1
|
Shi J, Gong T, Zhou Y. Pioglitazone Regulates Chondrocyte Metabolism and Attenuates Osteoarthritis by Activating Peroxisome Proliferator-Activated Receptor Gamma. J Cell Mol Med 2025; 29:e70456. [PMID: 40008494 PMCID: PMC11862886 DOI: 10.1111/jcmm.70456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Osteoarthritis presents a significant clinical challenge due to its high prevalence and the resultant impairment of patients' motor function. Osteoarthritic chondrocytes are characterised by inflammation and metabolic disturbances. Pioglitazone, an agonist of peroxisome proliferator-activated receptor γ (PPAR-γ), has been demonstrated to exert anti-inflammatory effects across various diseases. This study aims to investigate the potential protective effects of Pioglitazone on osteoarthritic chondrocytes. An in vitro chondrocyte inflammation model was established utilising IL-1β. The impact of Pioglitazone on chondrocyte inflammation and extracellular matrix synthesis was evaluated through enzyme-linked immunosorbent assay, immunofluorescence staining and Alcian blue staining. The affinity of Pioglitazone for PPAR-γ was investigated using molecular docking techniques. Alterations in chondrocyte glycolysis and oxidative phosphorylation were examined using the Seahorse XF Analyser, and the influence of Pioglitazone on glucose uptake and the mitochondrial electron transport chain was further analysed. Pioglitazone was gavaged in a mouse OA model established by anterior cruciate ligament transection to evaluate the therapeutic efficacy of Pioglitazone. Our findings indicate that Pioglitazone mitigates chondrocyte inflammation and osteoarthritis in murine models by inhibiting the expression of inflammatory mediators such as TNF-α, IL-6 and PGE2, and by preventing the degradation of aggrecan and collagen II. Furthermore, Pioglitazone significantly upregulated the expression of glucose transporter 1 and stabilised the mitochondrial proton delivery chain in a PPAR-γ-dependent manner, thereby enhancing chondrocyte glucose uptake, glycolysis, and oxidative phosphorylation. These effects were partially reversed by the PPAR-γ antagonist GW9662. Pioglitazone can confer chondroprotective benefits in osteoarthritis by activating PPAR-γ.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Orthopedics, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiPeople's Republic of China
| | - Tianlun Gong
- Department of Orthopedics, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiPeople's Republic of China
| | - Yi Zhou
- Department of Orthopedics, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiPeople's Republic of China
| |
Collapse
|
2
|
Liu X, Zheng Y, Li H, Ma Y, Cao R, Zheng Z, Tian Y, Du L, Zhang J, Zhang C, Gao J. The role of metabolites in the progression of osteoarthritis: Mechanisms and advances in therapy. J Orthop Translat 2025; 50:56-70. [PMID: 39868350 PMCID: PMC11762942 DOI: 10.1016/j.jot.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 01/28/2025] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease affected by many factors, and there is currently no effective treatment. In recent years, the latest progress in metabolomics in OA research has revealed several metabolic pathways and new specific metabolites involved in OA. Metabolites play significant roles in the identification and management of OA. This review looks back on the development history of metabolomics and the progress of this technology in OA as well as its potential clinical applications. It summarizes the applications of metabolites in the field of OA and future research directions. This understanding will advance the identification of metabolic treatment goals for OA. The translational potential of this article The development of metabolomics offers possibilities for the treatment of OA. This article reviews the relationship between metabolites associated with chondrocytes and OA. Selectively altering these three metabolic pathways and their associated metabolites may hold great potential as new focal points for OA treatment.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Yongqiang Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ruomu Cao
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College
| | - Jinshan Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Wang J, Yang J, Fang Y, Lou C, Yu H, Li Y, Lv J, Chen H, Cai L, Zheng W. Vinpocetine protects against osteoarthritis by inhibiting ferroptosis and extracellular matrix degradation via activation of the Nrf2/GPX4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156115. [PMID: 39368343 DOI: 10.1016/j.phymed.2024.156115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a progressive joint condition marked by the slow degradation of articular cartilage. Vinpocetine (Vin), a synthetic derivative of vincamine derived from the vinca plant, exhibits anti-inflammatory and antioxidant properties. Nevertheless, the specific role and mechanism of Vin in the treatment of OA remain largely unexplored. OBJECTIVES The study is designed to uncover the impacts of Vin on tert‑butyl hydroperoxide (TBHP)-induced ferroptosis and to explore its potential role and underlying mechanisms in the treatment of OA. Concurrently, we established an OA mouse model through medial meniscal instability surgery to assess the therapeutic effects of Vin in vivo. METHODS Through network pharmacology analysis, we have identified the key targets and potential pathways of Vin. To simulate an oxidative stress-induced OA environment in vitro, we induced chondrocyte injury using TBHP. We tested how Vin affects chondrocytes under TBHP induction by DHE and DCFH-DA probes, BODIPY-C11 and FerroOrange staining, mitochondrial function assessment, Western blotting, co-immunoprecipitation, and immunofluorescence techniques. Simultaneously, we established an OA mouse model through medial meniscal instability surgery to assess the in vivo therapeutic effects of Vin. In this model, we used X-ray and micro-CT imaging, SO staining, TB staining, H&E staining, and immunohistochemistry to analyze the role of Vin in detail. RESULTS This study demonstrated that Vin effectively suppressed TBHP-induced ferroptosis and extracellular matrix (ECM) degradation and significantly lessened mitochondrial damage associated with ferroptosis. In the OA mouse model, Vin improved cartilage degeneration, subchondral remodeling, synovitis, and ECM degradation. Vin worked by activating the Nrf2/GPX4 pathway and inhibiting the Keap1-Nrf2 interaction. This study focused on the function of ferroptosis in OA and its influence on chondrocyte damage and disease progression, offering novel perspectives on potential treatments. CONCLUSION Vin activated the Nrf2/GPX4 pathway, thereby slowing OA progression, inhibiting ferroptosis, and preventing ECM degradation.
Collapse
Affiliation(s)
- Jinwu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jin Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yuqin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Chao Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Heng Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yangbo Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hua Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Leyi Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
4
|
Guo J, Su K, Wang L, Feng B, You X, Deng M, Toh WS, Wu J, Cheng B, Xia J. Poly( p-coumaric acid) nanoparticles alleviate temporomandibular joint osteoarthritis by inhibiting chondrocyte ferroptosis. Bioact Mater 2024; 40:212-226. [PMID: 38973989 PMCID: PMC11224931 DOI: 10.1016/j.bioactmat.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Oxidative stress and inflammation are key drivers of osteoarthritis (OA) pathogenesis and disease progression. Herein we report the synthesis of poly(p-coumaric) nanoparticles (PCA NPs) from p-courmaic acid (p-CA), a naturally occurring phytophenolic acid, to be a multifunctional and drug-free therapeutic for temporomandibular joint osteoarthritis (TMJOA). Compared to hyaluronic acid (HA) that is clinically given as viscosupplementation, PCA NPs exhibited long-term efficacy, superior anti-oxidant and anti-inflammatory properties in alleviating TMJOA and repairing the TMJ cartilage and subchondral bone in a rat model of TMJOA. Notably, TMJ repair mediated by PCA NPs could be attributed to their anti-oxidant and anti-inflammatory properties in enhancing cell proliferation and matrix synthesis, while reducing inflammation, oxidative stress, matrix degradation, and chondrocyte ferroptosis. Overall, our study demonstrates a multifunctional nanoparticle, synthesized from natural p-coumaric acid, that is stable and possess potent antioxidant, anti-inflammatory properties and ferroptosis inhibition, beneficial for treatment of TMJOA.
Collapse
Affiliation(s)
- Jiaxin Guo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Kai Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Liying Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Bingyu Feng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Miao Deng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- Faculty of Dentistry, National University of Singapore, 119085, Singapore
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511455, PR China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| |
Collapse
|
5
|
Ma Y, Pang Y, Cao R, Zheng Z, Zheng K, Tian Y, Peng X, Liu D, Du D, Du L, Zhong Z, Yao L, Zhang C, Gao J. Targeting Parkin-regulated metabolomic change in cartilage in the treatment of osteoarthritis. iScience 2024; 27:110597. [PMID: 39220257 PMCID: PMC11363567 DOI: 10.1016/j.isci.2024.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Articular cartilage degeneration may lead to osteoarthritis (OA) during the aging process, but its underlying mechanism remains unknown. Here, we found that chondrocytes exhibited an energy metabolism shift from glycolysis to oxidative phosphorylation (OXPHOS) during aging. Parkin regulates various cellular metabolic processes. Reprogrammed cartilage metabolism by Parkin ablation decreased OXPHOS and increased glycolysis, with ameliorated aging-related OA. Metabolomics analysis indicated that lauroyl-L-carnitine (LLC) was decreased in aged cartilage, but increased in Parkin-deficient cartilage. In vitro, LLC improved the cartilage matrix synthesis of aged chondrocytes. In vivo, intra-articular injection of LLC in mice with anterior cruciate ligament transaction (ACLT) ameliorated OA progression. These results suggest that metabolic changes are regulated by Parkin-impaired cartilage during aging, and targeting this metabolomic changes by supplementation with LLC is a promising treatment strategy for ameliorating OA.
Collapse
Affiliation(s)
- Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ruomu Cao
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi 710004, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kaiwen Zheng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaoyuan Peng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dajiang Du
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lin Du
- Orthopedics Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Sports Medicine Institute, Shantou University Medical College, Shantou 515041, China
| | - Zhigang Zhong
- Orthopedics Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Sports Medicine Institute, Shantou University Medical College, Shantou 515041, China
| | - Lufeng Yao
- Department of Orthopaedic Surgery, Ningbo No.6 Hospital, No.1059 East Zhongshan Road, Yinzhou District, Ningbo, Zhejiang 315040, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
6
|
Tuerxun P, Ng T, Zhao K, Zhu P. Integration of metabolomics and transcriptomics provides insights into the molecular mechanism of temporomandibular joint osteoarthritis. PLoS One 2024; 19:e0301341. [PMID: 38753666 PMCID: PMC11098350 DOI: 10.1371/journal.pone.0301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/13/2024] [Indexed: 05/18/2024] Open
Abstract
The deficiency of clinically specific biomarkers has made it difficult to achieve an accurate diagnosis of temporomandibular joint osteoarthritis (TMJ-OA) and the insufficient comprehension of the pathogenesis of the pathogenesis of TMJ-OA has posed challenges in advancing therapeutic measures. The combined use of metabolomics and transcriptomics technologies presents a highly effective method for identifying vital metabolic pathways and key genes in TMJ-OA patients. In this study, an analysis of synovial fluid untargeted metabolomics of 6 TMJ-OA groups and 6 temporomandibular joint reducible anterior disc displacement (TMJ-DD) groups was conducted using liquid and gas chromatography mass spectrometry (LC/GC-MS). The differential metabolites (DMs) between TMJ-OA and TMJ-DD groups were analyzed through multivariate analysis. Meanwhile, a transcriptomic dataset (GSE205389) was obtained from the GEO database to analyze the differential metabolism-related genes (DE-MTGs) between TMJ-OA and TMJ-DD groups. Finally, an integrated analysis of DMs and DE-MTGs was carried out to investigate the molecular mechanisms associated with TMJ-OA. The analysis revealed significant differences in the levels of 46 DMs between TMJ-OA and TMJ-DD groups, of which 3 metabolites (L-carnitine, taurine, and adenosine) were identified as potential biomarkers for TMJ-OA. Collectively, differential expression analysis identified 20 DE-MTGs. Furthermore, the integration of metabolomics and transcriptomics analysis revealed that the tricarboxylic acid (TCA) cycle, alanine, aspartate and glutamate metabolism, ferroptosis were significantly enriched. This study provides valuable insights into the metabolic abnormalities and associated pathogenic mechanisms, improving our understanding of TMJOA etiopathogenesis and facilitating potential target screening for therapeutic intervention.
Collapse
Affiliation(s)
- Palati Tuerxun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Takkun Ng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ke Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ping Zhu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Deng W, He Q, Zhang W. Analysis of the mechanism of curcumin against osteoarthritis using metabolomics and transcriptomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3313-3329. [PMID: 37938371 PMCID: PMC11074044 DOI: 10.1007/s00210-023-02785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023]
Abstract
Curcumin, a polyphenolic compound derived from the turmeric plant (Curcuma longa), has been extensively studied for its anti-inflammatory and anti-proliferative properties. The safety and efficacy of curcumin have been thoroughly validated. Nevertheless, the underlying mechanism for treating osteoarthritis remains ambiguous. This study aims to reveal the potential mechanism of curcumin in treating osteoarthritis by using metabolomics and transcriptomics. Firstly, we validated the effect of curcumin on inflammatory factors in human articular chondrocytes. Secondly, we explored the cellular metabolism mechanism of curcumin against osteoarthritis using cell metabolomics. Thirdly, we assessed the differences in gene expression of human articular chondrocytes through transcriptomics. Lastly, to evaluate the essential targets and elucidate the potential mechanism underlying the therapeutic effects of curcumin in osteoarthritis, we conducted a screening of the proteins within the shared pathway of metabolomics and transcriptomics. Our results demonstrated that curcumin significantly decreased the levels of inflammatory markers, such as IL-β, IL-6, and TNF-α, in human articular chondrocytes. Cell metabolomics identified 106 differential metabolites, including beta-aminopropionitrile, 3-amino-2-piperidone, pyrrole-2-carboxaldehyde, and various other components. The transcriptomic analysis yielded 1050 differential mRNAs. Enrichment analysis showed that the differential metabolites and mRNAs were significantly enriched in seven pathways, including glycine, serine, and threonine metabolism; pentose and glucuronate interconversions; glycerolipid metabolism; histidine metabolism; mucin-type o-glycan biosynthesis; inositol phosphate metabolism; and cysteine and methionine metabolism. A total of 23 key targets were identified to be involved in these pathways. We speculate that curcumin may alleviate osteoarthritis by targeting key proteins involved in glycine, serine, and threonine metabolism; inhibiting pyruvate production; and modulating glycolysis.
Collapse
Affiliation(s)
- Wenxiang Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qinghu He
- Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Wenan Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| |
Collapse
|
8
|
Welhaven HD, Welfley AH, Brahmachary P, Bergstrom AR, Houske E, Glimm M, Bothner B, Hahn AK, June RK. Metabolomic Profiles and Pathways in Osteoarthritic Human Cartilage: A Comparative Analysis with Healthy Cartilage. Metabolites 2024; 14:183. [PMID: 38668311 PMCID: PMC11051929 DOI: 10.3390/metabo14040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, metabolite extracts from healthy (n = 11) and end-stage osteoarthritic cartilage (n = 35) were analyzed using liquid chromatography-mass spectrometry metabolomic profiling. Specific metabolites and metabolic pathways, including lipid and amino acid pathways, were differentially regulated in osteoarthritis-derived and healthy cartilage. The detected alterations in amino acids and lipids highlighted key differences in bioenergetic resources, matrix homeostasis, and mitochondrial alterations in OA-derived cartilage compared to healthy cartilage. Moreover, the metabolomic profiles of osteoarthritic cartilage separated into four distinct endotypes, highlighting the heterogenous nature of OA metabolism and the diverse landscape within the joint in patients. The results of this study demonstrate that human cartilage has distinct metabolomic profiles in healthy and end-stage OA patients. By taking a comprehensive approach to assess metabolic differences between healthy and osteoarthritic cartilage and within osteoarthritic cartilage alone, several metabolic pathways with distinct regulation patterns were detected. Additional investigation may lead to the identification of metabolites that may serve as valuable indicators of disease status or potential therapeutic targets.
Collapse
Affiliation(s)
- Hope D. Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Avery H. Welfley
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Priyanka Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Annika R. Bergstrom
- Department of Chemical & Biological Engineering, Villanova University, Villanova, PA 19085, USA
| | - Eden Houske
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT 59625, USA
| | - Matthew Glimm
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT 59625, USA
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Alyssa K. Hahn
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT 59625, USA
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
9
|
Pi P, Zeng L, Zeng Z, Zong K, Han B, Bai X, Wang Y. The role of targeting glucose metabolism in chondrocytes in the pathogenesis and therapeutic mechanisms of osteoarthritis: a narrative review. Front Endocrinol (Lausanne) 2024; 15:1319827. [PMID: 38510704 PMCID: PMC10951080 DOI: 10.3389/fendo.2024.1319827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that can affect almost any joint, mainly resulting in joint dysfunction and pain. Worldwide, OA affects more than 240 million people and is one of the leading causes of activity limitation in adults. However, the pathogenesis of OA remains elusive, resulting in the lack of well-established clinical treatment strategies. Recently, energy metabolism alterations have provided new insights into the pathogenesis of OA. Accumulating evidence indicates that glucose metabolism plays a key role in maintaining cartilage homeostasis. Disorders of glucose metabolism can lead to chondrocyte hypertrophy and extracellular matrix degradation, and promote the occurrence and development of OA. This article systematically summarizes the regulatory effects of different enzymes and factors related to glucose metabolism in OA, as well as the mechanism and potential of various substances in the treatment of OA by affecting glucose metabolism. This provides a theoretical basis for a better understanding of the mechanism of OA progression and the development of optimal prevention and treatment strategies.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Keqiang Zong
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- School of Physical Education, Qiqihar University, Heilongjiang, Qiqihar, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
10
|
Welhaven HD, Welfley AH, Brahmachary P, Bergstrom AR, Houske E, Glimm M, Bothner B, Hahn AK, June RK. Metabolomic Profiles and Pathways in Osteoarthritic Human Cartilage: A Comparative Analysis with Healthy Cartilage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577269. [PMID: 38328065 PMCID: PMC10849731 DOI: 10.1101/2024.01.25.577269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Objective Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, healthy and end-stage osteoarthritic cartilage were compared metabolically to uncover disease-associated profiles, classify OA-specific metabolic endotypes, and identify targets for intervention for the diverse populations of individuals affected by OA. Design Femoral head cartilage (n=35) from osteoarthritis patients were collected post-total joint arthroplasty. Healthy cartilage (n=11) was obtained from a tissue bank. Metabolites from all cartilage samples were extracted and analyzed using liquid chromatography-mass spectrometry metabolomic profiling. Additionally, cartilage extracts were pooled and underwent fragmentation analysis for biochemical identification of metabolites. Results Specific metabolites and metabolic pathways, including lipid- and amino acid pathways, were differentially regulated between osteoarthritis-derived and healthy cartilage. The detected alterations of amino acids and lipids highlight key differences in bioenergetic resources, matrix homeostasis, and mitochondrial alterations in osteoarthritis-derived cartilage compared to healthy. Moreover, metabolomic profiles of osteoarthritic cartilage separated into four distinct endotypes highlighting the heterogenous nature of OA metabolism and diverse landscape within the joint between patients. Conclusions The results of this study demonstrate that human cartilage has distinct metabolomic profiles between healthy and end-stage osteoarthritis patients. By taking a comprehensive approach to assess metabolic differences between healthy and osteoarthritic cartilage, and within osteoarthritic cartilage alone, several metabolic pathways with distinct regulation patterns were detected. Additional investigation may lead to the identification of metabolites that may serve as valuable indicators of disease status or potential therapeutic targets.
Collapse
Affiliation(s)
- Hope D. Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Avery H. Welfley
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| | - Priyanka Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| | - Annika R. Bergstrom
- Department of Chemical & Biological Engineering, Villanova University, Villanova, PA
| | - Eden Houske
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT
| | - Matthew Glimm
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Alyssa K. Hahn
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| |
Collapse
|
11
|
Kuchynsky K, Stevens P, Hite A, Xie W, Diop K, Tang S, Pietrzak M, Khan S, Walter B, Purmessur D. Transcriptional profiling of human cartilage endplate cells identifies novel genes and cell clusters underlying degenerated and non-degenerated phenotypes. Arthritis Res Ther 2024; 26:12. [PMID: 38173036 PMCID: PMC10763221 DOI: 10.1186/s13075-023-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Low back pain is a leading cause of disability worldwide and is frequently attributed to intervertebral disc (IVD) degeneration. Though the contributions of the adjacent cartilage endplates (CEP) to IVD degeneration are well documented, the phenotype and functions of the resident CEP cells are critically understudied. To better characterize CEP cell phenotype and possible mechanisms of CEP degeneration, bulk and single-cell RNA sequencing of non-degenerated and degenerated CEP cells were performed. METHODS Human lumbar CEP cells from degenerated (Thompson grade ≥ 4) and non-degenerated (Thompson grade ≤ 2) discs were expanded for bulk (N=4 non-degenerated, N=4 degenerated) and single-cell (N=1 non-degenerated, N=1 degenerated) RNA sequencing. Genes identified from bulk RNA sequencing were categorized by function and their expression in non-degenerated and degenerated CEP cells were compared. A PubMed literature review was also performed to determine which genes were previously identified and studied in the CEP, IVD, and other cartilaginous tissues. For single-cell RNA sequencing, different cell clusters were resolved using unsupervised clustering and functional annotation. Differential gene expression analysis and Gene Ontology, respectively, were used to compare gene expression and functional enrichment between cell clusters, as well as between non-degenerated and degenerated CEP samples. RESULTS Bulk RNA sequencing revealed 38 genes were significantly upregulated and 15 genes were significantly downregulated in degenerated CEP cells relative to non-degenerated cells (|fold change| ≥ 1.5). Of these, only 2 genes were previously studied in CEP cells, and 31 were previously studied in the IVD and other cartilaginous tissues. Single-cell RNA sequencing revealed 11 unique cell clusters, including multiple chondrocyte and progenitor subpopulations with distinct gene expression and functional profiles. Analysis of genes in the bulk RNA sequencing dataset showed that progenitor cell clusters from both samples were enriched in "non-degenerated" genes but not "degenerated" genes. For both bulk- and single-cell analyses, gene expression and pathway enrichment analyses highlighted several pathways that may regulate CEP degeneration, including transcriptional regulation, translational regulation, intracellular transport, and mitochondrial dysfunction. CONCLUSIONS This thorough analysis using RNA sequencing methods highlighted numerous differences between non-degenerated and degenerated CEP cells, the phenotypic heterogeneity of CEP cells, and several pathways of interest that may be relevant in CEP degeneration.
Collapse
Affiliation(s)
- Kyle Kuchynsky
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Patrick Stevens
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Hite
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - William Xie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Khady Diop
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Shirley Tang
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Safdar Khan
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Benjamin Walter
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA.
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
12
|
Chen R, Ying C, Zou Y, Lin C, Fu Q, Xiang Z, Bao J, Chen W. Sarsasapogenin inhibits YAP1-dependent chondrocyte ferroptosis to alleviate osteoarthritis. Biomed Pharmacother 2023; 168:115772. [PMID: 37879209 DOI: 10.1016/j.biopha.2023.115772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
The involvement of chondrocyte ferroptosis in the development of osteoarthritis (OA) has been observed, and Sarsasapogenin (Sar) has therapeutic promise in a variety of inflammatory diseases. This study investigates the potential influence of Sar on the mechanism of chondrocyte ferroptotic cell death in the progression of osteoarthritic cartilage degradation. An in vivo medial meniscus destabilization (DMM)-induced OA animal model as well as an in vitro examination of chondrocytes in an OA microenvironment induced by interleukin-1β (IL-1β) exposure were employed. Histology, immunofluorescence, quantitative RT-PCR, Western blot, cell viability, and Micro-CT analysis were utilized in conjunction with gene overexpression and knockdown to evaluate the chondroprotective effects of Sar in OA progression and the role of Yes-associated protein 1 (YAP1) in Sar-induced ferroptosis resistance of chondrocytes. In this study we found Sar reduced chondrocyte ferroptosis and OA progression. And Sar-induced chondrocyte ferroptosis resistance was mediated by YAP1. Furthermore, infection of siRNA specific to YAP1 in chondrocytes reduced Sar's chondroprotective and ferroptosis-suppressing effects during OA development. The findings suggest that Sar mitigates the progression of osteoarthritis by decreasing the sensitivity of chondrocytes to ferroptosis through the promotion of YAP1, indicating that Sar has the potential to serve as a therapeutic approach for diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Ruihan Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Medical College, Zhejiang University, Jie Fang Road 88, 310009 Hangzhou, China
| | - Chenting Ying
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Medical College, Zhejiang University, Jie Fang Road 88, 310009 Hangzhou, China
| | - Yuxuan Zou
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Medical College, Zhejiang University, Jie Fang Road 88, 310009 Hangzhou, China
| | - Changjian Lin
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Medical College, Zhejiang University, Jie Fang Road 88, 310009 Hangzhou, China
| | - Qiangchang Fu
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Medical College, Zhejiang University, Jie Fang Road 88, 310009 Hangzhou, China
| | - Zhihui Xiang
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Medical College, Zhejiang University, Jie Fang Road 88, 310009 Hangzhou, China
| | - Jiapeng Bao
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Medical College, Zhejiang University, Jie Fang Road 88, 310009 Hangzhou, China.
| | - Weiping Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Medical College, Zhejiang University, Jie Fang Road 88, 310009 Hangzhou, China.
| |
Collapse
|
13
|
Chariyev-Prinz F, Neto N, Monaghan MG, Kelly DJ. Time-Dependent Anabolic Response of hMSC-Derived Cartilage Grafts to Hydrostatic Pressure. J Tissue Eng Regen Med 2023; 2023:9976121. [PMID: 40226395 PMCID: PMC11919143 DOI: 10.1155/2023/9976121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 04/15/2025]
Abstract
It is generally accepted that the application of hydrostatic pressure (HP) is beneficial for MSC chondrogenesis. There is, however, evidence to suggest that the timing of application might determine its impact on cell fate and tissue development. Furthermore, understanding how the maturity of engineered cartilage affects its response to the application of HP can provide critical insight into determining when such a graft is ready for in vivo implantation into a mechanically loaded environment. In this study, we systematically examined chondrogenic maturation of hMSCs over 35 days in the presence of TGF-β3 in vitro. At specific timepoints, the response of hMSCs to the application of HP following the removal of TGF-β3 was assessed; this partially models conditions such grafts will experience in vivo upon implantation. In free swelling culture, the expression of chondrogenic (COL2A1 and ACAN) and hypertrophic (COL10A1) markers increased with time. At early timepoints, the expression of such markers continued to increase following TGF-β3 withdrawal; however, this was not observed after prolonged periods of chondrogenic priming (35 days). Interestingly, the application of HP was only beneficial after 35 days of chondrogenic priming, where it enhanced sGAG synthesis and improved key chondrogenic gene ratios. It was also found that HP can facilitate a metabolic shift towards oxidative phosphorylation, which can be viewed as a hallmark of successfully differentiating MSCs. These results point to the importance of mechanical loading as a key stimulus for maintaining a chondrogenic phenotype once MSCs are removed from chemically defined culture conditions.
Collapse
Affiliation(s)
- Farhad Chariyev-Prinz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Nuno Neto
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Michael G. Monaghan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Arra M, Abu-Amer Y. Cross-talk of inflammation and chondrocyte intracellular metabolism in osteoarthritis. Osteoarthritis Cartilage 2023; 31:1012-1021. [PMID: 37094761 DOI: 10.1016/j.joca.2023.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Osteoarthritis is a disease that impacts millions around the world, leading to significant financial and medical burden for patients and the healthcare system. However, no effective biomarkers or disease modifying therapeutics exist for the early identification and management of the disease. Inflammation drives chondrocytes to express extracellular matrix (ECM) degrading enzymes and interruption of this pathway is a viable target to prevent degradation of cartilage. It has been demonstrated that inflammation can alter the intracellular metabolism of chondrocytes, a process known as metabolic reprogramming. This metabolic reprogramming is critical for cartilage breakdown by shifting chondrocytes to an ECM-catabolic state and likely as a potential therapeutic target for osteoarthritis. Metabolic modulators hold the potential to reduce chondrocyte inflammatory responses and protect cartilage. In this narrative review, we explore some of the existing examples of interactions between metabolism and inflammatory pathways in chondrocytes. We summarize the impact of inflammatory stimulation on various metabolic pathways and describe several examples by which targeting of metabolism is able to modulate ECM-degrading activity of chondrocytes to protect against cartilage damage.
Collapse
Affiliation(s)
- M Arra
- Department of Orthopedic Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Y Abu-Amer
- Department of Orthopedic Surgery, Washington University School of Medicine, Saint Louis, MO, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, Saint Louis, MO, USA; Shriners Hospital for Children, Saint Louis, MO, USA.
| |
Collapse
|
15
|
Wen ZH, Sung CS, Lin SC, Yao ZK, Lai YC, Liu YW, Wu YY, Sun HW, Liu HT, Chen WF, Jean YH. Intra-Articular Lactate Dehydrogenase A Inhibitor Oxamate Reduces Experimental Osteoarthritis and Nociception in Rats via Possible Alteration of Glycolysis-Related Protein Expression in Cartilage Tissue. Int J Mol Sci 2023; 24:10770. [PMID: 37445948 DOI: 10.3390/ijms241310770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and joint disorder worldwide. Metabolic reprogramming of osteoarthritic chondrocytes from oxidative phosphorylation to glycolysis results in the accumulation of lactate from glycolytic metabolite pyruvate by lactate dehydrogenase A (LDHA), leading to cartilage degeneration. In the present study, we investigated the protective effects of the intra-articular administration of oxamate (LDHA inhibitor) against OA development and glycolysis-related protein expression in experimental OA rats. The animals were randomly allocated into four groups: Sham, anterior cruciate ligament transection (ACLT), ACLT + oxamate (0.25 and 2.5 mg/kg). Oxamate-treated groups received an intra-articular injection of oxamate once a week for 5 weeks. Intra-articular oxamate significantly reduced the weight-bearing defects and knee width in ACLT rats. Histopathological analyses showed that oxamate caused significantly less cartilage degeneration in the ACLT rats. Oxamate exerts hypertrophic effects in articular cartilage chondrocytes by inhibiting glucose transporter 1, glucose transporter 3, hexokinase II, pyruvate kinase M2, pyruvate dehydrogenase kinases 1 and 2, pyruvate dehydrogenase kinase 2, and LHDA. Further analysis revealed that oxamate significantly reduced chondrocyte apoptosis in articular cartilage. Oxamate attenuates nociception, inflammation, cartilage degradation, and chondrocyte apoptosis and possibly attenuates glycolysis-related protein expression in ACLT-induced OA rats. The present findings will facilitate future research on LDHA inhibitors in prevention strategies for OA progression.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chun-Sung Sung
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Sung-Chun Lin
- Department of Orthopedic Surgery, Pingtung Christian Hospital, No. 60 Dalian Road, Pingtung 90059, Taiwan
| | - Zhi-Kang Yao
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Orthopedic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81341, Taiwan
| | - Yu-Cheng Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Orthopedics, Asia University Hospital, Taichung 41354, Taiwan
| | - Yu-Wei Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yu-Yan Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hsi-Wen Sun
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, No. 60 Dalian Road, Pingtung 90059, Taiwan
| |
Collapse
|
16
|
Liu Z, Hui Mingalone CK, Gnanatheepam E, Hollander JM, Zhang Y, Meng J, Zeng L, Georgakoudi I. Label-free, multi-parametric assessments of cell metabolism and matrix remodeling within human and early-stage murine osteoarthritic articular cartilage. Commun Biol 2023; 6:405. [PMID: 37055483 PMCID: PMC10102009 DOI: 10.1038/s42003-023-04738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Osteoarthritis (OA) is characterized by the progressive deterioration of articular cartilage, involving complicated cell-matrix interactions. Systematic investigations of dynamic cellular and matrix changes during OA progression are lacking. In this study, we use label-free two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to assess cellular and extracellular matrix features of murine articular cartilage during several time points at early stages of OA development following destabilization of medial meniscus surgery. We detect significant changes in the organization of collagen fibers and crosslink-associated fluorescence of the superficial zone as early as one week following surgery. Such changes become significant within the deeper transitional and radial zones at later time-points, highlighting the importance of high spatial resolution. Cellular metabolic changes exhibit a highly dynamic behavior, and indicate metabolic reprogramming from enhanced oxidative phosphorylation to enhanced glycolysis or fatty acid oxidation over the ten-week observation period. The optical metabolic and matrix changes detected within this mouse model are consistent with differences identified in excised human cartilage specimens from OA and healthy cartilage specimens. Thus, our studies reveal important cell-matrix interactions at the onset of OA that may enable improved understanding of OA development and identification of new potential treatment targets.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, Zhejiang, 314000, China
| | - Carrie K Hui Mingalone
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | | | - Judith M Hollander
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jia Meng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
- Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
17
|
Li Z, Zhang Y, Tian F, Wang Z, Song H, Chen H, Wu B. Omentin-1 promotes mitochondrial biogenesis via PGC1α-AMPK pathway in chondrocytes. Arch Physiol Biochem 2023; 129:291-297. [PMID: 32930026 DOI: 10.1080/13813455.2020.1819337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Omentin-1 is a newly discovered metabolic regulatory adipokine. Studies have shown that omentin-1 possesses pleiotropic effects in different types of cells. This study aims to investigate the regulation by omentin-1 on mitochondrial biogenesis in chondrocytes. METHODOLOGY C-28/I2 chondrocytes were treated with omentin-1 (150 and 300 ng/ml) for 24 h. The expression of mitochondrial regulators, markers and the DNA copy was assessed. The mitochondrial morphology was observed by electron microscopy. The mitochondrial respiratory rate and ATP production in chondrocytes were measured by cell lysates. RESULTS Omentin-1 treatment up-regulated PGC-1α, NRF-1 and mitochondrial transcription factor A (TFAM) in cultured chondrocytes, indicating that omentin-1 could be involved in the regulation of mitochondrial function. Omentin-1 promoted mtDNA/nDNA and four mitochondrial genes (Tomm20, Tomm40, Timm9 and Atp5c1), mRNA transcripts as well as two mitochondrial protein expressions (SDHB and MTCO1). At a cellular level, omentin-1 enhanced the mitochondrial respiratory rate and ATP production. Mechanistically, we proved that omentin-1 increased AMPKα activation, and the blockage of AMPKα by its inhibitor compound C abolished the inductive effect of omentin-1 on PGC1α expression and mtDNA/nDNA ratio, indicating that the effect of omentin-1 is dependent on AMPKα activation. CONCLUSION Omentin-1 is a positive regulator of mitochondrial biogenesis in chondrocytes, and its action is dependent on the AMPK-PGC1α pathway. This study, therefore, implies that omentin-1 has the potential to remedy chondrocyte damage in the prevention and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yao Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Fengde Tian
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Zihua Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Haiyang Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Haojie Chen
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Baolin Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
18
|
Welhaven HD, Welfley AH, Pershad P, Satalich J, O’Connell R, Bothner B, Vap AR, June RK. Metabolomic Phenotypes Reflect Patient Sex and Injury Status: A Cross-Sectional Analysis of Human Synovial Fluid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527040. [PMID: 36846378 PMCID: PMC9959930 DOI: 10.1101/2023.02.03.527040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Post-traumatic osteoarthritis (PTOA) is caused by knee injuries like anterior cruciate ligament (ACL) injuries. Often, ACL injuries are accompanied by damage to other tissues and structures within the knee including the meniscus. Both are known to cause PTOA but underlying cellular mechanisms driving disease remain unknown. Aside from injury, patient sex is a prevalent risk factor associated with PTOA. Hypothesis Metabolic phenotypes of synovial fluid that differ by knee injury pathology and participant sex will be distinct from each other. Study Design A cross-sectional study. Methods Synovial fluid from n=33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. Synovial fluid was extracted and analyzed via liquid chromatography mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies and participant sex. Additionally, samples were pooled and underwent fragmentation to identify metabolites. Results Metabolite profiles revealed that injury pathology phenotypes were distinct from each other where differences in endogenous repair pathways that are triggered post-injury were detected. Specifically, acute differences in metabolism mapped to amino acid metabolism, lipid-related oxidative metabolism, and inflammatory-associated pathways. Lastly, sexual dimorphic metabolic phenotypes were examined between male and female participants, and within injury pathology. Specifically, Cervonyl Carnitine and other identified metabolites differed in concentration between sexes. Conclusions The results of this study suggest that different injuries (e.g., ligament vs. meniscus), as well as sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries and PTOA development may yield data regarding how endogenous repair pathways differ between injury types. Furthermore, ongoing metabolomic analysis of synovial fluid in injured male and female patients can be performed to monitor PTOA development and progression. Clinical Relevance Extension of this work may potentially lead to the identification of biomarkers as well as drug targets that slow, stop, or reverse PTOA progression based on injury type and patient sex.
Collapse
Affiliation(s)
- Hope D. Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Avery H. Welfley
- Department of Microbiology & Cell Biology, Montana State University, Bozeman MT
| | - Prayag Pershad
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - James Satalich
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Robert O’Connell
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Alexander R. Vap
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| |
Collapse
|
19
|
Chen L, Huang X, Chen H, Bao D, Su X, Wei L, Hu N, Huang W, Xiang Z. Hypoxia-mimicking scaffolds with controlled release of DMOG and PTHrP to promote cartilage regeneration via the HIF-1α/YAP signaling pathway. Int J Biol Macromol 2023; 226:716-729. [PMID: 36526060 DOI: 10.1016/j.ijbiomac.2022.12.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Efficiently driving chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) while avoiding undesired hypertrophy remains a challenge in the field of cartilage tissue engineering. Here, we report the sequential combined application of dimethyloxalylglycine (DMOG) and parathyroid hormone-related protein (PTHrP) to facilitate chondrogenesis and prevent hypertrophy. To support their delivery, poly(lactic-co-glycolic acid) (PLGA) microspheres were fabricated using a double emulsion method. Subsequently, these microspheres were incorporated onto a poly(l-lactic acid) (PLLA) scaffold with a highly porous structure, high interconnectivity and collagen-like nanofiber architecture to construct a microsphere-based scaffold delivery system. These functional constructs demonstrated that the spatiotemporally controlled release of DMOG and PTHrP effectively mimicked the hypoxic microenvironment to promote chondrogenic differentiation with phenotypic stability in a 3D culture system, which had a certain correlation with the interaction between hypoxia-inducible Factor 1 alpha (HIF-1α) and yes-associated protein (YAP). Subcutaneous implantation in nude mice revealed that the constructs were able to maintain cartilage formation in vivo at 4 and 8 weeks. Overall, this study indicated that DMOG and PTHrP controlled-release PLGA microspheres incorporated with PLLA nanofibrous scaffolds provided an advantageous 3D hypoxic microenvironment for efficacious and clinically relevant cartilage regeneration and is a promising treatment for cartilage injury.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dingsu Bao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
20
|
Wang X, Xu P, Liu Y, Wang Z, Lenahan C, Fang Y, Lu J, Zheng J, Wang K, Wang W, Zhou J, Chen S, Zhang J. New Insights of Early Brain Injury after Subarachnoid Hemorrhage: A Focus on the Caspase Family. Curr Neuropharmacol 2023; 21:392-408. [PMID: 35450528 PMCID: PMC10190145 DOI: 10.2174/1570159x20666220420115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/10/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), primarily caused by ruptured intracranial aneurysms, remains a prominent clinical challenge with a high rate of mortality and morbidity worldwide. Accumulating clinical trials aiming at the prevention of cerebral vasospasm (CVS) have failed to improve the clinical outcome of patients with SAH. Therefore, a growing number of studies have shifted focus to the pathophysiological changes that occur during the periods of early brain injury (EBI). New pharmacological agents aiming to alleviate EBI have become a promising direction to improve outcomes after SAH. Caspases belong to a family of cysteine proteases with diverse functions involved in maintaining metabolism, autophagy, tissue differentiation, regeneration, and neural development. Increasing evidence shows that caspases play a critical role in brain pathology after SAH. Therefore, caspase regulation could be a potential target for SAH treatment. Herein, we provide an overview pertaining to the current knowledge on the role of caspases in EBI after SAH, and we discuss the promising therapeutic value of caspase-related agents after SAH.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Penglei Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zefeng Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, New Mexico
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Jianming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Korpershoek JV, Rikkers M, Wallis FSA, Dijkstra K, te Raa M, de Knijff P, Saris DBF, Vonk LA. Mitochondrial Transport from Mesenchymal Stromal Cells to Chondrocytes Increases DNA Content and Proteoglycan Deposition In Vitro in 3D Cultures. Cartilage 2022; 13:133-147. [PMID: 36262105 PMCID: PMC9924973 DOI: 10.1177/19476035221126346] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Allogeneic mesenchymal stromal cells (MSCs) are used in the 1-stage treatment of articular cartilage defects. The aim of this study is to investigate whether transport of mitochondria exists between chondrocytes and MSCs and to investigate whether the transfer of mitochondria to chondrocytes contributes to the mechanism of action of MSCs. DESIGN Chondrocytes and MSCs were stained with MitoTracker, and CellTrace was used to distinguish between cell types. The uptake of fluorescent mitochondria was measured in cocultures using flow cytometry. Transport was visualized using fluorescence microscopy. Microvesicles were isolated and the presence of mitochondria was assessed. Mitochondria were isolated from MSCs and transferred to chondrocytes using MitoCeption. Pellets of chondrocytes, chondrocytes with transferred MSC mitochondria, and cocultures were cultured for 28 days. DNA content and proteoglycan content were measured. Mitochondrial DNA of cultured pellets and of repair cartilage tissue was quantified. RESULTS Mitochondrial transfer occurred bidirectionally within the first 4 hours until 16 hours of coculture. Transport took place via tunneling nanotubes, direct cell-cell contact, and extracellular vesicles. After 28 days of pellet culture, DNA content and proteoglycan deposition were higher in chondrocyte pellets to which MSC mitochondria were transferred than the control groups. No donor mitochondrial DNA was traceable in the biopsies, whereas an increase in MSC mitochondrial DNA was seen in the pellets. CONCLUSIONS These results suggest that mitochondrial transport plays a role in the chondroinductive effect of MSCs on chondrocytes in vitro. However, in vivo no transferred mitochondria could be traced back after 1 year.
Collapse
Affiliation(s)
- Jasmijn V. Korpershoek
- UMC Utrecht, Utrecht, The
Netherlands,Daniel B. F. Saris, UMC Utrecht,
Huispostnummer G05.228, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands.
| | | | | | | | - Marije te Raa
- Leids Universitair Medisch Centrum,
Leiden, The Netherlands
| | | | | | | |
Collapse
|
22
|
Tan C, Li L, Han J, Xu K, Liu X. A new strategy for osteoarthritis therapy: Inhibition of glycolysis. Front Pharmacol 2022; 13:1057229. [PMID: 36438808 PMCID: PMC9685317 DOI: 10.3389/fphar.2022.1057229] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease of the joints. It is primarily caused by age, obesity, mechanical damage, genetics, and other factors, leading to cartilage degradation, synovial inflammation, and subchondral sclerosis with osteophyte formation. Many recent studies have reported that glycolysis disorders are related lead to OA. There is a close relationship between glycolysis and OA. Because of their hypoxic environment, chondrocytes are highly dependent on glycolysis, their primary energy source for chondrocytes. Glycolysis plays a vital role in OA development. In this paper, we comprehensively summarized the abnormal expression of related glycolytic enzymes in OA, including Hexokinase 2 (HK2), Pyruvate kinase 2 (PKM2), Phosphofructokinase-2/fructose-2, 6-Bisphosphatase 3 (PFKFB3), lactate dehydrogenase A (LDHA), and discussed the potential application of glycolysis in treating OA. Finally, the natural products that can regulate the glycolytic pathway were summarized. Targeting glucose transporters and rate-limiting enzymes to glycolysis may play an essential role in treating OA.
Collapse
Affiliation(s)
| | | | | | - Kang Xu
- *Correspondence: Kang Xu, ; Xianqiong Liu,
| | | |
Collapse
|
23
|
Cao F, Jiang X, Xiong A, Yang M, Shi J, Chang Y, Gao T, Yang S, Tan J, Xia P, Xu J. Identification of the OA-related metabolism-related genes, corresponding transcription factors, relevant pathways, and specific bioactive small molecules. Int Immunopharmacol 2022; 112:109096. [PMID: 36152536 DOI: 10.1016/j.intimp.2022.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 11/19/2022]
Abstract
Metabolic alteration of articular cartilage is associated with the pathogenesis of Osteoarthritis (OA). This study aims to identify the metabolism-related genes, corresponding transcription factors (TFs), and relevant pathways. Overall, RNA sequencing profiles of articular cartilage were collected from the GEO database. Metabolism-related genes and OA-related hallmarks were collected from the MSigDB v7.1. Differential expression analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Gene Set Variation Analysis (GSVA) were conducted to identify pathways or hallmarks that were related to the pathogenesis of OA. The Pearson correlation analysis was used to establish the regulatory network among transcription factors, metabolism-related genes, and hallmarks. To further confirm the regulation of the identified transcription factors, Chromatin Immunoprecipitation-sequencing (ChIP-seq) was conducted, and single-cell sequencing was used to locate the cell clusters. Connectivity Map (CM) analysis were also conducted to identify the potential specific bioactive small molecules targeting the metabolic alteration of osteoarthritis. scTPA database was used to detect activated signaling pathways. Collectively, a total of 74 and 38 differentially expressed metabolism-related genes and TFs were retrieved. Skeletal system development, extracellular matrix, and cell adhesion molecule binding were important pathways in GO analysis. Human papillomavirus infection, PI3K-Akt signaling pathway, and Human T-cell leukemia virus 1 infection were the top 3 pathways in KEGG. 7 and 12 hallmarks were down- and up-regulated in GSVA, respectively. Ten bioactive small molecules may be potential treatments of OA by regulating the metabolism of articular cartilage. ChIP-seq analysis showed high relativity between transcription factors and their target genes. Furthermore, single-cell sequencing confirms the high expression of identified transcription factors in chondrocytes. To conclude, we established a comprehensive network integrated with transcription factors, metabolism-related genes, and hallmarks.
Collapse
Affiliation(s)
- Fuyang Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Xu Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Ao Xiong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Meng Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Jianming Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Yingjian Chang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Tianhao Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Shangliang Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Jun Tan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Peige Xia
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China.
| |
Collapse
|
24
|
Functional gelatin hydrogel scaffold with degraded-release of glutamine to enhance cellular energy metabolism for cartilage repair. Int J Biol Macromol 2022; 221:923-933. [PMID: 36089087 DOI: 10.1016/j.ijbiomac.2022.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Cartilage defect is one of the most common pathogenesis of osteoarthritis (OA), a degenerative joint disease that affects millions of people globally. Due to lack of nutrition and local metabolic inertia, the repair of cartilage has always been a difficult problem to be urgently solved. Herein, a functional gelatin hydrogel scaffold (GelMA-AG) chemically modified with alanyl-glutamine (AG) is proposed and prepared. The GelMA-AG can release glutamine through in vivo degradation that can activate the energy metabolism process of chondrocytes, thus effectively promoting damaged cartilage repair. The results demonstrate that compared with the AG-free gelatin hydrogel (GelMA), GelMA-AG exhibits an increase in both the mitochondrial membrane potential level and the production of intracellular adenosine triphosphate (ATP), while the intracellular reactive oxygen species (ROS) of chondrocytes is decreased, thus contributing to the higher level of cellular metabolism and the lower inflammation in cartilage tissue. In contrast to GelMA (Reduced Modulus (Er): 24.33 MPa), the Er value of the remodeled rabbit knee articular cartilage is up to 70.14 MPa, which is more comparable to natural cartilage. In particular, this strategy does not involve exogenous cells and growth factors, and the therapeutic strategy of actively regulating the metabolic microenvironment through a functional gelatin hydrogel scaffold represents a new and prospective idea for the design of tissue engineering biomaterials in cartilage repair with simplification and effectiveness.
Collapse
|
25
|
Coope A, Ghanameh Z, Kingston O, Sheridan CM, Barrett-Jolley R, Phelan MM, Oldershaw RA. 1H NMR Metabolite Monitoring during the Differentiation of Human Induced Pluripotent Stem Cells Provides New Insights into the Molecular Events That Regulate Embryonic Chondrogenesis. Int J Mol Sci 2022; 23:ijms23169266. [PMID: 36012540 PMCID: PMC9409419 DOI: 10.3390/ijms23169266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The integration of cell metabolism with signalling pathways, transcription factor networks and epigenetic mediators is critical in coordinating molecular and cellular events during embryogenesis. Induced pluripotent stem cells (IPSCs) are an established model for embryogenesis, germ layer specification and cell lineage differentiation, advancing the study of human embryonic development and the translation of innovations in drug discovery, disease modelling and cell-based therapies. The metabolic regulation of IPSC pluripotency is mediated by balancing glycolysis and oxidative phosphorylation, but there is a paucity of data regarding the influence of individual metabolite changes during cell lineage differentiation. We used 1H NMR metabolite fingerprinting and footprinting to monitor metabolite levels as IPSCs are directed in a three-stage protocol through primitive streak/mesendoderm, mesoderm and chondrogenic populations. Metabolite changes were associated with central metabolism, with aerobic glycolysis predominant in IPSC, elevated oxidative phosphorylation during differentiation and fatty acid oxidation and ketone body use in chondrogenic cells. Metabolites were also implicated in the epigenetic regulation of pluripotency, cell signalling and biosynthetic pathways. Our results show that 1H NMR metabolomics is an effective tool for monitoring metabolite changes during the differentiation of pluripotent cells with implications on optimising media and environmental parameters for the study of embryogenesis and translational applications.
Collapse
Affiliation(s)
- Ashley Coope
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Clinical Directorate Professional Services, Aintree University Hospital, Liverpool University Hospitals NHS Foundation Trust, Lower Lane, Liverpool L9 7AL, UK
| | - Zain Ghanameh
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Olivia Kingston
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Carl M. Sheridan
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Marie M. Phelan
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L7 7BE, UK
- High Field NMR Facility, Liverpool Shared Research Facilities (LIV-SRF), Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Correspondence:
| |
Collapse
|
26
|
Walsh SK, Soni R, Arendt LM, Skala MC, Henak CR. Maturation- and degeneration-dependent articular cartilage metabolism via optical redox ratio imaging. J Orthop Res 2022; 40:1735-1743. [PMID: 34792214 DOI: 10.1002/jor.25214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
From the two metabolic processes in healthy cartilage, glycolysis has been associated with proliferation and oxidative phosphorylation (oxphos) with matrix synthesis. Recently, metabolic dysregulation was significantly correlated with cartilage degradation and osteoarthritis progression. While these findings suggest maturation predisposes cartilage to metabolic instability with consequences for tissue maintenance, these links have not been shown. Therefore, this study sought to address three hypotheses (a) chondrocytes exhibit differential metabolic activity between immaturity (0-4 months), adolescence (5-18 months), and maturity (>18 months); (b) perturbation of metabolic activity has consequences on expression of genes pertinent to cartilage tissue maintenance; and (c) severity of cartilage damage is positively correlated with glycolysis and oxphos activity as well as optical redox ratio in postadolescent cartilage. Porcine femoral cartilage samples from pigs (3 days to 6 years) underwent optical redox ratio imaging, which measures autofluorescence of NAD(P)H and FAD. Gene expression analysis and histological scoring was conducted for comparison against imaging metrics. NAD(P)H and FAD autofluorescence both demonstrated increasing intensity with age, while optical redox ratio was lowest in adolescent samples compared to immature or mature samples. Inhibition of glycolysis suppressed expression of Col2, Col1, ADAMTS4, and ADAMTS5, while oxphos inhibition had no effect. FAD fluorescence and optical redox ratio were positively correlated with histological degeneration. This study demonstrates maturation- and degeneration-dependent metabolic activity in cartilage and explores the consequences of this differential activity on gene expression. This study aids our basic understanding of cartilage biology and highlights opportunity for potential diagnostic applications.
Collapse
Affiliation(s)
- Shannon K Walsh
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rikin Soni
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Wu X, Fan X, Crawford R, Xiao Y, Prasadam I. The Metabolic Landscape in Osteoarthritis. Aging Dis 2022; 13:1166-1182. [PMID: 35855332 PMCID: PMC9286923 DOI: 10.14336/ad.2021.1228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Abstract
Articular cartilage function depends on the temporal and zonal distribution of coordinated metabolic regulation in chondrocytes. Emerging evidence shows the importance of cellular metabolism in the molecular control of the cartilage and its dysregulation in degenerative diseases like osteoarthritis (OA). Compared to most other tissues, chondrocytes are sparsely located in the extracellular matrix, lacking the typical proximity of neural, vascular, and lymphatic tissue. Making up under 5% of the total tissue weight of cartilage, chondrocytes have a relative deficiency of access to nutrients and oxygen, as well as limited pathways for metabolite removal. This makes cartilage a unique tissue with hypocellularity, prolonged metabolic rate, and tissue turnover. Studies in the past decade have shown that several pathways of central carbon metabolism are essential for cartilage homeostasis. Here, we summarised the literature findings on the role of cellular metabolism in determining the chondrocyte function and how this metabolic dysregulation led to cartilage aging in OA and provided an outlook on how the field may evolve in the coming years. Although the various energy metabolism pathways are inextricably linked with one another, for the purpose of this review, we initially endeavoured to examine them individually and in relative isolation. Subsequently, we comment on what is known regarding the integration and linked signalling pathways between these systems and the therapeutic opportunities for targeting OA metabolism.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiwei Fan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- The Prince Charles Hospital, Orthopedic Department, Brisbane, Queensland, Australia.
| | - Yin Xiao
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
28
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
29
|
Yuan Z, Liu S, Song W, Liu Y, Bi G, Xie R, Ren L. Galactose Enhances Chondrogenic Differentiation of ATDC5 and Cartilage Matrix Formation by Chondrocytes. Front Mol Biosci 2022; 9:850778. [PMID: 35615738 PMCID: PMC9124793 DOI: 10.3389/fmolb.2022.850778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Galactose, an important carbohydrate nutrient, is involved in several types of cellular metabolism, participating in physiological activities such as glycosaminoglycan (GAG) synthesis, glycosylation, and intercellular recognition. The regulatory effects of galactose on osteoarthritis have attracted increased attention. In this study, in vitro cell models of ATDC5 and chondrocytes were prepared and cultured with different concentrations of galactose to evaluate its capacity on chondrogenesis and cartilage matrix formation. The cell proliferation assay demonstrated that galactose was nontoxic to both ATDC5 cells and chondrocytes. RT-PCR and immunofluorescence staining indicated that the gene expressions of cartilage matrix type II collagen and aggrecan were significantly upregulated with increasing galactose concentration and the expression and accumulation of the extracellular matrix (ECM) protein. Overall, these results indicated that a galactose concentration below 8 mM exhibited the best effect on promoting chondrogenesis, which entitles galactose as having considerable potential for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Zhongrun Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Ying Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Gangyuan Bi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
- Jiangxi Key Laboratory of Medical Tissue Engineering Materials and Biofabrication, Gannan Medical University, Ganzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| |
Collapse
|
30
|
Osteoblasts induce glucose-derived ATP perturbations in chondrocytes through noncontact communication. Acta Biochim Biophys Sin (Shanghai) 2022; 54:625-636. [PMID: 35593470 PMCID: PMC9828329 DOI: 10.3724/abbs.2022042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cartilage and subchondral bone communicate with each other through material and signal exchanges. However, direct evidence provided by experimental studies on their interactions is insufficient. In the present study, we establish a noncontact co-culture model with a transwell chamber to explore the energetic perturbations in chondrocytes influenced by osteoblasts. Our results indicate that osteoblasts induce more ATP generation in chondrocytes through an energetic shift characterized by enhanced glycolysis and impaired mitochondrial tricarboxylic acid cycle. Enhanced glycolysis is shown by an increase of secreted lactate and the upregulation of glycolytic enzymes, including glucose-6-phosphate isomerase (Gpi), liver type ATP-dependent 6-phosphofructokinase (Pfkl), fructose-bisphosphate aldolase C (Aldoc), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), triosephosphate isomerase (Tpi1), and phosphoglycerate kinase 1 (Pgk1). Impaired mitochondrial tricarboxylic acid cycle is characterized by the downregulation of cytoplasmic aspartate aminotransferase (Got1) and mitochondrial citrate synthase (Cs). Osteoblasts induce the activation of Akt and P38 signaling to mediate ATP perturbations in chondrocytes. This study may deepen our understanding of the maintenance of metabolic homeostasis in the bone-cartilage unit.
Collapse
|
31
|
Batushansky A, Zhu S, Komaravolu RK, South S, Mehta-D'souza P, Griffin TM. Fundamentals of OA. An initiative of Osteoarthritis and Cartilage. Obesity and metabolic factors in OA. Osteoarthritis Cartilage 2022; 30:501-515. [PMID: 34537381 PMCID: PMC8926936 DOI: 10.1016/j.joca.2021.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Obesity was once considered a risk factor for knee osteoarthritis (OA) primarily for biomechanical reasons. Here we provide an additional perspective by discussing how obesity also increases OA risk by altering metabolism and inflammation. DESIGN This narrative review is presented in four sections: 1) metabolic syndrome and OA, 2) metabolic biomarkers of OA, 3) evidence for dysregulated chondrocyte metabolism in OA, and 4) metabolic inflammation: joint tissue mediators and mechanisms. RESULTS Metabolic syndrome and its components are strongly associated with OA. However, evidence for a causal relationship is context dependent, varying by joint, gender, diagnostic criteria, and demographics, with additional environmental and genetic interactions yet to be fully defined. Importantly, some aspects of the etiology of obesity-induced OA appear to be distinct between men and women, especially regarding the role of adipose tissue. Metabolomic analyses of serum and synovial fluid have identified potential diagnostic biomarkers of knee OA and prognostic biomarkers of disease progression. Connecting these biomarkers to cellular pathophysiology will require future in vivo studies of joint tissue metabolism. Such studies will help reveal when a metabolic process or a metabolite itself is a causal factor in disease progression. Current evidence points towards impaired chondrocyte metabolic homeostasis and metabolic-immune dysregulation as likely factors connecting obesity to the increased risk of OA. CONCLUSIONS A deeper understanding of how obesity alters metabolic and inflammatory pathways in synovial joint tissues is expected to provide new therapeutic targets and an improved definition of "metabolic" and "obesity" OA phenotypes.
Collapse
Affiliation(s)
- A Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - S Zhu
- Department of Biomedical Sciences, Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, 45701, USA.
| | - R K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - S South
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - P Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - T M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
32
|
Li Q, Chen H, Li Z, Zhang F, Chen L. Glucocorticoid caused lactic acid accumulation and damage in human chondrocytes via ROS-mediated inhibition of Monocarboxylate Transporter 4. Bone 2022; 155:116299. [PMID: 34915176 DOI: 10.1016/j.bone.2021.116299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is a common joint disease lacking effective treatments. Dexamethasone (Dex) is often used to relieve joint pain. However, the adverse effects of Dex on cartilage can't be ignored. This study aimed to investigate the effect of Dex on articular cartilage and its mechanism by in vitro and in vivo experiments. The results showed that intra-articular injection with Dex damaged the matrix synthesis of cartilage. In vitro, Dex induced human chondrocytes mitochondrial dysfunction and increased reactive oxygen species (ROS) level, while down-regulated or unchanged key glycolysis genes, but increased lactic acid (LA) concentration. It was showed that high concentrations of LA induced chondrocytes apoptosis. Mechanistically, monocarboxylate transporter 4 (MCT4) was inhibited by Dex and had a significant negative correlation with ROS level. Further results showed that the trimethyl-histone H3-K4 (H3K4me3) level of MCT4 was reduced by Dex, and the ROS scavenger N-Acetyl-L-cysteine (NAC) and α-ketoglutarate (α-KG) alleviated the Dex-induced obstruction of matrix synthesis and high level of ROS by up-regulating the H3K4me3 level of MCT4 and its expression. In conclusion, Dex exhibited harm to cartilage, shown as mitochondrial dysfunction and increased ROS. The latter further caused LA accumulation in chondrocytes via decreasing the H3K4me3 level of MCT4 and its expression, which may account for the long-term side effects of Dex on chondrocytes. And α-KG may be used as an auxiliary drug to weaken the toxic effect of Dex on cartilage.
Collapse
Affiliation(s)
- Qingxian Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Haitao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenyu Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fan Zhang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
33
|
Abstract
PROPOSE OF REVIEW To summarize the evidence that suggests that osteoarthritis (OA) is a mitochondrial disease. RECENT FINDINGS Mitochondrial dysfunction together with mtDNA damage could contribute to cartilage degradation via several processes such as: (1) increased apoptosis; (2) decreased autophagy; (3) enhanced inflammatory response; (4) telomere shortening and increased senescence chondrocytes; (5) decreased mitochondrial biogenesis and mitophagy; (6) increased cartilage catabolism; (7) increased mitochondrial fusion leading to further reactive oxygen species production; and (8) impaired metabolic flexibility. SUMMARY Mitochondria play an important role in some events involved in the pathogenesis of OA, such as energy production, the generation of reactive oxygen and nitrogen species, apoptosis, authophagy, senescence and inflammation. The regulation of these processes in the cartilage is at least partially controlled by retrograde regulation from mitochondria and mitochondrial genetic variation. Retrograde regulation through mitochondrial haplogroups exerts a signaling control over the nuclear epigenome, which leads to the modulation of nuclear genes, cellular functions and development of OA. All these data suggest that OA could be considered a mitochondrial disease as well as other complex chronic disease as cancer, cardiovascular and neurologic diseases.
Collapse
|
34
|
Zhou X, Zheng Y, Sun W, Zhang Z, Liu J, Yang W, Yuan W, Yi Y, Wang J, Liu J. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner. Cell Prolif 2021; 54:e13134. [PMID: 34561933 PMCID: PMC8560605 DOI: 10.1111/cpr.13134] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Chondrocyte ferroptosis contributes to osteoarthritis (OA) progression, and D-mannose shows therapeutic value in many inflammatory conditions. Here, we investigated whether D-mannose interferes in chondrocyte ferroptotic cell death during osteoarthritic cartilage degeneration. MATERIALS AND METHODS In vivo anterior cruciate ligament transection (ACLT)-induced OA mouse model and an in vitro study of chondrocytes in an OA microenvironment induced by interleukin-1β (IL-1β) exposure were employed. Combined with Epas1 gene gain- and loss-of-function, histology, immunofluorescence, quantitative RT-PCR, Western blot, cell viability and flow cytometry experiments were performed to evaluate the chondroprotective effects of D-mannose in OA progression and the role of hypoxia-inducible factor 2 alpha (HIF-2 α) in D-mannose-induced ferroptosis resistance of chondrocytes. RESULTS D-mannose exerted a chondroprotective effect by attenuating the sensitivity of chondrocytes to ferroptosis and alleviated OA progression. HIF-2α was identified as a central mediator in D-mannose-induced ferroptosis resistance of chondrocytes. Furthermore, overexpression of HIF-2α in chondrocytes by Ad-Epas1 intra-articular injection abolished the chondroprotective effect of D-mannose during OA progression and eliminated the role of D-mannose as a ferroptosis suppressor. CONCLUSIONS D-mannose alleviates osteoarthritis progression by suppressing HIF-2α-mediated chondrocyte sensitivity to ferroptosis, indicating D-mannose to be a potential therapeutic strategy for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wentian Sun
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wenke Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wenxiu Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Yating Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jin Liu
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
35
|
Tejedor G, Contreras-Lopez R, Barthelaix A, Ruiz M, Noël D, De Ceuninck F, Pastoureau P, Luz-Crawford P, Jorgensen C, Djouad F. Pyrroline-5-Carboxylate Reductase 1 Directs the Cartilage Protective and Regenerative Potential of Murphy Roths Large Mouse Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:604756. [PMID: 34277596 PMCID: PMC8284254 DOI: 10.3389/fcell.2021.604756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Murphy Roths Large (MRL) mice possess outstanding capacity to regenerate several tissues. In the present study, we investigated whether this regenerative potential could be associated with the intrinsic particularities possessed by their mesenchymal stem cells (MSCs). We demonstrated that MSCs derived from MRL mice (MRL MSCs) display a superior chondrogenic potential than do C57BL/6 MSC (BL6 MSCs). This higher chondrogenic potential of MRL MSCs was associated with a higher expression level of pyrroline-5-carboxylate reductase 1 (PYCR1), an enzyme that catalyzes the biosynthesis of proline, in MRL MSCs compared with BL6 MSCs. The knockdown of PYCR1 in MRL MSCs, using a specific small interfering RNA (siRNA), abolishes their chondrogenic potential. Moreover, we showed that PYCR1 silencing in MRL MSCs induced a metabolic switch from glycolysis to oxidative phosphorylation. In two in vitro chondrocyte models that reproduce the main features of osteoarthritis (OA) chondrocytes including a downregulation of chondrocyte markers, a significant decrease of PYCR1 was observed. A downregulation of chondrocyte markers was also observed by silencing PYCR1 in freshly isolated healthy chondrocytes. Regarding MSC chondroprotective properties on chondrocytes with OA features, we showed that MSCs silenced for PYCR1 failed to protect chondrocytes from a reduced expression of anabolic markers, while MSCs overexpressing PYCR1 exhibited an increased chondroprotective potential. Finally, using the ear punch model, we demonstrated that MRL MSCs induced a regenerative response in non-regenerating BL6 mice, while BL6 and MRL MSCs deficient for PYCR1 did not. In conclusion, our results provide evidence that MRL mouse regenerative potential is, in part, attributed to its MSCs that exhibit higher PYCR1-dependent glycolytic potential, differentiation capacities, chondroprotective abilities, and regenerative potential than BL6 MSCs.
Collapse
Affiliation(s)
| | | | | | - Maxime Ruiz
- IRMB, INSERM, University Montpellier, Montpellier, France
| | - Danièle Noël
- IRMB, INSERM, University Montpellier, Montpellier, France.,CHU Montpellier, Montpellier, France
| | - Frédéric De Ceuninck
- Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Philippe Pastoureau
- Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Christian Jorgensen
- IRMB, INSERM, University Montpellier, Montpellier, France.,CHU Montpellier, Montpellier, France
| | - Farida Djouad
- IRMB, INSERM, University Montpellier, Montpellier, France
| |
Collapse
|
36
|
Straub IR, Weraarpachai W, Shoubridge EA. Multi-OMICS study of a CHCHD10 variant causing ALS demonstrates metabolic rewiring and activation of endoplasmic reticulum and mitochondrial unfolded protein responses. Hum Mol Genet 2021; 30:687-705. [PMID: 33749723 DOI: 10.1093/hmg/ddab078] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in CHCHD10, coding for a mitochondrial intermembrane space protein, are a rare cause of autosomal dominant amyotrophic lateral sclerosis. Mutation-specific toxic gain of function or haploinsufficiency models have been proposed to explain pathogenicity. To decipher the metabolic dysfunction associated with the haploinsufficient p.R15L variant, we integrated transcriptomic, metabolomic and proteomic data sets in patient cells subjected to an energetic stress that forces the cells to rely on oxidative phosphorylation for ATP production. Patient cells had a complex I deficiency that resulted in an increased NADH/NAD+ ratio, diminished TCA cycle activity, a reorganization of one carbon metabolism and an increased AMP/ATP ratio leading to phosphorylation of AMPK and inhibition of mTORC1. These metabolic changes activated the unfolded protein response (UPR) in the ER through the IRE1/XBP1 pathway, upregulating downstream targets including ATF3, ATF4, CHOP and EGLN3, and two cytokine markers of mitochondrial disease, GDF15 and FGF21. Activation of the mitochondrial UPR was mediated through an upregulation of the transcription factors ATF4 and ATF5, leading to increased expression of mitochondrial proteases and heat shock proteins. There was a striking transcriptional up regulation of at least seven dual specific phosphatases, associated with an almost complete dephosphorylation of JNK isoforms, suggesting a concerted deactivation of MAP kinase pathways. This study demonstrates that loss of CHCHD10 function elicits an energy deficit that activates unique responses to nutrient stress in both the mitochondria and ER, which may contribute to the selective vulnerability of motor neurons.
Collapse
Affiliation(s)
- Isabella R Straub
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Woranontee Weraarpachai
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Mitochondrial DNA from osteoarthritic patients drives functional impairment of mitochondrial activity: a study on transmitochondrial cybrids. Cytotherapy 2021; 23:399-410. [PMID: 33727013 DOI: 10.1016/j.jcyt.2020.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/05/2020] [Accepted: 08/20/2020] [Indexed: 11/23/2022]
Abstract
With the redefinition of osteoarthritis (OA) and the understanding that the joint behaves as an organ, OA is now considered a systemic illness with a low grade of chronic inflammation. Mitochondrial dysfunction is well documented in OA and has the capacity to alter chondrocyte and synoviocyte function. Transmitochondrial cybrids are suggested as a useful cellular model to study mitochondrial biology in vitro, as they carry different mitochondrial variants with the same nuclear background. The aim of this work was to study mitochondrial and metabolic function of cybrids with mitochondrial DNA from healthy (N) and OA donors. In this work, the authors demonstrate that cybrids from OA patients behave differently from cybrids from N donors in several mitochondrial parameters. Furthermore, OA cybrids behave similarly to OA chondrocytes. These results enhance our understanding of the role of mitochondria in the degeneration process of OA and present cybrids as a useful model to study OA pathogenesis.
Collapse
|
38
|
Martins LPDO, Santos FFD, Costa TED, Lacerda ACR, Santos JMD, Costa KB, Santos AP, Gaiad TP, Pinfildi CE, Rocha-Vieira E, Mendonça VA, Xavier Oliveira M. Photobiomodulation Therapy (Light-Emitting Diode 630 nm) Favored the Oxidative Stress and the Preservation of Articular Cartilage in an Induced Knee Osteoarthritis Model. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:272-279. [PMID: 33497593 DOI: 10.1089/photob.2020.4926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective: To evaluate the effects of photobiomodulation (PBM) therapy on oxidative stress and histological aspects of knee osteoarthritis (OA) induced by sodium monoiodoacetate in Wistar rats. Background: OA is a chronic degenerative disease. In addition to the inflammatory role, other factors, such as redox balance, appear to contribute to changes in the articular cartilage, the main articular structure affected. PBM therapy using light-emitting diode (LED) has been proposed to treat the disease by favoring anti-inflammatory effects and modulating markers of oxidative stress, acting on the degenerative process of cartilage. Methods: Twenty-seven male rats were separated into three groups: control (CG), OA (OAG), and LED treatment (LEDG). In the LED group, PBM (LED 630 nm, 300 mW, 9 J/cm2, 0.3 W/cm2, 30 sec) was applied, starting 24 h after induction, three times per week, for 8 weeks. Cartilage thickness, number of chondrocytes, enzymatic antioxidant defenses [superoxide dismutase (SOD) and catalase (CAT)], oxidative damage [thiobarbituric acid reactive substances (TBARS)], and nonenzymatic defense (ferric reducing antioxidant power) were analyzed. Results: The LEDG had higher average cartilage thickness compared with the OAG and had similar thickness to the CG. Also, the number of chondrocytes was similar to the CG. In the oxidative stress analysis, the LEDG presented antioxidant enzymatic activity (SOD and CAT) higher than the CG, and presented concentration of TBARS lower than the CG and OAG groups. Conclusions: PBM therapy was effective in recovering oxidative stress and preserving the articular cartilage aspects in a knee OA animal model.
Collapse
Affiliation(s)
- Lorena Pacheco de Oliveira Martins
- Department of Physical Therapy, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Flávia Franciele Dos Santos
- Department of Physical Therapy, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Thais Eugênio Duarte Costa
- Department of Physical Therapy, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Department of Physical Therapy, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Jousielle Márcia Dos Santos
- Department of Physical Therapy, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Karine Beatriz Costa
- Department of Physical Therapy, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Ana Paula Santos
- Department of Physical Therapy, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Thaís Peixoto Gaiad
- Department of Physical Therapy, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Carlos Eduardo Pinfildi
- Department of Human Movement Sciences, Federal University of São Paulo (UNIFESP)-Campus Baixada Santista, Santos, São Paulo, Brazil
| | - Etel Rocha-Vieira
- Faculty of Medicine, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Vanessa Amaral Mendonça
- Department of Physical Therapy, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Murilo Xavier Oliveira
- Department of Physical Therapy, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e do Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| |
Collapse
|
39
|
Xue S, Zhou X, Sang W, Wang C, Lu H, Xu Y, Zhong Y, Zhu L, He C, Ma J. Cartilage-targeting peptide-modified dual-drug delivery nanoplatform with NIR laser response for osteoarthritis therapy. Bioact Mater 2021; 6:2372-2389. [PMID: 33553822 PMCID: PMC7844135 DOI: 10.1016/j.bioactmat.2021.01.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cartilage-targeting delivery of therapeutic agents is still an effective strategy for osteoarthritis (OA) therapy. Recently, scavenging for reactive oxygen species (ROS) and activating autophagy have been increasingly reported to treat OA effectively. In this study, we designed, for the first time, a dual-drug delivery system based on metal organic framework (MOF)-decorated mesoporous polydopamine (MPDA) which composed of rapamycin (Rap) loaded into the mesopores and bilirubin (Br) loaded onto the shell of MOF. The collagen II-targeting peptide (WYRGRL) was then conjugated on the surface of above nanocarrier to develop a cartilage-targeting dual-drug delivery nanoplatform (RB@MPMW). Our results indicated the sequential release of two agents from RB@MPMW could be achieved via near-infrared (NIR) laser irritation. Briefly, the rapid release of Br from the MOF shell exhibited excellent ROS scavenging ability and anti-apoptosis effects, however responsively reduced autophagy activity, to a certain extent. Meanwhile, following the NIR irradiation, Rap was rapidly released from MPDA core and further enhanced autophagy activation and chondrocyte protection. RB@MPMW continuously phosphorylated AMPK and further rescued mitochondrial energy metabolism of chondrocytes following IL-1β stimulation via activating SIRT1-PGC-1α signaling pathway. Additionally, the cartilage-targeting property of peptide-modified nanocarrier could be monitored via Magnetic Resonance (MR) and IVIS imaging. More significantly, RB@MPMW effectively delayed cartilage degeneration in ACLT rat model. Overall, our findings indicated that the as-prepared dual-drug delivery nanoplatform exerted potent anti-inflammation and anti-apoptotic effects, rescued energy metabolism of chondrocytes in vitro and prevented cartilage degeneration in vivo, which thereby showed positive performance for OA therapy. Collagen type II-targeting peptide and positive surface potential endow RB@MPMW with a fine cartilage affinity ability. RB@MPMW possess superb biological functions of scavenging free radicals and autophagy induction. RB@MPMW effectively promotes chondrocyte mitochondrial energy metabolism in the inflammatory microenvironment. RB@MPMW has a good MR imaging ability, which could monitor its therapeutic effects in vivo.
Collapse
Affiliation(s)
- Song Xue
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Weilin Sang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Cong Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Haiming Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yiming Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yiming Zhong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Libo Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jinzhong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
40
|
He Y, Makarczyk MJ, Lin H. Role of mitochondria in mediating chondrocyte response to mechanical stimuli. Life Sci 2020; 263:118602. [PMID: 33086121 PMCID: PMC7736591 DOI: 10.1016/j.lfs.2020.118602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
As the most common form of arthritis, osteoarthritis (OA) has become a major cause of severe joint pain, physical disability, and quality of life impairment in the affected population. To date, precise pathogenesis of OA has not been fully clarified, which leads to significant obstacles in developing efficacious treatments such as failures in finding disease-modifying OA drugs (DMOADs) in the last decades. Given that diarthrodial joints primarily display the weight-bearing and movement-supporting function, it is not surprising that mechanical stress represents one of the major risk factors for OA. However, the inner connection between mechanical stress and OA onset/progression has yet to be explored. Mitochondrion, a widespread organelle involved in complex biological regulation processes such as adenosine triphosphate (ATP) synthesis and cellular metabolism, is believed to have a controlling role in the survival and function implement of chondrocytes, the singular cell type within cartilage. Mitochondrial dysfunction has also been observed in osteoarthritic chondrocytes. In this review, we systemically summarize mitochondrial alterations in chondrocytes during OA progression and discuss our recent progress in understanding the potential role of mitochondria in mediating mechanical stress-associated osteoarthritic alterations of chondrocytes. In particular, we propose the potential signaling pathways that may regulate this process, which provide new views and therapeutic targets for the prevention and treatment of mechanical stress-associated OA.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Meagan J Makarczyk
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
41
|
Pemmari A, Leppänen T, Hämäläinen M, Moilanen T, Vuolteenaho K, Moilanen E. Widespread regulation of gene expression by glucocorticoids in chondrocytes from patients with osteoarthritis as determined by RNA-Seq. Arthritis Res Ther 2020; 22:271. [PMID: 33203447 PMCID: PMC7670667 DOI: 10.1186/s13075-020-02289-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Intra-articular glucocorticoid (GC) injections are widely used as a symptomatic treatment for osteoarthritis (OA). However, there are also concerns about their potentially harmful effects, and their detailed effects on chondrocyte phenotype remain poorly understood. Methods We studied the effects of dexamethasone on gene expression in OA chondrocytes with RNA-Seq. Chondrocytes were isolated from the cartilage from OA patients undergoing knee replacement surgery and cultured with or without dexamethasone for 24 h. Total RNA was isolated and sequenced, and functional analysis was performed against the Gene Ontology (GO) database. Results for selected genes were confirmed with RT-PCR. We also investigated genes linked to OA in recent genome-wide expression analysis (GWEA) studies. Results Dexamethasone increased the expression of 480 and reduced that of 755 genes with a fold change (FC) 2.0 or greater. Several genes associated with inflammation and cartilage anabolism/catabolism as well as lipid and carbohydrate metabolism were among the most strongly affected genes. In the GO analysis, genes involved in the extracellular matrix organization, cell proliferation and adhesion, inflammation, and collagen synthesis were enriched among the significantly affected genes. In network analysis, NGF, PI3KR1, and VCAM1 were identified as central genes among those most strongly affected by dexamethasone. Conclusions This is the first study investigating the genome-wide effects of GCs on the gene expression in OA chondrocytes. In addition to clear anti-inflammatory and anticatabolic effects, GCs affect lipid and glucose metabolism in chondrocytes, an observation that might be particularly important in the metabolic phenotype of OA.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
42
|
Gratal P, Lamuedra A, Medina JP, Bermejo-Álvarez I, Largo R, Herrero-Beaumont G, Mediero A. Purinergic System Signaling in Metainflammation-Associated Osteoarthritis. Front Med (Lausanne) 2020; 7:506. [PMID: 32984382 PMCID: PMC7485330 DOI: 10.3389/fmed.2020.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation triggered by metabolic imbalance, also called metainflammation, is low-grade inflammation caused by the components involved in metabolic syndrome (MetS), including central obesity and impaired glucose tolerance. This phenomenon is mainly due to excess nutrients and energy, and it contributes to the pathogenesis of osteoarthritis (OA). OA is characterized by the progressive degeneration of articular cartilage, which suffers erosion and progressively becomes thinner. Purinergic signaling is involved in several physiological and pathological processes, such as cell proliferation in development and tissue regeneration, neurotransmission and inflammation. Adenosine and ATP receptors, and other members of the signaling pathway, such as AMP-activated protein kinase (AMPK), are involved in obesity, type 2 diabetes (T2D) and OA progression. In this review, we focus on purinergic regulation in osteoarthritic cartilage and how different components of MetS, such as obesity and T2D, modulate the purinergic system in OA. In that regard, we describe the critical role in this disease of receptors, such as adenosine A2A receptor (A2AR) and ATP P2X7 receptor. Finally, we also assess how nucleotides regulate the inflammasome in OA.
Collapse
Affiliation(s)
- Paula Gratal
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Ana Lamuedra
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Juan Pablo Medina
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
43
|
Zheng L, Wang Y, Qiu P, Xia C, Fang Y, Mei S, Fang C, Shi Y, Wu K, Chen Z, Fan S, He D, Lin X, Chen P. Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity. Nanomedicine (Lond) 2020; 14:3193-3212. [PMID: 31855117 DOI: 10.2217/nnm-2018-0498] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: We aimed to investigate the proteomics of primary chondrocyte exosomes and the effect of exosomes in osteoarthritis (OA) treatment. Materials & methods: We isolated exosomes from primary chondrocytes cultured in normal (D0) and inflammatory environments induced by IL-1β and determined the proteomics of these exosomes. Next, we investigated what effect and mechanism D0 chondrocytes exosomes have in OA treatment. Results: There were more proteins that belonged to mitochondrion and were involved in immune system processes in D0 exosomes. Notably, intra-articular administration of D0 exosomes successfully prevented the development of OA. D0 chondrocyte exosomes could restore mitochondrial dysfunction and polarize macrophage response toward an M2 phenotype. Conclusion: Our findings demonstrated that primary chondrocyte exosomes are efficient in OA treatment.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China.,Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, PR China
| | - Yiyun Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Yifan Fang
- Hangzhou Foreign Languages School, Hangzhou, PR China
| | - Sheng Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Chen Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Yiling Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Kaiwei Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Zhijun Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Dengwei He
- Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, PR China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration & Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| |
Collapse
|
44
|
Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J Nutr Metab 2020; 2020:4143802. [PMID: 32566279 PMCID: PMC7261331 DOI: 10.1155/2020/4143802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and type 2 diabetes mellitus (T2D) are two of the most widespread chronic diseases. OA and T2D have common epidemiologic traits, are considered heterogenic multifactorial pathologies that develop through the interaction of genetic and environmental factors, and have common risk factors. In addition, both of these diseases often manifest in a single patient. Despite differences in clinical manifestations, both diseases are characterized by disturbances in cellular metabolism and by an insulin-resistant state primarily associated with the production and utilization of energy. However, currently, the primary cause of OA development and progression is not clear. In addition, although OA is manifested as a joint disease, evidence has accumulated that it affects the whole body. As pathological insulin resistance is viewed as a driving force of T2D development, now, we present evidence that the molecular and cellular metabolic disturbances associated with OA are linked to an insulin-resistant state similar to T2D. Moreover, the alterations in cellular energy requirements associated with insulin resistance could affect many metabolic changes in the body that eventually result in pathology and could serve as a unified mechanism that also functions in many metabolic diseases. However, these issues have not been comprehensively described. Therefore, here, we discuss the basic molecular mechanisms underlying the pathological processes associated with the development of insulin resistance; the major inducers, regulators, and metabolic consequences of insulin resistance; and instruments for controlling insulin resistance as a new approach to therapy.
Collapse
|
45
|
Dalmao-Fernández A, Lund J, Hermida-Gómez T, Vazquez-Mosquera ME, Rego-Pérez I, Blanco FJ, Fernández-Moreno M. Impaired Metabolic Flexibility in the Osteoarthritis Process: A Study on Transmitochondrial Cybrids. Cells 2020; 9:cells9040809. [PMID: 32230786 PMCID: PMC7226768 DOI: 10.3390/cells9040809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most frequent joint disease; however, the etiopathogenesis is still unclear. Chondrocytes rely primarily on glycolysis to meet cellular energy demand, but studies implicate impaired mitochondrial function in OA pathogenesis. The relationship between mitochondrial dysfunction and OA has been established. The aim of the study was to examine the differences in glucose and Fatty Acids (FA) metabolism, especially with regards to metabolic flexibility, in cybrids from healthy (N) or OA donors. Glucose and FA metabolism were studied using D-[14C(U)]glucose and [1-14C]oleic acid, respectively. There were no differences in glucose metabolism among the cybrids. Osteoarthritis cybrids had lower acid-soluble metabolites, reflecting incomplete FA β-oxidation but higher incorporation of oleic acid into triacylglycerol. Co-incubation with glucose and oleic acid showed that N but not OA cybrids increased their glucose metabolism. When treating with the mitochondrial inhibitor etomoxir, N cybrids still maintained higher glucose oxidation. Furthermore, OA cybrids had higher oxidative stress response. Combined, this indicated that N cybrids had higher metabolic flexibility than OA cybrids. Healthy donors maintained the glycolytic phenotype, whereas OA donors showed a preference towards oleic acid metabolism. Interestingly, the results indicated that cybrids from OA patients had mitochondrial impairments and reduced metabolic flexibility compared to N cybrids.
Collapse
Affiliation(s)
- Andrea Dalmao-Fernández
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0363 Oslo, Norway;
| | - Tamara Hermida-Gómez
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
| | - María E Vazquez-Mosquera
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
| | - Ignacio Rego-Pérez
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
| | - Francisco J. Blanco
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
- Correspondence: (F.J.B.); (M.F.-M.)
| | - Mercedes Fernández-Moreno
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
- Centro de investigación biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (F.J.B.); (M.F.-M.)
| |
Collapse
|
46
|
Pharaoh G, Owen D, Yeganeh A, Premkumar P, Farley J, Bhaskaran S, Ashpole N, Kinter M, Van Remmen H, Logan S. Disparate Central and Peripheral Effects of Circulating IGF-1 Deficiency on Tissue Mitochondrial Function. Mol Neurobiol 2019; 57:1317-1331. [PMID: 31732912 PMCID: PMC7060968 DOI: 10.1007/s12035-019-01821-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Age-related decline in circulating levels of insulin-like growth factor (IGF)-1 is associated with reduced cognitive function, neuronal aging, and neurodegeneration. Decreased mitochondrial function along with increased reactive oxygen species (ROS) and accumulation of damaged macromolecules are hallmarks of cellular aging. Based on numerous studies indicating pleiotropic effects of IGF-1 during aging, we compared the central and peripheral effects of circulating IGF-1 deficiency on tissue mitochondrial function using an inducible liver IGF-1 knockout (LID). Circulating levels of IGF-1 (~ 75%) were depleted in adult male Igf1f/f mice via AAV-mediated knockdown of hepatic IGF-1 at 5 months of age. Cognitive function was evaluated at 18 months using the radial arm water maze and glucose and insulin tolerance assessed. Mitochondrial function was analyzed in hippocampus, muscle, and visceral fat tissues using high-resolution respirometry O2K as well as redox status and oxidative stress in the cortex. Peripherally, IGF-1 deficiency did not significantly impact muscle mass or mitochondrial function. Aged LID mice were insulin resistant and exhibited ~ 60% less adipose tissue but increased fat mitochondrial respiration (20%). The effects on fat metabolism were attributed to increases in growth hormone. Centrally, IGF-1 deficiency impaired hippocampal-dependent spatial acquisition as well as reversal learning in male mice. Hippocampal mitochondrial OXPHOS coupling efficiency and cortex ATP levels (~ 50%) were decreased and hippocampal oxidative stress (protein carbonylation and F2-isoprostanes) was increased. These data suggest that IGF-1 is critical for regulating mitochondrial function, redox status, and spatial learning in the central nervous system but has limited impact on peripheral (liver and muscle) metabolism with age. Therefore, IGF-1 deficiency with age may increase sensitivity to damage in the brain and propensity for cognitive deficits. Targeting mitochondrial function in the brain may be an avenue for therapy of age-related impairment of cognitive function. Regulation of mitochondrial function and redox status by IGF-1 is essential to maintain brain function and coordinate hippocampal-dependent spatial learning. While a decline in IGF-1 in the periphery may be beneficial to avert cancer progression, diminished central IGF-1 signaling may mediate, in part, age-related cognitive dysfunction and cognitive pathologies potentially by decreasing mitochondrial function.
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel Owen
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Yeganeh
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pavithra Premkumar
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Julie Farley
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole Ashpole
- Department of Biomolecular Sciences, University of Mississippi, Oxford, MS, USA
| | - Michael Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
47
|
Batushansky A, Lopes EBP, Zhu S, Humphries KM, Griffin TM. GC-MS method for metabolic profiling of mouse femoral head articular cartilage reveals distinct effects of tissue culture and development. Osteoarthritis Cartilage 2019; 27:1361-1371. [PMID: 31136803 PMCID: PMC6702098 DOI: 10.1016/j.joca.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The metabolic profile of cartilage is important to define as it relates to both normal and pathophysiological conditions. Our aim was to develop a precise, high-throughput method for gas/chromatography-mass/spectrometry (GC-MS) semi-targeted metabolic profiling of mouse cartilage. METHOD Femoral head (hip) cartilage was isolated from 5- and 15-week-old male C57BL/6J mice immediately after death for in vivo analyses. In vitro conditions were evaluated in 5-week-old samples cultured ±10% fetal bovine serum (FBS). We optimized cartilage processing for GC-MS analysis and evaluated group-specific differences by multivariate and parametric statistical analyses. RESULTS 55 metabolites were identified in pooled cartilage (4 animals per sample), with 29 metabolites shared between in vivo and in vitro conditions. Multivariate analysis of these common metabolites demonstrated that culturing explants was the strongest factor altering cartilage metabolism, followed by age and serum starvation. In vitro culture altered the relative abundance of specific metabolites; whereas, cartilage development between five and 15-weeks of age reduced the levels of 36 out of 43 metabolites >2-fold, especially in TCA cycle and alanine, aspartate, and glutamate pathways. In vitro serum starvation depleted six out of 41 metabolites. CONCLUSION This study describes the first GC-MS method for mouse cartilage metabolite identification and quantification. We observed fundamental differences in femoral head cartilage metabolic profiles between in vivo and in vitro conditions, suggesting opportunities to optimize in vitro conditions for studying cartilage metabolism. In addition, the reductions in TCA cycle and amino acid metabolites during cartilage maturation illustrate the plasticity of chondrocyte metabolism during development.
Collapse
Affiliation(s)
- Albert Batushansky
- Aging and Metabolism Program, Oklahoma Medical Research
Foundation, Oklahoma City, OK 73104, USA
| | | | - Shouan Zhu
- Aging and Metabolism Program, Oklahoma Medical Research
Foundation, Oklahoma City, OK 73104, USA
| | - Kenneth M. Humphries
- Aging and Metabolism Program, Oklahoma Medical Research
Foundation, Oklahoma City, OK 73104, USA,,Department of Biochemistry and Molecular Biology,
University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA,Reynolds Oklahoma Center on Aging, University of Oklahoma
Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Timothy M. Griffin
- Aging and Metabolism Program, Oklahoma Medical Research
Foundation, Oklahoma City, OK 73104, USA,,Department of Biochemistry and Molecular Biology,
University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA,Department of Physiology, University of Oklahoma Health
Sciences Center, Oklahoma City, OK, 73104, USA,Reynolds Oklahoma Center on Aging, University of Oklahoma
Health Sciences Center, Oklahoma City, OK, 73104, USA,Corresponding author: Timothy M. Griffin, Aging
& Metabolism Research Program, MS 21, Oklahoma Medical Research Foundation,
825 N.E. 13th Street, Oklahoma City, OK 73104, Phone: (405) 271-7579;
| |
Collapse
|
48
|
McDermott BT, Peffers MJ, McDonagh B, Tew SR. Translational regulation contributes to the secretory response of chondrocytic cells following exposure to interleukin-1β. J Biol Chem 2019; 294:13027-13039. [PMID: 31300557 PMCID: PMC6721953 DOI: 10.1074/jbc.ra118.006865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/12/2019] [Indexed: 01/18/2023] Open
Abstract
Osteoarthritis is a chronic disease characterized by the loss of articular cartilage in synovial joints through a process of extracellular matrix destruction that is strongly associated with inflammatory stimuli. Chondrocytes undergo changes to their protein translational capacity during osteoarthritis, but a study of how disease-relevant signals affect chondrocyte protein translation at the transcriptomic level has not previously been performed. In this study, we describe how the inflammatory cytokine interleukin 1-β (IL-1β) rapidly affects protein translation in the chondrocytic cell line SW1353. Using ribosome profiling we demonstrate that IL-1β induced altered translation of inflammatory-associated transcripts such as NFKB1, TNFAIP2, MMP13, CCL2, and CCL7, as well as a number of ribosome-associated transcripts, through differential translation and the use of multiple open reading frames. Proteomic analysis of the cellular layer and the conditioned media of these cells identified changes in a number of the proteins that were differentially translated. Translationally regulated secreted proteins included a number of chemokines and cytokines, underlining the rapid, translationally mediated inflammatory cascade that is initiated by IL-1β. Although fewer cellular proteins were found to be regulated in both ribosome profiling and proteomic data sets, we did find increased levels of SOD2, indicative of redox changes within SW1353 cells being modulated at the translational level. In conclusion, we have produced combined ribosome profiling and proteomic data sets that provide a valuable resource in understanding the processes that occur during cytokine stimulation of chondrocytic cells.
Collapse
Affiliation(s)
- Benjamin T McDermott
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom
| | - Brian McDonagh
- Department of Physiology, School of Medicine, National University of Ireland (NUI), Galway H91 TK33, Ireland
| | - Simon R Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom
| |
Collapse
|
49
|
Vaamonde-García C, López-Armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochem Pharmacol 2019; 165:181-195. [DOI: 10.1016/j.bcp.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 02/09/2023]
|
50
|
Ahn B, Ranjit R, Premkumar P, Pharaoh G, Piekarz KM, Matsuzaki S, Claflin DR, Riddle K, Judge J, Bhaskaran S, Satara Natarajan K, Barboza E, Wronowski B, Kinter M, Humphries KM, Griffin TM, Freeman WM, Richardson A, Brooks SV, Van Remmen H. Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching. J Cachexia Sarcopenia Muscle 2019; 10:411-428. [PMID: 30706998 PMCID: PMC6463475 DOI: 10.1002/jcsm.12375] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Excess reactive oxygen species (ROS) and muscle weakness occur in parallel in multiple pathological conditions. However, the causative role of skeletal muscle mitochondrial ROS (mtROS) on neuromuscular junction (NMJ) morphology and function and muscle weakness has not been directly investigated. METHODS We generated mice lacking skeletal muscle-specific manganese-superoxide dismutase (mSod2KO) to increase mtROS using a cre-Lox approach driven by human skeletal actin. We determined primary functional parameters of skeletal muscle mitochondrial function (respiration, ROS, and calcium retention capacity) using permeabilized muscle fibres and isolated muscle mitochondria. We assessed contractile properties of isolated skeletal muscle using in situ and in vitro preparations and whole lumbrical muscles to elucidate the mechanisms of contractile dysfunction. RESULTS The mSod2KO mice, contrary to our prediction, exhibit a 10-15% increase in muscle mass associated with an ~50% increase in central nuclei and ~35% increase in branched fibres (P < 0.05). Despite the increase in muscle mass of gastrocnemius and quadriceps, in situ sciatic nerve-stimulated isometric maximum-specific force (N/cm2 ), force per cross-sectional area, is impaired by ~60% and associated with increased NMJ fragmentation and size by ~40% (P < 0.05). Intrinsic alterations of components of the contractile machinery show elevated markers of oxidative stress, for example, lipid peroxidation is increased by ~100%, oxidized glutathione is elevated by ~50%, and oxidative modifications of myofibrillar proteins are increased by ~30% (P < 0.05). We also find an approximate 20% decrease in the intracellular calcium transient that is associated with specific force deficit. Excess superoxide generation from the mitochondrial complexes causes a deficiency of succinate dehydrogenase and reduced complex-II-mediated respiration and adenosine triphosphate generation rates leading to severe exercise intolerance (~10 min vs. ~2 h in wild type, P < 0.05). CONCLUSIONS Increased skeletal muscle mtROS is sufficient to elicit NMJ disruption and contractile abnormalities, but not muscle atrophy, suggesting new roles for mitochondrial oxidative stress in maintenance of muscle mass through increased fibre branching.
Collapse
Affiliation(s)
- Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Pavithra Premkumar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Katarzyna M Piekarz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Dennis R Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, USA
| | - Kaitlyn Riddle
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Jennifer Judge
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | | | - Erika Barboza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Benjamin Wronowski
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Oklahoma City VA Medical Center, Oklahoma City, USA.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Arlan Richardson
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Oklahoma City VA Medical Center, Oklahoma City, USA.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.,Oklahoma City VA Medical Center, Oklahoma City, USA.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| |
Collapse
|