and cheese) in West Showa Zone, Ethiopia. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|