1
|
Rossouw C, Ryan FJ, Lynn DJ. The role of the gut microbiota in regulating responses to vaccination: current knowledge and future directions. FEBS J 2025; 292:1480-1499. [PMID: 39102299 PMCID: PMC11927049 DOI: 10.1111/febs.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Antigen-specific B and T cell responses play a critical role in vaccine-mediated protection against infectious diseases, but these responses are highly variable between individuals and vaccine immunogenicity is frequently sub-optimal in infants, the elderly and in people living in low- and middle-income countries. Although many factors such as nutrition, age, sex, genetics, environmental exposures, and infections may all contribute to variable vaccine immunogenicity, mounting evidence indicates that the gut microbiota is an important and targetable factor shaping optimal immune responses to vaccination. In this review, we discuss evidence from human, preclinical and experimental studies supporting a role for a healthy gut microbiota in mediating optimal vaccine immunogenicity, including the immunogenicity of COVID-19 vaccines. Furthermore, we provide an overview of the potential mechanisms through which this could occur and discuss strategies that could be used to target the microbiota to boost vaccine immunogenicity where it is currently sub-optimal.
Collapse
Affiliation(s)
- Charné Rossouw
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| | - Feargal J. Ryan
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| | - David J. Lynn
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| |
Collapse
|
2
|
Veerapagu M, Jeya K, Sankara Narayanan A. Gastrointestinal microbiome engineering in pig. HUMAN AND ANIMAL MICROBIOME ENGINEERING 2025:265-290. [DOI: 10.1016/b978-0-443-22348-8.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Morales CG, Jimenez NR, Herbst-Kralovetz MM, Lee NR. Novel Vaccine Strategies and Factors to Consider in Addressing Health Disparities of HPV Infection and Cervical Cancer Development among Native American Women. Med Sci (Basel) 2022; 10:52. [PMID: 36135837 PMCID: PMC9503187 DOI: 10.3390/medsci10030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the 4th most common type of cancer in women world-wide. Many factors play a role in cervical cancer development/progression that include genetics, social behaviors, social determinants of health, and even the microbiome. The prevalence of HPV infections and cervical cancer is high and often understudied among Native American communities. While effective HPV vaccines exist, less than 60% of 13- to 17-year-olds in the general population are up to date on their HPV vaccination as of 2020. Vaccination rates are higher among Native American adolescents, approximately 85% for females and 60% for males in the same age group. Unfortunately, the burden of cervical cancer remains high in many Native American populations. In this paper, we will discuss HPV infection, vaccination and the cervicovaginal microbiome with a Native American perspective. We will also provide insight into new strategies for developing novel methods and therapeutics to prevent HPV infections and limit HPV persistence and progression to cervical cancer in all populations.
Collapse
Affiliation(s)
- Crystal G. Morales
- Department of Biology, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicole R. Jimenez
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Naomi R. Lee
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
4
|
Michael H, Amimo JO, Rajashekara G, Saif LJ, Vlasova AN. Mechanisms of Kwashiorkor-Associated Immune Suppression: Insights From Human, Mouse, and Pig Studies. Front Immunol 2022; 13:826268. [PMID: 35585989 PMCID: PMC9108366 DOI: 10.3389/fimmu.2022.826268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Malnutrition refers to inadequate energy and/or nutrient intake. Malnutrition exhibits a bidirectional relationship with infections whereby malnutrition increases risk of infections that further aggravates malnutrition. Severe malnutrition (SM) is the main cause of secondary immune deficiency and mortality among children in developing countries. SM can manifest as marasmus (non-edematous), observed most often (68.6% of all malnutrition cases), kwashiorkor (edematous), detected in 23.8% of cases, and marasmic kwashiorkor, identified in ~7.6% of SM cases. Marasmus and kwashiorkor occur due to calorie-energy and protein-calorie deficiency (PCD), respectively. Kwashiorkor and marasmic kwashiorkor present with reduced protein levels, protein catabolism rates, and altered levels of micronutrients leading to uncontrolled oxidative stress, exhaustion of anaerobic commensals, and proliferation of pathobionts. Due to these alterations, kwashiorkor children present with profoundly impaired immune function, compromised intestinal barrier, and secondary micronutrient deficiencies. Kwashiorkor-induced alterations contribute to growth stunting and reduced efficacy of oral vaccines. SM is treated with antibiotics and ready-to-use therapeutic foods with variable efficacy. Kwashiorkor has been extensively investigated in gnotobiotic (Gn) mice and piglet models to understand its multiple immediate and long-term effects on children health. Due to numerous physiological and immunological similarities between pigs and humans, pig represents a highly relevant model to study kwashiorkor pathophysiology and immunology. Here we summarize the impact of kwashiorkor on children's health, immunity, and gut functions and review the relevant findings from human and animal studies. We also discuss the reciprocal interactions between PCD and rotavirus-a highly prevalent enteric childhood pathogen due to which pathogenesis and immunity are affected by childhood SM.
Collapse
Affiliation(s)
- Husheem Michael
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Joshua O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
5
|
Rose EC, Blikslager AT, Ziegler AL. Porcine Models of the Intestinal Microbiota: The Translational Key to Understanding How Gut Commensals Contribute to Gastrointestinal Disease. Front Vet Sci 2022; 9:834598. [PMID: 35400098 PMCID: PMC8990160 DOI: 10.3389/fvets.2022.834598] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
In the United States, gastrointestinal disorders account for in excess of $130 billion in healthcare expenditures and 22 million hospitalizations annually. Many of these disorders, including necrotizing enterocolitis of infants, obesity, diarrhea, and inflammatory bowel disease, are associated with disturbances in the gastrointestinal microbial composition and metabolic activity. To further elucidate the pathogenesis of these disease syndromes as well as uncover novel therapies and preventative measures, gastrointestinal researchers should consider the pig as a powerful, translational model of the gastrointestinal microbiota. This is because pigs and humans share striking similarities in their intestinal microbiota as well as gastrointestinal anatomy and physiology. The introduction of gnotobiotic pigs, particularly human-microbial associated pigs, has already amplified our understanding of many gastrointestinal diseases that have detrimental effects on human health worldwide. Continued utilization of these models will undoubtedly inform translational advancements in future gastrointestinal research and potential therapeutics.
Collapse
Affiliation(s)
- Elizabeth C Rose
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Anthony T Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Amanda L Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
6
|
Bomidi C, Robertson M, Coarfa C, Estes MK, Blutt SE. Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. Proc Natl Acad Sci U S A 2021; 118:e2112814118. [PMID: 34732579 PMCID: PMC8609316 DOI: 10.1073/pnas.2112814118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
Intestinal epithelial damage is associated with most digestive diseases and results in detrimental effects on nutrient absorption and production of hormones and antimicrobial defense molecules. Thus, understanding epithelial repair and regeneration following damage is essential in developing therapeutics that assist in rapid healing and restoration of normal intestinal function. Here we used a well-characterized enteric virus (rotavirus) that damages the epithelium at the villus tip but does not directly damage the intestinal stem cell, to explore the regenerative transcriptional response of the intestinal epithelium at the single-cell level. We found that there are specific Lgr5+ cell subsets that exhibit increased cycling frequency associated with significant expansion of the epithelial crypt. This was accompanied by an increase in the number of immature enterocytes. Unexpectedly, we found rotavirus infects tuft cells. Transcriptional profiling indicates tuft cells respond to viral infection through interferon-related pathways. Together these data provide insights as to how the intestinal epithelium responds to insults by providing evidence of stimulation of a repair program driven by stem cells with involvement of tuft cells that results in the production of immature enterocytes that repair the damaged epithelium.
Collapse
Affiliation(s)
- Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Matthew Robertson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
7
|
Peroni DG, Morelli L. Probiotics as Adjuvants in Vaccine Strategy: Is There More Room for Improvement? Vaccines (Basel) 2021; 9:811. [PMID: 34451936 PMCID: PMC8402414 DOI: 10.3390/vaccines9080811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND It has been recognized that microbiota plays a key role in shaping immune system maturation and activity. Since probiotic administration influences the microbiota composition and acts as a biological response modifier, the efficacy of an adjuvant for boosting vaccine-specific immunity is investigated. METHODS A review of the literature was performed, starting from the mechanisms to laboratory and clinical evidence. RESULTS The mechanisms, and in vitro and animal models provide biological plausibility for microbiota use. Probiotics have been investigated as adjuvants in farm conditions and as models to understand their potential in human vaccinations with promising results. In human studies, although probiotics were effective in ameliorating seroconversion to vaccines for influenza, rotavirus and other micro-organisms, the results for clinical use are still controversial, especially in particular settings, such as during the last trimester of pregnancy. CONCLUSION Although this topic remains controversial, the use of probiotics as adjuvant factors in vaccination represents a strategic key for different applications. The available data are deeply influenced by heterogeneity among studies in terms of strains, timing and duration of administration, and patients. Although these do not allow us to draw definitive conclusions, probiotics as adjuvants in vaccination should be considered in future studies, especially in the elderly and in children, where vaccine effectiveness and duration of immunization really matter.
Collapse
Affiliation(s)
- Diego Giampietro Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process–DiSTAS, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| |
Collapse
|
8
|
Sohail MU, Al Khatib HA, Al Thani AA, Al Ansari K, Yassine HM, Al-Asmakh M. Microbiome profiling of rotavirus infected children suffering from acute gastroenteritis. Gut Pathog 2021; 13:21. [PMID: 33781328 PMCID: PMC8005861 DOI: 10.1186/s13099-021-00411-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background Rotavirus (RV) is a leading cause of pediatric diarrhea and mortality worldwide. The virus causes acute gastroenteritis characterized by moderate to severe vomiting, diarrhea, dehydration, and fever. Microbial dysbiosis caused by RV infection may significantly influence disease prognosis and the development of other chronic diseases. The gut microbiome plays a vital role in enteric immune response for rotavirus vaccine (RVV) that requires further elucidations. The current study evaluates the gut microbiome of RV positive children and compares gastroenteritis manifestation in children admitted to the Pediatric Emergency Centre, Hamad Medical Cooperation, Doha, Qatar. Stool samples were collected from thirty-nine RV positive and eight healthy control children. 16S rRNA sequence was performed using the Illumina MiSeq platform. Results The data demonstrated a significant increase in microbiome diversity denoted by higher relative abundances of phylum Proteobacteria (p = 0.031), Fusobacteria (p = 0.044) and genus Streptococcus (p ≤ 0.001) in the infected group relative to the control. Similarly, district clustering pattern (PERMANOVA p = 0.01) and higher species richness (Shannon entropy p = 0.018) were observed in the children who received two RVV doses compared with the non-vaccinated or single-dose groups. These microbiome changes were represented by over-abundance of phylum Bacteroidetes (p = 0.003) and Verrucomicrobia (p ≤ 0.001), and lower expression of family Enterobacteriaceae in two RVV doses group. However, microbiome composition was not associated with diarrhea, vomiting, and other parameters of gastroenteritis. Conclusions The observations assert significant microbial signatures of RVV, which is dose-dependent, and suggest manipulating these microbes as a novel approach for improving RVV efficacy. Further studies are warranted to investigate the immune status of these patients and mechanistic investigation to enhance RVV seroconversion.
Collapse
Affiliation(s)
- Muhammad U Sohail
- Proteomics Core, Weill Cornell Medicine-Qatar, P.O. Box 24811, Doha, Qatar
| | - Hebah A Al Khatib
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.,Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Khalid Al Ansari
- Emergency Medicine Department, Sidra Medicine, Qatar Foundation, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar. .,Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Maha Al-Asmakh
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar. .,Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. .,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
9
|
Kim AH, Hogarty MP, Harris VC, Baldridge MT. The Complex Interactions Between Rotavirus and the Gut Microbiota. Front Cell Infect Microbiol 2021; 10:586751. [PMID: 33489932 PMCID: PMC7819889 DOI: 10.3389/fcimb.2020.586751] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Human rotavirus (HRV) is the leading worldwide cause of acute diarrhea-related death in children under the age of five. RV infects the small intestine, an important site of colonization by the microbiota, and studies over the past decade have begun to reveal a complex set of interactions between RV and the gut microbiota. RV infection can temporarily alter the composition of the gut microbiota and probiotic administration alleviates some symptoms of infection in vivo, suggesting reciprocal effects between the virus and the gut microbiota. While development of effective RV vaccines has offered significant protection against RV-associated mortality, vaccine effectiveness in low-income countries has been limited, potentially due to regional differences in the gut microbiota. In this mini review, we briefly detail research findings to date related to HRV vaccine cohorts, studies of natural infection, explorations of RV-microbiota interactions in gnotobiotic pig models, and highlight various in vivo and in vitro models that could be used in future studies to better define how the microbiota may regulate RV infection and host antiviral immune responses.
Collapse
Affiliation(s)
- Andrew HyoungJin Kim
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P. Hogarty
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Vanessa C. Harris
- Department of Medicine, Division of Infectious Diseases and Department of Global Health (AIGHD), Amsterdam University Medical Center, Academic Medical Center, Amsterdam, Netherlands
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
10
|
Shi CW, Cheng MY, Yang X, Lu YY, Yin HD, Zeng Y, Wang RY, Jiang YL, Yang WT, Wang JZ, Zhao DD, Huang HB, Ye LP, Cao X, Yang GL, Wang CF. Probiotic Lactobacillus rhamnosus GG Promotes Mouse Gut Microbiota Diversity and T Cell Differentiation. Front Microbiol 2020; 11:607735. [PMID: 33391230 PMCID: PMC7773731 DOI: 10.3389/fmicb.2020.607735] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 01/17/2023] Open
Abstract
Lactic acid bacteria (LAB) are the primary genera of the intestinal flora and have many probiotic functions. In the present study, Lactobacillus rhamnosus GG (LGG) ATCC 53103 was used to treat BALB/c mice. After LGG intervention, both low and high LGG doses were shown to improve the observed OTU, Chao1, ACE, and Shannon indices, while the Simpson index decreased, demonstrating that LGG can promote intestinal microbiota abundance and diversity. Furthermore, LGG treatment increased the abundances of intestinal Firmicutes, Bacteroides and Actinomycetes while reducing that of Proteobacteria. In addition to its effect on gut the microbiota, LGG could also regulate the host immune system. In the present study, we showed that LGG could affect the percentage of CD3+ T lymphocytes in the spleens (SPLs), mesenteric lymph nodes (MLNs), Peyer’s patches (PPs) and lamina propria lymphocytes (LPLs) of mice, including total CD3+ T, CD3+CD4+ T, and CD3+CD8+ T lymphocytes. Furthermore, LGG could effectively increase the expression of Th1-type cytokines (IFN-γ) and Th2 cytokines (IL-4) in CD4+ T cells, indicating that the proportion of Th1 and Th2 cells in mice with LGG treatment was in a high equilibrium state compared to the control group. In addition, the IFN-γ/IL-4 ratio was greater than 1 in mice with LGG intervention, suggesting that LGG tends to mediate the Th1 immune response. The results of the present study also showed that LGG upregulated the expression of IL-17 in CD4+ T cells and regulated the percentage of CD4+CD25+Foxp3+ Treg cells in various secondary immunological organs, indicating that LGG may promote the balance of Th-17 and Treg cells.
Collapse
Affiliation(s)
- Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Yang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Yuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hong-Duo Yin
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ru-Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan-Dan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Aluthge ND, Tom WA, Bartenslager AC, Burkey TE, Miller PS, Heath KD, Kreikemeier-Bower C, Kittana H, Schmaltz RJ, Ramer-Tait AE, Fernando SC. Differential longitudinal establishment of human fecal bacterial communities in germ-free porcine and murine models. Commun Biol 2020; 3:760. [PMID: 33311550 PMCID: PMC7733510 DOI: 10.1038/s42003-020-01477-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The majority of microbiome studies focused on understanding mechanistic relationships between the host and the microbiota have used mice and other rodents as the model of choice. However, the domestic pig is a relevant model that is currently underutilized for human microbiome investigations. In this study, we performed a direct comparison of the engraftment of fecal bacterial communities from human donors between human microbiota-associated (HMA) piglet and mouse models under identical dietary conditions. Analysis of 16S rRNA genes using amplicon sequence variants (ASVs) revealed that with the exception of early microbiota from infants, the more mature microbiotas tested established better in the HMA piglets compared to HMA mice. Of interest was the greater transplantation success of members belonging to phylum Firmicutes in the HMA piglets compared to the HMA mice. Together, these results provide evidence for the HMA piglet model potentially being more broadly applicable for donors with more mature microbiotas while the HMA mouse model might be more relevant for developing microbiotas such as those of infants. This study also emphasizes the necessity to exercise caution in extrapolating findings from HMA animals to humans, since up to 28% of taxa from some donors failed to colonize either model.
Collapse
Affiliation(s)
- Nirosh D Aluthge
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA.,Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 N 21st St., Lincoln, NE, 68588-6205, USA
| | - Wesley A Tom
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA.,School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, 1104 T St., Lincoln, NE, 68588-0118, USA
| | - Alison C Bartenslager
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA
| | - Thomas E Burkey
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA
| | - Phillip S Miller
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA
| | - Kelly D Heath
- Institutional Animal Care Program, University of Nebraska-Lincoln, 110 Mussehl Hall, 1915 N 38th St., Lincoln, NE, 68653-0720, USA
| | - Craig Kreikemeier-Bower
- Institutional Animal Care Program, University of Nebraska-Lincoln, 110 Mussehl Hall, 1915 N 38th St., Lincoln, NE, 68653-0720, USA
| | - Hatem Kittana
- Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 N 21st St., Lincoln, NE, 68588-6205, USA.,Veterinary Medical Diagnostic Laboratory (VMDL) at University of Missouri (MU), 901 E Campus Loop, Columbia, MO, 65211, USA
| | - Robert J Schmaltz
- Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 N 21st St., Lincoln, NE, 68588-6205, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 N 21st St., Lincoln, NE, 68588-6205, USA
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska-Lincoln, Animal Science Complex, 3940 Fair St., Lincoln, NE, 68583-0908, USA.
| |
Collapse
|
12
|
Bacillus subtilis delivery route: effect on growth performance, intestinal morphology, cecal short-chain fatty acid concentration, and cecal microbiota in broiler chickens. Poult Sci 2020; 100:100809. [PMID: 33518343 PMCID: PMC7936168 DOI: 10.1016/j.psj.2020.10.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
As the poultry industry recedes from the use of antibiotic growth promoters, the need to evaluate the efficacy of possible alternatives and the delivery method that maximizes their effectiveness arises. This study aimed at expounding knowledge on the effect of the delivery method of a probiotic product (Bacillus subtilis fermentation extract) on performance and gut parameters in broiler chickens. A total of 450 fertile eggs sourced from Cobb 500 broiler breeders were randomly allotted to 3 groups: in ovo probiotic (n = 66), in ovo saline (n = 66), and noninjection (n = 200) and incubated for 21 d. On day 18.5 of incubation, 200 μL of either probiotic (10 × 106 cfu) or saline was injected into the amnion. At hatch, chicks were reallotted to 6 new treatment groups: in ovo probiotic, in ovo saline, in-feed antibiotics, in-water probiotic, in-feed probiotics, and control (corn-wheat-soybean diet) in 6 replicate cages and raised for 28 d. Of all hatch parameters evaluated, only percentage pipped eggs was found significant (P < 0.05) with the noninjection group having higher percentage pipped eggs than the other groups. Treatments did not affect the incidence of necrotic enteritis on day 28 (P > 0.05). Irrespective of the delivery method, the probiotic treatments had no significant effect on growth performance. The ileum villus width of the in ovo probiotic treatment was 18% higher than the in ovo saline group (P = 0.05) but not statistically higher than other groups. The jejunum villus height was 23% higher (P = 0.000) in the in ovo probiotic group than in the control group. There was no effect of treatment on total cecal short-chain fatty acid concentration and cecal gut microbiota composition and diversity (P > 0.05), although few unique bacteria differential abundance were recorded per treatment. Conclusively, although probiotic treatments (irrespective of the delivery route) did not affect growth performance, in ovo delivery of the probiotic product enhanced intestinal morphology, without compromising hatch performance and gut homeostasis.
Collapse
|
13
|
Lei S, Twitchell EL, Ramesh AK, Bui T, Majette E, Tin CM, Avery R, Arango-Argoty G, Zhang L, Becker-Dreps S, Azcarate-Peril MA, Jiang X, Yuan L. Enhanced GII.4 human norovirus infection in gnotobiotic pigs transplanted with a human gut microbiota. J Gen Virol 2020; 100:1530-1540. [PMID: 31596195 DOI: 10.1099/jgv.0.001336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The role of commensal microbiota in enteric viral infections has been explored extensively, but the interaction between human gut microbiota (HGM) and human norovirus (HuNoV) is poorly understood. In this study, we established an HGM-Transplanted gnotobiotic (Gn) pig model of HuNoV infection and disease, using an infant stool as HGM transplant and a HuNoV GII.4/2006b strain for virus inoculation. Compared to germ-free Gn pigs, HuNoV inoculation in HGMT Gn pigs resulted in increased HuNoV shedding, characterized by significantly higher shedding titres on post inoculation day (PID) 3, 4, 6, 8 and 9, and significantly longer mean duration of virus shedding. In addition, virus titres were significantly higher in duodenum and distal ileum of HGMT Gn pigs on PID10, while comparable and transient HuNoV viremia was detected in both groups. 16S rRNA gene sequencing demonstrated that HuNoV infection dramatically altered intestinal microbiota in HGMT Gn pigs at the phylum (Proteobacteria, Firmicutes and Bacteroidetes) and genus (Enterococcus, Bifidobacterium, Clostridium, Ruminococcus, Anaerococcus, Bacteroides and Lactobacillus) levels. In summary, enhanced GII.4 HuNoV infection was observed in the presence of HGM, and host microbiota was susceptible to disruption upon HuNoV infection.
Collapse
Affiliation(s)
- Shaohua Lei
- Present address: Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erica L Twitchell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ashwin K Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tammy Bui
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Elizabeth Majette
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christine M Tin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Roger Avery
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Gustavo Arango-Argoty
- Department of Computer Science, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Liqing Zhang
- Department of Computer Science, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Patil Y, Gooneratne R, Ju XH. Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes 2020; 11:310-334. [PMID: 31760878 PMCID: PMC7524349 DOI: 10.1080/19490976.2019.1690363] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 02/03/2023] Open
Abstract
It is well established that pig gut microbiota plays a critical role in maintaining metabolic homeostasis as well as in a myriad of physiological, neurological and immunological functions; including protection from pathogens and digestion of food materials - some of which would be otherwise indigestible by the pig. A rich and diverse gut microbial ecosystem (balanced microbiota) is the hallmark of good health; while qualitative and quantitative perturbations in the microbial composition can lead to development of various diseases. Alternatively, diseases caused by stressors or other factors have been shown to negatively impact the microbiota. This review focuses primarily on how commensal microorganisms in the gastrointestinal tract of pigs influence biochemical, physiological, immunological, and metabolic processes within the host animal.
Collapse
Affiliation(s)
- Yadnyavalkya Patil
- College of Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
- Faculty of Agriculture and Life Sciences, Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Xiang-Hong Ju
- College of Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
15
|
Ni WW, Zhang QM, Zhang X, Li Y, Yu SS, Wu HY, Chen Z, Li AL, Du P, Li C. Modulation effect of Lactobacillus acidophilus KLDS 1.0738 on gut microbiota and TLR4 expression in β-lactoglobulin-induced allergic mice model. Allergol Immunopathol (Madr) 2020; 48:149-157. [PMID: 31477403 DOI: 10.1016/j.aller.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES β-lactoglobulin (β-Lg)-sensitized mice model was employed to investigate the correlation between Lactobacillus acidophilus KLDS 1.0738 (Lap KLDS 1.0738) modulating gut microbiota and inducting Toll-like receptors (TLRs) expression. METHODS The alterations of mice fecal microbiota were analyzed by 16S rRNA gene sequencing. The serum cytokines production and TLR4/NF-κB mRNA expression in the colon tissues were measured by ELISA kit and quantitative RT-PCR, respectively. RESULTS The results showed that Lap KLDS 1.0738 pretreatment attenuated β-Lg-induced hypersensitivity, accompanied with a diminished expression of TLR4/NF-κB signaling. Moreover, oral administration of Lap KLDS 1.0738 improved the richness and diversity of fecal microbiota, which was characterized by fewer Proteobacteria phylum and Helicobacteraceae family, and higher Firmicutes phylum and Lachnospiraceae family than allergic group. Notably, TLR4/NF-κB expression was positively correlated with the family of Helicobacteraceae in allergic group, but negatively correlated with the family of Lachnospiraceae, Ruminococcaceae and anti-inflammatory cytokines level. A significant positive correlation was observed between TLR4/NF-κB expression and the production of histamine, total IgE and pro-inflammatory cytokines. CONCLUSIONS Intake of Lap KLDS 1.0738 can influence the gut bacterial composition, which might result in recognizing TLRs signaling so as to inhibit allergic response.
Collapse
Affiliation(s)
- W-W Ni
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - Q-M Zhang
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - X Zhang
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - Y Li
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - S-S Yu
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - H-Y Wu
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - Z Chen
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - A-L Li
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China.
| | - P Du
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China.
| | - C Li
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| |
Collapse
|
16
|
Skvortsov E, Mukhammadiev R, Mukhammadiev R, Valiullin L. On application of emulsified probiotic preparation of Bacillus subtilis. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202700064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of a new form of the probiotic preparation of Bacillus subtilis consisting in emulsion of bacteria in palmitic acid has been studied. When evaluating the effectiveness of probiotics, it was assumed that the content of bacterial DNA in the feces is proportional to their content in the intestine. Analysis of the number of bacterial DNA was carried out by real-time PCR. The results showed a positive effect from the use of emulsified bacteria. It was observed in an increase in the amount of B. subtilis in the intestine and, as a consequence, their DNA in the feces of rats.
Collapse
|
17
|
Abstract
In recent years, tremendous advances have been made in our ability to characterize complex microbial communities such as the gut microbiota, and numerous surveys of the human gut microbiota have identified countless associations between different compositional attributes of the gut microbiota and adverse health conditions. However, most of these findings in humans are purely correlative and animal models are required for prospective evaluation of such changes as causative factors in disease initiation or progression. As in most fields of biomedical research, microbiota-focused studies are predominantly performed in mouse or rat models. Depending on the field of research and experimental question or objective, non-rodent models may be preferable due to better translatability or an inability to use rodents for various reasons. The following review describes the utility and limitations of several non-rodent model species for research on the microbiota and its influence on host physiology and disease. In an effort to balance the breadth of potential model species with the amount of detail provided, four model species are discussed: zebrafish, dogs, pigs, and rabbits.
Collapse
Affiliation(s)
- Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, United States of America
| |
Collapse
|
18
|
Canibe N, O’Dea M, Abraham S. Potential relevance of pig gut content transplantation for production and research. J Anim Sci Biotechnol 2019; 10:55. [PMID: 31304012 PMCID: PMC6604143 DOI: 10.1186/s40104-019-0363-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
It is becoming increasingly evident that the gastrointestinal microbiota has a significant impact on the overall health and production of the pig. This has led to intensified research on the composition of the gastrointestinal microbiota, factors affecting it, and the impact of the microbiota on health, growth performance, and more recently, behavior of the host. Swine production research has been heavily focused on assessing the effects of feed additives and dietary modifications to alter or take advantage of select characteristics of gastrointestinal microbes to improve health and feed conversion efficiency. Research on faecal microbiota transplantation (FMT) as a possible tool to improve outcomes in pigs through manipulation of the gastrointestinal microbiome is very recent and limited data is available. Results on FMT in humans demonstrating the transfer of phenotypic traits from donors to recipients and the high efficacy of FMT to treat Clostridium difficile infections in humans, together with data from pigs relating GI-tract microbiota composition with growth performance has likely played an important role in the interest towards this strategy in pig production. However, several factors can influence the impact of FMT on the recipient, and these need to be identified and optimized before this tool can be applied to pig production. There are obvious inherent biosecurity and regulatory issues in this strategy, since the donor's microbiome can never be completely screened for all possible non-desirable microorganisms. However, considering the success observed in humans, it seems worth investigating this strategy for certain applications in pig production. Further, FMT research may lead to the identification of specific bacterial group(s) essential for a particular outcome, resulting in the development of banks of clones which can be used as targeted therapeutics, rather than the broader approach applied in FMT. This review examines the factors associated with the use of FMT, and its potential application to swine production, and includes research on using the pig as model for human medical purposes.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal Science, Aarhus University, AU-FOULUM, PO BOX 50, 8830 Tjele, Denmark
| | - Mark O’Dea
- Antimicrobial Resistance and Infectious Disease laboratory, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Disease laboratory, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| |
Collapse
|
19
|
Balato A, Cacciapuoti S, Di Caprio R, Marasca C, Masarà A, Raimondo A, Fabbrocini G. Human Microbiome: Composition and Role in Inflammatory Skin Diseases. Arch Immunol Ther Exp (Warsz) 2018; 67:1-18. [PMID: 30302512 DOI: 10.1007/s00005-018-0528-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
This review focuses on recent evidences about human microbiome composition and functions, exploring the potential implication of its impairment in some diffuse and invalidating inflammatory skin diseases, such as atopic dermatitis, psoriasis, hidradenitis suppurativa and acne. We analysed current scientific literature, focusing on the current evidences about gut and skin microbiome composition and the complex dialogue between microbes and the host. Finally, we examined the consequences of this dialogue for health and skin diseases. This review highlights how human microbes interact with different anatomic niches modifying the state of immune activation, skin barrier status, microbe-host and microbe-microbe interactions. It also shows as most of the factors affecting gut and skin microorganisms' activity have demonstrated to be effective also in modulating chronic inflammatory skin diseases. More and more evidences demonstrate that human microbiome plays a key role in human health and diseases. It is to be expected that these new insights will translate into diagnostic, therapeutic and preventive measures in the context of personalized/precision medicine.
Collapse
Affiliation(s)
- Anna Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, NA, Italy
| | - Sara Cacciapuoti
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy.
| | - Roberta Di Caprio
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Claudio Marasca
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Anna Masarà
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Annunziata Raimondo
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology and Venereology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, NA, Italy
| |
Collapse
|
20
|
Kumar A, Vlasova AN, Deblais L, Huang HC, Wijeratne A, Kandasamy S, Fischer DD, Langel SN, Paim FC, Alhamo MA, Shao L, Saif LJ, Rajashekara G. Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model. BMC Gastroenterol 2018; 18:93. [PMID: 29929472 PMCID: PMC6013989 DOI: 10.1186/s12876-018-0810-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human rotavirus (HRV) is a major cause of viral gastroenteritis in infants; particularly in developing countries where malnutrition is prevalent. Malnutrition perturbs the infant gut microbiota leading to sub-optimal functioning of the immune system and further predisposing infants to enteric infections. Therefore, we hypothesized that malnutrition exacerbates rotavirus disease severity in infants. METHODS In the present study, we used a neonatal germ free (GF) piglets transplanted with a two-month-old human infant's fecal microbiota (HIFM) on protein deficient and sufficient diets. We report the effects of malnourishment on the HRV infection and the HIFM pig microbiota in feces, intestinal and systemic tissues, using MiSeq 16S gene sequencing (V4-V5 region). RESULTS Microbiota analysis indicated that the HIFM transplantation resulted in a microbial composition in pigs similar to that of the original infant feces. This model was then used to understand the interconnections between microbiota diversity, diet, and HRV infection. Post HRV infection, HIFM pigs on the deficient diet had lower body weights, developed more severe diarrhea and increased virus shedding compared to HIFM pigs on sufficient diet. However, HRV induced diarrhea and shedding was more pronounced in non-colonized GF pigs compared to HIFM pigs on either sufficient or deficient diet, suggesting that the microbiota alone moderated HRV infection. HRV infected pigs on sufficient diet showed increased microbiota diversity in intestinal tissues; whereas, greater diversity was observed in systemic tissues of HRV infected pigs fed with deficient diet. CONCLUSIONS These results suggest that proper nourishment improves the microbiota quality in the intestines, alleviates HRV disease and lower probability of systemic translocation of potential opportunistic pathogens/pathobionts. In conclusion, our findings further support the role for microbiota and proper nutrition in limiting enteric diseases.
Collapse
Affiliation(s)
- Anand Kumar
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Present address: Group B-10: Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Anastasia N. Vlasova
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Loic Deblais
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Huang-Chi Huang
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Asela Wijeratne
- The Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH USA
| | - Sukumar Kandasamy
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - David D. Fischer
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Stephanie N. Langel
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Francine Chimelo Paim
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Moyasar A. Alhamo
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Lulu Shao
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Present address: Hillman Cancer Center, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260 USA
| | - Linda J. Saif
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Gireesh Rajashekara
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| |
Collapse
|
21
|
Desselberger U. The Mammalian Intestinal Microbiome: Composition, Interaction with the Immune System, Significance for Vaccine Efficacy, and Potential for Disease Therapy. Pathogens 2018; 7:E57. [PMID: 29933546 PMCID: PMC6161280 DOI: 10.3390/pathogens7030057] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/28/2022] Open
Abstract
The mammalian gut is colonized by a large variety of microbes, collectively termed ‘the microbiome’. The gut microbiome undergoes rapid changes during the first few years of life and is highly variable in adulthood depending on various factors. With the gut being the largest organ of immune responses, the composition of the microbiome of the gut has been found to be correlated with qualitative and quantitative differences of mucosal and systemic immune responses. Animal models have been very useful to unravel the relationship between gut microbiome and immune responses and for the understanding of variations of immune responses to vaccination in different childhood populations. However, the molecular mechanisms underlying optimal immune responses to infection or vaccination are not fully understood. The gut virome and gut bacteria can interact, with bacteria facilitating viral infectivity by different mechanisms. Some gut bacteria, which have a beneficial effect on increasing immune responses or by overgrowing intestinal pathogens, are considered to act as probiotics and can be used for therapeutic purposes (as in the case of fecal microbiome transplantation).
Collapse
|
22
|
Monedero V, Buesa J, Rodríguez-Díaz J. The Interactions between Host Glycobiology, Bacterial Microbiota, and Viruses in the Gut. Viruses 2018; 10:v10020096. [PMID: 29495275 PMCID: PMC5850403 DOI: 10.3390/v10020096] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Rotavirus (RV) and norovirus (NoV) are the major etiological agents of viral acute gastroenteritis worldwide. Host genetic factors, the histo-blood group antigens (HBGA), are associated with RV and NoV susceptibility and recent findings additionally point to HBGA as a factor modulating the intestinal microbial composition. In vitro and in vivo experiments in animal models established that the microbiota enhances RV and NoV infection, uncovering a triangular interplay between RV and NoV, host glycobiology, and the intestinal microbiota that ultimately influences viral infectivity. Studies on the microbiota composition in individuals displaying different RV and NoV susceptibilities allowed the identification of potential bacterial biomarkers, although mechanistic data on the virus-host-microbiota relation are still needed. The identification of the bacterial and HBGA interactions that are exploited by RV and NoV would place the intestinal microbiota as a new target for alternative therapies aimed at preventing and treating viral gastroenteritis.
Collapse
Affiliation(s)
- Vicente Monedero
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA, CSIC), Av Catedrático Agustín Escardino, 7, 46980 Paterna, Spain.
| | - Javier Buesa
- Departament of Microbiology, Faculty of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain.
| | - Jesús Rodríguez-Díaz
- Departament of Microbiology, Faculty of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain.
| |
Collapse
|
23
|
Vlasova AN, Rajashekara G, Saif LJ. Interactions between human microbiome, diet, enteric viruses and immune system: Novel insights from gnotobiotic pig research. ACTA ACUST UNITED AC 2018; 28:95-103. [PMID: 33149747 PMCID: PMC7594741 DOI: 10.1016/j.ddmod.2019.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies over the past few decades demonstrated that gnotobiotic (Gn) pigs provide an unprecedented translational model to study human intestinal health and diseases. Due to the high degree of anatomical, physiological, metabolic, immunological, and developmental similarity, the domestic pig closely mimics the human intestinal microenvironment. Also, Gn piglets can be efficiently transplanted with human microbiota from infants, children and adults with resultant microbial profiles remarkably similar to the original human samples, a feat consistently not achievable in rodent models. Finally, Gn and human microbiota-associated (HMA) piglets are susceptible to human enteric viral pathogens (including human rotavirus, HRV) and can be fed authentic human diets, which further increases the translational potential of these models. In this review, we will focus on recent studies that evaluated the pathophysiology of protein malnutrition and the associated dysbiosis and immunological dysfunction in neonatal HMA piglets. Additionally, we will discuss studies of potential dietary interventions that moderate the effects of malnutrition and dysbiosis on antiviral immunity and HRV vaccines in HMA pigs. Such studies provide novel models and novel mechanistic insights critical for development of drug interventions.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
24
|
Differences of Rotavirus Vaccine Effectiveness by Country: Likely Causes and Contributing Factors. Pathogens 2017; 6:pathogens6040065. [PMID: 29231855 PMCID: PMC5750589 DOI: 10.3390/pathogens6040065] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
Rotaviruses are a major cause of acute gastroenteritis in infants and young children worldwide and in many other mammalian and avian host species. Since 2006, two live-attenuated rotavirus vaccines, Rotarix® and RotaTeq®, have been licensed in >100 countries and are applied as part of extended program of vaccination (EPI) schemes of childhood vaccinations. Whereas the vaccines have been highly effective in high-income countries, they were shown to be considerably less potent in low- and middle-income countries. Rotavirus-associated disease was still the cause of death in >200,000 children of <5 years of age worldwide in 2013, and the mortality is concentrated in countries of sub-Saharan Africa and S.E. Asia. Various factors that have been identified or suggested as being involved in the differences of rotavirus vaccine effectiveness are reviewed here. Recognition of these factors will help to achieve gradual worldwide improvement of rotavirus vaccine effectiveness.
Collapse
|
25
|
Hampe CS, Roth CL. Probiotic strains and mechanistic insights for the treatment of type 2 diabetes. Endocrine 2017; 58:207-227. [PMID: 29052181 DOI: 10.1007/s12020-017-1433-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The intestinal microbial composition appears to differ between healthy controls and individuals with Type 2 diabetes (T2D). This observation has led to the hypothesis that perturbations of the intestinal microbiota may contribute to the development of T2D. Manipulations of the intestinal microbiota may therefore provide a novel approach in the prevention and treatment of T2D. Indeed, fecal transplants have shown promising results in both animal models for obesity and T2D and in human clinical trials. To avoid possible complications associated with fecal transplants, probiotics are considered as a viable alternative therapy. An important, however often underappreciated, characteristic of probiotics is that individual strains may have different, even opposing, effects on the host. This strain specificity exists also within the same species. A comprehensive understanding of the underlying mechanisms at the strain level is therefore crucial for the selection of suitable probiotic strains. PURPOSE The aim of this review is to discuss the mechanisms employed by specific probiotic strains of the Lactobacillus and the Bifidobacterium genuses, which showed efficacy in the treatment of obesity and T2D. Some probiotic strains employ recurring beneficial effects, including the production of anti-microbial lactic acid, while other strains display highly unique features, such as hydrolysis of tannins. CONCLUSION A major obstacle in the evaluation of probiotic strains lays in the great number of strains, differences in detection methodology and measured outcome parameters. The understanding of further research should be directed towards the development of standardized evaluation methods to facilitate the comparison of different studies.
Collapse
Affiliation(s)
- Christiane S Hampe
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98109, USA.
| | - Christian L Roth
- Center for Integrative Brain Research, Seattle Children's Hospital & Research Institute, Seattle, WA, 98101, USA
- Pediatric Endocrinology, Seattle Children's Hospital & Research Institute, Seattle, WA, 98101, USA
| |
Collapse
|
26
|
Veljović K, Dinić M, Lukić J, Mihajlović S, Tolinački M, Živković M, Begović J, Mrvaljević I, Golić N, Terzić-Vidojević A. Promotion of Early Gut Colonization by Probiotic Intervention on Microbiota Diversity in Pregnant Sows. Front Microbiol 2017; 8:2028. [PMID: 29104563 PMCID: PMC5654949 DOI: 10.3389/fmicb.2017.02028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/04/2017] [Indexed: 01/29/2023] Open
Abstract
The aim of this work was to design a novel mixed probiotic culture for piglets and to evaluate its beneficial effect on the piglets' gut health. The possible mechanisms of probiotic activity, such as adhesion, competitive pathogen exclusion and influence on gut microbiota diversity were determined. Mixed probiotic starter culture is composed of three thermophilic lactic acid bacteria (LAB) strains: Lactobacillus helveticus BGRA43, Lactobacillus fermentum BGHI14 and Streptococcus thermophilus BGVLJ1-44. The strains BGVLJ1-44 and BGRA43 showed good technological properties (fast milk curdling, strong proteolytic activity). In addition, the strain BGVLJ1-44 produces exopolysaccharide (EPS), BGHI14 is heterofermentative LAB strain with significant immunomodulatory effect, while the strain BGRA43 showed strong antimicrobial activity against different pathogens and exhibited significantly higher level of adhesion to Caco-2 cells comparing to other two strains. Both lactobacilli strains BGRA43 and BGHI14 (p < 0.05), as well as probiotic combination (p < 0.01) significantly reduced the adhesion of Escherichia coli ATCC25922 to Caco-2 cells, while the strains BGVLJ1-44 (p < 0.01) and BGRA43 (p < 0.05) significantly reduced adhesion of Salmonella 654/7E (veterinary isolate). The results of farm trial revealed that treatment of sows with new fermented dairy probiotic influenced the piglets' gut colonization with beneficial bacteria and reduced the number of enterobacteriaceae in litters from some treated sows (no significant due to high variability among animals). Finally, this is the first study reporting that the treatment of sows with probiotic combination resulted in the improved microbiota diversity in neonatal piglets.
Collapse
Affiliation(s)
- Katarina Veljović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Centre for Development and Production, Veterinary Station “Koker”, Adaševci, Serbia
| | - Jovanka Lukić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sanja Mihajlović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milica Živković
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Begović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Igor Mrvaljević
- Centre for Development and Production, Veterinary Station “Koker”, Adaševci, Serbia
| | - Nataša Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Amarela Terzić-Vidojević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Protein Malnutrition Alters Tryptophan and Angiotensin-Converting Enzyme 2 Homeostasis and Adaptive Immune Responses in Human Rotavirus-Infected Gnotobiotic Pigs with Human Infant Fecal Microbiota Transplant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017. [PMID: 28637803 DOI: 10.1128/cvi.00172-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Malnutrition leads to increased morbidity and is evident in almost half of all deaths in children under the age of 5 years. Mortality due to rotavirus diarrhea is common in developing countries where malnutrition is prevalent; however, the relationship between malnutrition and rotavirus infection remains unclear. In this study, gnotobiotic pigs transplanted with the fecal microbiota of a healthy 2-month-old infant were fed protein-sufficient or -deficient diets and infected with virulent human rotavirus (HRV). After human rotavirus infection, protein-deficient pigs had decreased human rotavirus antibody titers and total IgA concentrations, systemic T helper (CD3+ CD4+) and cytotoxic T (CD3+ CD8+) lymphocyte frequencies, and serum tryptophan and angiotensin I-converting enzyme 2. Additionally, deficient-diet pigs had impaired tryptophan catabolism postinfection compared with sufficient-diet pigs. Tryptophan supplementation was tested as an intervention in additional groups of fecal microbiota-transplanted, rotavirus-infected, sufficient- and deficient-diet pigs. Tryptophan supplementation increased the frequencies of regulatory (CD4+ or CD8+ CD25+ FoxP3+) T cells in pigs on both the sufficient and the deficient diets. These results suggest that a protein-deficient diet impairs activation of the adaptive immune response following HRV infection and alters tryptophan homeostasis.
Collapse
|
28
|
Nealon NJ, Yuan L, Yang X, Ryan EP. Rice Bran and Probiotics Alter the Porcine Large Intestine and Serum Metabolomes for Protection against Human Rotavirus Diarrhea. Front Microbiol 2017; 8:653. [PMID: 28484432 PMCID: PMC5399067 DOI: 10.3389/fmicb.2017.00653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/30/2017] [Indexed: 01/20/2023] Open
Abstract
Human rotavirus (HRV) is a leading cause of severe childhood diarrhea, and there is limited vaccine efficacy in the developing world. Neonatal gnotobiotic pigs consuming a prophylactic synbiotic combination of probiotics and rice bran (Pro+RB) did not exhibit HRV diarrhea after challenge. Multiple immune, gut barrier protective, and anti-diarrheal mechanisms contributed to the prophylactic efficacy of Pro+RB when compared to probiotics (Pro) alone. In order to understand the molecular signature associated with diarrheal protection by Pro+RB, a global non-targeted metabolomics approach was applied to investigate the large intestinal contents and serum of neonatal gnotobiotic pigs. The ultra-high performance liquid chromatography-tandem mass spectrometry platform revealed significantly different metabolites (293 in LIC and 84 in serum) in the pigs fed Pro+RB compared to Pro, and many of these metabolites were lipids and amino acid/peptides. Lipid metabolites included 2-oleoylglycerol (increased 293.40-fold in LIC of Pro+RB, p = 3.04E-10), which can modulate gastric emptying, andhyodeoxycholate (decreased 0.054-fold in the LIC of Pro+RB, p = 0.0040) that can increase colonic mucus production to improve intestinal barrier function. Amino acid metabolites included cysteine (decreased 0.40-fold in LIC, p = 0.033, and 0.62-fold in serum, p = 0.014 of Pro+RB), which has been found to reduce inflammation, lower oxidative stress and modulate mucosal immunity, and histamine (decreased 0.18-fold in LIC, p = 0.00030, of Pro+RB and 1.57-fold in serum, p = 0.043), which modulates local and systemic inflammatory responses as well as influences the enteric nervous system. Alterations to entire LIC and serum metabolic pathways further contributed to the anti-diarrheal and anti-viral activities of Pro+RB such as sphingolipid, mono/diacylglycerol, fatty acid, secondary bile acid, and polyamine metabolism. Sphingolipid and long chain fatty acid profiles influenced the ability of HRV to both infect and replicate within cells, suggesting that Pro+RB created a protective lipid profile that interferes with HRV activity. Polyamines act on enterocyte calcium-sensing receptors to modulate intracellular calcium levels, and may directly interfere with rotavirus replication. These results support that multiple host and probiotic metabolic networks, notably those involving lipid and amino acid/peptide metabolism, are important mechanisms through which Pro+RB protected against HRV diarrhea in neonatal gnotobiotic pigs.
Collapse
Affiliation(s)
- Nora Jean Nealon
- Nutrition and Toxicology Laboratory, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort CollinsCO, USA
| | - Lijuan Yuan
- Yuan Laboratory, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, BlacksburgVA, USA
| | - Xingdong Yang
- Laboratory of Infectious Diseases, Viral Pathogenesis and Evolution Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, BethesdaMD, USA
| | - Elizabeth P Ryan
- Nutrition and Toxicology Laboratory, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort CollinsCO, USA
| |
Collapse
|
29
|
Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs. mSphere 2017; 2:mSphere00046-17. [PMID: 28261667 PMCID: PMC5332602 DOI: 10.1128/msphere.00046-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children. Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103+ and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children.
Collapse
|
30
|
Twitchell EL, Tin C, Wen K, Zhang H, Becker-Dreps S, Azcarate-Peril MA, Vilchez S, Li G, Ramesh A, Weiss M, Lei S, Bui T, Yang X, Schultz-Cherry S, Yuan L. Modeling human enteric dysbiosis and rotavirus immunity in gnotobiotic pigs. Gut Pathog 2016; 8:51. [PMID: 27826359 PMCID: PMC5100090 DOI: 10.1186/s13099-016-0136-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/20/2016] [Indexed: 01/19/2023] Open
Abstract
Background Rotavirus vaccines have poor efficacy in infants from low- and middle-income countries. Gut microbiota is thought to influence the immune response to oral vaccines. Thus, we developed a gnotobiotic (Gn) pig model of enteric dysbiosis to study the effects of human gut microbiota (HGM) on immune responses to rotavirus vaccination, and the effects of rotavirus challenge on the HGM by colonizing Gn pigs with healthy HGM (HHGM) or unhealthy HGM (UHGM). The UHGM was from a Nicaraguan infant with a high enteropathy score (ES) and no seroconversion following administration of oral rotavirus vaccine, while the converse was characteristic of the HHGM. Pigs were vaccinated, a subset was challenged, and immune responses and gut microbiota were evaluated. Results Significantly more rotavirus-specific IFN-γ producing T cells were in the ileum, spleen, and blood of HHGM than those in UHGM pigs after three vaccine doses, suggesting HHGM induces stronger cell-mediated immunity than UHGM. There were significant correlations between multiple Operational Taxonomic Units (OTUs) and frequencies of IFN-γ producing T cells at the time of challenge. There were significant positive correlations between Collinsella and CD8+ T cells in blood and ileum, as well as CD4+ T cells in blood, whereas significant negative correlations between Clostridium and Anaerococcus, and ileal CD8+ and CD4+ T cells. Differences in alpha diversity and relative abundances of OTUs were detected between the groups both before and after rotavirus challenge. Conclusion Alterations in microbiome diversity and composition along with correlations between certain microbial taxa and T cell responses warrant further investigation into the role of the gut microbiota and certain microbial species on enteric immunity. Our results support the use of HGM transplanted Gn pigs as a model of human dysbiosis during enteric infection, and oral vaccine responses. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0136-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erica L Twitchell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Christine Tin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Husen Zhang
- Microbiome Core, Cancer Inflammation Program, National Cancer Institute, Bethesda, MD USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - M Andrea Azcarate-Peril
- Department of Cell Biology and Physiology, School of Medicine and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC USA
| | - Samuel Vilchez
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León, Nicaragua
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Ashwin Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Mariah Weiss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Shaohua Lei
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Tammy Bui
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
31
|
Wang H, Gao K, Wen K, Allen IC, Li G, Zhang W, Kocher J, Yang X, Giri-Rachman E, Li GH, Clark-Deener S, Yuan L. Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiota. BMC Microbiol 2016; 16:109. [PMID: 27301272 PMCID: PMC4908676 DOI: 10.1186/s12866-016-0727-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background A better understanding of mechanisms underlying dose-effects of probiotics in their applications as treatments of intestinal infectious or inflammatory diseases and as vaccine adjuvant is needed. In this study, we evaluated the modulatory effects of Lactobacillus rhamnosus GG (LGG) on transplanted human gut microbiota (HGM) and on small intestinal immune cell signaling pathways in gnotobiotic pigs vaccinated with an oral attenuated human rotavirus (AttHRV) vaccine. Results Neonatal HGM transplanted pigs were given two doses of AttHRV on 5 and 15 days of age and were divided into three groups: none-LGG (AttHRV), 9-doses LGG (AttHRV + LGG9X), and 14-doses LGG (AttHRV + LGG14X) (n = 3–4). At post-AttHRV-inoculation day 28, all pigs were euthanized and intestinal contents and ileal tissue and mononuclear cells (MNC) were collected. AttHRV + LGG14X pigs had significantly increased LGG titers in the large intestinal contents and shifted structure of the microbiota as indicated by the formation of a cluster that is separated from the cluster formed by the AttHRV and AttHRV + LGG9X pigs. The increase in LGG titers concurred with significantly increased ileal HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine reported in our previous publication, suggesting pro-Th1 adjuvant effects of the LGG. Both 9- and 14-doses LGG fed pig groups had significantly higher IkBα level and p-p38/p38 ratio, while significantly lower p-ERK/ERK ratio than the AttHRV pigs, suggesting activation of regulatory signals during immune activation. However, 9-doses, but not 14-doses LGG fed pigs had enhanced IL-6, IL-10, TNF-α, TLR9 mRNA levels, and p38 MAPK and ERK expressions in ileal MNC. Increased TLR9 mRNA was in parallel with higher mRNA levels of cytokines, p-NF-kB and higher p-p38/p38 ratio in MNC of the AttHRV + LGG9X pigs. Conclusions The relationship between modulation of gut microbiota and regulation of host immunity by different doses of probiotics is complex. LGG exerted divergent dose-dependent effects on the intestinal immune cell signaling pathway responses, with 9-doses LGG being more effective in activating the innate immunostimulating TLR9 signaling pathway than 14-doses in the HGM pigs vaccinated with AttHRV. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0727-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.,Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Kan Gao
- Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Wenming Zhang
- Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Jacob Kocher
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Ernawati Giri-Rachman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.,Present address: School of Life Science and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Guan-Hong Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
32
|
Lei S, Samuel H, Twitchell E, Bui T, Ramesh A, Wen K, Weiss M, Li G, Yang X, Jiang X, Yuan L. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. Sci Rep 2016; 6:25017. [PMID: 27113278 PMCID: PMC4845002 DOI: 10.1038/srep25017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023] Open
Abstract
Human noroviruses (HuNoVs) are the leading cause of epidemic gastroenteritis worldwide. Study of HuNoV biology has been hampered by the lack of an efficient cell culture system. Recently, enteric commensal bacteria Enterobacter cloacae has been recognized as a helper in HuNoV infection of B cells in vitro. To test the influences of E. cloacae on HuNoV infectivity and to determine whether HuNoV infects B cells in vivo, we colonized gnotobiotic pigs with E. cloacae and inoculated pigs with 2.74 × 10(4) genome copies of HuNoV. Compared to control pigs, reduced HuNoV shedding was observed in E. cloacae colonized pigs, characterized by significantly shorter duration of shedding in post-inoculation day 10 subgroup and lower cumulative shedding and peak shedding in individual pigs. Colonization of E. cloacae also reduced HuNoV titers in intestinal tissues and in blood. In both control and E. cloacae colonized pigs, HuNoV infection of enterocytes was confirmed, however infection of B cells was not observed in ileum, and the entire lamina propria in sections of duodenum, jejunum, and ileum were HuNoV-negative. In summary, E. cloacae inhibited HuNoV infectivity, and B cells were not a target cell type for HuNoV in gnotobiotic pigs, with or without E. cloacae colonization.
Collapse
Affiliation(s)
- Shaohua Lei
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Helen Samuel
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erica Twitchell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tammy Bui
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ashwin Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mariah Weiss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
33
|
Rigo-Adrover M, Saldaña-Ruíz S, van Limpt K, Knipping K, Garssen J, Knol J, Franch A, Castell M, Pérez-Cano FJ. A combination of scGOS/lcFOS with Bifidobacterium breve M-16V protects suckling rats from rotavirus gastroenteritis. Eur J Nutr 2016; 56:1657-1670. [PMID: 27112962 DOI: 10.1007/s00394-016-1213-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE Rotavirus (RV) is the leading cause of severe diarrhoea among infants and young children, and although more standardized studies are needed, there is evidence that probiotics can help to fight against RV and other infectious and intestinal pathologies. On the other hand, the effects of prebiotics have not been properly addressed in the context of an RV infection. The aim of this study was to demonstrate a protective role for a specific scGOS/lcFOS 9:1 prebiotic mixture (PRE) separately, the probiotic Bifidobacterium breve M-16V (PRO) separately and the combination of the prebiotic mixture and the probiotic (synbiotic, SYN) in a suckling rat RV infection model. METHODS The animals received the intervention from the 3rd to the 21st day of life by oral gavage. On day 7, RV was orally administered. Clinical parameters and immune response were evaluated. RESULTS The intervention with the PRO reduced the incidence, severity and duration of the diarrhoea (p < 0.05). The PRE and SYN products improved clinical parameters as well, but a change in stool consistency induced by the PRE intervention hindered the observation of this effect. Both the PRE and the SYN, but not the PRO, significantly reduced viral shedding. All interventions modulated the specific antibody response in serum and intestinal washes at day 14 and 21 of life. CONCLUSIONS A daily supplement of a scGOS/lcFOS 9:1 prebiotic mixture, Bifidobacterium breve M-16V or a combination of both is highly effective in modulating RV-induced diarrhoea in this preclinical model.
Collapse
Affiliation(s)
- M Rigo-Adrover
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA), Barcelona, Spain
| | - S Saldaña-Ruíz
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA), Barcelona, Spain
| | | | - K Knipping
- Nutricia Research, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - J Garssen
- Nutricia Research, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - J Knol
- Nutricia Research, Utrecht, The Netherlands
| | - A Franch
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA), Barcelona, Spain
| | - M Castell
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA), Barcelona, Spain
| | - F J Pérez-Cano
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain. .,Nutrition and Food Safety Research Institute (INSA), Barcelona, Spain.
| |
Collapse
|
34
|
Abstract
Gnotobiotic (GN) rodent models have provided insight into the contributions of the gut microbiota to host health and preventing disease. However, rodent models are limited by several important physiological and metabolic differences from humans, and many rodent models do not dependably replicate the clinical manifestations of human diseases. Due to the high degree of similarity in anatomy, physiology, immunology and brain growth, the domestic pig (Sus scrofa) is considered a clinically relevant model to study factors influencing human gastrointestinal, immune, and brain development. Gnotobiotic piglet models have been developed and shown to recapitulate key aspects of GN rodent models. Human microbiota-associated (HMA) piglets have been established using inocula from infants, children, and adults. The gut microbiota of recipient HMA piglets was more similar to that of the human donor than that of conventionally reared piglets harboring a pig microbiota. Moreover, Bifidobacterium and Bacteroides, two predominant bacterial groups of infant gut, were successfully established in the HMA piglets. Thus, the HMA pig model has the potential to be a valuable model for investigating how the gut microbiota composition changes in response to environmental factors, such as age, diet, vaccination, antibiotic use and infection. The HMA also represents a robust model for screening the efficacy of pre- and probiotic interventions. Lastly, HMA piglets can be an ideal model with which to elucidate microbe-host interactions in human health and disease due to the similarities to humans in anatomy, physiology, developmental maturity at birth, and the pathophysiology of many human diseases.
Collapse
Affiliation(s)
- Mei Wang
- Mei Wang, PhD, is a research specialist and Sharon M. Donovan, PhD, RD, is a professor in the Department of Food Science & Human Nutrition, University of Illinois, Urbana, Illinois
| | - Sharon M Donovan
- Mei Wang, PhD, is a research specialist and Sharon M. Donovan, PhD, RD, is a professor in the Department of Food Science & Human Nutrition, University of Illinois, Urbana, Illinois
| |
Collapse
|
35
|
Wang L, Zhou J, Xin Y, Geng C, Tian Z, Yu X, Dong Q. Bacterial overgrowth and diversification of microbiota in gastric cancer. Eur J Gastroenterol Hepatol 2016; 28:261-266. [PMID: 26657453 PMCID: PMC4739309 DOI: 10.1097/meg.0000000000000542] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Microbiota is potentially linked to the development of cancer. However, the features of microbiota in gastric cancer remain unclear. The aim of this study was to characterize the gastric microbiota in cancer. METHODS A total of 315 patients, including 212 patients with chronic gastritis and 103 patients with gastric cancer, were enrolled in the study. The bacterial load of gastric mucosa was determined using quantitative PCR. To analyze the biodiversity, structure, and composition of microbiota, amplicons of the 16S rRNA gene from 12 patients were pyrosequenced. The sequences were processed and subsequently analyzed. RESULTS The amount of bacteria in gastric mucosa was estimated to be 6.9×10 per gram tissue on average. It was higher in Helicobacter pylori-infected patients (7.80±0.71) compared with those uninfected (7.59±0.57, P=0.005). An increased bacterial load up to 7.85±0.70 was detected in gastric cancer compared with chronic gastritis (P=0.001). The unweighted principal coordinate analysis showed that the structure of microbiota in gastric cancer was more diversified. Five genera of bacteria with potential cancer-promoting activities were enriched in gastric cancer. The weighted principal coordinate analysis showed that the presence of Helicobacter pylori markedly altered the structure of microbiota, but had little influence on the relative proportions of the other members in the microbiota. CONCLUSION Findings from this study indicated an altered microbiota in gastric cancer with increased quantity of bacteria, diversified microbial communities, and enrichment of bacteria with potential cancer-promoting activities. These alterations could contribute toward the gastric carcinogenesis.
Collapse
Affiliation(s)
- Lili Wang
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital
| | - Jianhua Zhou
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital
| | - Yongning Xin
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital
| | - Changxin Geng
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital
| | - Zibin Tian
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinjuan Yu
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital
| | - Quanjiang Dong
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital
| |
Collapse
|
36
|
Kandasamy S, Vlasova AN, Fischer D, Kumar A, Chattha KS, Rauf A, Shao L, Langel SN, Rajashekara G, Saif LJ. Differential Effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on Human Rotavirus Binding, Infection, and B Cell Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 196:1780-9. [PMID: 26800875 DOI: 10.4049/jimmunol.1501705] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022]
Abstract
Rotavirus (RV) causes significant morbidity and mortality in children worldwide. The intestinal microbiota plays an important role in modulating host-pathogen interactions, but little is known about the impact of commonly used probiotics on human RV (HRV) infection. In this study, we compared the immunomodulatory effects of Gram-positive (Lactobacillus rhamnosus strain GG [LGG]) and Gram-negative (Escherichia coli Nissle [EcN]) probiotic bacteria on virulent human rotavirus (VirHRV) infection and immunity using neonatal gnotobiotic piglets. Gnotobiotic piglets were colonized with EcN, LGG, or EcN+LGG or uncolonized and challenged with VirHRV. Mean peak virus shedding titers and mean cumulative fecal scores were significantly lower in EcN-colonized compared with LGG-colonized or uncolonized piglets. Reduced viral shedding titers were correlated with significantly reduced small intestinal HRV IgA Ab responses in EcN-colonized compared with uncolonized piglets post-VirHRV challenge. However the total IgA levels post-VirHRV challenge in the intestine and pre-VirHRV challenge in serum were significantly higher in EcN-colonized than in LGG-colonized piglets. In vitro treatment of mononuclear cells with these probiotics demonstrated that EcN, but not LGG, induced IL-6, IL-10, and IgA, with the latter partially dependent on IL-10. However, addition of exogenous recombinant porcine IL-10 + IL-6 to mononuclear cells cocultured with LGG significantly enhanced IgA responses. The greater effectiveness of EcN in moderating HRV infection may also be explained by the binding of EcN but not LGG to Wa HRV particles or HRV 2/4/6 virus-like particles but not 2/6 virus-like particles. Results suggest that EcN and LGG differentially modulate RV infection and B cell responses.
Collapse
Affiliation(s)
- Sukumar Kandasamy
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, Ohio State University, Wooster, OH 44691
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, Ohio State University, Wooster, OH 44691
| | - David Fischer
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, Ohio State University, Wooster, OH 44691
| | - Anand Kumar
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, Ohio State University, Wooster, OH 44691
| | - Kuldeep S Chattha
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, Ohio State University, Wooster, OH 44691
| | - Abdul Rauf
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, Ohio State University, Wooster, OH 44691
| | - Lulu Shao
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, Ohio State University, Wooster, OH 44691
| | - Stephanie N Langel
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, Ohio State University, Wooster, OH 44691
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, Ohio State University, Wooster, OH 44691
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, Ohio State University, Wooster, OH 44691
| |
Collapse
|
37
|
Vlasova AN, Kandasamy S, Chattha KS, Rajashekara G, Saif LJ. Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet Immunol Immunopathol 2016; 172:72-84. [PMID: 26809484 DOI: 10.1016/j.vetimm.2016.01.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 02/06/2023]
Abstract
Different probiotic strains of Lactobacillus and Bifidobacterium genera possess significant and widely acknowledged health-promoting and immunomodulatory properties. They also provide an affordable means for prevention and treatment of various infectious, allergic and inflammatory conditions as demonstrated in numerous human and animal studies. Despite the ample evidence of protective effects of these probiotics against rotavirus (RV) infection and disease, the precise immune mechanisms of this protection remain largely undefined, because of limited mechanistic research possible in humans and investigated in the majority of animal models. Additionally, while most human clinical probiotic trials are well-standardized using the same strains, uniform dosages, regimens of the probiotic treatments and similar host age, animal studies often lack standardization, have variable experimental designs, and non-uniform and sometime limited selection of experimental variables or observational parameters. This review presents selected data on different probiotic strains of lactobacilli and bifidobacteria and summarizes the knowledge of their immunomodulatory properties and the associated protection against RV disease in diverse host species including neonates.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA.
| | - Sukumar Kandasamy
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA
| | - Kuldeep S Chattha
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
38
|
Mao X, Gu C, Hu H, Tang J, Chen D, Yu B, He J, Yu J, Luo J, Tian G. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus. PLoS One 2016; 11:e0146312. [PMID: 26727003 PMCID: PMC4699646 DOI: 10.1371/journal.pone.0146312] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/15/2015] [Indexed: 01/04/2023] Open
Abstract
Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function, which was possibly due to the decreasing apoptosis of jejunal mucosal cells and the improvement of intestinal microbiota.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Yucheng District, Ya’an, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, People’s Republic of China
- * E-mail:
| | - Changsong Gu
- Animal Nutrition Institute, Sichuan Agricultural University, Yucheng District, Ya’an, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, People’s Republic of China
| | - Haiyan Hu
- Animal Nutrition Institute, Sichuan Agricultural University, Yucheng District, Ya’an, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, People’s Republic of China
| | - Jun Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Yucheng District, Ya’an, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, People’s Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Yucheng District, Ya’an, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, People’s Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Yucheng District, Ya’an, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, People’s Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Yucheng District, Ya’an, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, People’s Republic of China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Yucheng District, Ya’an, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, People’s Republic of China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Yucheng District, Ya’an, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, People’s Republic of China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Yucheng District, Ya’an, People’s Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China, Ya’an, People’s Republic of China
| |
Collapse
|
39
|
Abstract
During pathogenesis, viruses come in contact with the microbiota that colonizes the mucosal sites they infect. The intestinal microbiota has emerged as a critical factor in intestinal viral susceptibility. While the interaction of virus-intestinal commensal bacteria can lead to enhanced or decreased viral infection capacity, several scientific studies support the use of probiotics as antiviral therapies. Thus, probiotics and the modulation of the intestinal microbiota are envisaged as therapeutic strategies in the prevention and treatment of viral infection.
Collapse
|
40
|
Yang X, Twitchell E, Li G, Wen K, Weiss M, Kocher J, Lei S, Ramesh A, Ryan EP, Yuan L. High protective efficacy of rice bran against human rotavirus diarrhea via enhancing probiotic growth, gut barrier function, and innate immunity. Sci Rep 2015; 5:15004. [PMID: 26459937 PMCID: PMC4602212 DOI: 10.1038/srep15004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
Previously, we showed that rice bran (RB) was able to reduce human rotavirus (HRV) diarrhea in gnotobiotic pigs. Here, we investigated its effect on the growth of diarrhea-reducing probiotic Lactobacillus rhamnosus GG (LGG) and Escherichia coli Nissle (EcN), and the resulting effects on HRV diarrhea, gut epithelial health, permeability and innate immune responses during virulent HRV challenge. On 3, 5, and 7 days of age pigs were inoculated with 2 × 104 colony-forming-units LGG+EcN to initiate colonization. Daily RB supplementation (replacing 10% calorie intake) was started at 5 days of age and continued until euthanasia. A subset of pigs in each group was challenged orally with 105 focus-forming-units of virulent HRV at 33 days of age. RB completely prevented HRV diarrhea in LGG+EcN colonized pigs. RB significantly promoted the growth of both probiotic strains in the gut (~5 logs) and increased the body-weight-gain at 4–5 weeks of age compared to non-RB group. After HRV challenge, RB-fed pigs had significantly lower ileal mitotic index and villus width, and significantly increased intestinal IFN-γ and total IgA levels compared to non-RB group. Therefore, RB plus LGG+EcN colonization may represent a highly effective therapeutic approach against HRV and potentially a variety of other diarrhea-inducing enteric pathogens.
Collapse
Affiliation(s)
- Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Erica Twitchell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mariah Weiss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jacob Kocher
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Shaohua Lei
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ashwin Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|