1
|
Li J, Geng Y, Luo Y, Sun X, Guo Y, Dong Z. Pathological roles of NETs-platelet synergy in thrombotic diseases: From molecular mechanisms to therapeutic targeting. Int Immunopharmacol 2025; 159:114934. [PMID: 40418882 DOI: 10.1016/j.intimp.2025.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/10/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025]
Abstract
The formation of neutrophil extracellular traps (NETs) is a novel way for neutrophils to perform organismal protective functions essential for protecting the host against infections. Nevertheless, an increasing amount of data shows that uncontrolled or excessive formation of NETs in the body leads to inflammation and thrombosis. Many serious human diseases, such as sepsis, stroke, cancer, and autoimmune diseases, are associated with thrombosis, and inhibiting its formation is essential to prevent the development of many inflammatory and thrombotic diseases. With deeper research, it has been found that there is a complex interaction between NETs and platelets: platelets activate neutrophils to form NETs, while NET components enhance platelet aggregation and activation. This self-perpetuating vicious cycle between them mediates pathological processes such as inflammation, coagulation, and thrombosis. A deeper comprehension of the underlying molecular mechanisms between them promises to be a new target for thrombotic diseases. In this review, we concentrate on a summary of NET formation and its mechanisms of action. Providing a thorough summary of how neutrophils are activated by platelets to form NETs, how NETs cause platelet activation, and how this close interaction during inflammatory events affects the course of the disease, with the aim of providing fresh targets and ideas for thrombotic disease clinical prevention and therapy.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
| | - Yifei Geng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
2
|
Wei Q, Jiang H, Zeng J, Xu J, Zhang H, Xiao E, Lu Q, Huang G. Quercetin protected the gut barrier in ulcerative colitis by activating aryl hydrocarbon receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156633. [PMID: 40088746 DOI: 10.1016/j.phymed.2025.156633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/25/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is characterized by abdominal pain and bloody diarrhoea and restoring the gut barrier is the core goal of UC treatment. Activation of aryl hydrocarbon receptor (Ahr) was reported to effectively alleviate symptoms and repair the gut barrier damage. Neutrophil extracellular traps (NETs) have been recognized as potential targets in the treatment of UC. Ahr activation has been found to be capable of upregulating Nqo1, thereby reducing the production of reactive oxygen species (ROS), which is important in the formation of NETs. Quercetin (QUE), which is derived from natural plants and herbs used in traditional Chinese medicine (TCM), is able to strengthen gut barrier function by activating Ahr. PURPOSE The aim of this study is to investigate how QUE suppresses NETs in UC and activates Ahr in neutrophils. METHODS In this study, the dextran sulfate sodium (DSS)-induced UC model was used. Histopathological assessments were performed in the paraffin slides of tissues after H&E, PAS, Masson and alcian blue staining. The concentration of cytokines was also detected using cytometric beads array kits. Based on the transcriptomic analysis of colon tissues, western blot (WB) analysis, immunohistochemistry (IHC) assays and immunofluorescence (IF) assays were conducted to validate the significantly regulated genes and pathways. In vitro, the binding of quercetin to Ahr was calculated by molecular dynamic simulations (MDS) and biolayer interferometry (BLI) analysis. Primary neutrophils isolated from mice were cocultured with LPS or PMA with or without quercetin. The regulated genes were detected using WB, real-time quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and IF analysis. The agonists and antagonist of Ahr were used as the control. RESULTS After the administration of quercetin, colon inflammation and gut barrier disruption was significantly prevented through inhibiting the NF-κB pathway and upregulating the expression of Ahr/Arnt and Nqo1. The transcriptomic analysis and IHC assays showed that inflammation and NETs were greatly decreased by QUE treatment. In vitro, quercetin inhibited LPS-induced inflammatory responses through NF-κB pathway. Furthermore, MDS and BLI analysis revealed that QUE is an agonist of AHR. QUE activated Ahr translocation and reduced ROS production via regulation of Arnt and Nqo1. CONCLUSION This study proved that quercetin greatly improved gut barrier function in the DSS-induced colitis model by regulating NET formation and that quercetin was able to activate Ahr and upregulate Arnt in neutrophils to regulate NET formation.
Collapse
Affiliation(s)
- Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honglin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Enfan Xiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Beiter T, Erz G, Würden A, Nieß AM. Impact of moderate environmental heat stress during running exercise on circulating markers of gastrointestinal integrity in endurance athletes. Physiol Rep 2025; 13:e70305. [PMID: 40170530 PMCID: PMC11962213 DOI: 10.14814/phy2.70305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
In the present study, we aimed to determine the effect of moderate ambient heat stress on exercise-provoked patterns of "leaky gut" biomarkers and stress markers in well-trained athletes. Eleven triathletes performed a strenuous 1-h treadmill run, both under normal ambient conditions (N, 18-21°C) as well as under moderate heat environmental conditions (H, 28-30°C). Core body temperature (Tc), heart rate (HR), and rating of perceived exertion (RPE) significantly increased under both conditions, with significantly higher values during and after the H run. We observed a significant main effect of acute exercise on circulating leukocyte numbers, release of cell-free human DNA (cfDNA) but not bacterial DNA (bacDNA), and on plasma levels of intestinal fatty-acid binding protein (I-FABP), lipopolysaccharide-binding protein (LBP), endotoxin (LPS), and D-lactate. Exercising under H conditions accelerated the mobilization of circulating neutrophils and lymphocytes, and significantly affected the release of cfDNA, D-lactate, I-FABP, creatinine, and blood potassium levels. Multiple correlation analysis revealed a significant association between Tc, max and exercise-provoked release of cfDNA (r = 0.583, p = 0.012) as well as with I-FABP (r = 0.554, p = 0.026). Our data indicate that acute exercising and heat stress may not only affect paracellular but also transcellular intestinal permeability.
Collapse
Affiliation(s)
- Thomas Beiter
- Department of Sports MedicineUniversity Hospital TübingenTübingenGermany
| | - Gunnar Erz
- Department of Sports MedicineUniversity Hospital TübingenTübingenGermany
| | - Anna Würden
- Department of Sports MedicineUniversity Hospital TübingenTübingenGermany
| | - Andreas M. Nieß
- Department of Sports MedicineUniversity Hospital TübingenTübingenGermany
| |
Collapse
|
4
|
Khoshnazar SM, Mohagheghi M, Rahimi S, Dabiri S, Shahrokhi N, Shafieipour S. Geraniol modulates inflammatory and antioxidant pathways to mitigate intestinal ischemia-reperfusion injury in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03802-y. [PMID: 39841219 DOI: 10.1007/s00210-025-03802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Intestinal ischemia-reperfusion injury (IIR/I) significantly increases morbidity and mortality. This study examines the therapeutic effects of geraniol (GNL), which is noted for its anti-inflammatory and antioxidant properties, on intestinal I/R injury in rats. Forty-nine male Wistar-Albino rats were divided into seven groups. After 30 min of ischemia and subsequent reperfusion for either 1 or 6 h, intestinal and hepatic tissues were analyzed. Biochemical assessments measured malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), and nitric oxide (NO) activities. Inflammatory and apoptotic markers were evaluated using qRT-PCR and ELISA, and apoptotic cell rates were determined by flow cytometry. GNL treatment significantly protected intestinal and hepatic tissues, enhancing antioxidant enzyme activity and normalizing MDA and NO activities. It demonstrated notable anti-inflammatory effects at 100 and 200 mg/kg doses, reducing TNF-α, IL-1β, and IL-6 levels while decreasing tissue MPO content. GNL also increased Bcl-2 levels and decreased Bax levels, indicating anti-apoptotic effects. Serum activities of ALT, AST, and creatine kinase were lower in GNL-treated rats, and flow cytometry showed a reduction in apoptotic cells. GNL effectively mitigated oxidative stress and histopathological damage from intestinal I/R injury by reducing pro-apoptotic markers and increasing anti-apoptotic markers, highlighting its protective effects.
Collapse
Affiliation(s)
- Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mohagheghi
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Rahimi
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Shafieipour
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Brizzi A, Rispoli RM, Autore G, Marzocco S. Anti-Inflammatory Effects of Algae-Derived Biomolecules in Gut Health: A Review. Int J Mol Sci 2025; 26:885. [PMID: 39940655 PMCID: PMC11817955 DOI: 10.3390/ijms26030885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Under physiological conditions, the inflammatory response acts as a biological defense against tissue damage or infection, and is rapidly resolved once the infection is cleared. However, chronic inflammatory diseases, including inflammatory bowel disease (IBD), have become increasingly widespread in the last decades, placing a burden on the quality of life of affected people and on healthcare systems worldwide. Available drug therapies are often ineffective due to the chronic nature of these diseases, and prolonged administration of drugs can result in severe side effects for the patient or a lack of efficacy. In addition, there is the growing problem of bacterial resistance to synthetic antibiotics. Together, these factors have led to a strong research focus on the discovery of natural products capable of treating IBD. Recently, there has been a growing interest in compounds derived from marine sources, mainly algae, due to their bioactive secondary metabolites with anti-inflammatory properties well known in the literature. Based on this evidence, this review aimed to evaluate the anti-inflammatory potential of algae-derived biomolecules in IBD. In particular, interesting species from green algae (e.g., Chlorella vulgaris and Ulva pertusa), brown algae (e.g., Macrocystis pyrifera and Ecklonia cava) and red algae (e.g., Porphyra tenera and Grateloupia turuturu) are included in this review due to their proven anti-inflammatory properties. For this purpose, an extensive literature search was conducted using several databases. The results suggest that both macroalgae and microalgae have remarkable potential for IBD therapy due to the anti-inflammatory and antioxidant activities of their bioactive compounds. However, while the preclinical evidence is encouraging, further and long-term clinical studies are needed to better understand their mechanisms of action in order to determine the true efficacy of marine algae in the treatment of IBD.
Collapse
Affiliation(s)
- Alessia Brizzi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (A.B.); (R.M.R.); (G.A.)
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Rosaria Margherita Rispoli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (A.B.); (R.M.R.); (G.A.)
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (A.B.); (R.M.R.); (G.A.)
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (A.B.); (R.M.R.); (G.A.)
| |
Collapse
|
6
|
Martin E, Sarkan K, Viall A, Hostetter S, Epstein K. Clinicopathologic Parameters of Peritoneal Fluid as Predictors of Gastrointestinal Lesions, Complications, and Outcomes in Equine Colic Patients: A Retrospective Study. Animals (Basel) 2024; 15:12. [PMID: 39794955 PMCID: PMC11718766 DOI: 10.3390/ani15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Neutrophil characteristics in peritoneal fluid (PF) may aid in diagnosing and treating specific colic lesions and complications. The objective of this retrospective study was to evaluate quantitative PF leukocyte values, as well as PF total protein (TP) and lactate, for associations with diagnosis, morbidity, and mortality in horses with acute colic. Three hundred and forty-two horses that presented to one institution between January 2010-2020 for the evaluation of acute colic were included. The PF total nucleated cell count (TNCC), % and total neutrophil counts, total protein (TP), and lactate were analyzed for associations with lesion location and type, the development of postoperative reflux (POR) or systemic inflammatory response syndrome (SIRS), and survival to discharge via Kruskal-Wallis testing. Horses with strangulating lesions had higher PF % neutrophils, neutrophil count, and TNCC compared to non-strangulating lesions. The development of SIRS or POR was associated with higher PF TNCC, total neutrophil count, TP, and lactate. Horses that did not survive to discharge had increased PF % neutrophils, neutrophil count, TP, lactate, and ratio of PF-to-systemic TP than those that survived via univariable analysis. Identified associations between increased PF neutrophils and the development of POR and SIRS warrant further investigation to better understand their role in the pathogenesis of equine colic and potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Emily Martin
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606, USA;
| | - Kate Sarkan
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA;
| | - Austin Viall
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA;
| | - Shannon Hostetter
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA;
| | - Kira Epstein
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
7
|
Jiménez E, Vázquez A, González S, Sacedón R, Fernández-Sevilla LM, Varas A, Subiza JL, Valencia J, Vicente Á. Mucosal Bacterial Immunotherapy Attenuates the Development of Experimental Colitis by Reducing Inflammation Through the Regulation of Myeloid Cells. Int J Mol Sci 2024; 25:13629. [PMID: 39769391 PMCID: PMC11728189 DOI: 10.3390/ijms252413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Ulcerative colitis is a chronic relapsing-remitting and potentially progressive form of inflammatory bowel disease in which there is extensive inflammation and mucosal damage in the colon and rectum as a result of an abnormal immune response. MV130 is a mucosal-trained immunity-based vaccine used to prevent respiratory tract infections in various clinical settings. Additionally, MV130 may induce innate immune cells that acquire anti-inflammatory properties and promote tolerance, which could have important implications for chronic inflammatory diseases such as ulcerative colitis. This work demonstrated that the prophylactic administration of MV130 substantially mitigated colitis in a mouse model of acute colitis induced by dextran sulphate sodium. MV130 downregulated systemic and local inflammatory responses, maintained the integrity of the intestinal barrier by preserving the enterocyte layer and goblet cells, and reduced the oedema and fibrosis characteristic of the disease. Mechanistically, MV130 significantly reduced the infiltration of neutrophils and pro-inflammatory macrophages in the intestinal wall of the diseased animals and favoured the appearance of M2-polarised macrophages. These results suggest that MV130 might have therapeutic potential for the treatment of ulcerative colitis, reducing the risk of relapse and the progression of disease.
Collapse
Affiliation(s)
- Eva Jiménez
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Alberto Vázquez
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
| | - Sara González
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Doce de Octubre (i+12), 28041 Madrid, Spain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lidia M. Fernández-Sevilla
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Alberto Varas
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | | - Jaris Valencia
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Doce de Octubre (i+12), 28041 Madrid, Spain
| |
Collapse
|
8
|
Mousa RS, Invernizzi P, Mousa HS. Innate immune cells in the pathogenesis of inflammatory bowel disease - from microbial metabolites to immune modulation. FRONTIERS IN GASTROENTEROLOGY 2024; 3. [DOI: 10.3389/fgstr.2024.1452430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a term used to describe a group of disorders characterized by chronic inflammation of the gastrointestinal tract, with Crohn’s Disease (CD) and Ulcerative Colitis (UC) being the most common. While still not fully understood, pathogenesis is believed to be multifactorial – the result of an interplay between genetic susceptibility, immune dysregulation and environmental factors that all lead to chronic inflammation and tissue remodeling. Innate immune cells, which orchestrate the initial defense mechanisms and modulate the subsequent immune response, play a central role in disease initiation and progression. This review examines the complex involvement of innate immune cells in IBD, emphasizing their interactions with environmental factors and the gut microbiome. We highlight the importance of microbial dysbiosis and impaired intestinal barrier function in disease pathogenesis, and the role that innate immune cells play not only as first responders, but also as key players in maintaining intestinal barrier integrity and gut microbiome. This review provides a comprehensive summary of the role that innate immune cells play in IBD pathogenesis with emphasis on the increasingly recognized role of the gut microbiome. A better understanding of innate immune cell mechanisms and of microbiome-immune interactions is key for the development of novel targeted therapies.
Collapse
|
9
|
Fan Q, Chang H, Tian L, Zheng B, Liu R, Li Z. Methane saline suppresses ferroptosis via the Nrf2/HO-1 signaling pathway to ameliorate intestinal ischemia-reperfusion injury. Redox Rep 2024; 29:2373657. [PMID: 39023011 PMCID: PMC11259071 DOI: 10.1080/13510002.2024.2373657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVES Intestinal ischemia-reperfusion (I/R) injury is a multifactorial and complex clinical pathophysiological process. Current research indicates that the pathogenesis of intestinal I/R injury involves various mechanisms, including ferroptosis. Methane saline (MS) has been demonstrated to primarily exert anti-inflammatory and antioxidant effects in I/R injury. In this study, we mainly investigated the effect of MS on ferroptosis in intestinal I/R injury and determined its potential mechanism. METHODS In vivo and in vitro intestinal I/R injury models were established to validate the relationship between ferroptosis and intestinal I/R injury. MS treatment was applied to assess its impact on intestinal epithelial cell damage, intestinal barrier disruption, and ferroptosis. RESULTS MS treatment led to a reduction in I/R-induced intestinal epithelial cell damage and intestinal barrier disruption. Moreover, similar to treatment with ferroptosis inhibitors, MS treatment reduced ferroptosis in I/R, as indicated by a decrease in the levels of intracellular pro-ferroptosis factors, an increase in the levels of anti-ferroptosis factors, and alleviation of mitochondrial damage. Additionally, the expression of Nrf2/HO-1 was significantly increased after MS treatment. However, the intestinal protective and ferroptosis inhibitory effects of MS were diminished after the use of M385 to inhibit Nrf2 in mice or si-Nrf2 in Caco-2 cells. DISCUSSION We proved that intestinal I/R injury was mitigated by MS and that the underlying mechanism involved modulating the Nrf2/HO-1 signaling pathway to decrease ferroptosis. MS could be a promising treatment for intestinal I/R injury.
Collapse
Affiliation(s)
- Qingrui Fan
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
- Xi’an Medical University, Xi’an, People’s Republic of China
| | - Hulin Chang
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Lifei Tian
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Bobo Zheng
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Zeyu Li
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| |
Collapse
|
10
|
Karandikar K, Bhonde G, Palav H, Padwal V, Velhal S, Pereira J, Meshram H, Goel A, Shah I, Patel V, Bhor VM. A triad of gut dysbiosis, dysregulated immunity, and 'leaky' gut characterize HCMV associated neonatal cholestasis. Gut Pathog 2024; 16:67. [PMID: 39543741 PMCID: PMC11566295 DOI: 10.1186/s13099-024-00663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Gut microbiome dysbiosis and related immune dysfunction have been associated with the pathogenesis of Human Cytomegalovirus (HCMV) infection in infants with neonatal cholestasis (NC) as previously reported by us. However, the interaction of a perturbed microbiome, HCMV infection, and dysregulated immunity leading to exacerbation of disease severity has not been investigated so far. In this study, we examined the association of gut microbiome, host inflammatory and homeostatic markers that are likely to govern increased pathogenesis of NC in HCMV infected IgM positive infants (N = 15) compared to IgM negative (N = 15) individuals. Stool samples of HCMV infected infants and age-matched healthy controls (N = 10) were assessed for gut bacteria-derived metabolites like short-chain fatty acids (SCFAs), Lipopolysaccharide (LPS), cytokines and markers of gut barrier integrity. Data were correlated with previously determined gut microbiome composition and frequency of immune cell subsets. Finally, validation of clinical potential was undertaken by principal component analysis (PCA) of integrated data to delineate the spectrum of clinical pathology. RESULTS Significantly lower levels of SCFAs and elevated fecal levels of soluble inflammatory mediators were observed in IgM positive HCMV infected infants. Further, increased plasma LPS levels and markers of gut permeability, suggestive of microbial translocation due to a 'leaky gut' were observed in HCMV infected IgM positive group. PCA of integrated data revealed clearly disparate profiles representative of IgM positive, IgM negative, and uninfected healthy states. CONCLUSION Our results suggest the utility of an integrated approach involving dysregulated microbiome-immune axis for gaining a better understanding of pathogenesis associated with HCMV infection in NC.
Collapse
Affiliation(s)
- Kalyani Karandikar
- Department of Molecular Immunology and Microbiology, ICMR- National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J. M. Street, Parel, Mumbai, India
| | - Gauri Bhonde
- Department of Molecular Immunology and Microbiology, ICMR- National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J. M. Street, Parel, Mumbai, India
| | - Harsha Palav
- Department of Viral Immunopathogenesis, ICMR- National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J. M. Street, Parel, Mumbai, India
| | - Varsha Padwal
- Department of Viral Immunopathogenesis, ICMR- National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J. M. Street, Parel, Mumbai, India
| | - Shilpa Velhal
- Department of Viral Immunopathogenesis, ICMR- National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J. M. Street, Parel, Mumbai, India
| | - Jacintha Pereira
- Department of Viral Immunopathogenesis, ICMR- National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J. M. Street, Parel, Mumbai, India
| | - Himali Meshram
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Akshat Goel
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ira Shah
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Vainav Patel
- Department of Viral Immunopathogenesis, ICMR- National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J. M. Street, Parel, Mumbai, India.
| | - Vikrant M Bhor
- Department of Molecular Immunology and Microbiology, ICMR- National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J. M. Street, Parel, Mumbai, India.
| |
Collapse
|
11
|
McFarlin BK, Bridgeman EA, Curtis JH, Vingren JL, Hill DW. Baker's yeast beta glucan supplementation was associated with an improved innate immune mRNA expression response after exercise. Methods 2024; 230:68-79. [PMID: 39097177 DOI: 10.1016/j.ymeth.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Beta glucans are found in many natural sources, however, only Baker's Yeast Beta Glucan (BYBG) has been well documented to have structure-function effects that are associated with improved innate immune response to stressors (e.g., exercise, infection, etc.). The purpose was to identify a BYBG-associated mRNA expression pattern following exercise. Participants gave IRB-approved consent and were randomized to BYBG (Wellmune®; N=9) or Placebo (maltodextrin; N=10) for 6-weeks prior to performing 90 min of whole-body exercise. Paxgene blood samples were collected prior to exercise (PRE), after exercise (POST), two hours after exercise (2H), and four hours after exercise (4H). Total RNA was isolated and analyzed for the expression of 770 innate immune response mRNA (730 mRNA targets; 40 housekeepers/controls; Nanostring nCounter). The raw data were normalized against housekeeping controls and expressed as Log2 fold change from PRE for a given condition. Significance was set at p < 0.05 with adjustments for multiple comparisons and false discovery rate. We identified 47 mRNA whose expression was changed after exercise with BYBG and classified them to four functional pathways: 1) Immune Cell Maturation (8 mRNA), 2) Immune Response and Function (5 mRNA), 3) Pattern Recognition Receptors and DAMP or PAMP Detection (25 mRNA), and 4) Detection and Resolution of Tissue Damage (9 mRNA). The identified mRNA whose expression was altered after exercise with BYBG may represent an innate immune response pattern and supports previous conclusions that BYBG improves immune response to a future sterile inflammation or infection.
Collapse
Affiliation(s)
- Brian K McFarlin
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States; University of North Texas, Dept. of Biological Sciences, Denton, TX 76203, United States.
| | - Elizabeth A Bridgeman
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| | - John H Curtis
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| | - Jakob L Vingren
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States; University of North Texas, Dept. of Biological Sciences, Denton, TX 76203, United States.
| | - David W Hill
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| |
Collapse
|
12
|
Ma X, Li M, Wang X, Xu H, Jiang L, Wu F, Wei L, Qi G, Zhang D. Dihydromyricetin ameliorates experimental ulcerative colitis by inhibiting neutrophil extracellular traps formation via the HIF-1α/VEGFA signaling pathway. Int Immunopharmacol 2024; 138:112572. [PMID: 38955027 DOI: 10.1016/j.intimp.2024.112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Dihydromyricetin (DHM), which has various biological functions, possesses therapeutic potential for ulcerative colitis (UC). Neutrophil extracellular traps (NETs) and their components play a crucial role in several pathological processes in UC. However, whether DHM alleviates UC by regulating NETs remains unclear. Mice with dextran sulfate sodium (DSS)-induced acute colitis were treated with DHM at different concentrations, and the severity of colitis was evaluated by assessing body weight, colon length, histological scores, cytokine production, and epithelial barrier integrity. To quantify and visualize NETs, the expression of cell free-DNA (cf-DNA) in serum and Cit-H3 in colonic tissue was analyzed via western blotting and immunofluorescence analysis. HL-60 cells and mouse bone marrow-derived neutrophils (BMDNs) were used to evaluate the effects of DHM on NETs in vitro. NETs were treated with DHM at varying concentrations or DNase I and used to repair the intestinal epithelial barrier in a Caco-2/HIEC-6 cell monolayer model. Furthermore, the genes targeted by DHM through neutrophils for alleviating UC were identified by screening online databases, and the results of network pharmacological analysis were verified via western blotting and quantitative real-time polymerase chain reaction. DHM alleviated DSS-induced colitis in mice by reversing weight loss, increased DAI score, colon length shortening, enhanced spleen index, colonic pathological damage, cytokine production, and epithelial barrier loss in a dose-dependent manner. In addition, it inhibited the formation of NETs both in vivo and in vitro. Based on the results of network pharmacological analysis, DHM may target HIF-1α and VEGFA through neutrophils to alleviate UC. Treatment with PMA increased the expression of HIF-1α and VEGFA in D-HL-60 cells and BMDNs, whereas treatment with DHM or DNase I reversed this effect. Treatment with DMOG, an inhibitor of HIF prolyl hydroxylase (HIF-PH), counteracted the suppressive effects of DHM on NETs formation in D-HL-60 cells and BMDNs. Accordingly, it partially counteracted the protective effects of DHM on the intestinal epithelial barrier in Caco-2 and HIEC-6 cells. These results indicated that DHM alleviated DSS-induced UC by regulating NETs formation via the HIF-1α/VEGFA signaling pathway, suggesting that DHM is a promising therapeutic candidate for UC.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Huimei Xu
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Luxia Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Fanqi Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
13
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
14
|
Nofi CP, Prince JM, Wang P, Aziz M. Chromatin as alarmins in necrotizing enterocolitis. Front Immunol 2024; 15:1403018. [PMID: 38881893 PMCID: PMC11176418 DOI: 10.3389/fimmu.2024.1403018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.
Collapse
Affiliation(s)
- Colleen P. Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Jose M. Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
15
|
Munalisa R, Lien TS, Tsai PY, Sun DS, Cheng CF, Wu WS, Li CC, Hu CT, Tsai KW, Lee YL, Chou YC, Chang HH. Restraint Stress-Induced Neutrophil Inflammation Contributes to Concurrent Gastrointestinal Injury in Mice. Int J Mol Sci 2024; 25:5261. [PMID: 38791301 PMCID: PMC11121713 DOI: 10.3390/ijms25105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Psychological stress increases risk of gastrointestinal tract diseases. However, the mechanism behind stress-induced gastrointestinal injury is not well understood. The objective of our study is to elucidate the putative mechanism of stress-induced gastrointestinal injury and develop an intervention strategy. To achieve this, we employed the restraint stress mouse model, a well-established method to study the pathophysiological changes associated with psychological stress in mice. By orally administering gut-nonabsorbable Evans blue dye and monitoring its plasma levels, we were able to track the progression of gastrointestinal injury in live mice. Additionally, flow cytometry was utilized to assess the viability, death, and inflammatory status of splenic leukocytes, providing insights into the stress-induced impact on the innate immune system associated with stress-induced gastrointestinal injury. Our findings reveal that neutrophils represent the primary innate immune leukocyte lineage responsible for stress-induced inflammation. Splenic neutrophils exhibited elevated expression levels of the pro-inflammatory cytokine IL-1, cellular reactive oxygen species, mitochondrial burden, and cell death following stress challenge compared to other innate immune cells such as macrophages, monocytes, and dendritic cells. Regulated cell death analysis indicated that NETosis is the predominant stress-induced cell death response among other analyzed regulated cell death pathways. NETosis culminates in the formation and release of neutrophil extracellular traps, which play a crucial role in modulating inflammation by binding to pathogens. Treatment with the NETosis inhibitor GSK484 rescued stress-induced neutrophil extracellular trap release and gastrointestinal injury, highlighting the involvement of neutrophil extracellular traps in stress-induced gastrointestinal inflammation. Our results suggest that neutrophil NETosis could serve as a promising drug target for managing psychological stress-induced gastrointestinal injuries.
Collapse
Grants
- 104-2320-B-320 -009 -MY3, 107-2311-B-320-002-MY3, 111-2320-B320-006-MY3, 112-2320-B-320-007 National Science and Technology Council, Taiwan
- TCMMP104-06, TCMMP108-04, TCMMP 111-01, TCAS111-02, TCAS-112-02, TCAS113-04, TCRD112-033, TCRD113-041 Tzu-Chi Medical Foundation
Collapse
Affiliation(s)
- Rina Munalisa
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (T.-S.L.); (P.-Y.T.); (D.-S.S.)
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (T.-S.L.); (P.-Y.T.); (D.-S.S.)
| | - Ping-Yeh Tsai
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (T.-S.L.); (P.-Y.T.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (T.-S.L.); (P.-Y.T.); (D.-S.S.)
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddha Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddha Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chi-Tan Hu
- Research Center for Hepatology and Department of Gastroenterology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Yungling Leo Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
- College of Public Health, China Medical University, Taichung 404, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (T.-S.L.); (P.-Y.T.); (D.-S.S.)
| |
Collapse
|
16
|
Marafini I, Laudisi F, Salvatori S, Lavigna D, Venuto C, Giannarelli D, Monteleone G. Diagnostic value of anti-integrin αvβ6 antibodies in ulcerative colitis. Dig Liver Dis 2024; 56:55-60. [PMID: 37407314 DOI: 10.1016/j.dld.2023.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Ulcerative colitis (UC)-related mucosal inflammation is characterized by the production of various autoantibodies with limited clinical relevance. Recent studies have shown that circulating levels of IgG against integrin αvβ6 are increased in UC patients as compared to Crohn's disease (CD) patients and healthy controls (HC). The present study assessed the diagnostic value of circulating IgG anti-αvβ6 in UC. Sera were prospectively collected from 108 outpatients with UC, 103 patients with CD, and 62 HC, and the levels of IgG anti-αvβ6 were measured using a commercially available ELISA kit. The cut-off for positive results was defined as the 95th percentile of the values of the autoantibodies in HC serum samples. Levels of IgG anti-αvβ6 were significantly higher in UC than in CD patients, including those with colonic localization, and HC. Fifty-six of the 108 (51.8%) UC patients had a positive test whereas only 17/103 (16.5%) patients with CD, and among these, 4/16 (25%) patients with colonic CD, were positive. In UC, there was no statistical difference between patients with IgG anti-αvβ6 positivity and those negative in terms of clinical disease activity, fecal calprotectin values, and disease extent. The sensitivity, specificity, predictive positive value, and predictive negative value of the test to differentiate between UC and CD were 51.9% (C.I.42.4-61.3), 83.5% (C.I. 76.3-90.7), 76.7% (C.I. 67.0-86.4), and 62.3% (C.I. 54.2-70.4) respectively. Our study confirms that anti-αvβ6 antibodies are demonstrable in the serum of the majority of UC patients and suggests the necessity of further research to understand if the anti-αvβ6 antibody determination could have a place in the clinical decision-making of IBD.
Collapse
Affiliation(s)
- Irene Marafini
- Gastroenterology Unit, Azienda Ospedaliera Policlinico Tor Vergata, Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Salvatori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diletta Lavigna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Chiara Venuto
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diana Giannarelli
- Facility of Epidemiology and Biostatistics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
17
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
18
|
Cristol JP, Thierry AR, Bargnoux AS, Morena-Carrere M, Canaud B. What is the role of the neutrophil extracellular traps in the cardiovascular disease burden associated with hemodialysis bioincompatibility? Front Med (Lausanne) 2023; 10:1268748. [PMID: 38034546 PMCID: PMC10684960 DOI: 10.3389/fmed.2023.1268748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite significant progress in dialysis modalities, intermittent renal replacement therapy remains an "unphysiological" treatment that imperfectly corrects uremic disorders and may lead to low-grade chronic inflammation, neutrophil activation, and oxidative stress due to repetitive blood/membrane interactions contributing to the "remaining uremic syndrome" and cardiovascular disease burden of hemodialysis patients. Understanding dialysis bioincompatibility pathways still remains a clinical and biochemical challenge. Indeed, surrogate biomarkers of inflammation including C-reactive protein could not discriminate between all components involved in these complex pathways. A few examples may serve to illustrate the case. Cytokine release during dialysis sessions may be underestimated due to their removal using high-flux dialysis or hemodiafiltration modalities. Complement activation is recognized as a key event of bioincompatibility. However, it appears as an early and transient event with anaphylatoxin level normalization at the end of the dialysis session. Complement activation is generally assumed to trigger leukocyte stimulation leading to proinflammatory mediators' secretion and oxidative burst. In addition to being part of the innate immune response involved in eliminating physically and enzymatically microbes, the formation of Neutrophil Extracellular Traps (NETs), known as NETosis, has been recently identified as a major harmful component in a wide range of pathologies associated with inflammatory processes. NETs result from the neutrophil degranulation induced by reactive oxygen species overproduction via NADPH oxidase and consist of modified chromatin decorated with serine proteases, elastase, bactericidal proteins, and myeloperoxidase (MPO) that produces hypochlorite anion. Currently, NETosis remains poorly investigated as a sensitive and integrated marker of bioincompatibility in dialysis. Only scarce data could be found in the literature. Oxidative burst and NADPH oxidase activation are well-known events in the bioincompatibility phenomenon. NET byproducts such as elastase, MPO, and circulating DNA have been reported to be increased in dialysis patients more specifically during dialysis sessions, and were identified as predictors of poor outcomes. As NETs and MPO could be taken up by endothelium, NETs could be considered as a vascular memory of intermittent bioincompatibility phenomenon. In this working hypothesis article, we summarized the puzzle pieces showing the involvement of NET formation during hemodialysis and postulated that NETosis may act as a disease modifier and may contribute to the comorbid burden associated with dialysis bioincompatibility.
Collapse
Affiliation(s)
- Jean-Paul Cristol
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
- Charles Mion Foundation, AIDER-Santé, Montpellier, France
| | - Alain R. Thierry
- Research Institute of Cancerology of Montpellier, INSERM, IRCM, ICM, University of Montpellier, Montpellier, France
| | - Anne-Sophie Bargnoux
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Marion Morena-Carrere
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Bernard Canaud
- School of Medicine, University of Montpellier, Montpellier, France
- MTX Consulting Int., Montpellier, France
| |
Collapse
|
19
|
Zheng XL, Gu WJ, Zhang F, Zhao FZ, Li LZ, Huang HY, Li LJ, Yi YH, Yin HY, Xu J. Exosomal miR-127-5p from BMSCs alleviated sepsis-related acute lung injury by inhibiting neutrophil extracellular trap formation. Int Immunopharmacol 2023; 123:110759. [PMID: 37552907 DOI: 10.1016/j.intimp.2023.110759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Neutrophil extracellular traps (NETs) play an important role in sepsis-related acute lung injury (ALI). Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes and miRNA are becoming promising agents for the treatment of ALI. The current study aimed to elucidate the mechanism by BMSCs-derived exosomes carrying miR-127-5p inhibiting to the formation of NETs in sepsis-related ALI. We successfully isolated exosomes from BMSCs and confirmed that miR-127-5p was enriched in the exosomes. ALI mice treated with BMSCs-derived exosomes histologically improved, and the release of NETs and inflammatory factors in lung tissue and peripheral blood of mice also decreased compared with LPS group, while the protective effect of exosomes was attenuated after the knockdown of miR-127-5p. Using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay, we identified CD64 as a direct target of miR-127-5p. Meanwhile, BMSCs-derived exosomes can synergize with anti-CD64 mab in ALI mice to reduce tissue damage, inhibit the release of inflammatory factors and NETs formation. The synergistic effect of exosomes was attenuated when miR-127-5p was down-regulated. These findings suggest that exosomal miR-127-5p derived from BMSCs is a potential therapeutic agent for treatment of sepsis-induced ALI through reducing NETs formation by targeting CD64.
Collapse
Affiliation(s)
- Xing-Long Zheng
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wan-Jie Gu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Feng-Zhi Zhao
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Long-Zhu Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hai-Yan Huang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Li-Jun Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yu-Hu Yi
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hai-Yan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Jun Xu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
相 虹, 吴 泽, 陈 海, 朱 海, 常 明. [Levels of neutrophil extracellular traps in neonates with acute respiratory distress syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:357-361. [PMID: 37073839 PMCID: PMC10120336 DOI: 10.7499/j.issn.1008-8830.2210150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/02/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES To study the changes in cell free-DNA (cf-DNA), a marker of neutrophil extracellular traps (NETs), in neonates with acute respiratory distress syndrome (ARDS), and to evaluate its relationship with the severity and early diagnosis of ARDS. METHODS The neonates diagnosed with ARDS in the Affiliated Hospital of Jiangsu University from January 2021 to June 2022 were enrolled in the prospective study. The neonates were divided into mild, moderate, and severe ARDS groups based on the oxygen index (OI) (4≤OI<8, 8≤OI<16, and OI≥16, respectively). The control group was selected from jaundice neonates who were observed in the neonatal department of the hospital during the same period, and they had no pathological factors causing neonatal jaundice. Peripheral blood samples were collected on day 1, day 3, and day 7 after admission for the ARDS group, and on the day of admission for the control group. Serum cf-DNA levels were measured using a fluorescence enzyme-linked immunosorbent assay. Serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels were measured using enzyme-linked immunosorbent assay. A Pearson correlation analysis was used to evaluate the correlation of serum cf-DNA levels with serum IL-6 and TNF-α levels. RESULTS A total of 50 neonates were enrolled in the ARDS group, including 15 neonates with mild ARDS, 25 with moderate ARDS, and 10 with severe ARDS. Twenty-five neonates were enrolled in the control group. Compared with the control group, the serum levels of cf-DNA, IL-6, and TNF-α in all ARDS groups were significantly increased (P<0.05). Compared with the mild ARDS group, the serum levels of cf-DNA, IL-6, and TNF-α in the moderate and severe ARDS groups were significantly increased (P<0.05), and the increase was more significant in the severe ARDS group (P<0.05). The serum levels of cf-DNA, IL-6, and TNF-α in all ARDS groups were significantly increased on day 3 after admission and significantly decreased on day 7 after admission compared with those on day 1 after admission (P<0.05). The Pearson correlation analysis showed that there was a positive correlation between serum cf-DNA levels and IL-6 levels as well as TNF-α levels in 50 neonates with ARDS (P<0.05). CONCLUSIONS There is an excessive expression of NETs in neonates with ARDS, and dynamic monitoring of serum cf-DNA levels has certain clinical value in evaluating the severity and early diagnosis of ARDS in neonates.
Collapse
|
21
|
Crane JK, Catanzaro MN. Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs. Antibiotics (Basel) 2023; 12:antibiotics12040649. [PMID: 37107011 PMCID: PMC10135224 DOI: 10.3390/antibiotics12040649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
The SOS response is a conserved stress response pathway that is triggered by DNA damage in the bacterial cell. Activation of this pathway can, in turn, cause the rapid appearance of new mutations, sometimes called hypermutation. We compared the ability of various SOS-inducing drugs to trigger the expression of RecA, cause hypermutation, and produce elongation of bacteria. During this study, we discovered that these SOS phenotypes were accompanied by the release of large amounts of DNA into the extracellular medium. The release of DNA was accompanied by a form of bacterial aggregation in which the bacteria became tightly enmeshed in DNA. We hypothesize that DNA release triggered by SOS-inducing drugs could promote the horizontal transfer of antibiotic resistance genes by transformation or by conjugation.
Collapse
Affiliation(s)
- John K Crane
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Marissa N Catanzaro
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
22
|
Klinke M, Chaaban H, Boettcher M. The role of neutrophil extracellular traps in necrotizing enterocolitis. Front Pediatr 2023; 11:1121193. [PMID: 37009300 PMCID: PMC10050739 DOI: 10.3389/fped.2023.1121193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/27/2023] [Indexed: 04/04/2023] Open
Abstract
Necrotizing enterocolitis (NEC) continues to be one of the most common causes of mortality and morbidity in preterm infants. Although not fully elucidated, studies suggest that prematurity, formula feeding, imbalanced vascular supply, and altered bacterial colonization play major roles in the pathogenesis of NEC. NEC is characterized by increased cytokine release and leukocyte infiltration. Recent data from preterm infants and animal models of NEC suggest that neutrophil extracellular traps (NETs) are released in intestinal tissue. The contribution of NETs in the pathogenesis and/or prevention/treatment of this disease continues to be controversial. Here, we review the available data on NETs release in NEC in human patients and in different NEC models, highlighting their potential contribution to pathology and resolution of inflammation. Here, we review the available data on NETs release in NEC in human patients and the different NEC models, highlighting their potential contribution to pathology or resolution of inflammation.
Collapse
Affiliation(s)
- Michaela Klinke
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hala Chaaban
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
23
|
Wei X, Leng X, Li G, Wang R, Chi L, Sun D. Advances in research on the effectiveness and mechanism of Traditional Chinese Medicine formulas for colitis-associated colorectal cancer. Front Pharmacol 2023; 14:1120672. [PMID: 36909166 PMCID: PMC9995472 DOI: 10.3389/fphar.2023.1120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammatory bowel disease (IBD) can progress into colitis-associated colorectal cancer (CAC) through the inflammation-cancer sequence. Although the mechanism of carcinogenesis in IBD has not been fully elucidated, the existing research indicates that CAC may represent a fundamentally different pathogenesis pattern of colorectal cancer. At present, there is no proven safe and effective medication to prevent IBD cancer. In recent years, Chinese medicine extracts and Chinese medicine monomers have been the subject of numerous articles about the prevention and treatment of CAC, but their clinical application is still relatively limited. Traditional Chinese Medicine (TCM) formulas are widely applied in clinical practice. TCM formulas have demonstrated great potential in the prevention and treatment of CAC in recent years, although there is still a lack of review. Our work aimed to summarize the effects and potential mechanisms of TCM formulas for the prevention and treatment of CAC, point out the issues and limitations of the current research, and provide recommendations for the advancement of CAC research in the future. We discovered that TCM formulas regulated many malignant biological processes, such as inflammation-mediated oxidative stress, apoptosis, tumor microenvironment, and intestinal microecology imbalance in CAC, through a review of the articles published in databases such as PubMed, SCOPUS, Web of Science, Embase, and CNKI. Several major signal transduction pathways, including NF-κB, STAT3, Wnt/β-catenin, HIF-1α, and Nrf2, were engaged. TCM formula may be a promising treatment candidate to control the colitis-cancer transformation, however further high-quality research is required.
Collapse
Affiliation(s)
- Xiunan Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Leng
- Weifang Traditional Chinese Hospital, Weifang, China
| | - Gongyi Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruting Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Honda M, Kadohisa M, Yoshii D, Komohara Y, Hibi T. Intravital imaging of immune responses in intestinal inflammation. Inflamm Regen 2023; 43:9. [PMID: 36737792 PMCID: PMC9896837 DOI: 10.1186/s41232-023-00262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
To date, many kinds of immune cells have been identified, but their precise roles in intestinal immunity remain unclear. Understanding the in vivo behavior of these immune cells and their function in gastrointestinal inflammation, including colitis, inflammatory bowel disease, ischemia-reperfusion injury, and neutrophil extracellular traps, is critical for gastrointestinal research to proceed to the next step. Additionally, understanding the immune responses involved in gastrointestinal tumors and tissue repair is becoming increasingly important for the elucidation of disease mechanisms that have been unknown. In recent years, the application of intravital microscopy in gastrointestinal research has provided novel insights into the mechanisms of intestine-specific events including innate and adaptive immunities. In this review, we focus on the emerging role of intravital imaging in gastrointestinal research and describe how to observe the intestines and immune cells using intravital microscopy. Additionally, we outline novel findings obtained by this new technique.
Collapse
Affiliation(s)
- Masaki Honda
- grid.274841.c0000 0001 0660 6749Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556 Japan
| | - Masashi Kadohisa
- grid.274841.c0000 0001 0660 6749Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556 Japan
| | - Daiki Yoshii
- grid.411152.20000 0004 0407 1295Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Komohara
- grid.274841.c0000 0001 0660 6749Department of Cell Pathology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Taizo Hibi
- grid.274841.c0000 0001 0660 6749Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556 Japan
| |
Collapse
|
25
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci 2023; 24:ijms24021526. [PMID: 36675038 PMCID: PMC9863490 DOI: 10.3390/ijms24021526] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intestinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells (DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cytokines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens to activate the adaptive immune response. IICs exert important functions that promote or ameliorate the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive understanding of the mechanisms underlying these clinical manifestations will be important for developing therapies targeting the innate immune system in IBD patients. This review examines the complex roles of and interactions among IICs, and their interactions with other immune and non-immune cells in homeostasis and pathological conditions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Hector Sánchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
26
|
Zhang Y, Song J, Zhang Y, Li T, Peng J, Zhou H, Zong Z. Emerging Role of Neutrophil Extracellular Traps in Gastrointestinal Tumors: A Narrative Review. Int J Mol Sci 2022; 24:334. [PMID: 36613779 PMCID: PMC9820455 DOI: 10.3390/ijms24010334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibrous networks consisting of depolymerized chromatin DNA skeletons with a variety of antimicrobial proteins. They are secreted by activated neutrophils and play key roles in host defense and immune responses. Gastrointestinal (GI) malignancies are globally known for their high mortality and morbidity. Increasing research suggests that NETs contribute to the progression and metastasis of digestive tract tumors, among them gastric, colon, liver, and pancreatic cancers. This article explores the formation of NETs and reviews the role that NETs play in the gastrointestinal oncologic microenvironment, tumor proliferation and metastasis, tumor-related thrombosis, and surgical stress. At the same time, we analyze the qualitative and quantitative detection methods of NETs in recent years and found that NETs are specific markers of coronavirus disease 2019 (COVID-19). Then, we explore the possibility of NET inhibitors for the treatment of digestive tract tumor diseases to provide a new, efficient, and safe solution for the future therapy of gastrointestinal tumors.
Collapse
Affiliation(s)
- Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- HuanKui Academy, Nanchang University, Nanchang 330006, China
| | - Jingjing Song
- Nanchang University School of Ophthalmology & Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiwei Zhang
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Haonan Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
| |
Collapse
|