1
|
Ragone P, Parodi C, Tomasini N, Ramos F, Uncos A, Brandán CP. The interplay between Trypanosoma cruzi and the microbiome of Triatoma infestans: Implications for the host's immune response. Acta Trop 2025; 264:107577. [PMID: 40057258 DOI: 10.1016/j.actatropica.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
The infection dynamics of Trypanosoma cruzi is shaped by the parasite's genetics and interactions with host and vector factors. While most studies in the area use axenic parasite cultures devoid of insect fecal components, this study is focused on the immune response and the parasite loads generated after the interaction of T. cruzi with feces from Triatoma infestans in a murine model. First, using metagenomics, we analyzed the microbiota of infected and uninfected feces. Illumina sequencing of the 16S rRNA gene (V3-V4 region) revealed a predominance of the genus Arsenophonus in infected feces and of Enterococcus in uninfected ones. C57BL/6J mice inoculated with T. cruzi infected feces, displayed distinct immune responses compared to those inoculated with culture-derived metacyclic trypomastigotes alone, with lower levels of pro-inflammatory cytokines (IFN-ɣ, TNF-α) and higher amounts of IL-10, suggesting a regulatory response. Besides, total anti-T. cruzi IgG levels remained similar among groups, but IgG1 and IgG2c were reduced in the T. cruzi infected feces group, indicating a balanced Th1/Th2 response. Notably, mice inoculated with T. cruzi infected feces demonstrated significantly reduced blood and muscle parasite loads, potentially limiting inflammation and parasite dissemination. These findings highlight the possible role of vector fecal microbiota in shaping immune responses and influencing disease outcomes during natural T. cruzi infections.
Collapse
Affiliation(s)
- Paula Ragone
- Instituto de Patología Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa)
| | - Cecilia Parodi
- Instituto de Patología Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa)
| | - Nicolás Tomasini
- Instituto de Patología Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa)
| | - Federico Ramos
- Instituto de Patología Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa)
| | - Alejandro Uncos
- Instituto de Patología Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa)
| | - Cecilia Pérez Brandán
- Instituto de Patología Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa).
| |
Collapse
|
2
|
Omondi ZN, Caner A, Arserim SK. Trypanosomes and gut microbiota interactions in triatomine bugs and tsetse flies: A vectorial perspective. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:253-268. [PMID: 38651684 DOI: 10.1111/mve.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Triatomines (kissing bugs) and tsetse flies (genus: Glossina) are natural vectors of Trypanosoma cruzi and Trypanosoma brucei, respectively. T. cruzi is the causative agent of Chagas disease, endemic in Latin America, while T. brucei causes African sleeping sickness disease in sub-Saharan Africa. Both triatomines and tsetse flies are host to a diverse community of gut microbiota that co-exist with the parasites in the gut. Evidence has shown that the gut microbiota of both vectors plays a key role in parasite development and transmission. However, knowledge on the mechanism involved in parasite-microbiota interaction remains limited and scanty. Here, we attempt to analyse Trypanosoma spp. and gut microbiota interactions in tsetse flies and triatomines, with a focus on understanding the possible mechanisms involved by reviewing published articles on the subject. We report that interactions between Trypanosoma spp. and gut microbiota can be both direct and indirect. In direct interactions, the gut microbiota directly affects the parasite via the formation of biofilms and the production of anti-parasitic molecules, while on the other hand, Trypanosoma spp. produces antimicrobial proteins to regulate gut microbiota of the vector. In indirect interactions, the parasite and gut bacteria affect each other through host vector-activated processes such as immunity and metabolism. Although we are beginning to understand how gut microbiota interacts with the Trypanosoma parasites, there is still a need for further studies on functional role of gut microbiota in parasite development to maximize the use of symbiotic bacteria in vector and parasite control.
Collapse
Affiliation(s)
- Zeph Nelson Omondi
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ayşe Caner
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Suha Kenan Arserim
- Vocational School of Health Sciences, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
3
|
De Fuentes-Vicente JA, Santos-Hernández NG, Ruiz-Castillejos C, Espinoza-Medinilla EE, Flores-Villegas AL, de Alba-Alvarado M, Cabrera-Bravo M, Moreno-Rodríguez A, Vidal-López DG. What Do You Need to Know before Studying Chagas Disease? A Beginner's Guide. Trop Med Infect Dis 2023; 8:360. [PMID: 37505656 PMCID: PMC10383928 DOI: 10.3390/tropicalmed8070360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Chagas disease is one of the most important tropical infections in the world and mainly affects poor people. The causative agent is the hemoflagellate protozoan Trypanosoma cruzi, which circulates among insect vectors and mammals throughout the Americas. A large body of research on Chagas disease has shown the complexity of this zoonosis, and controlling it remains a challenge for public health systems. Although knowledge of Chagas disease has advanced greatly, there are still many gaps, and it is necessary to continue generating basic and applied research to create more effective control strategies. The aim of this review is to provide up-to-date information on the components of Chagas disease and highlight current trends in research. We hope that this review will be a starting point for beginners and facilitate the search for more specific information.
Collapse
Affiliation(s)
- José A De Fuentes-Vicente
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | - Nancy G Santos-Hernández
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | - Christian Ruiz-Castillejos
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| | | | - A Laura Flores-Villegas
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Margarita Cabrera-Bravo
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Adriana Moreno-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
| | - Dolores G Vidal-López
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico
| |
Collapse
|
4
|
Botzotz J, Méndez-Valdés G, Ortiz S, López A, Botto-Mahan C, Solari A. Natural Trypanosoma cruzi Infection and Climatic Season Influence the Developmental Capacity in Field-Caught Mepraia spinolai Nymphs. INSECTS 2023; 14:272. [PMID: 36975957 PMCID: PMC10058416 DOI: 10.3390/insects14030272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this study, we evaluated the effect of the climatic season and infection by Trypanosoma cruzi, etiological agent of Chagas disease, on the molting capacity of the triatomine vector Mepraia spinolai endemic to Chile. We used wild-caught first-to-fourth instar nymphs during cooling (fall and winter) and warming (spring) periods. After capturing, nymphs were fed at the laboratory, and maintained under optimal rearing conditions. Feeding was repeated 40 days later. We followed-up the molting events on 709 nymphs, recording one, two or the absence of molts after two feeding opportunities. Within the same climatic period, only infected second- and fourth-instar nymphs from the warming period showed a larger proportion of double molting compared to uninfected nymphs. Regarding the climatic period, infected and uninfected first- and fourth-instar nymphs exhibited a larger proportion of double molting in the warming and cooling periods, respectively. The pattern of non-molting nymph occurrence suggests they probably reach diapause by environmental stochasticity. The effect of the climatic period and T. cruzi infection on the development of M. spinolai is an instar-dependent phenomenon, highlighting the occurrence of finely synchronized processes at different moments of the life cycle of such an hemimetabolous insect as triatomines.
Collapse
Affiliation(s)
- Juan Botzotz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Gabriel Méndez-Valdés
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Sylvia Ortiz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Angélica López
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
5
|
Teal E, Herrera C, Dumonteil E. Metabolomics of developmental changes in Triatoma sanguisuga gut microbiota. PLoS One 2023; 18:e0280868. [PMID: 36827319 PMCID: PMC9955940 DOI: 10.1371/journal.pone.0280868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023] Open
Abstract
Triatoma sanguisuga is one of the major vectors of Trypanosoma cruzi in the southeastern US, where it sustains a robust zoonotic parasite transmission cycle and occasional human infections. A better understanding of triatomine development may allow for alternative approaches to insecticide-based vector control. Indeed, the role of the gut microbiota and bacterial endosymbionts in triatomine development and in their vectorial capacity is emerging. We investigated here the differences in microbiota among nymph and adult T. sanguisuga, to shed light on the metabolomic interactions occurring during development. Microbiota composition was assessed by 16s gene amplification and deep sequencing from field-caught adult bugs and their laboratory-raised progeny. Significant differences in microbiota bacterial diversity and composition were observed between nymphs and adults. Laboratory-raised nymphs showed a higher taxonomic diversity, and at least seven families predominated. On the other hand, field-caught adults had a lower bacterial diversity and four families comprised most of the microbiota. These differences in compositions were associated with differences in predicted metabolism, with laboratory-raised nymphs microbiota metabolizing a limited diversity of carbon sources, with potential for resource competition between bacterial families, and the production of lactic acid as a predominant fermentation product. On the other hand, field-caught adult microbiota was predicted to metabolize a broader diversity of carbon sources, with complementarity rather than competition among taxa, and produced a diverse range of products in a more balanced manner. The restricted functionality of laboratory-raised nymph microbiota may be associated with their poor development in captivity, and further understanding of the metabolic interactions at play may lead to alternative vector control strategies targeting triatomine microbiota.
Collapse
Affiliation(s)
- Evan Teal
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, United States of America
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, United States of America
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
6
|
Tawaraishi T, Ochida A, Akao Y, Itono S, Kamaura M, Akther T, Shimada M, Canan S, Chowdhury S, Cao Y, Condroski K, Engkvist O, Francisco A, Ghosh S, Kaki R, Kelly JM, Kimura C, Kogej T, Nagaoka K, Naito A, Pairaudeau G, Radu C, Roberts I, Shum D, Watanabe NA, Xie H, Yonezawa S, Yoshida O, Yoshida R, Mowbray C, Perry B. Collaborative Virtual Screening Identifies a 2-Aryl-4-aminoquinazoline Series with Efficacy in an In Vivo Model of Trypanosoma cruzi Infection. J Med Chem 2023; 66:1221-1238. [PMID: 36607408 PMCID: PMC9884087 DOI: 10.1021/acs.jmedchem.2c00775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Probing multiple proprietary pharmaceutical libraries in parallel via virtual screening allowed rapid expansion of the structure-activity relationship (SAR) around hit compounds with moderate efficacy against Trypanosoma cruzi, the causative agent of Chagas Disease. A potency-improving scaffold hop, followed by elaboration of the SAR via design guided by the output of the phenotypic virtual screening efforts, identified two promising hit compounds 54 and 85, which were profiled further in pharmacokinetic studies and in an in vivo model of T. cruzi infection. Compound 85 demonstrated clear reduction of parasitemia in the in vivo setting, confirming the interest in this series of 2-(pyridin-2-yl)quinazolines as potential anti-trypanosome treatments.
Collapse
Affiliation(s)
- Taisuke Tawaraishi
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsuko Ochida
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuichiro Akao
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sachiko Itono
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Kamaura
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Thamina Akther
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mitsuyuki Shimada
- Takeda
Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chrome, Fujisawa, Kanagawa 251-8555, Japan
| | - Stacie Canan
- Celgene
Corporation, Celgene Global Health, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Sanjoy Chowdhury
- TCG
Lifesciences, Plot No-7,
Salt Lake Electronics Complex, BN Block, Sector V, Kolkata 700091, India
| | - Yafeng Cao
- WuXi
AppTec Company Ltd., 666 Gaoxin Road, East Lake High-Tech Development Zone, Wuhan 430075, People’s Republic of China
| | - Kevin Condroski
- Celgene
Corporation, Celgene Global Health, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Ola Engkvist
- AstraZeneca
Discovery Sciences, R&D, Pepparedsleden 1, 431 50 Mölndal, Sweden
| | - Amanda Francisco
- London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Sunil Ghosh
- TCG
Lifesciences, Plot No-7,
Salt Lake Electronics Complex, BN Block, Sector V, Kolkata 700091, India
| | - Rina Kaki
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - John M. Kelly
- London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Chiaki Kimura
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Thierry Kogej
- AstraZeneca
Discovery Sciences, R&D, Pepparedsleden 1, 431 50 Mölndal, Sweden
| | - Kazuya Nagaoka
- Eisai
Co., Ltd, 1-3, Tokodai
5-chome, Tsukuba, Ibaraki 300-2635, Japan
| | - Akira Naito
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Garry Pairaudeau
- AstraZeneca,
Discovery Sciences, R&D, The Darwin Building, 310 Milton Road, Milton, Cambridge CB4 0WG, U.K.
| | - Constantin Radu
- Institut
Pasteur Korea, 16, Daewangpangyo-ro
712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ieuan Roberts
- AstraZeneca,
Discovery Sciences, R&D, The Darwin Building, 310 Milton Road, Milton, Cambridge CB4 0WG, U.K.
| | - David Shum
- Institut
Pasteur Korea, 16, Daewangpangyo-ro
712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Nao-aki Watanabe
- Eisai
Co., Ltd, 1-3, Tokodai
5-chome, Tsukuba, Ibaraki 300-2635, Japan
| | - Huanxu Xie
- WuXi
AppTec Company Ltd., 666 Gaoxin Road, East Lake High-Tech Development Zone, Wuhan 430075, People’s Republic of China
| | - Shuji Yonezawa
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Osamu Yoshida
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Ryu Yoshida
- Shionogi
& Co., Ltd, 3-1-1,
Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Charles Mowbray
- Drugs for Neglected
Diseases Initiative, 15 Chemin Camille Vidart, Geneva 1202, Switzerland
| | - Benjamin Perry
- Drugs for Neglected
Diseases Initiative, 15 Chemin Camille Vidart, Geneva 1202, Switzerland,
| |
Collapse
|
7
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
8
|
Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ. Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus. MICROBIOME 2022; 10:45. [PMID: 35272716 PMCID: PMC8908696 DOI: 10.1186/s40168-022-01240-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND The causative agent of Chagas disease, Trypanosoma cruzi, and its nonpathogenic relative, Trypanosoma rangeli, are transmitted by haematophagous triatomines and undergo a crucial ontogenetic phase in the insect's intestine. In the process, the parasites interfere with the host immune system as well as the microbiome present in the digestive tract potentially establishing an environment advantageous for development. However, the coherent interactions between host, pathogen and microbiota have not yet been elucidated in detail. We applied a metagenome shotgun sequencing approach to study the alterations in the microbiota of Rhodnius prolixus, a major vector of Chagas disease, after exposure to T. cruzi and T. rangeli focusing also on the functional capacities present in the intestinal microbiome of the insect. RESULTS The intestinal microbiota of R. prolixus was dominated by the bacterial orders Enterobacterales, Corynebacteriales, Lactobacillales, Clostridiales and Chlamydiales, whereas the latter conceivably originated from the blood used for pathogen exposure. The anterior and posterior midgut samples of the exposed insects showed a reduced overall number of organisms compared to the control group. However, we also found enriched bacterial groups after exposure to T. cruzi as well as T rangeli. While the relative abundance of Enterobacterales and Corynebacteriales decreased considerably, the Lactobacillales, mainly composed of the genus Enterococcus, developed as the most abundant taxonomic group. This applies in particular to vectors challenged with T. rangeli and at early timepoints after exposure to vectors challenged with T. cruzi. Furthermore, we were able to reconstruct four metagenome-assembled genomes from the intestinal samples and elucidate their unique metabolic functionalities within the triatomine microbiome, including the genome of a recently described insect symbiont, Candidatus Symbiopectobacterium, and the secondary metabolites producing bacteria Kocuria spp. CONCLUSIONS Our results facilitate a deeper understanding of the processes that take place in the intestinal tract of triatomine vectors during colonisation by trypanosomal parasites and highlight the influential aspects of pathogen-microbiota interactions. In particular, the mostly unexplored metabolic capacities of the insect vector's microbiome are clearer, underlining its role in the transmission of Chagas disease. Video Abstract.
Collapse
Affiliation(s)
- Fanny E. Eberhard
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Biologicum Campus Riedberg, Max-von-Laue-Str. 13, 60439 Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Biologicum Campus Riedberg, Max-von-Laue-Str. 13, 60439 Frankfurt/Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| | - Alessandra A. Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima,1715, Belo Horizonte, MG CEP 30190-009 Brazil
| | - Nicholas J. Tobias
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| |
Collapse
|
9
|
Carvalho-Costa TM, Tiveron RDR, Mendes MT, Barbosa CG, Nevoa JC, Roza GA, Silva MV, Figueiredo HCP, Rodrigues V, Soares SDC, Oliveira CJF. Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus. Front Cell Infect Microbiol 2022; 11:773357. [PMID: 34988032 PMCID: PMC8722679 DOI: 10.3389/fcimb.2021.773357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Rafael Destro Rosa Tiveron
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Maria Tays Mendes
- Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Cecília Gomes Barbosa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Jessica Coraiola Nevoa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Guilherme Augusto Roza
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinícius Silva
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Siomar de Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
10
|
Medina-Rincón GJ, Gallo-Bernal S, Jiménez PA, Cruz-Saavedra L, Ramírez JD, Rodríguez MJ, Medina-Mur R, Díaz-Nassif G, Valderrama-Achury MD, Medina HM. Molecular and Clinical Aspects of Chronic Manifestations in Chagas Disease: A State-of-the-Art Review. Pathogens 2021; 10:pathogens10111493. [PMID: 34832648 PMCID: PMC8619182 DOI: 10.3390/pathogens10111493] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic manifestations of Chagas disease present as disabling and life-threatening conditions affecting mainly the cardiovascular and gastrointestinal systems. Although meaningful research has outlined the different molecular mechanisms underlying Trypanosoma cruzi’s infection and the host-parasite interactions that follow, prompt diagnosis and treatment remain a challenge, particularly in developing countries and also in those where the disease is considered non-endemic. This review intends to present an up-to-date review of the parasite’s life cycle, genetic diversity, virulence factors, and infective mechanisms, as well as the epidemiology, clinical presentation, diagnosis, and treatment options of the main chronic complications of Chagas disease.
Collapse
Affiliation(s)
- Germán J. Medina-Rincón
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Correspondence: ; Tel.: +57-310-817-2369
| | - Sebastián Gallo-Bernal
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Paula A. Jiménez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - María Juliana Rodríguez
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| | - Ramón Medina-Mur
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| | - Gustavo Díaz-Nassif
- Division of Gastroenterology and Liver Diseases, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 111221, Colombia;
| | | | - Héctor M. Medina
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| |
Collapse
|
11
|
Jiménez-Cortés JG, García-Contreras R, Bucio-Torres MI, Cabrera-Bravo M, López-Jácome LE, Franco-Cendejas R, Vences-Blanco MO, Salazar-Schettino PM. Bacteria cultured from the gut of Meccus pallidipennis (Hemiptera: Reduviidae), a triatomine species endemic to Mexico. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:478-483. [PMID: 33340140 DOI: 10.1111/mve.12496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The study of intestinal microbiota in vector insects like triatomines is paramount in parasitology because many parasitic species inhabit the vector's gut. Although knowledge on the gut microbiota in various vectors of the parasitic flagellate Trypanosoma cruzi has grown, research efforts have focused on South American triatomines. This study reports the isolation of bacterial microbiota in the anterior and posterior gut of Meccus pallidipennis (a triatomine species endemic to Mexico) by culture, as well as its identification by phenotypic and biochemical tests and its quantification by counting colony-forming units. The study was performed on fifth-instar nymph and adult specimens of M. pallidipennis, either laboratory-bred or collected in the field and either infected or not with T. cruzi. Overall, 17 bacterial species were identified, with the genera Bacillus and Staphylococcus being the most prevalent regardless of the origin of the insects. No differences were observed in the number of bacterial species in the gut of laboratory-bred and field-collected insects, neither with respect to life stage or infection status. In general, the Shannon-Weaver diversity index was higher in non-infected insects than in infected ones. Further studies using non-culture methods are required to determine whether bacterial species diversity is modified by laboratory breeding.
Collapse
Affiliation(s)
- J G Jiménez-Cortés
- Laboratorio de Biología de Parásitos, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - R García-Contreras
- Laboratorio de Bacteriología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - M I Bucio-Torres
- Laboratorio de Biología de Parásitos, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - M Cabrera-Bravo
- Laboratorio de Biología de Parásitos, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - L E López-Jácome
- Laboratorio de Infectología, Centro Nacional de Investigación y Atención a Quemados (CENIAQ), Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - R Franco-Cendejas
- Laboratorio de Infectología, Centro Nacional de Investigación y Atención a Quemados (CENIAQ), Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - M O Vences-Blanco
- Laboratorio de Biología de Parásitos, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - P M Salazar-Schettino
- Laboratorio de Biología de Parásitos, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
12
|
Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ. Metabolites as predictive biomarkers for Trypanosoma cruzi exposure in triatomine bugs. Comput Struct Biotechnol J 2021; 19:3051-3057. [PMID: 34136103 PMCID: PMC8178018 DOI: 10.1016/j.csbj.2021.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), colonizes the intestinal tract of triatomines. Triatomine bugs act as vectors in the life cycle of the parasite and transmit infective parasite stages to animals and humans. Contact of the vector with T. cruzi alters its intestinal microbial composition, which may also affect the associated metabolic patterns of the insect. Earlier studies suggest that the complexity of the triatomine fecal metabolome may play a role in vector competence for different T. cruzi strains. Using high-resolution mass spectrometry and supervised machine learning, we aimed to detect differences in the intestinal metabolome of the triatomine Rhodnius prolixus and predict whether the insect had been exposed to T. cruzi or not based solely upon their metabolic profile. We were able to predict the exposure status of R. prolixus to T. cruzi with accuracies of 93.6%, 94.2% and 91.8% using logistic regression, a random forest classifier and a gradient boosting machine model, respectively. We extracted the most important features in producing the models and identified the major metabolites which assist in positive classification. This work highlights the complex interactions between triatomine vector and parasite including effects on the metabolic signature of the insect.
Collapse
Affiliation(s)
- Fanny E. Eberhard
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt/Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Frankfurt/Main, Germany
| | - Alessandra A. Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima,1715, Belo Horizonte, MG CEP 30190-009, Brazil
| | - Nicholas J. Tobias
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Frankfurt/Main, Germany
- Corresponding author at: LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany.
| |
Collapse
|
13
|
Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S. Mosquito Trilogy: Microbiota, Immunity and Pathogens, and Their Implications for the Control of Disease Transmission. Front Microbiol 2021; 12:630438. [PMID: 33889137 PMCID: PMC8056039 DOI: 10.3389/fmicb.2021.630438] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
In mosquitoes, the interaction between the gut microbiota, the immune system, and the pathogens that these insects transmit to humans and animals is regarded as a key component toward the development of control strategies, aimed at reducing the burden of severe diseases, such as malaria and dengue fever. Indeed, different microorganisms from the mosquito microbiota have been investigated for their ability to affect important traits of the biology of the host insect, related with its survival, development and reproduction. Furthermore, some microorganisms have been shown to modulate the immune response of mosquito females, significantly shaping their vector competence. Here, we will review current knowledge in this field, focusing on i) the complex interaction between the intestinal microbiota and mosquito females defenses, both in the gut and at humoral level; ii) how knowledge on these issues contributes to the development of novel and targeted strategies for the control of mosquito-borne diseases such as the use of paratransgenesis or taking advantage of the relationship between Wolbachia and mosquito hosts. We conclude by providing a brief overview of available knowledge on microbiota-immune system interplay in major insect vectors.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Irene Arnoldi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesco Comandatore
- "L. Sacco" Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
14
|
Waniek PJ, Araújo CAC, Jansen AM, Costa J. First genotyping of Trypanosoma cruzi from naturally infected Triatoma juazeirensis, Triatoma melanica and Triatoma sherlocki from Bahia State, Brazil. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:134-140. [PMID: 32648329 DOI: 10.1111/mve.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/04/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Many previous studies have shown a great phylogenetic and biological variability of Trypanosoma cruzi using different molecular and biochemical methods. Populations of T. cruzi were initially clustered into two main lineages called TcI and TcII by the size of the mini-exon PCR product. In the present study, 33 isolates derived from three triatomine taxa, which belong to the Triatoma brasiliensis species complex (Triatoma juazeirensis, Triatoma melanica and Triatoma sherlocki); collected in three distinct areas of Bahia state were characterized by PCR. The isolates were identified by the size of the mini-exon gene, 18S rRNA and 24Sα rRNA amplicons. T. cruzi isolates obtained in sylvatic and intradomiciliar ecotopes, derived from T. juazeirensis and T. melanica, were identified as TcI while the parasites originated from T. sherlocki were characterized as TcI and TcII genotypes, respectively. Those species are present in sylvatic ecotopes but are able to infest intradomiciliar areas. Therefore, it would be important to maintain studies in those localities of Bahia and further investigate the possibilities of Chagas disease transmission. Human disease may occur by any T. cruzi genotype and not only by TcII as it is the case in Amazonia.
Collapse
Affiliation(s)
- P J Waniek
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Rio de Janeiro, Brazil
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - C A C Araújo
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Rio de Janeiro, Brazil
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - A M Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - J Costa
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Araújo CAC, Pacheco JPF, Waniek PJ, Geraldo RB, Sibajev A, Dos Santos AL, Evangelho VGO, Dyson PJ, Azambuja P, Ratcliffe NA, Castro HC, Mello CB. A rhamnose-binding lectin from Rhodnius prolixus and the impact of its silencing on gut bacterial microbiota and Trypanosoma cruzi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103823. [PMID: 32800901 DOI: 10.1016/j.dci.2020.103823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Lectins are ubiquitous proteins involved in the immune defenses of different organisms and mainly responsible for non-self-recognition and agglutination reactions. This work describes molecular and biological characterization of a rhamnose-binding lectin (RBL) from Rhodnius prolixus, which possesses a 21 amino acid signal peptide and a mature protein of 34.6 kDa. The in-silico analysis of the primary and secondary structures of RpLec revealed a lectin domain fully conserved among previous insects studied. The three-dimensional homology model of RpLec was similar to other RBL-lectins. Docking predictions with the monosaccharides showed rhamnose and galactose-binding sites comparable to Latrophilin-1 and N-Acetylgalactosamine-binding in a different site. The effects of RpLec gene silencing on levels of infecting Trypanosoma cruzi Dm 28c and intestinal bacterial populations in the R. prolixus midgut were studied by injecting RpLec dsRNA into the R. prolixus hemocoel. Whereas T. cruzi numbers remained unchanged compared with the controls, numbers of bacteria increased significantly. The silencing also induced the up regulation of the R. prolixus defC (defensin) expression gene. These results with RpLec reveal the potential importance of this little studied molecule in the insect vector immune response and homeostasis of the gut bacterial microbiota.
Collapse
Affiliation(s)
- C A C Araújo
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - J P F Pacheco
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - P J Waniek
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - R B Geraldo
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - A Sibajev
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Av. Cap. Enê Garcez 2413, Boa Vista, RR, CEP 69400-000, Brazil
| | - A L Dos Santos
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - V G O Evangelho
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - P J Dyson
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - P Azambuja
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação, Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, CEP 21045-900, Brazil; Instituto Nacional de Ciência e Tecnologia Em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - N A Ratcliffe
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP, UK
| | - H C Castro
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil.
| | - C B Mello
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Instituto Nacional de Ciência e Tecnologia Em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Duarte-Silva E, Morais LH, Clarke G, Savino W, Peixoto C. Targeting the Gut Microbiota in Chagas Disease: What Do We Know so Far? Front Microbiol 2020; 11:585857. [PMID: 33362735 PMCID: PMC7758234 DOI: 10.3389/fmicb.2020.585857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Chagas disease (CD) is a tropical and still neglected disease caused by Trypanosoma cruzi that affects >8 million of people worldwide. Although limited, emerging data suggest that gut microbiota dysfunction may be a new mechanism underlying CD pathogenesis. T. cruzi infection leads to changes in the gut microbiota composition of vector insects, mice, and humans. Alterations in insect and mice microbiota due to T. cruzi have been associated with a decreased immune response against the parasite, influencing the establishment and progression of infection. Further, changes in the gut microbiota are linked with inflammatory and neuropsychiatric disorders, comorbid conditions in CD. Therefore, this review article critically analyses the current data on CD and the gut microbiota of insects, mice, and humans and discusses its importance for CD pathogenesis. An enhanced understanding of host microbiota will be critical for the development of alternative therapeutic approaches to target CD, such as gut microbiota-directed interventions.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute (IAM), Recife, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil
| | - Livia H. Morais
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wilson Savino
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Christina Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proc Natl Acad Sci U S A 2020; 117:31979-31986. [PMID: 33257562 DOI: 10.1073/pnas.2000860117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Obligate symbioses involving intracellular bacteria have transformed eukaryotic life, from providing aerobic respiration and photosynthesis to enabling colonization of previously inaccessible niches, such as feeding on xylem and phloem, and surviving in deep-sea hydrothermal vents. A major challenge in the study of obligate symbioses is to understand how they arise. Because the best studied obligate symbioses are ancient, it is especially challenging to identify early or intermediate stages. Here we report the discovery of a nascent obligate symbiosis in Howardula aoronymphium, a well-studied nematode parasite of Drosophila flies. We have found that H aoronymphium and its sister species harbor a maternally inherited intracellular bacterial symbiont. We never find the symbiont in nematode-free flies, and virtually all nematodes in the field and the laboratory are infected. Treating nematodes with antibiotics causes a severe reduction in fly infection success. The association is recent, as more distantly related insect-parasitic tylenchid nematodes do not host these endosymbionts. We also report that the Howardula nematode symbiont is a member of a widespread monophyletic group of invertebrate host-associated microbes that has independently given rise to at least four obligate symbioses, one in nematodes and three in insects, and that is sister to Pectobacterium, a lineage of plant pathogenic bacteria. Comparative genomic analysis of this group, which we name Candidatus Symbiopectobacterium, shows signatures of genome erosion characteristic of early stages of symbiosis, with the Howardula symbiont's genome containing over a thousand predicted pseudogenes, comprising a third of its genome.
Collapse
|
18
|
Arias-Giraldo LM, Muñoz M, Hernández C, Herrera G, Velásquez-Ortiz N, Cantillo-Barraza O, Urbano P, Ramírez JD. Species-dependent variation of the gut bacterial communities across Trypanosoma cruzi insect vectors. PLoS One 2020; 15:e0240916. [PMID: 33180772 PMCID: PMC7660481 DOI: 10.1371/journal.pone.0240916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Triatomines (Hemiptera: Reduviidae) are the insect vectors of Trypanosoma cruzi, the causative agent of Chagas disease. The gut bacterial communities affect the development of T. cruzi inside the vector, making the characterization of its composition important in the understanding of infection development. We collected 54 triatomine bugs corresponding to four genera in different departments of Colombia. DNA extraction and PCR were performed to evaluate T. cruzi presence and to determine the discrete typing unit (DTU) of the parasite. PCR products of the bacterial 16S rRNA gene were pooled and sequenced. Resulting reads were denoised and QIIME 2 was used for the identification of amplicon sequence variants (ASVs). Diversity (alpha and beta diversity) and richness analyses, Circos plots, and principal component analysis (PCA) were also performed. The overall T. cruzi infection frequency was 75.9%, with TcI being the predominant DTU. Approximately 500,000 sequences were analyzed and 27 bacterial phyla were identified. The most abundant phyla were Proteobacteria (33.9%), Actinobacteria (32.4%), Firmicutes (19.6%), and Bacteroidetes (7.6%), which together accounted for over 90% of the gut communities identified in this study. Genera were identified for these main bacterial phyla, revealing the presence of important bacteria such as Rhodococcus, Serratia, and Wolbachia. The composition of bacterial phyla in the gut of the insects was significantly different between triatomine species, whereas no significant difference was seen between the state of T. cruzi infection. We suggest further investigation with the evaluation of additional variables and a larger sample size. To our knowledge, this study is the first characterization of the gut bacterial structure of the main triatomine genera in Colombia.
Collapse
Affiliation(s)
- Luisa M Arias-Giraldo
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omar Cantillo-Barraza
- Grupo de Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de la Orinoquia, Fundación Universidad del Trópico Americano (Unitropico), Yopal, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
19
|
Tobias NJ, Eberhard FE, Guarneri AA. Enzymatic biosynthesis of B-complex vitamins is supplied by diverse microbiota in the Rhodnius prolixus anterior midgut following Trypanosoma cruzi infection. Comput Struct Biotechnol J 2020; 18:3395-3401. [PMID: 33294135 PMCID: PMC7691439 DOI: 10.1016/j.csbj.2020.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/03/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, colonizes the gut of triatomine insects, including Rhodnius prolixus. It is believed that this colonization upsets the microbiota that are normally present, presumably switching the environment to one more favorable for parasite survival. It was previously thought that one particular bacterium, Rhodococcus rhodnii, was essential for insect survival due to its ability to produce vital B-complex vitamins. However, these bacteria are not always identified in great abundance in studies on R. prolixus microbiota. Here we sequenced the microbiota of the insect anterior midgut using shotgun metagenomic sequencing in order to obtain a high-resolution snapshot of the microbes inside at two different time points and under two conditions; in the presence or absence of parasite and immediately following infection, or three days post-infection. We identify a total of 217 metagenomic bins, and recovered one metagenome-assembled genome, which we placed in the genus Dickeya. We show that, despite Rhodococcus being present, it is not the only microbe capable of synthesizing B-complex vitamins, with the genes required for biosynthesis present in a number of different microbes. This work helps to gain a new insight into the microbial ecology of R. prolixus.
Collapse
Affiliation(s)
- Nicholas J Tobias
- LOEWE Center for Translational Biodiversity in Genomics (TBG), Frankfurt, Germany.,Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Fanny E Eberhard
- Integrative Parasitologie und Zoophysiologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Alessandra A Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte, MG CEP 30190-009, Brazil
| |
Collapse
|
20
|
Hu Y, Xie H, Gao M, Huang P, Zhou H, Ma Y, Zhou M, Liang J, Yang J, Lv Z. Dynamic of Composition and Diversity of Gut Microbiota in Triatoma rubrofasciata in Different Developmental Stages and Environmental Conditions. Front Cell Infect Microbiol 2020; 10:587708. [PMID: 33224899 PMCID: PMC7667259 DOI: 10.3389/fcimb.2020.587708] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Triatoma rubrofasciata (T. rubrofasciata), one kind of triatomine insects, is the vector of Trypanosoma cruzi (T. cruzi), which lead to American trypanosomiasis. Although the gut microbiome may play an essential role in the development and susceptibility of triatomine, there is limited research on the gut microbiota of T. rubrofasciata. To elucidate the effect of the vector's developmental stages and environmental conditions on the gut microbiome, we employed 16S rRNA gene sequencing to profile the gut bacterial community diversity and composition of T. rubrofasciata. Significant shifts were observed in the overall gut microbe diversity and composition across the development of T. rubrofasciata and specific bacteria were detected in different stages. Serratia and Burkholderia-Caballeronia-Paraburkholderia were dominant in the 1st nymphal stage, while the abundance of Staphylococcus was low in the 1st nymphal stage. Oceanicaulis were undetectable in the adult stage and Odoribacter peaked in the 2nd nymphal stage. Moreover, Staphylococcus was correlated negatively with Serratia. Likewise, the total gut microbiota diversity and composition of T. rubrofasciata differentiated significantly by environmental conditions. The ingestion of a bloodmeal increased alpha diversity of gut bacterial communities, and Staphylococcus was more abundant in laboratory-reared bugs whereas Enterococcus enriched in wild-caught bugs. Furthermore, Pantoea was negatively correlated with Staphylococcus, and positively related to Bacillus only. The phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) algorithm showed obvious metagenomic functional differences by environmental conditions, and Chagas disease relevant pathway was enriched in wild-caught T. rubrofasciata.
Collapse
Affiliation(s)
- Yue Hu
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Hanguo Xie
- Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, China
| | - Minzhao Gao
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Huang
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Hongli Zhou
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yubin Ma
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Minyu Zhou
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jinying Liang
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jun Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhiyue Lv
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
21
|
Brown JJ, Rodríguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, Zima J, Hypša V, Nováková E. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). MICROBIOME 2020; 8:146. [PMID: 33040738 PMCID: PMC7549230 DOI: 10.1186/s40168-020-00921-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. METHODS To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. RESULTS Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes. CONCLUSION Our study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesise that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors. Video abstract.
Collapse
Affiliation(s)
- Joel J. Brown
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | - Anbu Poosakkannu
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Giampiero Batani
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Walter Roachell
- US Army Public Health Command-Central, JBSA Fort Sam, Houston, TX USA
| | - Jan Zima
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
22
|
Salcedo-Porras N, Umaña-Diaz C, de Oliveira Barbosa Bitencourt R, Lowenberger C. The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms 2020; 8:E1438. [PMID: 32961808 PMCID: PMC7565714 DOI: 10.3390/microorganisms8091438] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Insects have established mutualistic symbiotic interactions with microorganisms that are beneficial to both host and symbiont. Many insects have exploited these symbioses to diversify and expand their ecological ranges. In the Hemiptera (i.e., aphids, cicadas, and true bugs), symbioses have established and evolved with obligatory essential microorganisms (primary symbionts) and with facultative beneficial symbionts (secondary symbionts). Primary symbionts are usually intracellular microorganisms found in insects with specialized diets such as obligate hematophagy or phytophagy. Most Heteroptera (true bugs), however, have gastrointestinal (GI) tract extracellular symbionts with functions analogous to primary endosymbionts. The triatomines, are vectors of the human parasite, Trypanosoma cruzi. A description of their small GI tract microbiota richness was based on a few culturable microorganisms first described almost a century ago. A growing literature describes more complex interactions between triatomines and bacteria with properties characteristic of both primary and secondary symbionts. In this review, we provide an evolutionary perspective of beneficial symbioses in the Hemiptera, illustrating the context that may drive the evolution of symbioses in triatomines. We highlight the diversity of the triatomine microbiota, bacterial taxa with potential to be beneficial symbionts, the unique characteristics of triatomine-bacteria symbioses, and the interactions among trypanosomes, microbiota, and triatomines.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Claudia Umaña-Diaz
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Ricardo de Oliveira Barbosa Bitencourt
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
- Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, 23890-000 Seropédica, Brasil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| |
Collapse
|
23
|
Mann AE, Mitchell EA, Zhang Y, Curtis-Robles R, Thapa S, Hamer SA, Allen MS. Comparison of the Bacterial Gut Microbiome of North American Triatoma spp. With and Without Trypanosoma cruzi. Front Microbiol 2020; 11:364. [PMID: 32231645 PMCID: PMC7082358 DOI: 10.3389/fmicb.2020.00364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Chagas disease, caused by the hemoflagellate protist Trypanosoma cruzi, affects nearly 6 million people worldwide, mainly in Latin America. Hematophagous triatomine insects (“kissing bugs”) are the primary vectors of T. cruzi throughout the Americas and feed on a variety of animals, including humans. Control of triatomines is central to the control of T. cruzi infection. Recent advances in mitigation of other insect-borne diseases via the manipulation of insect-associated bacteria as a way to halt or slow disease transmission has opened questions to the applicability of these methods to Chagas disease vectors. Few studies have examined the hindgut microbiome of triatomines found in North America. In the current study, two species of triatomines were collected across Texas, United States, screened for the presence of T. cruzi, and analyzed for the bacterial composition of their hindguts using a 16S rRNA gene-fragment metabarcoding approach. We compared diversity of microbial community profiles across 74 triatomine insects to address the hypothesis that the richness and abundance of bacterial groups differ by T. cruzi infection and strain type, blood meal engorgement status, insect species, sex, and collection location. The gut microbial community of individual triatomines was characterized by low intraindividual taxonomic diversity and high interindividual variation that was weakly predicted by triatomine species, and was not predicted by triatomine sex, collection location, T. cruzi infection status, or blood meal score. However, we did find bacterial groups enriched in T. cruzi-positive individuals, including Enterobacterales, and Petrimonas. Additionally, we detected Salmonella enterica subspecies diarizonae in three triatomine individuals; this species is commonly associated with reptiles and domesticated animals and is a pathogen of humans. These data suggest that Triatoma spp. in Texas have variable patterns of colonized and transient bacteria, and may aid in development of novel means to interfere with transmission of the Chagas disease parasite T. cruzi. Deeper understanding of the effects of parasite infection on diverse insect vector microbiomes may highlight disease transmission risk and facilitate discovery of possible intervention strategies for biological control of this emerging vector-borne disease of global health significance.
Collapse
Affiliation(s)
- Allison E Mann
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Elizabeth A Mitchell
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Yan Zhang
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rachel Curtis-Robles
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Santosh Thapa
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States.,Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Michael S Allen
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
24
|
Kieran TJ, Arnold KMH, Thomas JC, Varian CP, Saldaña A, Calzada JE, Glenn TC, Gottdenker NL. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit Vectors 2019; 12:504. [PMID: 31665056 PMCID: PMC6821009 DOI: 10.1186/s13071-019-3761-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Rhodnius pallescens is a major vector of Chagas disease in Panama. Understanding the microbial ecology of disease vectors is important in the development of vector management strategies that target vector survival and fitness. In this study we examined the whole-body microbial composition of R. pallescens from three locations in Panama. Methods We collected 89 R. pallescens specimens using Noireau traps in Attalea butyracea palms. We then extracted total DNA from whole-bodies of specimens and amplified bacterial microbiota using 16S rRNA metabarcoding PCR. The 16S libraries were sequenced on an Illumina MiSeq and analyzed using QIIME2 software. Results We found Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes to be the most abundant bacterial phyla across all samples. Geographical location showed the largest difference in microbial composition with northern Veraguas Province having the most diversity and Panama Oeste Province localities being most similar to each other. Wolbachia was detected in high abundance (48–72%) at Panama Oeste area localities with a complete absence of detection in Veraguas Province. No significant differences in microbial composition were detected between triatomine age class, primary blood meal source, or T. cruzi infection status. Conclusions We found biogeographical regions differ in microbial composition among R. pallescens populations in Panama. While overall the microbiota has bacterial taxa consistent with previous studies in triatomine microbial ecology, locality differences are an important observation for future studies. Geographical heterogeneity in microbiomes of vectors is an important consideration for future developments that leverage microbiomes for disease control.
Collapse
Affiliation(s)
- Troy J Kieran
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Kaylee M H Arnold
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Jesse C Thomas
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Christina P Varian
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Jose E Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Travis C Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Nicole L Gottdenker
- Odum School of Ecology, University of Georgia, Athens, GA, USA. .,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
25
|
Holmes CJ, Jennings EC, Gantz JD, Spacht D, Spangler AA, Denlinger DL, Lee RE, Hamilton TL, Benoit JB. The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs. Polar Biol 2019. [DOI: 10.1007/s00300-019-02582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Teotônio IMSN, Dias N, Hagström-Bex L, Nitz N, Francisco AF, Hecht M. Intestinal microbiota - A modulator of the Trypanosoma cruzi-vector-host triad. Microb Pathog 2019; 137:103711. [PMID: 31491548 DOI: 10.1016/j.micpath.2019.103711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/11/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Chagas disease affects millions of people, and it is a major cause of death in Latin America. Prevention and development of an effective treatment for this infection can be favored by a more thorough understanding of T. cruzi interaction with the microbiome of vectors and hosts. Next-generation sequencing technology vastly broadened the knowledge about intestinal bacteria composition, showing that microbiota within each host (triatomines and mammals) is composed by high diversity of species, although few dominant phyla. This fact may represent an ecological balance that was acquired during the evolutionary process of the microbiome-host complex, and that serves to perpetuate this system. In this context, commensal microbiota is also essential to protect hosts, conferring them resistance to pathogens colonization. However, in some situations, the microbiota is not able to prevent infection but only modulate it. Here we will review the role of the microbiota on the parasite-vector-host triad with a focus on the kinetoplastida of medical importance Trypanosoma cruzi. Novel strategies to control Chagas disease based on intestinal microbiome will also be discussed.
Collapse
Affiliation(s)
| | - Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil
| | - Luciana Hagström-Bex
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil
| | - Amanda Fortes Francisco
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| |
Collapse
|
27
|
Cámara MDLM, Balouz V, Centeno Cameán C, Cori CR, Kashiwagi GA, Gil SA, Macchiaverna NP, Cardinal MV, Guaimas F, Lobo MM, de Lederkremer RM, Gallo-Rodriguez C, Buscaglia CA. Trypanosoma cruzi surface mucins are involved in the attachment to the Triatoma infestans rectal ampoule. PLoS Negl Trop Dis 2019; 13:e0007418. [PMID: 31107901 PMCID: PMC6544316 DOI: 10.1371/journal.pntd.0007418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/31/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023] Open
Abstract
Background Trypanosoma cruzi, the agent of Chagas disease, is a protozoan parasite transmitted to humans by blood-sucking triatomine vectors. However, and despite its utmost biological and epidemiological relevance, T. cruzi development inside the digestive tract of the insect remains a poorly understood process. Methods/Principle findings Here we showed that Gp35/50 kDa mucins, the major surface glycoproteins from T. cruzi insect-dwelling forms, are involved in parasite attachment to the internal cuticle of the triatomine rectal ampoule, a critical step leading to its differentiation into mammal-infective forms. Experimental evidence supporting this conclusion could be summarized as follows: i) native and recombinant Gp35/50 kDa mucins directly interacted with hindgut tissues from Triatoma infestans, as assessed by indirect immunofluorescence assays; ii) transgenic epimastigotes over-expressing Gp35/50 kDa mucins on their surface coat exhibited improved attachment rates (~2–3 fold) to such tissues as compared to appropriate transgenic controls and/or wild-type counterparts; and iii) certain chemically synthesized compounds derived from Gp35/50 kDa mucins were able to specifically interfere with epimastigote attachment to the inner lining of T. infestans rectal ampoules in ex vivo binding assays, most likely by competing with or directly blocking insect receptor(s). A solvent-exposed peptide (smugS peptide) from the Gp35/50 kDa mucins protein scaffolds and a branched, Galf-containing trisaccharide (Galfβ1–4[Galpβ1–6]GlcNAcα) from their O-linked glycans were identified as main adhesion determinants for these molecules. Interestingly, exogenous addition of a synthetic Galfβ1–4[Galpβ1–6]GlcNAcα derivative or of oligosaccharides containing this structure impaired the attachment of Dm28c but not of CL Brener epimastigotes to triatomine hindgut tissues; which correlates with the presence of Galf residues on the Gp35/50 kDa mucins’ O-glycans on the former but not the latter parasite clone. Conclusion/Significance These results provide novel insights into the mechanisms underlying T. cruzi-triatomine interplay, and indicate that inter-strain variations in the O-glycosylation of Gp35/50 kDa mucins may lead to differences in parasite differentiation and hence, in parasite transmissibility to the mammalian host. Most importantly, our findings point to Gp35/50 kDa mucins and/or the Galf biosynthetic pathway, which is absent in mammals and insects, as appealing targets for the development of T. cruzi transmission-blocking strategies. Chagas disease, caused by the protozoan Trypanosoma cruzi, is a life-long and debilitating neglected illness of major significance to Latin America public health, for which no vaccine or adequate drugs are yet available. In this scenario, identification of novel drug targets and/or strategies aimed at controlling parasite transmission are urgently needed. By using ex vivo binding assays together with different biochemical and genetic approaches, we herein show that Gp35/50 kDa mucins, the major T. cruzi epimastigote surface glycoproteins, specifically adhere to the internal cuticle of the rectal ampoule of the triatomine vector, a critical step leading to their differentiation into mammal-infective metacyclic forms. Ex vivo binding assays in the presence of chemically synthesized analogs allowed the identification of a solvent-exposed peptide and a branched, galactofuranose (Galf)-containing trisaccharide (Galfβ1–4[Galpβ1–6]GlcNAcα) as major Gp35/50 kDa mucins adhesion determinants. Overall, these results provide novel insights into the mechanisms underlying the complex T. cruzi-triatomine interplay. In addition, and since the presence of Galf-based glycotopes on the O-glycans of Gp35/50 kDa mucins is restricted to certain parasite strains/clones, they also indicate that the Galfβ1–4[Galpβ1–6]GlcNAcα motif may contribute to the well-established phenotypic variability among T. cruzi isolates. Most importantly, and taking into account that Galf residues are not found in mammals, we propose Gp35/50 kDa mucins and/or Galf biosynthesis as appealing and novel targets for the development of T. cruzi transmission-blocking strategies.
Collapse
Affiliation(s)
- María de los Milagros Cámara
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Camila Centeno Cameán
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Carmen R. Cori
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Gustavo A. Kashiwagi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Santiago A. Gil
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, C1428EGA Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, C1428EGA Buenos Aires, Argentina
| | - Francisco Guaimas
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Maite Mabel Lobo
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
| | - Rosa M. de Lederkremer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- CONICET-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de investigaciones científicas y técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
28
|
Waltmann A, Willcox AC, Balasubramanian S, Borrini Mayori K, Mendoza Guerrero S, Salazar Sanchez RS, Roach J, Condori Pino C, Gilman RH, Bern C, Juliano JJ, Levy MZ, Meshnick SR, Bowman NM. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Negl Trop Dis 2019; 13:e0007383. [PMID: 31059501 PMCID: PMC6522061 DOI: 10.1371/journal.pntd.0007383] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/16/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Triatomine vectors transmit Trypanosoma cruzi, the etiological agent of Chagas disease in humans. Transmission to humans typically occurs when contaminated triatomine feces come in contact with the bite site or mucosal membranes. In the Southern Cone of South America, where the highest burden of disease exists, Triatoma infestans is the principal vector for T. cruzi. Recent studies of other vector-borne illnesses have shown that arthropod microbiota influences the ability of infectious agents to colonize the insect vector and transmit to the human host. This has garnered attention as a potential control strategy against T. cruzi, as vector control is the main tool of Chagas disease prevention. Here we characterized the microbiota in T. infestans feces of both wild-caught and laboratory-reared insects and examined the relationship between microbial composition and T. cruzi infection using highly sensitive high-throughput sequencing technology to sequence the V3-V4 region of the 16S ribosomal RNA gene on the MiSeq Illumina platform. We collected 59 wild (9 with T. cruzi infection) and 10 lab-reared T. infestans (4 with T. cruzi infection) from the endemic area of Arequipa, Perú. Wild T. infestans had greater hindgut bacterial diversity than laboratory-reared bugs. Microbiota of lab insects comprised a subset of those identified in their wild counterparts, with 96 of the total 124 genera also observed in laboratory-reared insects. Among wild insects, variation in bacterial composition was observed, but time and location of collection and development stage did not explain this variation. T. cruzi infection in lab insects did not affect α- or β-diversity; however, we did find that the β-diversity of wild insects differed if they were infected with T. cruzi and identified 10 specific taxa that had significantly different relative abundances in infected vs. uninfected wild T. infestans (Bosea, Mesorhizobium, Dietzia, and Cupriavidus were underrepresented in infected bugs; Sporosarcina, an unclassified genus of Porphyromonadaceae, Nestenrenkonia, Alkalibacterium, Peptoniphilus, Marinilactibacillus were overrepresented in infected bugs). Our findings suggest that T. cruzi infection is associated with the microbiota of T. infestans and that inferring the microbiota of wild T. infestans may not be possible through sampling of T. infestans reared in the insectary. Chagas disease in humans is caused by the parasite Trypanosoma cruzi and it is endemic to the Americas. Poor populations are most at risk. The parasite infects an estimated six million people of 21 endemic countries in the Americas, with 30,000 new infections yearly. The main mode of transmission is vector-borne by triatomine bugs, which tend to live in close association with humans. The main Chagas disease vector in the Southern Cone of South America, where the highest burden of disease exists, is Triatoma infestans. As blood-sucking insects, triatomines become infected when they bite a T. cruzi-positive human and once infected they transmit the parasites in their feces. Controlling the vector populations is the main strategy of Chagas disease transmission reduction efforts. Microbiota-mediated methods to control this vector-borne disease are now being explored to determine whether microbes typically found in the vectors’ gut have a detrimental effect on T. cruzi and how they may be used to modify the vector and curb the ability for T. cruzi to be transmitted to humans. To advance this new field, we first must gain better knowledge of the gut microbiota of triatomines. Our study is the first to use sensitive high-throughput methods to study the gut microbes of T. infestans, using both laboratory-reared and wild insects. We have found that the microbial composition of T. infestans in the laboratory does not reflect the complete collection of gut microbes of wild T. infestans and inferring the gut microbiota profile of wild insects through studying lab insects alone may not be possible. We also found evidence that in wild insects T. cruzi affects the composition of the gut microbiota and identified some bacterial taxa which may be important in modulating the T.infestans-T.cruzi relationship.
Collapse
Affiliation(s)
- Andreea Waltmann
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Alexandra C. Willcox
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sujata Balasubramanian
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katty Borrini Mayori
- Zoonotic Disease Research Laboratory, Unidad de Una Salud, Universidad Peruana Cayetano Heredia, Arequipa, Perú
| | - Sandra Mendoza Guerrero
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Renzo S. Salazar Sanchez
- Zoonotic Disease Research Laboratory, Unidad de Una Salud, Universidad Peruana Cayetano Heredia, Arequipa, Perú
| | - Jeffrey Roach
- Microbiome Core Facility, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Carlos Condori Pino
- Zoonotic Disease Research Laboratory, Unidad de Una Salud, Universidad Peruana Cayetano Heredia, Arequipa, Perú
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, School of Medicine, University of California-San Francisco, San Francisco, California, United States of America
| | - Jonathan J. Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael Z. Levy
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Steven R. Meshnick
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalie M. Bowman
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
29
|
Jiménez-Cortés JG, García-Contreras R, Bucio-Torres MI, Cabrera-Bravo M, Córdoba-Aguilar A, Benelli G, Salazar-Schettino PM. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop 2018; 186:69-101. [PMID: 30003907 DOI: 10.1016/j.actatropica.2018.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Due to their high impact on public health, human blood-feeding arthropods are one of the most relevant animal groups. Bacterial symbionts have been long known to play a role in the metabolism, and reproduction of these arthropod vectors. Nowadays, we have a more complete picture of their functions, acknowledging the wide influence of bacterial symbionts on processes ranging from the immune response of the arthropod host to the possible establishment of pathogens and parasites. One or two primary symbiont species have been found to co-evolve along with their host in each taxon (being ticks an exception), leading to various kinds of symbiosis, mostly mutualistic in nature. Moreover, several secondary symbiont species are shared by all arthropod groups. With respect to gut microbiota, several bacterial symbionts genera are hosted in common, indicating that these bacterial groups are prone to invade several hematophagous arthropod species feeding on humans. The main mechanisms underlying bacterium-arthropod symbiosis are discussed, highlighting that even primary symbionts elicit an immune response from the host. Bacterial groups in the gut microbiota play a key role in immune homeostasis, and in some cases symbiont bacteria could be competing directly or indirectly with pathogens and parasites. Finally, the effects climate change, great human migrations, and the increasingly frequent interactions of wild and domestic animal species are analyzed, along with their implications on microbiota alteration and their possible impacts on public health and the control of pathogens and parasites harbored in arthropod vectors of human parasites and pathogens.
Collapse
Affiliation(s)
- J Guillermo Jiménez-Cortés
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Martha I Bucio-Torres
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Margarita Cabrera-Bravo
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Alex Córdoba-Aguilar
- Laboratorio de Ecología de la Conducta de Artrópodos, Instituto de Ecología, Universidad Nacional Autónoma de México, México
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Paz M Salazar-Schettino
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
30
|
Lima MS, Laport MS, Lorosa ES, Jurberg J, Dos Santos KRN, da Silva Neto MAC, Rachid CTCDC, Atella GC. Bacterial community composition in the salivary glands of triatomines (Hemiptera: Reduviidae). PLoS Negl Trop Dis 2018; 12:e0006739. [PMID: 30212460 PMCID: PMC6136693 DOI: 10.1371/journal.pntd.0006739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/07/2018] [Indexed: 12/20/2022] Open
Abstract
Background Chagas disease is caused by the parasite Trypanosoma cruzi and is transmitted through triatomines (Hemiptera: Reduviidae). In the last year, many studies of triatomine gut microbiota have outlined its potential role in modulating vector competence. However, little is known about the microbiota present in the salivary glands of triatomines. Bacterial composition of salivary glands in selected triatomine species was investigated, as well as environmental influences on the acquisition of bacterial communities. Methodology/Principal findings The diversity of the bacterial communities of 30 pairs of salivary glands of triatomines was studied by sequencing of the V1- V3 variable region of the 16S rRNA using the MiSeq platform (Illumina), and bacteria isolated from skin of three vertebrate hosts were identified based on 16S rRNA gene sequence analysis (targeting the V3–V5 region). In a comparative analysis of microbiota in the salivary glands of triatomine species, operational taxonomic units belonging to Arsenophonous appeared as dominant in Triatoma spp (74% of the total 16S coverage), while these units belonging to unclassified Enterobacteriaceae were dominant in the Rhodnius spp (57% of the total 16S coverage). Some intraspecific changes in the composition of the triatomine microbiota were observed, suggesting that some bacteria may have been acquired from the environment. Conclusions and significance Our study revealed the presence of a low-diversity microbiota associated to the salivary glands of the evaluated triatomines. The predominant bacteria genera are associated with triatomine genera and the bacteria can be acquired in the environment in which the insects reside. Further studies are necessary to determine the influence of bacterial communities on vector competence. Chagas disease is caused by the parasite Trypanosoma cruzi and is transmitted through triatomines (Hemiptera: Reduviidae). It is estimated that over 10 000 people die every year from clinical manifestations of Chagas disease, and more than 25 million people risk acquiring the disease per year. Vector control remains the most effective method to prevent infection. In previous studies, the microbiota affected vector competence, thereby highlighting its potential for vector control. In this study, we demonstrate the presence of cultivable and non-cultivable bacteria in the salivary glands of different species of triatomines. The predominant bacterial genera appear to be specific to certain triatomines, e.g., the operational taxonomic units belonging to Arsenophonus bacterial genus is associated with the Triatoma spp, while these units belonging to unclassified Enterobacteriaceae bacterial family are associated with the Rhodnius spp. The operational taxonomic units found in low relative abundance also varied between species of triatomines and their occurrence could be influenced by the environment in which insects reside as well as inter-bacterial modulation by species-specific manner.
Collapse
Affiliation(s)
- Michele Souza Lima
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Prof. Rogério Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Elias Seixas Lorosa
- Laboratório de Referência Nacional e Internacional de Triatomíneos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro-RJ, Brazil
| | - José Jurberg
- Laboratório de Referência Nacional e Internacional de Triatomíneos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro-RJ, Brazil
| | | | - Mário Alberto Cardoso da Silva Neto
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | | | - Georgia Correa Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| |
Collapse
|
31
|
Oliveira JL, Cury JC, Gurgel-Gonçalves R, Bahia AC, Monteiro FA. Field-collected Triatoma sordida from central Brazil display high microbiota diversity that varies with regard to developmental stage and intestinal segmentation. PLoS Negl Trop Dis 2018; 12:e0006709. [PMID: 30138419 PMCID: PMC6138416 DOI: 10.1371/journal.pntd.0006709] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 09/14/2018] [Accepted: 07/22/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/METHODOLOGY Triatomine bugs are the vectors of Trypanosoma cruzi, the agent of Chagas disease. Vector control has for decades relied upon insecticide spraying, but insecticide resistance has recently emerged in several triatomine populations. One alternative strategy to reduce T. cruzi transmission is paratransgenesis, whereby symbiotic bacteria are genetically engineered to produce T. cruzi-killing proteins in the vector's gut. This approach requires in-depth knowledge of the vectors' natural gut microbiota. Here, we use metagenomics (16S rRNA 454 pyrosequencing) to describe the gut microbiota of field-caught Triatoma sordida-likely the most common peridomestic triatomine in Brazil. For large nymphs (4th and 5th stage) and adults, we also studied separately the three main digestive-tract segments-anterior midgut, posterior midgut, and hindgut. PRINCIPAL FINDINGS Bacteria of four phyla (12 genera) were present in both nymphs (all five stages) and adults, thus defining T. sordida's 'bacterial core': Actinobacteria (Brevibacterium, Corynebacterium, Dietzia, Gordonia, Nitriliruptor, Nocardia, Nocardiopsis, Rhodococcus, and Williamsia), Proteobacteria (Pseudomonas and Sphingobium), and Firmicutes (Staphylococcus). We found some clear differences in bacterial composition and relative abundance among development stages; overall, Firmicutes and Proteobacteria increased, but Actinobacteria decreased, through development. Finally, the bacterial microbiotas of the bugs' anterior midgut, posterior midgut, and hindgut were sharply distinct. CONCLUSIONS/SIGNIFICANCE Our results identify the 'bacterial core set' of T. sordida and reveal important gut microbiota differences among development stages-particularly between 1st-3rd stage nymphs and adults. Further, we show that, within any given development stage, the vectors' gut cannot be regarded as a single homogeneous environment. Cultivable, non-pathogenic 'core' bacterial species may now be tested as candidates for paratransgenic control of T. cruzi transmission by T. sordida.
Collapse
Affiliation(s)
- Joana L. Oliveira
- Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Insetos e Parasitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliano C. Cury
- Departamento de Ciências Exatas e Biológicas, Universidade Federal de São João del-Rei, Campus de Sete Lagoas, Sete Lagoas, Minas Gerais, Brazil
| | - Rodrigo Gurgel-Gonçalves
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Ana C. Bahia
- Laboratório de Bioquímica de Insetos e Parasitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A. Monteiro
- Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Onchuru TO, Martinez AJ, Kaltenpoth M. The cotton stainer's gut microbiota suppresses infection of a cotransmitted trypanosomatid parasite. Mol Ecol 2018; 27:3408-3419. [PMID: 29972876 DOI: 10.1111/mec.14788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
The evolutionary and ecological success of many insects is attributed to mutualistic partnerships with bacteria that confer hosts with novel traits including food digestion, nutrient supplementation, detoxification of harmful compounds and defence against natural enemies. Dysdercus fasciatus firebugs (Hemiptera: Pyrrhocoridae), commonly known as cotton stainers, possess a simple but distinctive gut bacterial community including B vitamin-supplementing Coriobacteriaceae symbionts. In addition, their guts are often infested with the intestinal trypanosomatid parasite Leptomonas pyrrhocoris (Kinetoplastida: Trypanosomatidae). In this study, using experimental bioassays and fluorescence in situ hybridization (FISH), we report on the protective role of the D. fasciatus gut bacteria against L. pyrrhocoris. We artificially infected 2nd instars of dysbiotic and symbiotic insects with a parasite culture and measured parasite titres, developmental time and survival rates. Our results show that L. pyrrhocoris infection increases developmental time and slightly modifies the quantitative composition of the gut microbiota. More importantly, we found significantly higher parasite titres and a tendency towards lower survival rates in parasite-infected dysbiotic insects compared to symbiotic controls, indicating that the gut bacteria successfully interfere with the establishment or proliferation of L. pyrrhocoris. The colonization of symbiotic bacteria on the peritrophic matrix along the gut wall, as revealed by FISH, likely acts as a barrier blocking parasite attachment or entry into the hemolymph. Our findings show that in addition to being nutritionally important, D. fasciatus' gut bacteria complement the host's immune system in preventing parasite invasions and that a stable gut microbial community is integral for the host's health.
Collapse
Affiliation(s)
- Thomas O Onchuru
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Mainz, Germany
| | - Adam J Martinez
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
33
|
de Fuentes-Vicente JA, Gutiérrez-Cabrera AE, Flores-Villegas AL, Lowenberger C, Benelli G, Salazar-Schettino PM, Córdoba-Aguilar A. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Trop 2018; 183:23-31. [PMID: 29625091 DOI: 10.1016/j.actatropica.2018.04.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/13/2018] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
The Chagas disease is caused by the parasite Trypanosoma cruzi, which infect blood-feeding triatomine bugs to finally reach mammal hosts. Chagas disease is endemic in Latin America, and is ranked among the 13 neglected tropical diseases worldwide. Currently, an estimate of 7 million people is infected by T. cruzi, leading to about 22 000 deaths per year throughout the Americas. As occurs with other vectors, a major question towards control programs is what makes a susceptible bug. In this review, we focus on findings linked to insect gut structure and microbiota, immunity, genetics, blood sources, abiotic factors (with special reference to ambient temperature and altitude) to understand the interactions occurring between T. cruzi and triatomine bugs, under a co-evolutionary scenario. These factors lead to varying fitness benefits and costs for bugs, explaining why infection in the insect takes place and how it varies in time and space. Our analysis highlights that major factors are gut components and microbiota, blood sources and temperature. Although their close interaction has never been clarified, knowledge reviewed here may help to boost the success of triatomine control programs, reducing the use of insecticides.
Collapse
|
34
|
Rodríguez-Ruano SM, Škochová V, Rego ROM, Schmidt JO, Roachell W, Hypša V, Nováková E. Microbiomes of North American Triatominae: The Grounds for Chagas Disease Epidemiology. Front Microbiol 2018; 9:1167. [PMID: 29951039 PMCID: PMC6008411 DOI: 10.3389/fmicb.2018.01167] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Insect microbiomes influence many fundamental host traits, including functions of practical significance such as their capacity as vectors to transmit parasites and pathogens. The knowledge on the diversity and development of the gut microbiomes in various blood feeding insects is thus crucial not only for theoretical purposes, but also for the development of better disease control strategies. In Triatominae (Heteroptera: Reduviidae), the blood feeding vectors of Chagas disease in South America and parts of North America, the investigation of the microbiomes is in its infancy. The few studies done on microbiomes of South American Triatominae species indicate a relatively low taxonomic diversity and a high host specificity. We designed a comparative survey to serve several purposes: (I) to obtain a better insight into the overall microbiome diversity in different species, (II) to check the long term stability of the interspecific differences, (III) to describe the ontogenetic changes of the microbiome, and (IV) to determine the potential correlation between microbiome composition and presence of Trypanosoma cruzi, the causative agent of Chagas disease. Using 16S amplicons of two abundant species from the southern US, and four laboratory reared colonies, we showed that the microbiome composition is determined by host species, rather than locality or environment. The OTUs (Operational Taxonomic Units) determination confirms a low microbiome diversity, with 12-17 main OTUs detected in wild populations of T. sanguisuga and T. protracta. Among the dominant bacterial taxa are Acinetobacter and Proteiniphilum but also the symbiotic bacterium Arsenophonus triatominarum, previously believed to only live intracellularly. The possibility of ontogenetic microbiome changes was evaluated in all six developmental stages and feces of the laboratory reared model Rhodnius prolixus. We detected considerable changes along the host's ontogeny, including clear trends in the abundance variation of the three dominant bacteria, namely Enterococcus, Acinetobacter, and Arsenophonus. Finally, we screened the samples for the presence of Trypanosoma cruzi. Comparing the parasite presence with the microbiome composition, we assessed the possible significance of the latter in the epidemiology of the disease. Particularly, we found a trend toward more diverse microbiomes in Trypanosoma cruzi positive T. protracta specimens.
Collapse
Affiliation(s)
| | - Veronika Škochová
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Ryan O. M. Rego
- Biology Centre of ASCR, Institute of Parasitology, Ceske Budejovice, Czechia
| | - Justin O. Schmidt
- Department of Entomology, Southwestern Biological Institute, Tucson, AZ, United States
| | - Walter Roachell
- US Army Public Health Command-Central, JBSA Fort Sam Houston, Houston, TX, United States
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
- Biology Centre of ASCR, Institute of Parasitology, Ceske Budejovice, Czechia
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
- Biology Centre of ASCR, Institute of Parasitology, Ceske Budejovice, Czechia
| |
Collapse
|
35
|
Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci Rep 2018. [PMID: 29515202 PMCID: PMC5841364 DOI: 10.1038/s41598-018-22455-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Trypanosoma cruzi is the agent of Chagas disease, transmitted by hematophagous triatomine vectors. Establishing transmission cycles is key to understand the epidemiology of the disease, but integrative assessments of ecological interactions shaping parasite transmission are still limited. Current approaches also lack sensitivity to assess the full extent of this ecological diversity. Here we developed a metabarcoding approach based on next-generation sequencing to identify triatomine gut microbiome, vertebrate feeding hosts, and parasite diversity and their potential interactions. We detected a dynamic microbiome in Triatoma dimidiata, including 23 bacterial orders, which differed according to blood sources. Fourteen vertebrate species served as blood sources, corresponding to domestic, synantropic and sylvatic species, although four (human, dog, cow and mice) accounted for over 50% of blood sources. Importantly, bugs fed on multiple hosts, with up to 11 hosts identified per bug, indicating very frequent host-switching. A high clonal diversity of T. cruzi was detected, with up to 20 haplotypes per bug. This analysis provided much greater sensitivity to detect multiple blood meals and multiclonal infections with T. cruzi, which should be taken into account to develop transmission networks, and characterize the risk for human infection, eventually leading to a better control of disease transmission.
Collapse
|
36
|
Haag KL. Holobionts and their hologenomes: Evolution with mixed modes of inheritance. Genet Mol Biol 2018; 41:189-197. [PMID: 29505062 PMCID: PMC5913720 DOI: 10.1590/1678-4685-gmb-2017-0070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Symbioses are ubiquitous and have played an influential role in the evolution of life on Earth. Genomic studies are now revealing a huge diversity of associations among hosts and their microbiotas, allowing us to characterize their complex ecological and evolutionary dynamics. The different transmission modes and the asynchronous cell proliferation of the numerous symbionts associated with one host generate a genomic conflict ought to be solved. Two disputing views have been used to model and predict the outcome of such conflicts. The traditional view is based on community ecology, and considers that selection at the level of individuals is sufficient to explain longstanding associations among species. A new perspective considers that the host and its associated microbiota constitute a biological entity called holobiont, and that regarding it as a higher-level unit of selection is unavoidable to understand phenotypic evolution. Novel extended phenotypes are often built through symbiotic interactions, allowing the holobiont to explore and survive in distinct environmental conditions, and may evolve in a Lamarckian fashion.
Collapse
Affiliation(s)
- Karen Luisa Haag
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
Montoya-Porras LM, Omar TC, Alzate JF, Moreno-Herrera CX, Cadavid-Restrepo GE. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop 2018; 178:327-332. [PMID: 29154947 DOI: 10.1016/j.actatropica.2017.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/19/2017] [Accepted: 11/14/2017] [Indexed: 01/19/2023]
Abstract
Chagas disease affects more than 6 million people in Latin America, it is a parasitic disease caused by the protozoan Trypanosoma cruzi, which is transmitted mainly by bloodsucking insects of the Triatominae subfamily. Studies on microbial communities that inhabit the insect gut are important to understanding their role in the parasite transmission and development. The present work aims to evaluate the gut bacterial composition of natural populations of triatomine species from Vichada and Magdalena, administrative states called departments in Colombia, using high-throughput sequencing technologies. The insects were collected from housing peridomestic area and Attalea butyracea palms; they were identified by conventional taxonomy as Triatoma maculata and Rhodnius pallescens, and their guts were dissected under aseptic conditions in order to obtain total DNA. After DNA quality confirmation, the sequencing of the V4 region of 16S rRNA gene was carried out using the Illumina platform MiSeq. The results showed that 13 predominant bacterial genera were present in both species, being Burkholderia, Gordonia, and Ralstonia, the most prevailing bacterial genera. Furthermore, representative genera of each species were found. Williamsia and Kocuria were the most common in R. pallescens; and Dietzia, Aeromonas, and Pelomonas were only observed in T. maculata samples. This is the first study of microbiota associated with these triatomine species using massive sequencing methods The approach allowed inferring the presence of a dominant population of bacteria according to the triatomine species in Colombia, which may suggest a strong association between microbiota and their host.
Collapse
|
38
|
Dada N, Sheth M, Liebman K, Pinto J, Lenhart A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci Rep 2018; 8:2084. [PMID: 29391526 PMCID: PMC5794770 DOI: 10.1038/s41598-018-20367-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/17/2018] [Indexed: 02/04/2023] Open
Abstract
In light of the declining global malaria burden attained largely due to insecticides, a deeper understanding of the factors driving insecticide resistance is needed to mitigate its growing threat to malaria vector control programs. Following evidence of microbiota-mediated insecticide resistance in agricultural pests, we undertook a comparative study of the microbiota in mosquitoes of differing insecticide resistance status. The microbiota of wild-caught Anopheles albimanus, an important Latin American malaria vector, that were resistant (FEN_Res) or susceptible (FEN_Sus) to the organophosphate (OP) insecticide fenitrothion were characterized and compared using whole metagenome sequencing. Results showed differing composition of the microbiota and its functions between FEN_Res and FEN_Sus, with significant enrichment of OP-degrading bacteria and enzymes in FEN_Res compared to FEN_Sus. Lower bacterial diversity was observed in FEN_Res compared to FEN_Sus, suggesting the enrichment of bacterial taxa with a competitive advantage in response to insecticide selection pressure. We report and characterize for the first time whole metagenomes of An. albimanus, revealing associations between the microbiota and phenotypic resistance to the insecticide fenitrothion. This study lays the groundwork for further investigation of the role of the mosquito microbiota in insecticide resistance.
Collapse
Affiliation(s)
- Nsa Dada
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE. MS G-49, Atlanta, GA 30329, United States of America
- American Society for Microbiology, 1752 N Street, N. W. Washington, D. C., 20036, United States of America
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging & Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE, Atlanta, GA 30329, United States of America
| | - Kelly Liebman
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE. MS G-49, Atlanta, GA 30329, United States of America
- Vector-Borne Disease Section, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA 94804, United States of America
| | - Jesus Pinto
- Instituto Nacional de Salud, Avenida Defensores del Morro (Ex-Huaylas) 2268, Chorrillos, Lima, Peru
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE. MS G-49, Atlanta, GA 30329, United States of America.
| |
Collapse
|
39
|
Carels N, Gumiel M, da Mota FF, de Carvalho Moreira CJ, Azambuja P. A Metagenomic Analysis of Bacterial Microbiota in the Digestive Tract of Triatomines. Bioinform Biol Insights 2017; 11:1177932217733422. [PMID: 28989277 PMCID: PMC5624349 DOI: 10.1177/1177932217733422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/10/2017] [Indexed: 12/04/2022] Open
Abstract
The digestive tract of triatomines (DTT) is an ecological niche favored by microbiota whose enzymatic profile is adapted to the specific substrate availability in this medium. This report describes the molecular enzymatic properties that promote bacterial prominence in the DTT. The microbiota composition was assessed previously based on 16S ribosomal DNA, and whole sequenced genomes of bacteria from the same genera were used to calculate the GC level of rare and prominent bacterial species in the DTT. The enzymatic reactions encoded by coding sequences of both rare and common bacterial species were then compared and revealed key functions explaining why some genera outcompete others in the DTT. Representativeness of DTT microbiota was investigated by shotgun sequencing of DNA extracted from bacteria grown in liquid Luria-Bertani broth (LB) medium. Results showed that GC-rich bacteria outcompete GC-poor bacteria and are the dominant components of the DTT microbiota. In addition, oxidoreductases are the main enzymatic components of these bacteria. In particular, nitrate reductases (anaerobic respiration), oxygenases (catabolism of complex substrates), acetate-CoA ligase (tricarboxylic acid cycle and energy metabolism), and kinase (signaling pathway) were the major enzymatic determinants present together with a large group of minor enzymes including hydrogenases involved in energy and amino acid metabolism. In conclusion, despite their slower growth in liquid LB medium, bacteria from GC-rich genera outcompete the GC-poor bacteria because their specific enzymatic abilities impart a selective advantage in the DTT.
Collapse
Affiliation(s)
- Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcial Gumiel
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Fabio Faria da Mota
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Patricia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil.,Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|