1
|
Cerrone F, O'Connor KE. Cultivation of filamentous fungi in airlift bioreactors: advantages and disadvantages. Appl Microbiol Biotechnol 2025; 109:41. [PMID: 39928147 PMCID: PMC11811475 DOI: 10.1007/s00253-025-13422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Filamentous fungi or mycelia are a valuable bioresource to produce several biomolecules and enzymes, especially because of their biodegradation potential and for their key role of enablers of a circular bioeconomy. Filamentous fungi can be grown in submerged cultivation to maximise the volumetric productivity of the bioprocess, instead of using the more established and time-consuming solid-state cultivation. Multicellular mycelia are sensitive to shear stresses induced by mechanical agitation, and this aspect greatly affects their morphology in submerged cultivation (pelletisation) and the connected volumetric productivity. An efficient compromise is the growth of filamentous fungi in airlift bioreactors (ALR) where the volumetric oxygen transfer (KLa) is optimal, but the shear stress is reduced. In this review, we critically analysed the advantages and disadvantages of ALR-based cultivation of filamentous fungi, comparing these bioreactors also with stirred tank reactors and bubble column reactors; we focused on scientific literature that highlights findings for the cultivation of filamentous fungi for both the production of enzymes and the production of myco-biomass in ALR; we included studies for the control of the pelletisation of the fungal biomass in batch and semi-continuous cultivation, highlighting the interlinked hydrodynamics; finally, we included studies regarding the modifications of ALR in order to enhance filamentous fungi production. KEY POINTS: • ALR are efficient for batch and prolonged continuous cultivation of filamentous fungi. • ALR show both optimal gas hold-up and KLa with an airflow that has high superficial velocity and critical bubble diameter (1-6 mm). • Suspended mycelia aggregates (pellet) maintain a fluidised motion in ALR if their size/density can be controlled.
Collapse
Affiliation(s)
- Federico Cerrone
- School of Biotechnology, Dublin City University, Glasnevin Campus Dublin, Dublin, Ireland.
- BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science (Science East) University College Dublin, Belfield Campus Dublin, Dublin, Ireland.
| | - Kevin E O'Connor
- BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science (Science East) University College Dublin, Belfield Campus Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus Dublin, Dublin, Ireland
- Bioplastech Ltd NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Yao D, Liu X, Wang H, Liu J, Fang Z, Xiao Y. Enhanced extracellular production of Coprinopsis cinerea laccase Lcc9 in Aspergillus niger by gene expression cassette and bioprocess optimization. BMC Biotechnol 2024; 24:95. [PMID: 39578782 PMCID: PMC11583645 DOI: 10.1186/s12896-024-00924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The laccase Lcc9 from Coprinopsis cinerea has optimal catalytic activity at moderate to alkaline pH conditions, making it invaluable for industrial applications. However, C. cinerea naturally secretes Lcc9 at low expression levels, which limits the industrial application of Lcc9 on a large scale. Recombinant production of Lcc9 using Aspergillus niger would be an effective way to achieve its high production. RESULTS This study achieved the secretory production of Lcc9 in A. niger and established an efficient transformation procedure for A. niger by optimizing its protoplast preparation system. The transformation efficiency of A. niger was increased 3.8-fold under the optimal system (cell wall digestion enzyme solution: 2% cellulase, 1% snailase, 1% lyticase, and 0.5% lysozyme; incubation time: 3 h; incubation temperature: 37 ℃; culture time: 48 h). The extracellular yield of Lcc9 was enhanced by optimizing gene expression cassette and bioprocess. First, the strain AnGgcL (containing PgpdA) mediated by the SPCAT, a signal peptide of the extracellular high abundance protein catalase, had an extracellular laccase activity of 10 U/L after shake flask fermentation. Then, by optimizing promoter and signal peptide combinations that regulate lcc9 expression, the strain AnGcgL mediated by PcitA-SPGlaA had an extracellular laccase activity of 20 U/L. Subsequently, the strain AnRcgL1 (containing PcitA-SPGlaA) obtained by random integration had an extracellular laccase activity of 86 U/L. Sequencing revealed that the lcc9 expression cassette was integrated into the citrate synthase gene locus in the AnRcgL1 genome in a 9-copy form. By optimizing the microparticle, osmolyte, and Cu2+ in the fermentation medium, the AnRcgL1 extracellular laccase activity was further increased to 1566.7 U/L, which was 156.7-fold higher than that of AnGgcL. Furthermore, its extracellular laccase activity was increased to 1961 U/L in a 1-L fermenter. CONCLUSIONS To our knowledge, this study is the first to report the recombinant extracellular production of the C. cinerea laccase Lcc9 in A. niger and to use SPCAT in the A. niger expression system. The results of this study will help accelerate the industrial application of Lcc9. Moreover, the strategy used in this work provides methodological guidance for increasing other exogenous protein yields in A. niger.
Collapse
Affiliation(s)
- Dongbang Yao
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Xiaozhuang Liu
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Hui Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China.
| |
Collapse
|
3
|
Lu Z, Chen Z, Liu Y, Hua X, Gao C, Liu J. Morphological Engineering of Filamentous Fungi: Research Progress and Perspectives. J Microbiol Biotechnol 2024; 34:1197-1205. [PMID: 38693049 PMCID: PMC11239417 DOI: 10.4014/jmb.2402.02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
Filamentous fungi are important cell factories for the production of high-value enzymes and chemicals for the food, chemical, and pharmaceutical industries. Under submerged fermentation, filamentous fungi exhibit diverse fungal morphologies that are influenced by environmental factors, which in turn affect the rheological properties and mass transfer of the fermentation system, and ultimately the synthesis of products. In this review, we first summarize the mechanisms of mycelial morphogenesis and then provide an overview of current developments in methods and strategies for morphological regulation, including physicochemical and metabolic engineering approaches. We also anticipate that rapid developments in synthetic biology and genetic manipulation tools will accelerate morphological engineering in the future.
Collapse
Affiliation(s)
- Zhengwu Lu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Zhiqun Chen
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Yunguo Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Xuexue Hua
- Shandong Fufeng Fermentation Co., Ltd., Linyi 276600, P. R. China
| | - Cuijuan Gao
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| | - Jingjing Liu
- College of Life Sciences, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
4
|
Yao D, Ma Y, Ran J, Wang J, Kües U, Liu J, Zhou D, Zhang X, Fang Z, Xiao Y. Enhanced extracellular production of laccase in Coprinopsis cinerea by silencing chitinase gene. Appl Microbiol Biotechnol 2024; 108:324. [PMID: 38713211 PMCID: PMC11076350 DOI: 10.1007/s00253-024-13164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.
Collapse
Affiliation(s)
- Dongbang Yao
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Yuting Ma
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
| | - Jie Ran
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
| | - Jiaxiu Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute and Goettingen Center for Molecular Biosciences, University of Goettingen, Büsgenweg 2, 37077, Goettingen, Germany
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Danya Zhou
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China.
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China.
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China.
| |
Collapse
|
5
|
Barthel L, Cairns T, Duda S, Müller H, Dobbert B, Jung S, Briesen H, Meyer V. Breaking down barriers: comprehensive functional analysis of the Aspergillus niger chitin synthase repertoire. Fungal Biol Biotechnol 2024; 11:3. [PMID: 38468360 PMCID: PMC10926633 DOI: 10.1186/s40694-024-00172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/02/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Members of the fungal kingdom are heterotrophic eukaryotes encased in a chitin containing cell wall. This polymer is vital for cell wall stiffness and, ultimately, cell shape. Most fungal genomes contain numerous putative chitin synthase encoding genes. However, systematic functional analysis of the full chitin synthase catalogue in a given species is rare. This greatly limits fundamental understanding and potential applications of manipulating chitin synthesis across the fungal kingdom. RESULTS In this study, we conducted in silico profiling and subsequently deleted all predicted chitin synthase encoding genes in the multipurpose cell factory Aspergillus niger. Phylogenetic analysis suggested nine chitin synthases evolved as three distinct groups. Transcript profiling and co-expression network construction revealed remarkably independent expression, strongly supporting specific role(s) for the respective chitin synthases. Deletion mutants confirmed all genes were dispensable for germination, yet impacted colony spore titres, chitin content at hyphal septa, and internal architecture of submerged fungal pellets. We were also able to assign specific roles to individual chitin synthases, including those impacting colony radial growth rates (ChsE, ChsF), lateral cell wall chitin content (CsmA), chemical genetic interactions with a secreted antifungal protein (CsmA, CsmB, ChsE, ChsF), resistance to therapeutics (ChsE), and those that modulated pellet diameter in liquid culture (ChsA, ChsB). From an applied perspective, we show chsF deletion increases total protein in culture supernatant over threefold compared to the control strain, indicating engineering filamentous fungal chitin content is a high priority yet underexplored strategy for strain optimization. CONCLUSION This study has conducted extensive analysis for the full chitin synthase encoding gene repertoire of A. niger. For the first time we reveal both redundant and non-redundant functional roles of chitin synthases in this fungus. Our data shed light on the complex, multifaceted, and dynamic role of chitin in fungal growth, morphology, survival, and secretion, thus improving fundamental understanding and opening new avenues for biotechnological applications in fungi.
Collapse
Affiliation(s)
- Lars Barthel
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Timothy Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| | - Sven Duda
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Henri Müller
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Birgit Dobbert
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sascha Jung
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Heiko Briesen
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Zheng X, Cong W, Gultom SO, Wang M, Zhou H, Zhang J. Manipulation of co-pelletization for Chlorela vulgaris harvest by treatment of Aspergillus niger spore. World J Microbiol Biotechnol 2024; 40:83. [PMID: 38286963 DOI: 10.1007/s11274-023-03878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
The co-pelletization of microalgae with filamentous fungi was a promising approach for microalgae harvest. However, the real conditions of microalgae growth limited the arbitrary optimization of co-pellets formation with filamentous fungi. Therefore, it is urgent to develop an approach to manipulate the co-pelletization through treatment of A. niger spores. In this study, Aspergillus niger and Chlorella vulgaris were used as the model species of filamentous fungi and microalgae to investigate co-pellets formation using A. niger spores after by different pH solutions treatment, swelling, snailase treatment. The importance of spore treatments on C. vulgaris harvest in sequence was claimed based on response surface methodology analysis. The pH solutions treatment, swelling, snailase treatment of A. niger spore contributed 21.0%, 10.5%, 40.7% of harvest ratio of C. vulgaris respectively, which guided the application of spore treatment into co-pelletization. Treatment of spore was showed as an efficient approach to manipulate co-pelletization for microalgae harvest in diverse microalgae condition. This results promoted the application of co-pelletization technology in microalgae harvest of various conditions.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjie Cong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | | - Mingxuan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hualan Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
7
|
Müller H, Deffur C, Schmideder S, Barthel L, Friedrich T, Mirlach L, Hammel JU, Meyer V, Briesen H. Synchrotron radiation-based microcomputed tomography for three-dimensional growth analysis of Aspergillus niger pellets. Biotechnol Bioeng 2023; 120:3244-3260. [PMID: 37475650 DOI: 10.1002/bit.28506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Filamentous fungi produce a wide range of relevant biotechnological compounds. The close relationship between fungal morphology and productivity has led to a variety of analytical methods to quantify their macromorphology. Nevertheless, only a µ-computed tomography (µ-CT) based method allows a detailed analysis of the 3D micromorphology of fungal pellets. However, the low sample throughput of a laboratory µ-CT limits the tracking of the micromorphological evolution of a statistically representative number of submerged cultivated fungal pellets over time. To meet this challenge, we applied synchrotron radiation-based X-ray microtomography at the Deutsches Elektronen-Synchrotron [German Electron Synchrotron Research Center], resulting in 19,940 3D analyzed individual fungal pellets that were obtained from 26 sampling points during a 48 h Aspergillus niger submerged batch cultivation. For each of the pellets, we were able to determine micromorphological properties such as number and density of spores, tips, branching points, and hyphae. The computed data allowed us to monitor the growth of submerged cultivated fungal pellets in highly resolved 3D for the first time. The generated morphological database from synchrotron measurements can be used to understand, describe, and model the growth of filamentous fungal cultivations.
Collapse
Affiliation(s)
- Henri Müller
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Charlotte Deffur
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Stefan Schmideder
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Lars Barthel
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Tiaan Friedrich
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Lukas Mirlach
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Jörg U Hammel
- Helmholtz-Zentrum hereon, Institute of Materials Physics, Geesthacht, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Heiko Briesen
- School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany
| |
Collapse
|
8
|
Cheng CY, Wang YS, Wang ZL, Bibi S. Innovative Approaches to Fungal Food Production: Mycelial Pellet Morphology Insights. Foods 2023; 12:3477. [PMID: 37761188 PMCID: PMC10530132 DOI: 10.3390/foods12183477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Mycelia products enhance edible mushrooms in alignment with future sustainability trends. To meet forthcoming market demands, the morphology of mycelial pellets was optimized for direct consumption. Among ten commercial edible mushrooms in Taiwan, Pleurotus sp. was selected for its rapid growth and was identified via an internal transcribed spacer sequence. A combination of Plackett-Burman design and Taguchi's L9(34) orthogonal table revealed the optimal formula as potato dextrose broth (2.4%), olive oil (2%), calcium carbonate (0.5%), yeast extract (0.75%), and soy flour (0.5%). This led to a biomass increase to 19.9 ± 1.1 g/L, resulting in a 2.17-fold yield increase. To refine morphology, image processing by ImageJ quantified spherical characteristics. The addition of 0.2 to 1.0% Tween 80 enhanced pellet compaction by over 50%. Dilution of the medium improved uniformity (0.85) and conversion rate (42%), yielding mycelial pellets with 2.10 ± 0.52 mm diameters and a yield of 15.1 ± 0.6 g/L. These findings provide an alternative evaluation and application of edible mycelial pellets as future food.
Collapse
Affiliation(s)
- Chih-Yu Cheng
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-S.W.); (Z.-L.W.); (S.B.)
| | - Yu-Sheng Wang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-S.W.); (Z.-L.W.); (S.B.)
| | - Zhong-Liang Wang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-S.W.); (Z.-L.W.); (S.B.)
| | - Sidra Bibi
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-S.W.); (Z.-L.W.); (S.B.)
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| |
Collapse
|
9
|
Boruta T. Computation-aided studies related to the induction of specialized metabolite biosynthesis in microbial co-cultures: An introductory overview. Comput Struct Biotechnol J 2023; 21:4021-4029. [PMID: 37649711 PMCID: PMC10462793 DOI: 10.1016/j.csbj.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Co-cultivation is an effective method of inducing the production of specialized metabolites (SMs) in microbial strains. By mimicking the ecological interactions that take place in natural environment, this approach enables to trigger the biosynthesis of molecules which are not formed under monoculture conditions. Importantly, microbial co-cultivation may lead to the discovery of novel chemical entities of pharmaceutical interest. The experimental efforts aimed at the induction of SMs are greatly facilitated by computational techniques. The aim of this overview is to highlight the relevance of computational methods for the investigation of SM induction via microbial co-cultivation. The concepts related to the induction of SMs in microbial co-cultures are briefly introduced by addressing four areas associated with the SM induction workflows, namely the detection of SMs formed exclusively under co-culture conditions, the annotation of induced SMs, the identification of SM producer strains, and the optimization of fermentation conditions. The computational infrastructure associated with these areas, including the tools of multivariate data analysis, molecular networking, genome mining and mathematical optimization, is discussed in relation to the experimental results described in recent literature. The perspective on the future developments in the field, mainly in relation to the microbiome-related research, is also provided.
Collapse
Affiliation(s)
- Tomasz Boruta
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, ul. Wólczańska 213, 93-005 Łódź, Poland
| |
Collapse
|
10
|
Yang J, Yue HR, Pan LY, Feng JX, Zhao S, Suwannarangsee S, Chempreda V, Liu CG, Zhao XQ. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023:129449. [PMID: 37406833 DOI: 10.1016/j.biortech.2023.129449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Lignocellulosic biomass (LCB) has been recognized as a valuable carbon source for the sustainable production of biofuels and value-added biochemicals. Crude enzymes produced by fungal cell factories benefit economic LCB degradation. However, high enzyme production cost remains a great challenge. Filamentous fungi have been widely used to produce cellulolytic enzymes. Metabolic engineering of fungi contributes to efficient cellulase production for LCB biorefinery. Here the latest progress in utilizing fungal cell factories for cellulase production was summarized, including developing genome engineering tools to improve the efficiency of fungal cell factories, manipulating promoters, and modulating transcription factors. Multi-omics analysis of fungi contributes to identifying novel genetic elements for enhancing cellulase production. Furthermore, the importance of translation regulation of cellulase production are emphasized. Efficient development of fungal cell factories based on integrative strain engineering would benefit the overall bioconversion efficacy of LCB for sustainable bioproduction.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hou-Ru Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Ya Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Surisa Suwannarangsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Chempreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Diankristanti PA, Ng IS. Microbial itaconic acid bioproduction towards sustainable development: Insights, challenges, and prospects. BIORESOURCE TECHNOLOGY 2023:129280. [PMID: 37290713 DOI: 10.1016/j.biortech.2023.129280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Microbial biomanufacturing is a promising approach to produce high-value compounds with low-carbon footprint and significant economic benefits. Among twelve "Top Value-Added Chemicals from Biomass", itaconic acid (IA) stands out as a versatile platform chemical with numerous applications. IA is naturally produced by Aspergillus and Ustilago species through a cascade enzymatic reaction between aconitase (EC 4.2.1.3) and cis-aconitic acid decarboxylase (EC 4.1.1.6). Recently, non-native hosts such as Escherichia coli, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Yarrowia lipolytica have been genetically engineered to produce IA through the introduction of key enzymes. This review provides an up-to-date summary of the progress made in IA bioproduction, from native to engineered hosts, covers in vivo and in vitro approaches, and highlights the prospects of combination tactics. Current challenges and recent endeavors are also addressed to envision comprehensive strategies for renewable IA production in the future towards sustainable development goals (SDGs).
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
12
|
Cairns TC, de Kanter T, Zheng XZ, Zheng P, Sun J, Meyer V. Regression modelling of conditional morphogene expression links and quantifies the impact of growth rate, fitness and macromorphology with protein secretion in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:95. [PMID: 37268954 DOI: 10.1186/s13068-023-02345-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Filamentous fungi are used as industrial cell factories to produce a diverse portfolio of proteins, organic acids, and secondary metabolites in submerged fermentation. Generating optimized strains for maximum product titres relies on a complex interplay of molecular, cellular, morphological, and macromorphological factors that are not yet fully understood. RESULTS In this study, we generate six conditional expression mutants in the protein producing ascomycete Aspergillus niger and use them as tools to reverse engineer factors which impact total secreted protein during submerged growth. By harnessing gene coexpression network data, we bioinformatically predicted six morphology and productivity associated 'morphogenes', and placed them under control of a conditional Tet-on gene switch using CRISPR-Cas genome editing. Strains were phenotypically screened on solid and liquid media following titration of morphogene expression, generating quantitative measurements of growth rate, filamentous morphology, response to various abiotic perturbations, Euclidean parameters of submerged macromorphologies, and total secreted protein. These data were built into a multiple linear regression model, which identified radial growth rate and fitness under heat stress as positively correlated with protein titres. In contrast, diameter of submerged pellets and cell wall integrity were negatively associated with productivity. Remarkably, our model predicts over 60% of variation in A. niger secreted protein titres is dependent on these four variables, suggesting that they play crucial roles in productivity and are high priority processes to be targeted in future engineering programs. Additionally, this study suggests A. niger dlpA and crzA genes are promising new leads for enhancing protein titres during fermentation. CONCLUSIONS Taken together this study has identified several potential genetic leads for maximizing protein titres, delivered a suite of chassis strains with user controllable macromorphologies during pilot fermentation studies, and has quantified four crucial factors which impact secreted protein titres in A. niger.
Collapse
Affiliation(s)
- Timothy C Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| | - Tom de Kanter
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Xiaomei Z Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
13
|
Kheirkhah T, Neubauer P, Junne S. Controlling Aspergillus niger morphology in a low shear-force environment in a rocking-motion bioreactor. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
Recent Advances in Chitin Biosynthesis Associated with the Morphology and Secondary Metabolite Synthesis of Filamentous Fungi in Submerged Fermentation. J Fungi (Basel) 2023; 9:jof9020205. [PMID: 36836319 PMCID: PMC9967639 DOI: 10.3390/jof9020205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Metabolites produced by filamentous fungi are used extensively in the food and drug industries. With the development of the morphological engineering of filamentous fungi, numerous biotechnologies have been applied to alter the morphology of fungal mycelia and enhance the yields and productivity of target metabolites during submerged fermentation. Disruption of chitin biosynthesis can modify the cell growth and mycelial morphology of filamentous fungi and regulate the biosynthesis of metabolites during submerged fermentation. In this review, we present a comprehensive coverage of the categories and structures of the enzyme chitin synthase, chitin biosynthetic pathways, and the association between chitin biosynthesis and cell growth and metabolism in filamentous fungi. Through this review, we hope to increase awareness of the metabolic engineering of filamentous fungal morphology, provide insights into the molecular mechanisms of morphological control via chitin biosynthesis, and describe strategies for the application of morphological engineering to enhance the production of target metabolites in filamentous fungi during submerged fermentation.
Collapse
|
15
|
Wainaina S, Taherzadeh MJ. Automation and artificial intelligence in filamentous fungi-based bioprocesses: A review. BIORESOURCE TECHNOLOGY 2023; 369:128421. [PMID: 36462761 DOI: 10.1016/j.biortech.2022.128421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
By utilizing their powerful metabolic versatility, filamentous fungi can be utilized in bioprocesses aimed at achieving circular economy. With the current digital transformation within the biomanufacturing sector, the interest of automating fungi-based systems has intensified. The purpose of this paper was therefore to review the potentials connected to the use of automation and artificial intelligence in fungi-based systems. Automation is characterized by the substitution of manual tasks with mechanized tools. Artificial intelligence is, on the other hand, a domain within computer science that aims at designing tools and machines with the capacity to execute functions that would usually require human aptitude. Process flexibility, enhanced data reliability and increased productivity are some of the benefits of integrating automation and artificial intelligence in fungi-based bioprocesses. One of the existing gaps that requires further investigation is the use of such data-based technologies in the production of food from fungi.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | | |
Collapse
|
16
|
Cairns T, Zheng X, Feurstein C, Zheng P, Sun J, Meyer V. Quantitative phenotypic screens of Aspergillus niger mutants in solid and liquid culture. STAR Protoc 2022; 3:101883. [PMID: 36595891 PMCID: PMC9706620 DOI: 10.1016/j.xpro.2022.101883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
This protocol describes procedures for quantifying Aspergillus niger growth in both solid and liquid culture. Firstly, by comparing radial growth between mutant and progenitor isolates on solid agar supplemented with sublethal stressors, susceptibility coefficients can be calculated. Secondly, analysis of macromorphological growth types in liquid culture allows full quantification of how a gene of interest affects submerged growth. By combining these assays, an extensive and quantitative dataset of how a gene of interest impacts growth in this fungus is possible. For complete details on the use and execution of this protocol, please refer to Cairns et al. (2019)1 and Cairns et al. (2022).2.
Collapse
Affiliation(s)
- Timothy Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10263 Berlin, Germany; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Claudia Feurstein
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10263 Berlin, Germany
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10263 Berlin, Germany.
| |
Collapse
|
17
|
Zheng X, Cairns T, Zheng P, Meyer V, Sun J. Protocol for gene characterization in Aspergillus niger using 5S rRNA-CRISPR-Cas9-mediated Tet-on inducible promoter exchange. STAR Protoc 2022; 3:101838. [PMID: 36595926 PMCID: PMC9678785 DOI: 10.1016/j.xpro.2022.101838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
This protocol presents an efficient genetic strategy to investigate gene function in the fungus Aspergillus niger. We combined 5S rRNA-CRISPR-Cas9 technology with Tet-on gene switch to generate conditional-expression mutants via precisely replacing native promoter with inducible promoter. We describe the design and DNA preparation for sgRNAs and donor DNA. We then detail the steps for DNA co-transformation into A. niger protoplasts by PEG-mediated transformation, followed by homozygote isolation. Finally, we describe the genome verification and strain validation of the isolates. For complete details on the use and execution of this protocol, please refer to Zheng et al. (2019).1.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,University of Chinese Academy of Sciences, Beijing 100049, China,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China,Corresponding author
| | - Timothy Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10263 Berlin, Germany
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,University of Chinese Academy of Sciences, Beijing 100049, China,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China,Corresponding author
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 10263 Berlin, Germany
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,University of Chinese Academy of Sciences, Beijing 100049, China,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China,Corresponding author
| |
Collapse
|
18
|
Jiang C, Wang H, Liu M, Wang L, Yang R, Wang P, Lu Z, Zhou Y, Zheng Z, Zhao G. Identification of chitin synthase activator in Aspergillus niger and its application in citric acid fermentation. Appl Microbiol Biotechnol 2022; 106:6993-7011. [PMID: 36149454 DOI: 10.1007/s00253-022-12174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
The biosynthesis of citric acid (CA) using Aspergillus niger as a carrier is influenced by mycelium morphology, which is determined by the expression level of morphology-related genes. As a key component of the fungal cell wall, chitin content has an important effect on morphogenesis, and to investigate the effects of this on fermentation performance, we used RNA interference to knockdown chitin synthase C (CHSC) and chitin synthase activator (CHS3) to obtain the single-gene mutant strains A. niger chs3 and chsC and the double mutant A. niger chs3C. We found that the CA fermentation performance of the two single mutants was significantly better than that of the double mutant. The mutant A. niger chs3-4 exhibited CA production potential compared to that of the parent strain in scale-up fermentation; we determined certain characteristics of CA high-yielding strain fermentation pellets. In addition, when chsC alone was silenced, there was very little change in chs3 mRNA levels, whereas those of chsC were significantly reduced when only chs3 was silenced. As this may be because of a synergistic effect between chsC and chs3, and we speculated that the latent activation target of CHS3 is CHSC, our results confirmed this hypothesis. This study is the first application of a separation and combination silence strategy of chitin synthase and chitin synthase activator in the morphology of A. niger CA fermentation. Furthermore, it provides new insights into the method for the morphological study of A. niger fermentation and the interaction of homologous genes. KEY POINTS: • The function of chitin synthase C (chsC) and chitin synthase activator (chs3) is tightly interrelated. • Mycelial morphology was optimized by knockdown of CHS3, resulting in the overproduction of citric acid. • The separation and combination silence strategies are promising tools for the interaction of homologous housekeeping genes.
Collapse
Affiliation(s)
- Chunxu Jiang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.,University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Han Wang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.
| | - Menghan Liu
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China
| | - Li Wang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China
| | - Ruwen Yang
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China
| | - Peng Wang
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China
| | - Zongmei Lu
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China
| | - Yong Zhou
- COFCO Biotechnology Co, Ltd. No. 1, Zhongliang Avenue, Bengbu Anhui, 233010, People's Republic of China.
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.
| | - Genhai Zhao
- Hefei Institutes of Physical Science, Comprehensive Laboratory Building, Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1138, Hefei Anhui, 230031, People's Republic of China.
| |
Collapse
|
19
|
Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum. Appl Microbiol Biotechnol 2022; 106:6413-6426. [DOI: 10.1007/s00253-022-12181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
|
20
|
Wen Y, Liao B, Yan X, Wu Z, Tian X. Temperature-responsive regulation of the fermentation of hypocrellin A by Shiraia bambusicola (GDMCC 60438). Microb Cell Fact 2022; 21:135. [PMID: 35787717 PMCID: PMC9254528 DOI: 10.1186/s12934-022-01862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypocrellin A (HA) is a perylene quinone pigment with high medicinal value that is produced by Shiraia bambusicola Henn. (S. bambusicola) and Hypocrella bambusae (Berk. & Broome) Sacc. (Ascomycetes) with great potential in clinical photodynamic therapy. Submerged cultivation of S. bambusicola is a popular technique for HA production. However, there is not much research on how temperature changes lead to differential yields of HA production. RESULTS The temperature regulation of submerged fermentation is an efficient approach to promote HA productivity. After a 32 °C fermentation, the HA content in the mycelia S. bambusicola (GDMCC 60438) was increased by more than three- and fivefold when compared to that at 28 °C and 26 °C, respectively. RNA sequencing (RNA-seq) analysis showed that the regulation of the expression of transcription factors and genes essential for HA biosynthesis could be induced by high temperature. Among the 496 differentially expressed genes (DEGs) explicitly expressed at 32 °C, the hub genes MH01c06g0046321 and MH01c11g0073001 in the coexpression network may affect HA biosynthesis and cytoarchitecture, respectively. Moreover, five genes, i.e., MH01c01g0006641, MH01c03g0017691, MH01c04g0029531, MH01c04g0030701 and MH01c22g0111101, potentially related to HA synthesis also exhibited significantly higher expression levels. Morphological observation showed that the autolysis inside the mycelial pellets tightly composted intertwined mycelia without apparent holes. CONCLUSIONS The obtained results provide an effective strategy in the submerged fermentation of S. bambusicola for improved HA production and reveal an alternative regulatory network responsive to the biosynthesis metabolism of HA in response to environmental signals.
Collapse
Affiliation(s)
- Yongdi Wen
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou, 510006, China
| | - Baosheng Liao
- The Second Clinical College, Guangzhou University of Chinese Medicine, 232 East Out Loop, University Park, Guangzhou, 510006, China
| | - Xiaoxiao Yan
- Zhuhai Institute of Modern Industrial Innovation, South China University of Technology, 8 Fushan Road, Fushan Industrial Park, Zhuhai, 519100, China
| | - Zhenqiang Wu
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou, 510006, China
| | - Xiaofei Tian
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou, 510006, China. .,Zhuhai Institute of Modern Industrial Innovation, South China University of Technology, 8 Fushan Road, Fushan Industrial Park, Zhuhai, 519100, China.
| |
Collapse
|
21
|
CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species. J Fungi (Basel) 2022; 8:jof8050467. [PMID: 35628723 PMCID: PMC9143064 DOI: 10.3390/jof8050467] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Aspergillus, a genus of filamentous fungi, is extensively distributed in nature and plays crucial roles in the decomposition of organic materials as an important environmental microorganism as well as in the traditional fermentation and food processing industries. Furthermore, due to their strong potential to secrete a large variety of hydrolytic enzymes and other natural products by manipulating gene expression and/or introducing new biosynthetic pathways, several Aspergillus species have been widely exploited as microbial cell factories. In recent years, with the development of next-generation genome sequencing technology and genetic engineering methods, the production and utilization of various homo-/heterologous-proteins and natural products in Aspergillus species have been well studied. As a newly developed genome editing technology, the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been used to edit and modify genes in Aspergilli. So far, the CRISPR/Cas9-based approach has been widely employed to improve the efficiency of gene modification in the strain type Aspergillus nidulans and other industrially important and pathogenic Aspergillus species, including Aspergillus oryzae, Aspergillus niger, and Aspergillus fumigatus. This review highlights the current development of CRISPR/Cas9-based genome editing technology and its application in basic research and the production of recombination proteins and natural products in the Aspergillus species.
Collapse
|
22
|
Müller H, Barthel L, Schmideder S, Schütze T, Meyer V, Briesen H. From spores to fungal pellets: a new high throughput image analysis highlights the structural development of Aspergillus niger. Biotechnol Bioeng 2022; 119:2182-2195. [PMID: 35477834 DOI: 10.1002/bit.28124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022]
Abstract
Many filamentous fungi are exploited as cell factories in biotechnology. Cultivated under industrially relevant submerged conditions, filamentous fungi can adopt different macromorphologies ranging from dispersed mycelia over loose clumps to pellets. Central to the development of a pellet morphology is the agglomeration of spores after inoculation followed by spore germination and outgrowth into a pellet population which is usually very heterogeneous. As the dynamics underlying population heterogeneity are not yet fully understood, we present here a new high-throughput image analysis pipeline based on stereomicroscopy to comprehensively assess the developmental program starting from germination up to pellet formation. To demonstrate the potential of this pipeline, we used data from 44 sampling times harvested during a 48 h submerged batch cultivation of the fungal cell factory Aspergillus niger. The analysis of up to 1700 spore agglomerates and 1500 pellets per sampling time allowed the precise tracking of the morphological development of the overall culture. The data gained were used to calculate size distributions and area fractions of spores, spore agglomerates, spore agglomerates within pellets, pellets, and dispersed mycelia. This approach eventually enables the quantification of culture heterogeneities and pellet breakage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Henri Müller
- Technical University of Munich, School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Freising, Germany
| | - Lars Barthel
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Stefan Schmideder
- Technical University of Munich, School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Freising, Germany
| | - Tabea Schütze
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Heiko Briesen
- Technical University of Munich, School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Freising, Germany
| |
Collapse
|
23
|
Li Q, Lu J, Zhang G, Liu S, Zhou J, Du G, Chen J. Recent advances in the development of Aspergillus for protein production. BIORESOURCE TECHNOLOGY 2022; 348:126768. [PMID: 35091037 DOI: 10.1016/j.biortech.2022.126768] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Aspergillus had been widely used in the industrial production of recombinant proteins. In addition to the safety and broad substrate utilization spectrum, its efficient post-translational modification and strong protein secretion capacity have significant advantages for developing an excellent protein-producing cell factory in industrial production. However, the difficulties in genetic manipulation of Aspergillus and varying expression levels of different heterologous proteins hampered its further development and application. Recently, the development of CRISPR genome editing and high-throughput screening platforms has facilitated the Aspergillus development of a wide range of modifications and applications. Meanwhile, multi-omics analysis and multiplexed genetic engineering have promoted effective knowledge mining. This paper provides a comprehensive and updated review of these advances, including high-throughput screening, genome editing, protein expression modules, and fermentation optimization. It also highlights and discusses the latest significant progress, aiming to provide a practical guide for implementing Aspergillus as an efficient protein-producing cell factory.
Collapse
Affiliation(s)
- Qinghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jinchang Lu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
24
|
Zheng X, Cairns TC, Ni X, Zhang L, Zhai H, Meyer V, Zheng P, Sun J. Comprehensively dissecting the hub regulation of PkaC on high-productivity and pellet macromorphology in citric acid producing Aspergillus niger. Microb Biotechnol 2022; 15:1867-1882. [PMID: 35213792 PMCID: PMC9151341 DOI: 10.1111/1751-7915.14020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Aspergillus niger, an important industrial workhorse for citric acid production, is characterized by polar hyphal growth with complex pelleted, clumped or dispersed macromorphologies in submerged culture. Although organic acid titres are dramatically impacted by these growth types, studies that assess productivity and macromorphological changes are limited. Herein, we functionally analysed the role of the protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP) signalling cascade during fermentation by disrupting and conditionally expressing the pkaC gene. pkaC played multiple roles during hyphal, colony and conidiophore growth. By overexpressing pkaC, we could concomitantly modify hyphal growth at the pellet surface and improve citric acid titres up to 1.87‐fold. By quantitatively analysing hundreds of pellets during pilot fermentation experiments, we provide the first comprehensive correlation between A. niger pellet surface morphology and citric acid production. Finally, by intracellular metabolomics analysis and weighted gene coexpression network analysis (WGCNA) following titration of pkaC expression, we unveil the metabolomic and transcriptomic basis underpin hyperproductivity and pellet growth. Taken together, this study confirms pkaC as hub regulator linking submerged macromorphology and citric acid production and provides high‐priority genetic leads for future strain engineering programmes.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Timothy C Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, 13355, Germany
| | - Xiaomei Ni
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Lihui Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Huanhuan Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Vera Meyer
- Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, 13355, Germany
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
25
|
Miyazawa K, Umeyama T, Hoshino Y, Abe K, Miyazaki Y. Quantitative Monitoring of Mycelial Growth of Aspergillus fumigatus in Liquid Culture by Optical Density. Microbiol Spectr 2022; 10:e0006321. [PMID: 34985327 PMCID: PMC8729762 DOI: 10.1128/spectrum.00063-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023] Open
Abstract
Filamentous fungi form multicellular hyphae, which generally form pellets in liquid shake cultures, during the vegetative growth stage. Because of these characteristics, growth-monitoring methods commonly used in bacteria and yeast have not been applied to filamentous fungi. We have recently revealed that the cell wall polysaccharide α-1,3-glucan and extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae. Here, we tested whether Aspergillus fumigatus shows dispersed growth in liquid media that can be quantitatively monitored, similar to that of yeasts. We constructed a double disruptant mutant of both the primary α-1,3-glucan synthase gene ags1 and the putative GAG synthase gene gtb3 in A. fumigatus AfS35 and found that the hyphae of this mutant were fully dispersed. Although the mutant lost α-1,3-glucan and GAG, its growth and susceptibility to antifungal agents were not different from those of the parental strain. Mycelial weight of the mutant in shake-flask cultures was proportional to optical density for at least 18 h. We were also able to quantify the dose response of hyphal growth to antifungal agents by measuring optical density. Overall, we established a convenient strategy to monitor A. fumigatus hyphal growth. Our method can be directly used for screening for novel antifungals against Aspergillus species. IMPORTANCE Filamentous fungi generally form hyphal pellets in liquid culture. This property prevents filamentous fungi so that we may apply the methods used for unicellular organisms such as yeast and bacteria. In the present study, by using the fungal pathogen Aspergillus fumigatus strain with modified hyphal surface polysaccharides, we succeeded in monitoring the hyphal growth quantitatively by optical density. The principle of this easy measurement by optical density could lead to a novel standard of hyphal quantification such as those that have been used for yeasts and bacteria. Dose response of hyphal growth by antifungal agents could also be monitored. This method could be useful for screening for novel antifungal reagents against Aspergillus species.
Collapse
Affiliation(s)
- Ken Miyazawa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Umeyama
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasutaka Hoshino
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
26
|
Cairns TC, Zheng X, Feurstein C, Zheng P, Sun J, Meyer V. A Library of Aspergillus niger Chassis Strains for Morphology Engineering Connects Strain Fitness and Filamentous Growth With Submerged Macromorphology. Front Bioeng Biotechnol 2022; 9:820088. [PMID: 35111742 PMCID: PMC8801610 DOI: 10.3389/fbioe.2021.820088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
Submerged fermentation using filamentous fungal cell factories is used to produce a diverse portfolio of useful molecules, including food, medicines, enzymes, and platform chemicals. Depending on strain background and abiotic culture conditions, different macromorphologies are formed during fermentation, ranging from dispersed hyphal fragments to approximately spherical pellets several millimetres in diameter. These macromorphologies are known to have a critical impact on product titres and rheological performance of the bioreactor. Pilot productivity screens in different macromorphological contexts is technically challenging, time consuming, and thus a significant limitation to achieving maximum product titres. To address this bottleneck, we developed a library of conditional expression mutants in the organic, protein, and secondary metabolite cell factory Aspergillus niger. Thirteen morphology-associated genes transcribed during fermentation were placed via CRISPR-Cas9 under control of a synthetic Tet-on gene switch. Quantitative analysis of submerged growth reveals that these strains have distinct and titratable macromorphologies for use as chassis during strain engineering programs. We also used this library as a tool to quantify how pellet formation is connected with strain fitness and filamentous growth. Using multiple linear regression modelling, we predict that pellet formation is dependent largely on strain fitness, whereas pellet Euclidian parameters depend on fitness and hyphal branching. Finally, we have shown that conditional expression of the putative kinase encoding gene pkh2 can decouple fitness, dry weight, pellet macromorphology, and culture heterogeneity. We hypothesize that further analysis of this gene product and the cell wall integrity pathway in which it is embedded will enable more precise engineering of A. niger macromorphology in future.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Timothy C. Cairns, ; Jibin Sun, ; Vera Meyer,
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Claudia Feurstein
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- *Correspondence: Timothy C. Cairns, ; Jibin Sun, ; Vera Meyer,
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Timothy C. Cairns, ; Jibin Sun, ; Vera Meyer,
| |
Collapse
|
27
|
Sun J, Xiao Y, Gao B, Du L, Wang Y, Zhu D. Nitrogen source significantly increases Chaetomium globosum DX-THS3 β-glucuronidase production by controlling fungal morphology in submerged fermentation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Ścigaczewska A, Boruta T, Bizukojć M. Quantitative Morphological Analysis of Filamentous Microorganisms in Cocultures and Monocultures: Aspergillus terreus and Streptomyces rimosus Warfare in Bioreactors. Biomolecules 2021; 11:1740. [PMID: 34827738 PMCID: PMC8615777 DOI: 10.3390/biom11111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to quantitatively characterize the morphology of the filamentous microorganisms Aspergillus terreus ATCC 20542 and Streptomyces rimosus ATCC 10970, cocultivated in stirred tank bioreactors, and to characterize their mutual influence with the use of quantitative image analysis. Three distinct coculture initiation strategies were applied: preculture versus preculture, spores versus spores and preculture versus preculture with time delay for one of the species. Bioreactor cocultures were accompanied by parallel monoculture controls. The results recorded for the mono- and cocultures were compared in order to investigate the effect of cocultivation on the morphological evolution of A. terreus and S. rimosus. Morphology-related observations were also confronted with the analysis of secondary metabolism. The morphology of the two studied filamentous species strictly depended on the applied coculture initiation strategy. In the cocultures initiated by the simultaneous inoculation, S. rimosus gained domination or advance over A. terreus. The latter microorganism dominated only in these experiments in which S. rimosus was introduced with a delay.
Collapse
Affiliation(s)
- Anna Ścigaczewska
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland; (T.B.); (M.B.)
| | | | | |
Collapse
|
29
|
Ichikawa H, Miyazawa K, Komeiji K, Susukida S, Zhang S, Muto K, Orita R, Takeuchi A, Kamachi Y, Hitosugi M, Yoshimi A, Shintani T, Kato Y, Abe K. Improved recombinant protein production in Aspergillus oryzae lacking both α-1,3-glucan and galactosaminogalactan in batch culture with a lab-scale bioreactor. J Biosci Bioeng 2021; 133:39-45. [PMID: 34627690 DOI: 10.1016/j.jbiosc.2021.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/22/2022]
Abstract
Filamentous fungi are used as production hosts for various commercially valuable enzymes and chemicals including organic acids and secondary metabolites. We previously revealed that α-1,3-glucan and galactosaminogalactan (GAG) contribute to hyphal aggregation in the industrial fungus Aspergillus oryzae, and that production of recombinant protein in shake-flask culture is higher in a mutant lacking both α-1,3-glucan and GAG (AGΔ-GAGΔ) than in the parental strain. Here, we compared the productivity of the wild type, AGΔ-GAGΔ, and mutants lacking α-1,3-glucan (AGΔ) or GAG (GAGΔ) in batch culture with intermittent addition of glucose in a 5-L lab-scale bioreactor. The hyphae of the wild type and all mutants were dispersed by agitation, although the wild type and AGΔ formed small amounts of aggregates. Although mycelial weight was similar among the strains, the concentration of a secreted recombinant protein (CutL1) was the highest in AGΔ-GAGΔ. Evaluation of fluid properties revealed that the apparent viscosities of mycelial cultures of the wild type and AGΔ-GAGΔ decreased as the agitation speed was increased. The apparent viscosity of the AGΔ-GAGΔ culture tended to be lower than that of the wild-type strain at each agitation speed, and was significantly lower at 600 rpm. Overall, the lack of α-1,3-glucan and GAG in the hyphae improved culture rheology, resulting in an increase in recombinant protein production in AGΔ-GAGΔ. This is the first report of flow behavior improvement by a cell-surface component defect in a filamentous fungus.
Collapse
Affiliation(s)
- Hikaru Ichikawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Keisuke Komeiji
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Shunya Susukida
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Silai Zhang
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kiyoaki Muto
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Ryutaro Orita
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Ayumu Takeuchi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yuka Kamachi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Masahiro Hitosugi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan; ABE-Project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Takahiro Shintani
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yoshikazu Kato
- Mixing Technology Laboratory, Satake Chemical Equipment Mfg., Ltd., 60 Niizo, Toda, Saitama 335-0021, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan; ABE-Project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| |
Collapse
|
30
|
Meyer V, Cairns T, Barthel L, King R, Kunz P, Schmideder S, Müller H, Briesen H, Dinius A, Krull R. Understanding and controlling filamentous growth of fungal cell factories: novel tools and opportunities for targeted morphology engineering. Fungal Biol Biotechnol 2021; 8:8. [PMID: 34425914 PMCID: PMC8383395 DOI: 10.1186/s40694-021-00115-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 02/20/2023] Open
Abstract
Filamentous fungal cell factories are efficient producers of platform chemicals, proteins, enzymes and natural products. Stirred-tank bioreactors up to a scale of several hundred m³ are commonly used for their cultivation. Fungal hyphae self-assemble into various cellular macromorphologies ranging from dispersed mycelia, loose clumps, to compact pellets. Development of these macromorphologies is so far unpredictable but strongly impacts productivities of fungal bioprocesses. Depending on the strain and the desired product, the morphological forms vary, but no strain- or product-related correlations currently exist to improve
process understanding of fungal production systems. However, novel genomic, genetic, metabolic, imaging and modelling tools have recently been established that will provide fundamental new insights into filamentous fungal growth and how it is balanced with product formation. In this primer, these tools will be highlighted and their revolutionary impact on rational morphology engineering and bioprocess control will be discussed.
Collapse
Affiliation(s)
- Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Timothy Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Lars Barthel
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Rudibert King
- Chair of Measurement and Control, Institute of Chemical and Process Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Philipp Kunz
- Chair of Measurement and Control, Institute of Chemical and Process Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Stefan Schmideder
- Chair of Process Systems Engineering, School of Life Sciences, Technical University of Munich, Gregor- Mendel-Str. 4, 85354, Freising, Germany
| | - Henri Müller
- Chair of Process Systems Engineering, School of Life Sciences, Technical University of Munich, Gregor- Mendel-Str. 4, 85354, Freising, Germany
| | - Heiko Briesen
- Chair of Process Systems Engineering, School of Life Sciences, Technical University of Munich, Gregor- Mendel-Str. 4, 85354, Freising, Germany
| | - Anna Dinius
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany.,Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Brunswick, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany.,Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Brunswick, Germany
| |
Collapse
|
31
|
Something old, something new: challenges and developments in Aspergillus niger biotechnology. Essays Biochem 2021; 65:213-224. [PMID: 33955461 PMCID: PMC8314004 DOI: 10.1042/ebc20200139] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The filamentous ascomycete fungus Aspergillus niger is a prolific secretor of organic acids, proteins, enzymes and secondary metabolites. Throughout the last century, biotechnologists have developed A. niger into a multipurpose cell factory with a product portfolio worth billions of dollars each year. Recent technological advances, from genome editing to other molecular and omics tools, promise to revolutionize our understanding of A. niger biology, ultimately to increase efficiency of existing industrial applications or even to make entirely new products. However, various challenges to this biotechnological vision, many several decades old, still limit applications of this fungus. These include an inability to tightly control A. niger growth for optimal productivity, and a lack of high-throughput cultivation conditions for mutant screening. In this mini-review, we summarize the current state-of-the-art for A. niger biotechnology with special focus on organic acids (citric acid, malic acid, gluconic acid and itaconic acid), secreted proteins and secondary metabolites, and discuss how new technological developments can be applied to comprehensively address a variety of old and persistent challenges.
Collapse
|
32
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J Fungi (Basel) 2021; 7:535. [PMID: 34356914 PMCID: PMC8307877 DOI: 10.3390/jof7070535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic acids, and small molecular weight natural products. Industrial biotechnologists have successfully harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during host infection or in mixed microbial communities, has also led to the development of novel and emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic understanding for how various molecules are secreted and present numerous applications for extracellular products. Additionally, we discuss how the control of secretory pathways and the polar growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology, agriculture, and the clinic.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
33
|
|
34
|
Jansen R, Küsters K, Morschett H, Wiechert W, Oldiges M. A fully automated pipeline for the dynamic at-line morphology analysis of microscale Aspergillus cultivation. Fungal Biol Biotechnol 2021; 8:2. [PMID: 33676585 PMCID: PMC7937226 DOI: 10.1186/s40694-021-00109-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/16/2021] [Indexed: 11/27/2022] Open
Abstract
Background Morphology, being one of the key factors influencing productivity of filamentous fungi, is of great interest during bioprocess development. With increasing demand of high-throughput phenotyping technologies for fungi due to the emergence of novel time-efficient genetic engineering technologies, workflows for automated liquid handling combined with high-throughput morphology analysis have to be developed. Results In this study, a protocol allowing for 48 parallel microbioreactor cultivations of Aspergillus carbonarius with non-invasive online signals of backscatter and dissolved oxygen was established. To handle the increased cultivation throughput, the utilized microbioreactor is integrated into a liquid handling platform. During cultivation of filamentous fungi, cell suspensions result in either viscous broths or form pellets with varying size throughout the process. Therefore, tailor-made liquid handling parameters such as aspiration/dispense height, velocity and mixing steps were optimized and validated. Development and utilization of a novel injection station enabled a workflow, where biomass samples are automatically transferred into a flow through chamber fixed under a light microscope. In combination with an automated image analysis concept, this enabled an automated morphology analysis pipeline. The workflow was tested in a first application study, where the projected biomass area was determined at two different cultivation temperatures and compared to the microbioreactor online signals. Conclusions A novel and robust workflow starting from microbioreactor cultivation, automated sample harvest and processing via liquid handling robots up to automated morphology analysis was developed. This protocol enables the determination of projected biomass areas for filamentous fungi in an automated and high-throughput manner. This measurement of morphology can be applied to describe overall pellet size distribution and heterogeneity.
Collapse
Affiliation(s)
- Roman Jansen
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Kira Küsters
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Holger Morschett
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Computational Systems Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
35
|
Tesche S, Krull R. An image analysis method to quantify heterogeneous filamentous biomass based on pixel intensity values – Interrelation of macro- and micro-morphology in Actinomadura namibiensis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv 2020; 44:107630. [PMID: 32919011 DOI: 10.1016/j.biotechadv.2020.107630] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus niger has become one of the most important hosts for food enzyme production due to its unique food safety characteristics and excellent protein secretion systems. A series of food enzymes such as glucoamylase have been commercially produced by A. niger strains, making this species a suitable platform for the engineered of strains with improved enzyme production. However, difficulties in genetic manipulations and shortage of expression strategies limit the progress in this regard. Moreover, several mycotoxins have recently been detected in some A. niger strains, which raises the necessity for a regulatory approval process for food enzyme production. With robust strains, processing engineering strategies are also needed for producing the enzymes on a large scale, which is also challenging for A. niger, since its culture is aerobic, and non-Newtonian fluid properties are developed during submerged culture, making mixing and aeration very energy-intensive. In this article, the progress and challenges of developing A. niger for the production of food enzymes are reviewed, including its genetic manipulations, strategies for more efficient production of food enzymes, and elimination of mycotoxins for product safety.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
37
|
Zhang X, Lin Y, Wu Q, Wang Y, Chen GQ. Synthetic Biology and Genome-Editing Tools for Improving PHA Metabolic Engineering. Trends Biotechnol 2020; 38:689-700. [DOI: 10.1016/j.tibtech.2019.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
|
38
|
Miyazawa K, Yoshimi A, Abe K. The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species. Fungal Biol Biotechnol 2020; 7:10. [PMID: 32626592 PMCID: PMC7329490 DOI: 10.1186/s40694-020-00101-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi are widely used for production of enzymes and chemicals, and are industrially cultivated both in liquid and solid cultures. Submerged culture is often used as liquid culture for filamentous fungi. In submerged culture, filamentous fungi show diverse macromorphology such as hyphal pellets and dispersed hyphae depending on culture conditions and genetic backgrounds of fungal strains. Although the macromorphology greatly affects the productivity of submerged cultures, the specific cellular components needed for hyphal aggregation after conidial germination have not been characterized. Recently we reported that the primary cell wall polysaccharide α-1,3-glucan and the extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae, and that a strain deficient in both α-1,3-glucan and GAG shows dispersed hyphae in liquid culture. In this review, we summarize our current understanding of the contribution of chemical properties of α-1,3-glucan and GAG to hyphal aggregation. Various ascomycetes and basidiomycetes have α-1,3-glucan synthase gene(s). In addition, some Pezizomycotina fungi, including species used in the fermentation industry, also have GAG biosynthetic genes. We also review here the known mechanisms of biosynthesis of α-1,3-glucan and GAG. Regulation of the biosynthesis of the two polysaccharides could be a potential way of controlling formation of hyphal pellets.
Collapse
Affiliation(s)
- Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan
| | - Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan.,ABE-project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579 Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan.,ABE-project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579 Japan.,Laboratory of Microbial Resources, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan
| |
Collapse
|
39
|
Deaguero IG, Huda MN, Rodriguez V, Zicari J, Al-Hilal TA, Badruddoza AZM, Nurunnabi M. Nano-Vesicle Based Anti-Fungal Formulation Shows Higher Stability, Skin Diffusion, Biosafety and Anti-Fungal Efficacy In Vitro. Pharmaceutics 2020; 12:pharmaceutics12060516. [PMID: 32517047 PMCID: PMC7355414 DOI: 10.3390/pharmaceutics12060516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Opportunistic fungal infections are responsible for over 1.5 million deaths per year. This has created a need for highly effective antifungal medication to be as potent as possible. In this study, we improved the efficacy of a common over the counter (OTC) antifungal skin medication, miconazole, by encapsulating nano-molecules of the drug in cholesterol/sodium oleate nano-vesicles. These nano-vesicles were characterized to optimize their size, zeta potential, polydispersity index and encapsulation efficiency. Furthermore, these nano-vesicles were compared to a conventional miconazole-based commercially available cream to determine potential improvements via permeation through the stratum corneum, cytotoxicity, and antifungal capabilities. Our results found that the vesicle size was within the nano range (~300 nm), with moderate polydispersity and stability. When compared with the commercially available cream, Actavis, as well as free miconazole, the miconazole nano-vesicle formulation displayed enhanced fungal inhibition by a factor of three or more when compared to free miconazole. Furthermore, with smaller nanoparticle (NP) sizes, higher percentages of miconazole may be delivered, further enhancing the efficacy of miconazole's antifungal capability. Cytotoxicity studies conducted with human dermal fibroblast cells confirm its biosafety and biocompatibility, as cell survival rate was observed to be twofold higher in nano-vesicle formulation than free miconazole. This formulation has the potential to treat fungal infections through increasing the retention time in the skin, improving the treatment approach, and by enhancing the efficacy via the use of nano-vesicles.
Collapse
Affiliation(s)
- Isaac G. Deaguero
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
| | - Md Nurul Huda
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
| | - Victor Rodriguez
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
| | - Jade Zicari
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
| | - Taslim A. Al-Hilal
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence: (A.Z.M.B.); (M.N.); Tel.: +1-915-747-8335 (M.N.)
| | - Md Nurunnabi
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
- Border Biomedical Research Center, University of Texas at El Paso, TX 79902, USA
- Department of Environmental Science and Engineering, University of Texas at El Paso, TX 79902, USA
- Correspondence: (A.Z.M.B.); (M.N.); Tel.: +1-915-747-8335 (M.N.)
| |
Collapse
|
40
|
Schrinner K, Veiter L, Schmideder S, Doppler P, Schrader M, Münch N, Althof K, Kwade A, Briesen H, Herwig C, Krull R. Morphological and physiological characterization of filamentous Lentzea aerocolonigenes: Comparison of biopellets by microscopy and flow cytometry. PLoS One 2020; 15:e0234125. [PMID: 32492063 PMCID: PMC7269266 DOI: 10.1371/journal.pone.0234125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022] Open
Abstract
Cell morphology of filamentous microorganisms is highly interesting during cultivations as it is often linked to productivity and can be influenced by process conditions. Hence, the characterization of cell morphology is of major importance to improve the understanding of industrial processes with filamentous microorganisms. For this purpose, reliable and robust methods are necessary. In this study, pellet morphology and physiology of the rebeccamycin producing filamentous actinomycete Lentzea aerocolonigenes were investigated by microscopy and flow cytometry. Both methods were compared regarding their applicability. To achieve different morphologies, a cultivation with glass bead addition (Ø = 969 μm, 100 g L-1) was compared to an unsupplemented cultivation. This led to two different macro-morphologies. Furthermore, glass bead addition increased rebeccamycin titers after 10 days of cultivation (95 mg L-1 with glass beads, 38 mg L-1 without glass beads). Macro-morphology and viability were investigated through microscopy and flow cytometry. For viability assessment fluorescent staining was used additionally. Smaller, more regular pellets were found for glass bead addition. Pellet diameters resulting from microscopy followed by image analysis were 172 μm without and 106 μm with glass beads, diameters from flow cytometry were 170 and 100 μm, respectively. These results show excellent agreement of both methods, each considering several thousand pellets. Furthermore, the pellet viability obtained from both methods suggested an enhanced metabolic activity in glass bead treated pellets during the exponential production phase. However, total viability values differ for flow cytometry (0.32 without and 0.41 with glass beads) and confocal laser scanning microscopy of single stained pellet slices (life ratio in production phase of 0.10 without and 0.22 with glass beads), which is probably caused by the different numbers of investigated pellets. In confocal laser scanning microscopy only one pellet per sample could be investigated while flow cytometry considered at least 50 pellets per sample, resulting in an increased statistical reliability.
Collapse
Affiliation(s)
- Kathrin Schrinner
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany
| | - Lukas Veiter
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
- Competence Center CHASE GmbH, Linz, Austria
| | - Stefan Schmideder
- School of Life Sciences, Chair of Process Systems Engineering, Technische Universität München, Freising, Germany
| | - Philipp Doppler
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| | - Marcel Schrader
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nadine Münch
- School of Life Sciences, Chair of Process Systems Engineering, Technische Universität München, Freising, Germany
| | - Kristin Althof
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arno Kwade
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Heiko Briesen
- School of Life Sciences, Chair of Process Systems Engineering, Technische Universität München, Freising, Germany
| | - Christoph Herwig
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany
| |
Collapse
|
41
|
Zhang L, Zheng X, Cairns TC, Zhang Z, Wang D, Zheng P, Sun J. Disruption or reduced expression of the orotidine-5'-decarboxylase gene pyrG increases citric acid production: a new discovery during recyclable genome editing in Aspergillus niger. Microb Cell Fact 2020; 19:76. [PMID: 32209089 PMCID: PMC7092557 DOI: 10.1186/s12934-020-01334-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/16/2020] [Indexed: 11/15/2022] Open
Abstract
Background Aspergillus niger is a filamentous fungus used for the majority of global citric acid production. Recent developments in genome editing now enable biotechnologists to engineer and optimize A. niger. Currently, however, genetic-leads for maximizing citric acid titers in industrial A. niger isolates is limited. Results In this study, we try to engineer two citric acid A. niger production isolates, WT-D and D353, to serve as platform strains for future high-throughput genome engineering. Consequently, we used genome editing to simultaneously disrupt genes encoding the orotidine-5′-decarboxylase (pyrG) and non-homologous end-joining component (kusA) to enable use of the pyrG selection/counter selection system, and to elevate homologous recombination rates, respectively. During routine screening of these pyrG mutant strains, we unexpectedly observed a 2.17-fold increase in citric acid production when compared to the progenitor controls, indicating that inhibition of uridine/pyrimidine synthesis may increase citric acid titers. In order to further test this hypothesis, the pyrG gene was placed under the control of a tetracycline titratable cassette, which confirmed that reduced expression of this gene elevated citric acid titers in both shake flask and bioreactor fermentation. Subsequently, we conducted intracellular metabolomics analysis, which demonstrated that pyrG disruption enhanced the glycolysis flux and significantly improved abundance of citrate and its precursors. Conclusions In this study, we deliver two citric acid producing isolates which are amenable to high throughput genetic manipulation due to pyrG/kusA deletion. Strikingly, we demonstrate for the first time that A. niger pyrG is a promising genetic lead for generating citric acid hyper-producing strains. Our data support the hypothesis that uridine/pyrimidine biosynthetic pathway offer future avenues for strain engineering efforts.![]()
Collapse
Affiliation(s)
- Lihui Zhang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Timothy C Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhidan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Deng H, Bai Y, Fan TP, Zheng X, Cai Y. Advanced strategy for metabolite exploration in filamentous fungi. Crit Rev Biotechnol 2020; 40:180-198. [PMID: 31906740 DOI: 10.1080/07388551.2019.1709798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Filamentous fungi comprise an abundance of gene clusters that encode high-value metabolites, whereas affluent gene clusters remain silent during laboratory conditions. Complex cellular metabolism further limits these metabolite yields. Therefore, diverse strategies such as genetic engineering and chemical mutagenesis have been developed to activate these cryptic pathways and improve metabolite productivity. However, lower efficiencies of gene modifications and screen tools delayed the above processes. To address the above issues, this review describes an alternative design-construction evaluation optimization (DCEO) approach. The DCEO tool provides theoretical and practical principles to identify potential pathways, modify endogenous pathways, integrate exogenous pathways, and exploit novel pathways for their diverse metabolites and desirable productivities. This DCEO method also offers different tactics to balance the cellular metabolisms, facilitate the genetic engineering, and exploit the scalable metabolites in filamentous fungi.
Collapse
Affiliation(s)
- Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
43
|
Cairns TC, Feurstein C, Zheng X, Zhang LH, Zheng P, Sun J, Meyer V. Functional exploration of co-expression networks identifies a nexus for modulating protein and citric acid titres in Aspergillus niger submerged culture. Fungal Biol Biotechnol 2019; 6:18. [PMID: 31728200 PMCID: PMC6842248 DOI: 10.1186/s40694-019-0081-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/21/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Filamentous fungal cell factories are used to produce numerous proteins, enzymes, and organic acids. Protein secretion and filamentous growth are tightly coupled at the hyphal tip. Additionally, both these processes require ATP and amino acid precursors derived from the citric acid cycle. Despite this interconnection of organic acid production and protein secretion/filamentous growth, few studies in fungi have identified genes which may concomitantly impact all three processes. RESULTS We applied a novel screen of a global co-expression network in the cell factory Aspergillus niger to identify candidate genes which may concomitantly impact macromorphology, and protein/organic acid fermentation. This identified genes predicted to encode the Golgi localized ArfA GTPase activating protein (GAP, AgeB), and ArfA guanine nucleotide exchange factors (GEFs SecG and GeaB) to be co-expressed with citric acid cycle genes. Consequently, we used CRISPR-based genome editing to place the titratable Tet-on expression system upstream of ageB, secG, and geaB in A. niger. Functional analysis revealed that ageB and geaB are essential whereas secG was dispensable for early filamentous growth. Next, gene expression was titrated during submerged cultivations under conditions for either protein or organic acid production. ArfA regulators played varied and culture-dependent roles on pellet formation. Notably, ageB or geaB expression levels had major impacts on protein secretion, whereas secG was dispensable. In contrast, reduced expression of each predicted ArfA regulator resulted in an absence of citric acid in growth media. Finally, titrated expression of either GEFs resulted in an increase in oxaloacetic acid concentrations in supernatants. CONCLUSION Our data suggest that the Golgi may play an underappreciated role in modulating organic acid titres during industrial applications, and that this is SecG, GeaB and AgeB dependent in A. niger. These data may lead to novel avenues for strain optimization in filamentous fungi for improved protein and organic acid titres.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Claudia Feurstein
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Hui Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457 China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Vera Meyer
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|