1
|
Somda Z, Zanré N, Wangrawa DW, Toé HK, Sombié A, Saiki E, Fukumoto S, Sakurai T, Sanon A, McCall PJ, Kanuka H, Weetman D, Badolo A. High pyrethroid resistance is associated with high frequencies of 1014F and 1014S kdr mutations in Anopheles arabiensis (Diptera: Culicidae) from Ouagadougou, Burkina Faso. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:381-388. [PMID: 39707159 DOI: 10.1093/jme/tjae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 12/23/2024]
Abstract
Malaria remains a major public health threat in Burkina Faso, as in most sub-Saharan Africa countries. Malaria control relies mainly on long-lasting insecticide-treated nets (LLINs) and indoor residual spraying. In Burkina Faso, an escalating of insecticide resistance has been observed over the last decades. This study aimed to investigate insecticide resistance and the underlying mechanisms in Anopheles gambiae complex in Ouagadougou. Anopheles gambiae s.l. larvae were collected from gutters and ponds, in Zogona, Tampouy and Tanghin, 3 localities in Ouagadougou from July to October 2018. The larvae were reared in the laboratory to adults stage and susceptibility profile to pyrethroid, carbamate, and organophosphate insecticides was assessed using WHO tube assays. Mosquito species and mutations linked with insecticide resistance, were identified through PCR. More than 95% of the collected An. gambiae s.l. were An. arabiensis. An. arabiensis displayed high resistance to permethrin and deltamethrin, with mortalities below 30%, but was fully susceptible to bendiocarb, fenitrothion, and malathion. A high-frequency of the pyrethroid resistance-associated kdr mutation 1014F (0.81) was recorded, while the frequency of 1014S mutation (0.18) was lower. However, the carbamate and organophosphate-associated Ace-1 119S mutation was not detected. Localities and breeding site type appear to influence pyrethroid resistance in the An. arabiensis population of Ouagadougou. The high resistance to pyrethroids in An. arabiensis of urban Ouagadougou is underpinned, at least in part by high-frequency kdr mutations. This result supports the switch to next-generation LLINs, in well-established pyrethroid resistance zones of Burkina Faso including Ouagadougout.
Collapse
Affiliation(s)
- Zephirin Somda
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Nicolas Zanré
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Unité de Formation et de Recherche en Sciences et Technologies, Université Norbert ZONGO, Koudougou, Burkina Faso
| | - Hyacinthe K Toé
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Departement des Sciences Biomedicales, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Aboubacar Sombié
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Erisha Saiki
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Tatsuya Sakurai
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Antoine Sanon
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hirotaka Kanuka
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
2
|
Onyango SA, Machani MG, Ochwedo KO, Oriango RM, Lee MC, Kokwaro E, Afrane YA, Githeko AK, Zhong D, Yan G. Plasmodium falciparum Pfs47 haplotype compatibility to Anopheles gambiae in Kisumu, a malaria-endemic region of Kenya. Sci Rep 2025; 15:6550. [PMID: 39994226 PMCID: PMC11850800 DOI: 10.1038/s41598-024-84847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/27/2024] [Indexed: 02/26/2025] Open
Abstract
Insecticide resistance and outdoor transmission have reduced the effectiveness of existing malaria transmission prevention strategies. As a result, targeted approaches to support continuing malaria control, such as transmission-blocking vaccines, are required. Cross-sectional mass blood screening in children between 5 and 15 years was conducted in Chulaimbo, Kisumu, during the dry and wet seasons in 2018 and 2019. Plasmodium falciparum gametocyte carriers were identified by Microscopy. Subsequently, carriers were used to feed colony bred Anopheles gambiae females in serum replacement and whole blood membrane feeding experiments. The infection prevalence was 19.7% (95% Cl 0.003-0.007) with 95% of the infections being caused by P. falciparum. Of all confirmed P. falciparum infections, 16.9% were gametocytes. Thirty-seven paired experiments showed infection rates of 0.9% and 0.5% in the serum replacement and whole blood experiments, respectively, with no significant difference (P = 0.738). Six Pfs47 haplotypes were identified from 24 sequenced infectious blood samples: Hap_1 (E27D and L240I), Hap_2 (S98T); Hap_3 (E27D); Hap_4 (L240I); Hap_5 (E188D); and Hap_6 without mutations. Haplotype 4 had the highest frequency of 29.2% followed by Hap_3 and Hap_6 at 20.8% each then Hap_1 with a frequency of 16.7%, whereas Hap_5 and Hap_2 had frequencies of 8.3% and 4.2% respectively. Varying frequencies of Pfs47 haplotypes observed from genetically heterogeneous parasite populations in endemic regions illuminates vector compatibility to refracting P. falciparum using the hypothesized lock and key analogy. This acts as a bottleneck that increases the frequency of P. falciparum haplotypes that escape elimination by vector immune responses. The interaction can be used as a potential target for transmission blocking through a refractory host.
Collapse
Affiliation(s)
- Shirley A Onyango
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
- International Centre of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya.
| | - Maxwell G Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kevin O Ochwedo
- International Centre of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Robin M Oriango
- International Centre of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | | | - Yaw A Afrane
- Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
3
|
Tenywa FSC, Kibondo UA, Entwistle J, Dogan O, Haruna M, Phisoo RP, Moore J, Machange JJ, Makame H, Tripet F, Müller P, Mondy M, Nimmo D, Stevenson JC, Moore SJ. Bioassays for the evaluation of the attractiveness of attractive targeted sugar bait (ATSB) against Anopheles mosquitoes in controlled semi-field systems. Parasit Vectors 2025; 18:38. [PMID: 39905480 PMCID: PMC11792329 DOI: 10.1186/s13071-024-06653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Sugar feeding is an essential aspect of mosquito biology that may be exploited for mosquito control by adding insecticides to sugar attractants, so-called 'attractive targeted sugar baits' (ATSBs). To optimize their effectiveness, ATSB products need to be maximally attractive at both short and long range and induce high levels of feeding. This study aimed to assess the attractiveness and feeding success of Anopheles mosquitoes exposed to attractive sugar baits (ASBs). METHOD Experiments were conducted in 2 × 5 × 2-m cages constructed within the semi-field systems (SFS) at Ifakara Health Institute, Bagamoyo, Tanzania. Male and female Anopheles gambiae s.s. and An. funestus s.s. mosquitoes were exposed to either 20% sucrose or different ASB station prototypes produced by Westham Co. in either (1) no-choice experiments or (2) choice experiments. Mosquitoes were exposed overnight and assessed for intrinsic or relative olfactory attraction using fluorescent powder markers dusted over the ASB stations and 20% sucrose and for feeding using uranine incorporated within the bait station and food dye in 20% sucrose controls. RESULTS Both male and female An. gambiae and An. funestus mosquitoes were attracted to the ASBs, with no significant difference between the sexes for each of the experiments conducted. Older mosquitoes (3-5 days) were more attracted to the ASBs (OR = 8.3, [95% CI 6.6-10.5] P < 0.001) than younger mosquitoes (0-1 day). Similarly, older mosquitoes responded more to 20% sucrose (OR = 4.6, [3.7-5.8], P < 0.001) than newly emerged Anopheles. Of the four prototypes tested, the latest iteration, ASB prototype v1.2.1, showed the highest intrinsic attraction of both Anopheles species, attracting 91.2% [95% CI 87.9-94.5%]. Relative to ATSB v1.1.1, the latest prototype, v.1.2.1, had higher attraction (OR = 1.19 [95% CI 1.07-1.33], P < 0.001) and higher feeding success (OR = 1.71 [95% CI 1.33-2.18], P < 0.001). CONCLUSIONS Data from these experiments support using ASBs v1.2.1, deployed in large-scale epidemiological trials, as it is the most attractive and shows the highest feeding success of the Westham prototypes tested. The findings indicate that future bioassays to evaluate ATSBs should use mosquitoes of both sexes, aged 3-5 days, include multiple species in the same cage or chamber, and utilize both non-choice and choice tests with a standard comparator.
Collapse
Affiliation(s)
- Frank S C Tenywa
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| | - Ummi A Kibondo
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Julian Entwistle
- Liverpool School of Tropical Medicine, The Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Osward Dogan
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Mapipi Haruna
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Restuta P Phisoo
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Jason Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Jane J Machange
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Haji Makame
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Frederic Tripet
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle, Staffordshire, ST5 5BG, UK
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Mathias Mondy
- Liverpool School of Tropical Medicine, The Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Derric Nimmo
- Liverpool School of Tropical Medicine, The Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jennifer C Stevenson
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Sarah J Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| |
Collapse
|
4
|
Lucas ER, Nagi SC, Kabula B, Batengana B, Kisinza W, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Van’t Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Clarkson CS, Miles A, Weetman D, Donnelly MJ. Copy number variants underlie major selective sweeps in insecticide resistance genes in Anopheles arabiensis. PLoS Biol 2024; 22:e3002898. [PMID: 39636817 PMCID: PMC11620391 DOI: 10.1371/journal.pbio.3002898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. The outdoor-biting malaria vector Anopheles arabiensis is of increasing concern for malaria transmission because it is apparently less susceptible to many indoor control interventions, yet knowledge of its mechanisms of resistance remains limited. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of globally high resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to the pyrethroid deltamethrin (commonly used in bednets) and PM (widespread use for indoor spraying), in An. arabiensis from 2 regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in metabolic resistance. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the carboxylesterase genes Coeae2g - Coeae6g. Using complementary data from another malaria vector, An. coluzzii, in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster (Cyp6aap_Dup33). Against this background of metabolic resistance, resistance caused by mutations in the insecticide target sites was very rare or absent. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with 3 An. arabiensis individuals from West Africa revealed a startling evolutionary diversity, with up to 5 independent origins of Vgsc-995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis.
Collapse
Affiliation(s)
- Eric R. Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sanjay C. Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bilali Kabula
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Bernard Batengana
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sam Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Arjen E. Van’t Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Emily J. Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas J. Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Naomi A. Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
5
|
Machani MG, Nzioki I, Onyango SA, Onyango B, Githure J, Atieli H, Wang C, Lee MC, Githeko AK, Afrane YA, Ochomo E, Yan G. Insecticide resistance and its intensity in urban Anopheles arabiensis in Kisumu City, Western Kenya: Implications for malaria control in urban areas. PLoS One 2024; 19:e0303921. [PMID: 39536003 PMCID: PMC11560014 DOI: 10.1371/journal.pone.0303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The rise of insecticide resistance poses a growing challenge to the effectiveness of vector control tools, particularly in rural areas. However, the urban setting has received comparatively less focus despite its significance in attracting rural to urban migration. Unplanned urbanization, often overlooked, exacerbates insecticide resistance as Anopheles mosquitoes adapt to the polluted environments of rapidly expanding cities. This study aimed to assess the insecticide susceptibility status of malaria vectors and identify potential underlying mechanisms across three distinct ecological settings characterized by differing levels of urbanization in Kisumu County, Kenya. METHODS The study was conducted in 2022-2023 in Kisumu County, western Kenya. Field-derived An. gambiae (s.l.) larvae collected from a long stretch of urban-to-rural continuum were phenotyped as either resistant or susceptible to six different insecticides using the World Health Organization (WHO) susceptibility test. Polymerase chain reaction (PCR) techniques were used to identify the species of the An. gambiae complex and screened for mutations at voltage-gated sodium channels (Vgsc-1014F, Vgsc-1014S, Vgsc-1575Y) and acetylcholinesterase (Ace1) target site mutation 119S. Metabolic enzyme activities (non-specific β-esterases and monooxygenases) were evaluated in mosquitoes not exposed to insecticides using microplate assays. Additionally, during larval sampling, a retrospective questionnaire survey was conducted to determine pesticide usage by the local inhabitants. RESULTS Anopheles arabiensis dominated in urban (96.2%) and peri-urban (96.8%) areas, while An. gambiae (s.s.) was abundant in rural settings (82.7%). Urban mosquito populations showed high resistance intensity to deltamethrin (Mortality rate: 85.2% at 10x) and suspected resistance to Pirimiphos-methyl and bendiocarb while peri-urban and rural populations exhibited moderate resistance intensity to deltamethrin (mortality rate >98% at 10x). Preexposure of mosquitoes to a synergist piperonyl butoxide (PBO) significantly increased mortality rates: from 40.7% to 88.5% in urban, 51.9% to 90.3% in peri-urban, and 55.4% to 87.6% in rural populations for deltamethrin, and from 41.4% to 78.8% in urban, 43.7% to 90.7% in peri-urban, and 35% to 84.2% in rural populations for permethrin. In contrast, 100% mortality to chlorfenapyr and clothianidin was observed in all the populations tested. The prevalence of L1014F mutation was notably higher in urban An. arabiensis (0.22) unlike the peri-urban (0.11) and rural (0.14) populations while the L1014S mutation was more prevalent in rural An. gambiae (0.93). Additionally, urban An. arabiensis exhibited elevated levels of mixed function oxidases (0.8/mg protein) and non-specific esterases (2.12/mg protein) compared to peri-urban (0.57/mg protein and 1.5/mg protein, respectively) and rural populations (0.6/mg protein and 1.8/mg protein, respectively). Pyrethroids, apart from their use in public health through LLINs, were being highly used for agricultural purposes across all ecological settings (urban 38%, peri-urban 36% and rural 37%) followed by amidine group, with organophosphates, neonicotinoids and carbamates being of secondary importance. CONCLUSION These findings show high resistance of An. arabiensis to insecticides commonly used for vector control, linked with increased levels of detoxification enzymes. The observed intensity of resistance underscores the pressing issue of insecticide resistance in urban areas, potentially compromising the effectiveness of vector control measures, especially pyrethroid-treated LLINs. Given the species' unique behavior and ecology compared to An. gambiae, tailored vector control strategies are needed to address this concern in urban settings.
Collapse
Affiliation(s)
- Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Irene Nzioki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Brenda Onyango
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Githure
- International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Chloe Wang
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| |
Collapse
|
6
|
Ibrahim EA, Wamalwa M, Odindi J, Tonnang HEZ. Spatio-temporal characterization of phenotypic resistance in malaria vector species. BMC Biol 2024; 22:117. [PMID: 38764011 PMCID: PMC11102860 DOI: 10.1186/s12915-024-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insecticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In characterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, chi-square tests, and extensive literature review. RESULTS The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables. CONCLUSIONS The CA model developed offers a robust tool for countries that have limited data on confirmed IR in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector control, and prevention in regions facing this critical health challenge.
Collapse
Affiliation(s)
- Eric Ali Ibrahim
- International Centre of Insect Physiology and Ecology (Icipe), PO box, Nairobi, 30772, Kenya
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Mark Wamalwa
- International Centre of Insect Physiology and Ecology (Icipe), PO box, Nairobi, 30772, Kenya
| | - John Odindi
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Henri E Z Tonnang
- International Centre of Insect Physiology and Ecology (Icipe), PO box, Nairobi, 30772, Kenya.
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
7
|
Omoke D, Impoinvil LM, Derilus D, Okeyo S, Saizonou H, Mulder N, Dada N, Lenhart A, Djogbénou L, Ochomo E. Whole transcriptomic analysis reveals overexpression of salivary gland and cuticular proteins genes in insecticide-resistant Anopheles arabiensis from Western Kenya. BMC Genomics 2024; 25:313. [PMID: 38532318 DOI: 10.1186/s12864-024-10182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Effective vector control is key to malaria prevention. However, this is now compromised by increased insecticide resistance due to continued reliance on insecticide-based control interventions. In Kenya, we have observed heterogenous resistance to pyrethroids and organophosphates in Anopheles arabiensis which is one of the most widespread malaria vectors in the country. We investigated the gene expression profiles of insecticide resistant An. arabiensis populations from Migori and Siaya counties in Western Kenya using RNA-Sequencing. Centers for Disease Control and Prevention (CDC) bottle assays were conducted using deltamethrin (DELTA), alphacypermethrin (ACYP) and pirimiphos-methyl (PMM) to determine the resistance status in both sites. RESULTS Mosquitoes from Migori had average mortalities of 91%, 92% and 58% while those from Siaya had 85%, 86%, and 30% when exposed to DELTA, ACYP and PMM, respectively. RNA-Seq analysis was done on pools of mosquitoes which survived exposure ('resistant'), mosquitoes that were not exposed, and the insecticide-susceptible An. arabiensis Dongola strain. Gene expression profiles of resistant mosquitoes from both Migori and Siaya showed an overexpression mainly of salivary gland proteins belonging to both the short and long form D7 genes, and cuticular proteins (including CPR9, CPR10, CPR15, CPR16). Additionally, the overexpression of detoxification genes including cytochrome P450s (CYP9M1, CYP325H1, CYP4C27, CYP9L1 and CYP307A1), 2 carboxylesterases and a glutathione-S-transferase (GSTE4) were also shared between DELTA, ACYP, and PMM survivors, pointing to potential contribution to cross resistance to both pyrethroid and organophosphate insecticides. CONCLUSION This study provides novel insights into the molecular basis of insecticide resistance in An. arabiensis in Western Kenya and suggests that salivary gland proteins and cuticular proteins are associated with resistance to multiple classes of insecticides.
Collapse
Affiliation(s)
- Diana Omoke
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya.
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
| | - Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
| | - Stephen Okeyo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | | | | | - Nsa Dada
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Tropical Infectious Disease Research Center, University of Abomey- Calavi, Abomey Calavi, Benin
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
| | - Luc Djogbénou
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
- Tropical Infectious Disease Research Center, University of Abomey- Calavi, Abomey Calavi, Benin
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya.
| |
Collapse
|
8
|
Lucas ER, Nagi SC, Kabula B, Batengana B, Kisinza W, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Clarkson CS, Miles A, Weetman D, Donnelly MJ. Copy number variants underlie the major selective sweeps in insecticide resistance genes in Anopheles arabiensis from Tanzania. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.583874. [PMID: 38559088 PMCID: PMC10979859 DOI: 10.1101/2024.03.11.583874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. Knowledge of the mechanisms of resistance remains limited in Anopheles arabiensis, which in many parts of Africa is of increasing importance because it is apparently less susceptible to many indoor control interventions. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to deltamethrin (commonly used in bednets) and PM, in An. arabiensis from two regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in resistance to these two insecticides. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the Coeae2g-Coeae6g cluster of carboxylesterase genes. Using complementary data from An. coluzzii in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster. Against this background of metabolic resistance, target site resistance was very rare or absent for both insecticides. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with three An. arabiensis individuals from West Africa revealed a startling diversity of evolutionary origins of target site resistance, with up to 5 independent origins of Vgsc-995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Bilali Kabula
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | - Bernard Batengana
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sam Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
9
|
Tsecouras JC, Thiemann TC, Hung KY, Henke JA, Gerry AC. Prevalence of Permethrin Resistance in Culex Tarsalis Populations in Southern California. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:236-242. [PMID: 38108432 DOI: 10.2987/23-7136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In the western United States, Culex tarsalis is the most important vector of West Nile virus. Insecticides containing permethrin or other pyrethroid compounds are commonly used to control these mosquitoes. Because of the range of environments where Cx. tarsalis are found, this species is under insecticide pressure from both vector control and agricultural spraying. Mosquito populations may evolve resistance through mechanisms such as target site insensitivity, including the frequently identified knockdown resistance (kdr) mutations. Prevalence of permethrin resistance was determined for Cx. tarsalis from 5 southern California field sites representing 2 distinct valley regions (Coachella Valley and Inland Valley), which are geographically separated by the north-south-running Peninsular Mountain Ranges. These two valley regions are >100 km apart and vary considerably in their environmental and habitat characteristics. Permethrin resistance in mosquito populations was determined by the Centers for Disease Control and Prevention (CDC) bottle bioassay, using glass bottles coated with permethrin at 0.19 μg/cm2 of internal surface. Permethrin resistance was evident in Cx. tarsalis populations from the Coachella Valley field sites with all sites showing similar mortality in the bottle bioassay, while Cx. tarsalis from the Inland Valley field sites were largely susceptible to permethrin, with mortality rates that were similar to a susceptible lab strain of Cx. tarsalis.
Collapse
|
10
|
Rants'o TA, Koekemoer LL, van Zyl RL. Bioactivity of select essential oil constituents against life stages of Anopheles arabiensis (Diptera: Culicidae). Exp Parasitol 2023:108569. [PMID: 37330107 DOI: 10.1016/j.exppara.2023.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Malaria is transmitted by infected female Anopheles mosquitoes, and An. arabiensis is a main malaria vector in arid African countries. Like other anophelines, its life cycle comprises of three aquatic stages; egg, larva, and pupa, followed by a free flying adult stage. Current vector control interventions using synthetic insecticides target these stages using adulticides or less commonly, larvicides. With escalating insecticide resistance against almost all conventional insecticides, identification of agents that simultaneously act at multiple stages of Anopheles life cycle presents a cost-effective opportunity. A further cost-effective approach would be the discovery of such insecticides from natural origin. Interestingly, essential oils present as potential sources of cost-effective and eco-friendly bioinsecticides. This study aimed to identify essential oil constituents (EOCs) with potential toxic effects against multiple stages of An. arabiensis life cycle. Five EOCs were assessed for inhibition of Anopheles egg hatching and ability to kill larvae, pupae and adult mosquitoes of An. arabiensis species. One of these EOCs, namely methyleugenol, exhibited potent Anopheles egg hatchability inhibition with an IC50 value of 0.51 ± 0.03 μM compared to propoxur (IC50: 5.13 ± 0.62 μM). Structure-activity relationship study revealed that methyleugenol and propoxur share a 1,2-dimethoxybenze moiety that may be responsible for the observed egg-hatchability inhibition. On the other hand, all five EOCs exhibited potent larvicidal activity with LC50 values less than 5 μM, with four of them; cis-nerolidol, trans-nerolidol, (-)-α-bisabolol, and farnesol, also possessing potent pupicidal effects (LC50 < 5 μM). Finally, all EOCs showed only moderate lethality against adult mosquitoes. This study reports for the first time, methyleugenol, (-)-α-bisabolol and farnesol as potent bioinsecticides against early life stages of An. arabiensis. This synchronized activity against Anopheles aquatic stages shows a prospect to integrate EOCs into existing adulticide-based vector control interventions.
Collapse
Affiliation(s)
- Thankhoe A Rants'o
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Robyn L van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
11
|
Khan HAA. Monitoring resistance to methomyl and synergism in the non-target Musca domestica from cotton fields of Punjab and Sindh provinces, Pakistan. Sci Rep 2023; 13:7074. [PMID: 37127684 PMCID: PMC10151320 DOI: 10.1038/s41598-023-34331-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
Insecticides are an integral part of most of the cropping systems worldwide; however, these usually exert negative impact on the environment and non-target insects as well. Non-target insects are prone to develop resistance to insecticides due to prolonged and repeated lethal and sublethal exposures. Musca domestica is a common non-target, pollinator and nectar feeder species in cotton ecosystem, besides its status as a public health pest in human habitations. In the present work, resistance to methomyl, one of the major insecticides used for cotton pest management, was assessed in 20 M. domestica strains from the major cotton producing areas of the Punjab and Sindh provinces of Pakistan. The results revealed that toxicity values of methomyl for Punjabi and Sindhi strains ranged from 28.07 to 136.16 µg fly-1 and 29.32 to 136.87 µg fly-1, respectively. Among Punjabi strains, D.G. Khan, Lodhran, Bahawalpur, Toba Tek Singh, Bahawalnagar, Rajanpur and Jhang strains exhibited very high levels of resistance (RR > 100) to methomyl; Bhakkar, Kasur, Vehari, Layyah, Muzaffargarh and R.Y. Khan showed high resistance (RR = 51-100 fold), while the Mianwali strain showed a moderate level of resistance to methomyl (RR = 36.45 fold). In case of Sindhi strains, very high levels of resistance (> 100 fold) were reported for Sukkar and Sanghar strains, high levels of resistance (RR 51-100 fold) for Khairpur, Jamshoro and Ghotki, and moderate resistance to methomyl (38.08 fold) in the Dadu strain. There was a significant synergism of methomyl toxicity in all field strains when methomyl bioassayed along with piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) providing clues of metabolic-based mechanisms of resistance to methomyl. In conclusion, insecticides used in crop farming can cause resistance development in non-target M. domestica. It is necessary to adopt the pest management activities that are safe for the environment and non-target insect species.
Collapse
|
12
|
Peng H, Wang H, Guo X, Lv W, Liu L, Wang H, Cheng P, Liu H, Gong M. In Vitro and In Vivo Validation of CYP6A14 and CYP6N6 Participation in Deltamethrin Metabolic Resistance in Aedes albopictus. Am J Trop Med Hyg 2023; 108:609-618. [PMID: 36746656 PMCID: PMC9978559 DOI: 10.4269/ajtmh.22-0524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/21/2022] [Indexed: 02/08/2023] Open
Abstract
The extensive use of chemical insecticides for public health and agricultural purposes has increased the occurrence and development of insecticide resistance. This study used transcriptome sequencing to screen 10 upregulated metabolic detoxification enzyme genes from Aedes albopictus resistant strains. Of these, CYP6A14 and CYP6N6 were found to be substantially overexpressed in the deltamethrin-induced expression test, indicating their role in deltamethrin resistance in Ae. albopictus. Furthermore, the corresponding 60-kDa recombinant proteins, CYP6A14 and CYP6N6, were successfully expressed using the Escherichia coli expression system. Enzyme activity studies revealed that CYP6A14 (5.84 U/L) and CYP6N6 (6.3 U/L) have cytochrome P450 (CYP450) enzyme activity. In vitro, the metabolic analysis revealed that the recombinant proteins degraded deltamethrin into 1-oleoyl-sn-glycero-3-phosphoethanolamine and 2',2'-dibromo-2'-deoxyguanosine. Subsequently, the CYP450 genes in larvae of Ae. albopictus were silenced by RNA interference technology to study deltamethrin resistance in vivo. The silencing of CYP6A14 and CYP6N6 increased the mortality rate of mosquitoes without affecting their survival time, spawning quantity, hatching rate, and other normal life activities. Altogether, CYP6A14 and CYP6N6 belong to the CYP6 family and mutually increase deltamethrin resistance in Ae. albopictus.
Collapse
Affiliation(s)
- Hui Peng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Haiyang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Wenxiang Lv
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Lijuan Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Haifang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Address correspondence to Peng Cheng or Hongmei Liu or Maoqing Gong, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China. E-mails: or or
| | - Hongmei Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Address correspondence to Peng Cheng or Hongmei Liu or Maoqing Gong, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China. E-mails: or or
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Address correspondence to Peng Cheng or Hongmei Liu or Maoqing Gong, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China. E-mails: or or
| |
Collapse
|
13
|
Orondo PW, Wang X, Lee MC, Nyanjom SG, Atieli H, Ondeto BM, Ochwedo KO, Omondi CJ, Otambo WO, Zhou G, Zhong D, Githeko AK, Kazura JW, Yan G. Habitat Diversity, Stability, and Productivity of Malaria Vectors in Irrigated and Nonirrigated Ecosystems in Western Kenya. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:202-212. [PMID: 36334018 PMCID: PMC9835762 DOI: 10.1093/jme/tjac168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 06/16/2023]
Abstract
Several sub-Saharan African countries rely on irrigation for food production. This study examined the impact of environmental modifications resulting from irrigation on the ecology of aquatic stages of malaria vectors in a semi-arid region of western Kenya. Mosquito larvae were collected from irrigated and non-irrigated ecosystems during seasonal cross-sectional and monthly longitudinal studies to assess habitat availability, stability, and productivity of anophelines in temporary, semipermanent, and permanent habitats during the dry and wet seasons. The duration of habitat stability was also compared between selected habitats. Emergence traps were used to determine the daily production of female adult mosquitoes from different habitat types. Malaria vectors were morphologically identified and sibling species subjected to molecular analysis. Data was statistically compared between the two ecosystems. After aggregating the data, the overall malaria vector productivity for habitats in the two ecosystems was estimated. Immatures of the malaria vector (Anopheles arabiensis) Patton (Diptera: Culicidae) comprised 98.3% of the Anopheles in both the irrigated and non-irrigated habitats. The irrigated ecosystem had the most habitats, higher larval densities, and produced 85.8% of emerged adult females. These results showed that irrigation provided conditions that increased habitat availability, stability, and diversity, consequently increasing the An. arabiensis production and potential risk of malaria transmission throughout the year. The irrigated ecosystems increased the number of habitats suitable for Anopheles breeding by about 3-fold compared to non-irrigated ecosystems. These results suggest that water management in the irrigation systems of western Kenya would serve as an effective method for malaria vector control.
Collapse
Affiliation(s)
- Pauline Winnie Orondo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Steven G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | - Benyl M Ondeto
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | - Kevin O Ochwedo
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | - Collince J Omondi
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | | | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
14
|
Kweka EJ. Anopheles stephensi: a guest to watch in urban Africa. Trop Dis Travel Med Vaccines 2022; 8:7. [PMID: 35361266 PMCID: PMC8973991 DOI: 10.1186/s40794-022-00165-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022] Open
Abstract
Malaria vector control programs in Sub-Saharan Africa have invested many efforts and resources in the control of eight-sibling species of Anopheles gambiae complex and An. funestus group. The behaviour of sibling species of these vectors is well known and used for implementing the current intervention tools. The reports of An. stephensi in urban Africa with different habitats breeding behaviour is an alert on the success of malaria vector control efforts achieved so far. This communication intends to give an insight on what should be considered as a challenge for the management of An. stephensi in urban Africa to retain the achievement attained in malaria control.
Collapse
|
15
|
Sy ND, Wheeler SS, Reed M, Haas-Stapleton E, Reyes T, Bear-Johnson M, Kluh S, Cummings RF, Su T, Xiong Y, Shi Q, Gan J. Pyrethroid insecticides in urban catch basins: A potential secondary contamination source for urban aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120220. [PMID: 36152708 DOI: 10.1016/j.envpol.2022.120220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Pesticide contamination is a threat to many aquatic habitats, and runoff from residential homes is a major contributor of these chemicals in urban surface streams and estuaries. Improved understanding of their fate and transport can help identify areas of concern for monitoring and management. In many urban areas, runoff water congregates in numerous underground catch basins before draining into the open environment; however, at present essentially no information is available on pesticide presence in these systems. In this study, we collected water samples from a large number of underground urban catch basins in different regions of California during the active pest management season to determine the occurrence and profile of the widely used pyrethroid insecticides. Detectable levels of pyrethroids were found in 98% of the samples, and the detection frequency of individual pyrethroids ranged from no detection for fenpropathrin to 97% for bifenthrin. In the aqueous phase, total pyrethroid concentrations ranged from 3 to 726 ng/L, with a median value of 32 ng/L. Pyrethroids were found to be enriched on suspended solids, with total concentrations ranging from 42 to 93,600 ng/g and a median value of 2,350 ng/g. In approximately 89% of the samples, whole water concentrations of bifenthrin were predicted to have toxic units >1 for sensitive aquatic invertebrates. The high detection frequency of bifenthrin and overall pyrethroid concentrations, especially for particle-bound residues, suggest that underground urban catch basins constitute an important secondary source for extended and widespread contamination of downstream surface waters by pesticides such as pyrethroids in urban regions.
Collapse
Affiliation(s)
- Nathan D Sy
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA.
| | - Sarah S Wheeler
- Sacramento-Yolo Mosquito & Vector Control District, Elk Grove, CA, 95624, USA
| | - Marcia Reed
- Sacramento-Yolo Mosquito & Vector Control District, Elk Grove, CA, 95624, USA
| | | | - Trinidad Reyes
- Madera County Mosquito & Vector Control District, Madera, CA, 93637, USA
| | - Mir Bear-Johnson
- Delta Mosquito & Vector Control District, Visalia, CA, 93291, USA
| | - Susanne Kluh
- Greater Los Angeles County Vector Control District, Santa Fe Springs, CA, 90670, USA
| | - Robert F Cummings
- Orange County Mosquito & Vector Control District, Garden Grove, CA, 92843, USA
| | - Tianyun Su
- West Valley Mosquito & Vector Control District, Ontario, CA, 91761, USA
| | - Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
16
|
Ondeto BM, Wang X, Atieli H, Orondo PW, Ochwedo KO, Omondi CJ, Otambo WO, Zhong D, Zhou G, Lee MC, Muriu SM, Odongo DO, Ochanda H, Kazura J, Githeko AK, Yan G. Malaria vector bionomics and transmission in irrigated and non-irrigated sites in western Kenya. Parasitol Res 2022; 121:3529-3545. [PMID: 36203064 DOI: 10.1007/s00436-022-07678-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/20/2022] [Indexed: 10/10/2022]
Abstract
Irrigation not only helps to improve food security but also creates numerous water bodies for mosquito production. This study assessed the effect of irrigation on malaria vector bionomics and transmission in a semi-arid site with ongoing malaria vector control program. The effectiveness of CDC light traps in the surveillance of malaria vectors was also evaluated relative to the human landing catches (HLCs) method. Adult mosquitoes were sampled in two study sites representing irrigated and non-irrigated agroecosystems in western Kenya using a variety of trapping methods. The mosquito samples were identified to species and assayed for host blood meal source and Plasmodium spp. sporozoite infection using polymerase chain reaction. Anopheles arabiensis was the dominant malaria vector in the two study sites and occurred in significantly higher densities in irrigated study site compared to the non-irrigated study site. The difference in indoor resting density of An. arabiensis during the dry and wet seasons was not significant. Other species, including An. funestus, An. coustani, and An. pharoensis, were collected. The An. funestus indoor resting density was 0.23 in irrigated study site while almost none of this species was collected in the non-irrigated study site. The human blood index (HBI) for An. arabiensis in the irrigated study site was 3.44% and significantly higher than 0.00% for the non-irrigated study site. In the irrigated study site, the HBI of An. arabiensis was 3.90% and 5.20% indoor and outdoor, respectively. The HBI of An. funestus was 49.43% and significantly higher compared to 3.44% for An. arabiensis in the irrigated study site. The annual entomologic inoculation rate for An. arabiensis in the irrigated study site was 0.41 and 0.30 infective bites/person/year indoor and outdoor, respectively, whereas no transmission was observed in the non-irrigated study site. The CDC light trap performed consistently with HLC in terms of vector density. These findings demonstrate that irrigated agriculture may increase the risk of malaria transmission in irrigated areas compared to the non-irrigated areas and highlight the need to complement the existing malaria vector interventions with novel tools targeting the larvae and both indoor and outdoor biting vector populations.
Collapse
Affiliation(s)
- Benyl M Ondeto
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya. .,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.
| | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Harrysone Atieli
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya
| | - Pauline Winnie Orondo
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya
| | - Kevin O Ochwedo
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya.,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya
| | - Collince J Omondi
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya.,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya
| | - Wilfred O Otambo
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.,Department of Zoology, Maseno University, Maseno, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Simon M Muriu
- Department of Biological Sciences, Pwani University, Kilifi, 80108, Kenya
| | - David O Odongo
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya
| | - Horace Ochanda
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya
| | - James Kazura
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Andrew K Githeko
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, 40100, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
17
|
Yan G, Lee MC, Zhou G, Jiang AL, Degefa T, Zhong D, Wang X, Hemming-Schroeder E, Mukabana WR, Dent AE, King CL, Hsu K, Beeson J, Githure JI, Atieli H, Githeko AK, Yewhalaw D, Kazura JW. Impact of Environmental Modifications on the Ecology, Epidemiology, and Pathogenesis of Plasmodium falciparum and Plasmodium vivax Malaria in East Africa. Am J Trop Med Hyg 2022; 107:5-13. [PMID: 36228918 PMCID: PMC9662213 DOI: 10.4269/ajtmh.21-1254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Food insecurity, recurrent famine, and poverty threaten the health of millions of African residents. Construction of dams and rural irrigation schemes is key to solving these problems. The sub-Saharan Africa International Center of Excellence for Malaria Research addresses major knowledge gaps and challenges in Plasmodium falciparum and Plasmodium vivax malaria control and elimination in malaria-endemic areas of Kenya and Ethiopia where major investments in water resource development are taking place. This article highlights progress of the International Center of Excellence for Malaria Research in malaria vector ecology and behavior, epidemiology, and pathogenesis since its inception in 2017. Studies conducted in four field sites in Kenya and Ethiopia show that dams and irrigation increased the abundance, stability, and productivity of larval habitats, resulting in increased malaria transmission and a greater disease burden. These field studies, together with hydrological and malaria transmission modeling, enhance the ability to predict the impact of water resource development projects on vector larval ecology and malaria risks, thereby facilitating the development of optimal water and environmental management practices in the context of malaria control efforts. Intersectoral collaborations and community engagement are crucial to develop and implement cost-effective malaria control strategies that meet food security needs while controlling malaria burden in local communities.
Collapse
Affiliation(s)
- Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, California;,Address correspondence to Guiyun Yan, Program in Public Health, Room 3038, Hewitt Hall, University of California, Irvine, CA 92697-4050, E-mail: or James W. Kazura, Center for Global Health & Diseases, Case Western Reserve University, 2109 Adelbert Road Cleveland, OH 44106, E-mail:
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Ai-Ling Jiang
- Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California at Irvine, Irvine, California
| | - Teshome Degefa
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, California
| | | | | | - Arlene E. Dent
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Christopher L. King
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Kuolin Hsu
- Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California at Irvine, Irvine, California
| | - James Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | - Harrysone Atieli
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia;,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - James W. Kazura
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio;,Address correspondence to Guiyun Yan, Program in Public Health, Room 3038, Hewitt Hall, University of California, Irvine, CA 92697-4050, E-mail: or James W. Kazura, Center for Global Health & Diseases, Case Western Reserve University, 2109 Adelbert Road Cleveland, OH 44106, E-mail:
| |
Collapse
|
18
|
Onyango SA, Ochwedo KO, Machani MG, Olumeh JO, Debrah I, Omondi CJ, Ogolla SO, Lee MC, Zhou G, Kokwaro E, Kazura JW, Afrane YA, Githeko AK, Zhong D, Yan G. Molecular characterization and genotype distribution of thioester-containing protein 1 gene in Anopheles gambiae mosquitoes in western Kenya. Malar J 2022; 21:235. [PMID: 35948910 PMCID: PMC9364548 DOI: 10.1186/s12936-022-04256-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary pressures lead to the selection of efficient malaria vectors either resistant or susceptible to Plasmodium parasites. These forces may favour the introduction of species genotypes that adapt to new breeding habitats, potentially having an impact on malaria transmission. Thioester-containing protein 1 (TEP1) of Anopheles gambiae complex plays an important role in innate immune defenses against parasites. This study aims to characterize the distribution pattern of TEP1 polymorphisms among populations of An. gambiae sensu lato (s.l.) in western Kenya. METHODS Anopheles gambiae adult and larvae were collected using pyrethrum spray catches (PSC) and plastic dippers respectively from Homa Bay, Kakamega, Bungoma, and Kisumu counties between 2017 and 2020. Collected adults and larvae reared to the adult stage were morphologically identified and then identified to sibling species by PCR. TEP1 alleles were determined in 627 anopheles mosquitoes using restriction fragment length polymorphisms-polymerase chain reaction (RFLP-PCR) and to validate the TEP1 genotyping results, a representative sample of the alleles was sequenced. RESULTS Two TEP1 alleles (TEP1*S1 and TEP1*R2) and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2) were identified. TEP1*S1 and TEP1*R2 with their corresponding genotypes, homozygous *S1/S1 and heterozygous *R2/S1 were widely distributed across all sites with allele frequencies of approximately 80% and 20%, respectively both in Anopheles gambiae and Anopheles arabiensis. There was no significant difference detected among the populations and between the two mosquito species in TEP1 allele frequency and genotype frequency. The overall low levels in population structure (FST = 0.019) across all sites corresponded to an effective migration index (Nm = 12.571) and low Nei's genetic distance values (< 0.500) among the subpopulation. The comparative fixation index values revealed minimal genetic differentiation between species and high levels of gene flow among populations. CONCLUSION Genotyping TEP1 has identified two common TEP1 alleles (TEP1*S1 and TEP1*R2) and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2) in An. gambiae s.l. The TEP1 allele genetic diversity and population structure are low in western Kenya.
Collapse
Affiliation(s)
- Shirley A. Onyango
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
| | - Kevin O. Ochwedo
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Julius O. Olumeh
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
| | - Isaiah Debrah
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Department of Biochemistry, Cell and Molecular Biology, West Africa Centre for Cell Biology of Infectious Pathogen, University of Ghana, Accra, Ghana
| | - Collince J. Omondi
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Sidney O. Ogolla
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, Medical School, University of Ghana, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West Africa Centre for Cell Biology of Infectious Pathogen, University of Ghana, Accra, Ghana
- Center for Global Health and Diseases, Case Western Reserve University, LC 4983, Cleveland, OH 44106 USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Elizabeth Kokwaro
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
| | - James W. Kazura
- Center for Global Health and Diseases, Case Western Reserve University, LC 4983, Cleveland, OH 44106 USA
| | - Yaw A. Afrane
- Department of Medical Microbiology, Medical School, University of Ghana, University of Ghana, Accra, Ghana
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
19
|
Ratnadass A, Martin T. Crop protection practices and risks associated with infectious tropical parasitic diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153633. [PMID: 35124028 DOI: 10.1016/j.scitotenv.2022.153633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Two recent literature reviews have shown that: i) agroecological crop protection (ACP) practices generally reduce risks of viral zoonoses, unlike conventional (agrochemical-based) practices which tend to increase them; ii) substitution-based crop protection (CP) practices (mainly biocontrol-based) could result in fewer health risks from bacterial infectious diseases. Here, we present an analysis of the scientific literature to determine to what extent the conclusions regarding viruses or bacteria can be extended to infectious diseases caused by protozoan or helminthic parasites. This analysis of cases of both vector-transmitted and water- or food-borne parasitic diseases, shows, in terms of reduction of health risks: i) an overall negative effect arising from the use of synthetic plant protection products; ii) the relevance of substitution CP practices not strictly under the ACP banner. On the other hand, the public and veterinary health issue of antiparasitic resistance is not affected by CP practices. The positive effects at the large spatio-temporal scales of ACP approaches remain valid, although to a slightly lesser extent than for bacterial diseases and viral zoonoses, in particular through biodiversity conservation which fosters natural regulations and control, preventing the undesirable effects of synthetic pesticides.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR HortSys, F-97455 Saint-Pierre, Réunion, France; HortSys, Univ Montpellier, CIRAD, Montpellier, France.
| | - Thibaud Martin
- HortSys, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR HortSys, Abidjan, Côte d'Ivoire
| |
Collapse
|
20
|
Otambo WO, Omondi CJ, Ochwedo KO, Onyango PO, Atieli H, Lee MC, Wang C, Zhou G, Githeko AK, Githure J, Ouma C, Yan G, Kazura J. Risk associations of submicroscopic malaria infection in lakeshore, plateau and highland areas of Kisumu County in western Kenya. PLoS One 2022; 17:e0268463. [PMID: 35576208 PMCID: PMC9109926 DOI: 10.1371/journal.pone.0268463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Persons with submicroscopic malaria infection are a major reservoir of gametocytes that sustain malaria transmission in sub-Saharan Africa. Despite recent decreases in the national malaria burden in Kenya due to vector control interventions, malaria transmission continues to be high in western regions of the country bordering Lake Victoria. The objective of this study was to advance knowledge of the topographical, demographic and behavioral risk factors associated with submicroscopic malaria infection in the Lake Victoria basin in Kisumu County. METHODS Cross-sectional community surveys for malaria infection were undertaken in three eco-epidemiologically distinct zones in Nyakach sub-County, Kisumu. Adjacent regions were topologically characterized as lakeshore, hillside and highland plateau. Surveys were conducted during the 2019 and 2020 wet and dry seasons. Finger prick blood smears and dry blood spots (DBS) on filter paper were collected from 1,777 healthy volunteers for microscopic inspection and real time-PCR (RT-PCR) diagnosis of Plasmodium infection. Persons who were PCR positive but blood smear negative were considered to harbor submicroscopic infections. Topographical, demographic and behavioral risk factors were correlated with community prevalence of submicroscopic infections. RESULTS Out of a total of 1,777 blood samples collected, 14.2% (253/1,777) were diagnosed as submicroscopic infections. Blood smear microscopy and RT-PCR, respectively, detected 3.7% (66/1,777) and 18% (319/1,777) infections. Blood smears results were exclusively positive for P. falciparum, whereas RT-PCR also detected P. malariae and P. ovale mono- and co-infections. Submicroscopic infection prevalence was associated with topographical variation (χ2 = 39.344, df = 2, p<0.0001). The highest prevalence was observed in the lakeshore zone (20.6%, n = 622) followed by the hillside (13.6%, n = 595) and highland plateau zones (7.9%, n = 560). Infection prevalence varied significantly according to season (χ2 = 17.374, df = 3, p<0.0001). The highest prevalence was observed in residents of the lakeshore zone in the 2019 dry season (29.9%, n = 167) and 2020 and 2019 rainy seasons (21.5%, n = 144 and 18.1%, n = 155, respectively). In both the rainy and dry seasons the likelihood of submicroscopic infection was higher in the lakeshore (AOR: 2.71, 95% CI = 1.85-3.95; p<0.0001) and hillside (AOR: 1.74, 95% CI = 1.17-2.61, p = 0.007) than in the highland plateau zones. Residence in the lakeshore zone (p<0.0001), male sex (p = 0.025), school age (p = 0.002), and living in mud houses (p = 0.044) increased the risk of submicroscopic malaria infection. Bed net use (p = 0.112) and occupation (p = 0.116) were not associated with submicroscopic infection prevalence. CONCLUSION Topographic features of the local landscape and seasonality are major correlates of submicroscopic malaria infection in the Lake Victoria area of western Kenya. Diagnostic tests more sensitive than blood smear microscopy will allow for monitoring and targeting geographic sites where additional vector interventions are needed to reduce malaria transmission.
Collapse
Affiliation(s)
- Wilfred Ouma Otambo
- Department of Zoology, Maseno University, Kisumu, Kenya
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collince J. Omondi
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Kevin O. Ochwedo
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | | | - Harrysone Atieli
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - Chloe Wang
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - Guofa Zhou
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Githure
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Guiyun Yan
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - James Kazura
- Centre for Global Health & Diseases, Case Western University Reserve, Cleveland, Ohio, United States of America
| |
Collapse
|
21
|
Demissew A, Animut A, Kibret S, Tsegaye A, Hawaria D, Degefa T, Getachew H, Lee MC, Yan G, Yewhalaw D. Evidence of pyrethroid resistance in Anopheles amharicus and Anopheles arabiensis from Arjo-Didessa irrigation scheme, Ethiopia. PLoS One 2022; 17:e0261713. [PMID: 35030201 PMCID: PMC8759678 DOI: 10.1371/journal.pone.0261713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
Background Indoor residual spraying and insecticide-treated nets are among the key malaria control intervention tools. However, their efficacy is declining due to the development and spread of insecticide resistant vectors. In Ethiopia, several studies reported resistance of An. arabiensis to multiple insecticide classes. However, such data is scarce in irrigated areas of the country where insecticides, pesticides and herbicides are intensively used. Susceptibility of An. gambiae s.l. to existing and new insecticides and resistance mechanisms were assessed in Arjo-Didessa sugarcane plantation area, southwestern Ethiopia. Methods Adult An. gambiae s.l. reared from larval/pupal collections of Arjo-Didessa sugarcane irrigation area and its surrounding were tested for their susceptibility to selected insecticides. Randomly selected An. gambiae s.l. (dead and survived) samples were identified to species using species-specific polymerase chain reaction (PCR) and were further analyzed for the presence of knockdown resistance (kdr) alleles using allele-specific PCR. Results Among the 214 An. gambiae s.l. samples analyzed by PCR, 89% (n = 190) were An. amharicus and 9% (n = 20) were An. arabiensis. Mortality rates of the An. gambiae s.l. exposed to deltamethrin and alphacypermethrin were 85% and 86.8%, respectively. On the other hand, mortalities against pirmiphos-methyl, bendiocarb, propoxur and clothianidin were 100%, 99%, 100% and 100%, respectively. Of those sub-samples (An. amharicus and An. arabiensis) examined for presence of kdr gene, none of them were found to carry the L1014F (West African) allelic mutation. Conclusion Anopheles amharicus and An. arabiensis from Arjo-Didessa sugarcane irrigation area were resistant to pyrethroids which might be synergized by extensive use of agricultural chemicals. Occurrence of pyrethroid resistant malaria vectors could challenge the ongoing malaria control and elimination program in the area unless resistance management strategies are implemented. Given the resistance of An. amharicus to pyrethroids, its behavior and vectorial capacity should be further investigated.
Collapse
Affiliation(s)
- Assalif Demissew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- * E-mail: ,
| | - Abebe Animut
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Kibret
- Program in Public Health, University of California at Irvine, Irvine, California, United States of America
| | - Arega Tsegaye
- Department of Biology, College of Natural Science, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Dawit Hawaria
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Yirgalem Hospital Medical College, Yirgalem, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Hallelujah Getachew
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, Arbaminch College of Health Sciences, Arba Minch, Ethiopia
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, California, United States of America
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, California, United States of America
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
22
|
Wang S, Sun F, Wang X, Wei Y, Li L, Wang W, Zhang R, Ding Z, Dang J, Xu F, Wang W, Huo X, Zhang Q, Wang Q. Atmospheric oxidation of dichlorodiphenyltrichloroethane (DDT) initiated by OH and NO3 radicals: A quantum chemical investigation. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Ochwedo KO, Omondi CJ, Magomere EO, Olumeh JO, Debrah I, Onyango SA, Orondo PW, Ondeto BM, Atieli HE, Ogolla SO, Githure J, Otieno ACA, Githeko AK, Kazura JW, Mukabana WR, Guiyan Y. Hyper-prevalence of submicroscopic Plasmodium falciparum infections in a rural area of western Kenya with declining malaria cases. Malar J 2021; 20:472. [PMID: 34930283 PMCID: PMC8685826 DOI: 10.1186/s12936-021-04012-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The gold standard for diagnosing Plasmodium falciparum infection is microscopic examination of Giemsa-stained peripheral blood smears. The effectiveness of this procedure for infection surveillance and malaria control may be limited by a relatively high parasitaemia detection threshold. Persons with microscopically undetectable infections may go untreated, contributing to ongoing transmission to mosquito vectors. The purpose of this study was to determine the magnitude and determinants of undiagnosed submicroscopic P. falciparum infections in a rural area of western Kenya. METHODS A health facility-based survey was conducted, and 367 patients seeking treatment for symptoms consistent with uncomplicated malaria in Homa Bay County were enrolled. The frequency of submicroscopic P. falciparum infection was measured by comparing the prevalence of infection based on light microscopic inspection of thick blood smears versus real-time polymerase chain reaction (RT-PCR) targeting P. falciparum 18S rRNA gene. Long-lasting insecticidal net (LLIN) use, participation in nocturnal outdoor activities, and gender were considered as potential determinants of submicroscopic infections. RESULTS Microscopic inspection of blood smears was positive for asexual P. falciparum parasites in 14.7% (54/367) of cases. All of these samples were confirmed by RT-PCR. 35.8% (112/313) of blood smear negative cases were positive by RT-PCR, i.e., submicroscopic infection, resulting in an overall prevalence by RT-PCR alone of 45.2% compared to 14.7% for blood smear alone. Females had a higher prevalence of submicroscopic infections (35.6% or 72 out of 202 individuals, 95% CI 28.9-42.3) compared to males (24.2%, 40 of 165 individuals, 95% CI 17.6-30.8). The risk of submicroscopic infections in LLIN users was about half that of non-LLIN users (OR = 0.59). There was no difference in the prevalence of submicroscopic infections of study participants who were active in nocturnal outdoor activities versus those who were not active (OR = 0.91). Patients who participated in nocturnal outdoor activities and use LLINs while indoors had a slightly higher risk of submicroscopic infection than those who did not use LLINs (OR = 1.48). CONCLUSION Microscopic inspection of blood smears from persons with malaria symptoms for asexual stage P. falciparum should be supplemented by more sensitive diagnostic tests in order to reduce ongoing transmission of P. falciparum parasites to local mosquito vectors.
Collapse
Affiliation(s)
- Kevin O. Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Collince J. Omondi
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Edwin O. Magomere
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Julius O. Olumeh
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Isaiah Debrah
- West Africa Centre for Cell Biology of Infectious Pathogen, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Shirley A. Onyango
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Pauline W. Orondo
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Benyl M. Ondeto
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Harrysone E. Atieli
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Sidney O. Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Githure
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Antony C. A. Otieno
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Andrew K. Githeko
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James W. Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH USA
| | - Wolfgang R. Mukabana
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Yan Guiyan
- Program in Public Health, College of Health Sciences, University of California, Irvine, USA
| |
Collapse
|
24
|
Bandibabone J, McLoughlin C, N'Do S, Bantuzeko C, Byabushi V, Jeanberckmans M, Guardiola M, Zawadi B, Diabaté A, Prudhomme J, Walker T, Messenger LA. Investigating molecular mechanisms of insecticide resistance in the Eastern Democratic Republic of the Congo. Malar J 2021; 20:464. [PMID: 34906124 PMCID: PMC8670120 DOI: 10.1186/s12936-021-04002-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria vector control in the Democratic Republic of the Congo is plagued by several major challenges, including inadequate infrastructure, lack of access to health care systems and preventative measures, and more recently the widespread emergence of insecticide resistance among Anopheles mosquitoes. Across 26 provinces, insecticide resistance has been reported from multiple sentinel sites. However, to date, investigation of molecular resistance mechanisms among Anopheles vector populations in DRC has been more limited. METHODS Adult Anopheles gambiae sensu lato (s.l.) and Anopheles funestus s.l. were collected from two sites in Sud-Kivu province and one site in Haut-Uélé province and PCR-screened for the presence of 11 resistance mutations, to provide additional information on frequency of resistance mechanisms in the eastern DRC, and to critically evaluate the utility of these markers for prospective country-wide resistance monitoring. RESULTS L1014F-kdr and L1014S-kdr were present in 75.9% and 56.7% of An. gambiae s.l. screened, respectively, with some individuals harbouring both resistant alleles. Across the three study sites, L43F-CYP4J5 allele frequency ranged from 0.42 to 0.52, with evidence for ongoing selection. G119S-ace1 was also identified in all sites but at lower levels. A triple mutant haplotype (comprising the point mutation CYP6P4-I236M, the insertion of a partial Zanzibar-like transposable element and duplication of CYP6AA1) was present at high frequencies. In An. funestus s.l. cis-regulatory polymorphisms in CYP6P9a and CYP6P9b were detected, with allele frequencies ranging from 0.82 to 0.98 and 0.65 to 0.83, respectively. CONCLUSIONS This study screened the most up-to-date panel of DNA-based resistance markers in An. gambiae s.l. and An. funestus s.l. from the eastern DRC, where resistance data is lacking. Several new candidate markers (CYP4J5, G119S-ace1, the triple mutant, CYP6P9a and CYP6P9b) were identified, which are diagnostic of resistance to major insecticide classes, and warrant future, larger-scale monitoring in the DRC to inform vector control decisions by the National Malaria Control Programme.
Collapse
Affiliation(s)
- Janvier Bandibabone
- Laboratoire d'Entomologie Médicale et Parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/Lwiro), Sud-Kivu, Democratic Republic of the Congo
| | - Charles McLoughlin
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sévérin N'Do
- Médecins Sans Frontières (MSF) OCBA, Barcelona, Spain
- Université Nazi Boni (UNB), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS)/Centre MURAZ, Bobo-Dioulasso, Burkina Faso
| | - Chimanuka Bantuzeko
- Laboratoire d'Entomologie Médicale et Parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/Lwiro), Sud-Kivu, Democratic Republic of the Congo
- Université Officielle de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Vital Byabushi
- Kibali Gold Mine, Haut-Uele, Democratic Republic of the Congo
| | | | | | - Bertin Zawadi
- Laboratoire d'Entomologie Médicale et Parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/Lwiro), Sud-Kivu, Democratic Republic of the Congo
| | | | - Jorian Prudhomme
- Médecins Sans Frontières (MSF) OCBA, Barcelona, Spain
- UMR MIVEGEC (IRD-CNRS - Université de Montpellier), 911 Avenue Agropolis, 34394, Montpellier, France
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|