1
|
Dutta S, Krishna S, Vishwakarma AK, Mishra S, Khandai S, Goswami D, Kumari S, Ali N, Verma AK, Singh K, Das A, Anvikar AR, Bharti PK. Therapeutic efficacy of artemether-lumefantrine in North-Eastern states of India and prevalence of drug resistance-associated molecular markers. Malar J 2025; 24:106. [PMID: 40170104 PMCID: PMC11959953 DOI: 10.1186/s12936-025-05338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Plasmodium falciparum is the main cause of malaria in North-Eastern (NE) states of India. Artemether-lumefantrine (AL) was introduced as first-line therapy against uncomplicated P. falciparum cases in 2013 after the emergence of resistance to sulfadoxine-pyrimethamine. The aim of the study was to assess the therapeutic efficacy of AL and status of molecular markers in the circulating parasites. METHODS Therapeutic efficacy of AL was assessed in NE states as per World Health Organization guidelines. Patients with P. falciparum positive peripheral blood smear were enrolled and treated with AL and clinical and parasitological parameters were monitored over a 28-day follow-up period. Furthermore, the pfmdr1, pfdhfr, pfdhps and pfk13 genes were amplified and sequenced for mutation analysis. RESULTS A total of 231 cases were enrolled and therapeutic efficacy was determined in 215 (93.1%) patients who completed their 28 days' follow-up while 10 patients withdrew and 6 were lost to follow up during study. Overall 99.5% and 98.6% of adequate clinical and parasitological response was observed with and without PCR correction, respectively. Only three cases (1.4%) of late parasitological failure were observed in Mizoram site. One case of recrudescence and two cases of reinfection were detected by msp1 and msp2 genotyping. Mutation analysis showed the 15.8%, 100%, 90.5% mutants in pfmdr1, pfdhfr and pfdhps gene respectively and three non-synonymous mutations were also found in pfk13gene. CONCLUSIONS This study reports that AL is efficacious against uncomplicated P. falciparum cases in NE states of India. However, prevalence of mutations in molecular marker associated with anti-malarial resistance (pfmdr1, pfdhfr, pfdhps and pfk13) gene indicate possible emergence of drug resistance. This is to underline the fact that the drug is efficacious for now, but rising mutations indicate that continuous monitoring is essential for effective treatment regime.
Collapse
Affiliation(s)
- Shreelekha Dutta
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Sri Krishna
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | | | - Sweta Mishra
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Sushrikanta Khandai
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Disphikha Goswami
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Soni Kumari
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Nazia Ali
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Anil Kumar Verma
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Kuldeep Singh
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Aparup Das
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Anup R Anvikar
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | |
Collapse
|
2
|
Echodu R, Oyet WS, Iwiru T, Apili F, Lutwama JJ, Opiyo EA, Otim O. Household predictors of malaria episode in northern Uganda: its implication for future malaria control. BMC Public Health 2025; 25:974. [PMID: 40075381 PMCID: PMC11905491 DOI: 10.1186/s12889-025-22175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Uses of indoor residual spraying (IRS), long-lasting insecticidal nets (LLINS) and treatment with artemisinin-based combination therapy (ACT) are greatly promoted in the northern part of Uganda as mitigating strategies for malaria episodes. Unfortunately, the region remains the fourth highest malaria burden in Uganda with a prevalence of 12%. This study assesses household predictors of malaria episodes in northern Uganda and their impact on malaria episodes at the household level. METHODS A cross-sectional study was conducted in four districts of Gulu, Oyam, Kitgum and Agago covering sixteen villages in northern Uganda. Data was collected through a pre-tested structured questionnaire and systematically coded for analysis using R software. RESULTS In total, 193 households were surveyed with 112 (58%) of them headed by women and 605 individuals were declared to have spent the night before the interview in the 193 households. On average, there were at least two-bed nets (317/159) per household and a total of 460 individuals out of 535 (86%) spent the night before the interview under a bed net. The usage of bed nets in the study area overall was 86% while malaria incidence was 50% higher in children than in adults. Hierarchical clustering on principal components (HCPC) categorizes households in northern Uganda into three types: 1) households that use bed nets and sleep in houses sprayed with insecticides; 2) households that use bed nets but no indoor residual spraying with insecticides and 3) households that have no bed nets and no indoor residual spraying. When given a choice between IRS and treated bed nets, 1 in 3 households preferred treated bed nets. At the same time, data suggests that bed nets were perceived as unnecessary once the IRS was applied. If true, the driving force for spraying insecticides indoors then becomes the lack of a bed net. CONCLUSIONS Malaria episodes were strongly related to lack of bed nets or use thereof, and directly linked to the number of individuals in a household. Children were prone to malaria more than adults by a ratio of 2:1. The three categories of households in northern Uganda as revealed by HCPC provide an opportunity to tailor-make preventive/intervention malaria messages to fit the individual household clusters.
Collapse
Affiliation(s)
- Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, P. O. Box 166, Gulu City, Uganda.
- Gulu University Multifunctional Research Laboratories, P. O. Box 166, Gulu City, Uganda.
| | - William Sam Oyet
- Department of Biology, Faculty of Science, Gulu University, P. O. Box 166, Gulu City, Uganda
| | - Tereza Iwiru
- Gulu University Multifunctional Research Laboratories, P. O. Box 166, Gulu City, Uganda
| | - Felister Apili
- Department of Midwifery, Faculty of Nursing and Midwifery, Lira University, P. O. Box 1035, Lira City, Uganda
| | - Julius Julian Lutwama
- Department of Arbovirology, Emerging and Re-Emerging Infectious Diseases, Uganda Virus Research Institute, P. O. Box 49, Entebbe, Uganda
| | - Elizabeth Auma Opiyo
- Department of Biology, Faculty of Science, Gulu University, P. O. Box 166, Gulu City, Uganda
| | - Ochan Otim
- Department of Health Sciences and Sciences, University of California, City of Los Angeles, CA, USA
- Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu City, Uganda
| |
Collapse
|
3
|
Millogo KS, Kaboré B, Sondo P, Compaoré EW, Kouevi AFC, Kambou SAE, Rouamba T, Kazienga A, Ilboudo H, Tahita MC, Bouda I, Derra K, Bamba S, Tinto H. Trend of N86Y and Y184F Mutations in Pfmdr1 Gene in Children Under Seasonal Malaria Chemoprevention Coverage in Nanoro, Burkina Faso. Acta Parasitol 2024; 69:1967-1976. [PMID: 39356425 DOI: 10.1007/s11686-024-00923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Seasonal malaria chemoprevention (SMC) is an effective malaria preventive intervention in sub-Sahara Africa. However, as with any other drug-based intervention, the large-scale deployment of this strategy could lead to Amodiaquine plus Sulfadoxine-Pyrimethamine (AQSP) drug pressure on the circulating parasites population with selection for specific alleles that could compromise the impact of the intervention in the near future. This study aimed to assess the distribution of the Pfmdr1 mutation involved in resistance to AQ before and after the annual campaign of SMC in the health district of Nanoro. METHODS Randomly selected dried blood spots collected prior (n = 100) and after (n = 100) the 2021 SMC campaign were used for the detection of mutation in codons 86 and 184 of the Pfmdr1 gene using a nested PCR with restriction fragment length polymorphism approach. RESULTS No significant change in the prevalence of Pfmdr1 N86Y mutation was observed before and after the SMC campaign (p = 0.28). The mutant allele 86Y was observed at low prevalences, representing only 2.17% and 6.12%, respectively, before and after the SMC campaign. Patients harboring the mutant Pfmdr1 86Y allele exhibited higher parasite densities compared to patients with the wild-type Pfmdr1 N86 allele (p = 0.04). A significant increase in the prevalence of the mutant allele 184 F was observed in the period before and after the SMC campaign (p = 0.03). CONCLUSION This selective pressure needs to be closely monitored in order to preserve the efficacy of this intervention for a long-term period in Burkina Faso.
Collapse
Affiliation(s)
- Kié Solange Millogo
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso.
| | - Bérenger Kaboré
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Paul Sondo
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Eulalie W Compaoré
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Amélé Fifi Chantal Kouevi
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Sié A Elisée Kambou
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Adama Kazienga
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Hamidou Ilboudo
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Marc Christian Tahita
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Ismaila Bouda
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Karim Derra
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Sanata Bamba
- Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, Bobo Dioulasso,, Burkina Faso
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé (IRSS)/ Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| |
Collapse
|
4
|
Pierreux J, Bottieau E, Florence E, Maniewski U, Bruggemans A, Malotaux J, Martin C, Cox J, Konopnicki D, Guetens P, Verschueren J, Coppens J, Van Esbroeck M, Mutsaers M, Rosanas-Urgell A. Failure of artemether-lumefantrine therapy in travellers returning to Belgium with Plasmodium falciparum malaria: an observational case series with genomic analysis. J Travel Med 2024; 31:taad165. [PMID: 38157311 DOI: 10.1093/jtm/taad165] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Failure of artemisinin-based combination therapy is increasingly reported in patients with Plasmodium falciparum malaria in sub-Saharan Africa. We aimed to describe the clinical and genomic characteristics of recent cases of P. falciparum malaria failing artemether-lumefantrine in Belgium. METHODS Travel-related cases of malaria confirmed at the national reference laboratory of the Institute of Tropical Medicine, Antwerp, Belgium, were reviewed. All cases for which attending clinicians reported persistence (beyond Day 3 post-treatment initiation, i.e. early failure) or recrudescence (from Day 7 to 42, i.e. late failure) of P. falciparum parasites despite adequate drug intake were analysed. Both initial and persistent/recurrent samples were submitted to next generation sequencing to investigate resistance-conferring mutations. RESULTS From July 2022 to June 2023, eight P. falciparum cases of failure with artemether-lumefantrine therapy were reported (early failure = 1; late failure = 7). All travellers were returning from sub-Saharan Africa, most (6/8) after a trip to visit friends and relatives. PfKelch13 (PF3D7_1343700) mutations associated with resistance to artemisinin were found in two travellers returning from East Africa, including the validated marker R561H in the patient with early failure and the candidate marker A675V in a patient with late failure. Additional mutations were detected that could contribute to decreased susceptibility to artemisinin in another three cases, lumefantrine in six cases and proguanil in all eight participants. Various regimens were used to treat the persistent/recrudescent cases, with favourable outcome. CONCLUSION Within a 12-month period, we investigated eight travellers returning from sub-Saharan Africa with P. falciparum malaria and in whom artemether-lumefantrine failure was documented. Mutations conferring resistance to antimalarials were found in all analysed blood samples, especially against lumefantrine and proguanil, but also artemisinin. There is a pressing need for systematic genomic surveillance of resistance to antimalarials in international travellers with P. falciparum malaria, especially those experiencing treatment failure.
Collapse
Affiliation(s)
- Jan Pierreux
- Infectious Diseases Department, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Eric Florence
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Antwerp, Antwerp 2000, Belgium
| | - Ula Maniewski
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Anne Bruggemans
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Jiska Malotaux
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent 9000, Belgium
| | - Charlotte Martin
- Infectious Diseases Department, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Janneke Cox
- Department of Infectious Diseases and Immunity, Jessa Hospital, Hasselt 3500, Belgium
- Faculty of Medicine and Life Sciences, University of Hasselt, Hasselt 3500, Belgium
| | - Deborah Konopnicki
- Infectious Diseases Department, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Pieter Guetens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Jacob Verschueren
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Jasmine Coppens
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Mathijs Mutsaers
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| |
Collapse
|
5
|
Coonahan E, Gage H, Chen D, Noormahomed EV, Buene TP, Mendes de Sousa I, Akrami K, Chambal L, Schooley RT, Winzeler EA, Cowell AN. Whole-genome surveillance identifies markers of Plasmodium falciparum drug resistance and novel genomic regions under selection in Mozambique. mBio 2023; 14:e0176823. [PMID: 37750720 PMCID: PMC10653802 DOI: 10.1128/mbio.01768-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Malaria is a devastating disease caused by Plasmodium parasites. The evolution of parasite drug resistance continues to hamper progress toward malaria elimination, and despite extensive efforts to control malaria, it remains a leading cause of death in Mozambique and other countries in the region. The development of successful vaccines and identification of molecular markers to track drug efficacy are essential for managing the disease burden. We present an analysis of the parasite genome in Mozambique, a country with one of the highest malaria burdens globally and limited available genomic data, revealing current selection pressure. We contribute additional evidence to limited prior studies supporting the effectiveness of SWGA in producing reliable genomic data from complex clinical samples. Our results provide the identity of genomic loci that may be associated with current antimalarial drug use, including artemisinin and lumefantrine, and reveal selection pressure predicted to compromise the efficacy of current vaccine candidates.
Collapse
Affiliation(s)
- Erin Coonahan
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Hunter Gage
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Daisy Chen
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Emilia Virginia Noormahomed
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Titos Paulo Buene
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Irina Mendes de Sousa
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Biological Sciences Department, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Kevan Akrami
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucia Chambal
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Department of Internal Medicine, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Maputo Central Hospital, Maputo, Mozambique
| | - Robert T. Schooley
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Annie N. Cowell
- School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Tadele G, Jawara A, Oboh M, Oriero E, Dugassa S, Amambua-Ngwa A, Golassa L. Clinical isolates of uncomplicated falciparum malaria from high and low malaria transmission areas show distinct pfcrt and pfmdr1 polymorphisms in western Ethiopia. Malar J 2023; 22:171. [PMID: 37270589 DOI: 10.1186/s12936-023-04602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/20/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.
Collapse
Affiliation(s)
- Geletta Tadele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aminata Jawara
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Mary Oboh
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Eniyou Oriero
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
7
|
Leski TA, Taitt CR, Colston SM, Bangura U, Holtz A, Yasuda CY, Reynolds ND, Lahai J, Lamin JM, Baio V, Ansumana R, Stenger DA, Vora GJ. Prevalence of malaria resistance-associated mutations in Plasmodium falciparum circulating in 2017–2018, Bo, Sierra Leone. Front Microbiol 2022; 13:1059695. [DOI: 10.3389/fmicb.2022.1059695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionIn spite of promising medical, sociological, and engineering strategies and interventions to reduce the burden of disease, malaria remains a source of significant morbidity and mortality, especially among children in sub-Saharan Africa. In particular, progress in the development and administration of chemotherapeutic agents is threatened by evolved resistance to most of the antimalarials currently in use, including artemisinins.MethodsThis study analyzed the prevalence of mutations associated with antimalarial resistance in Plasmodium falciparum from 95 clinical samples collected from individuals with clinically confirmed malaria at a hospital in Bo, Sierra Leone between May 2017 and December 2018. The combination of polymerase chain reaction amplification and subsequent high throughput DNA sequencing was used to determine the presence of resistance-associated mutations in five P. falciparum genes – pfcrt, pfmdr1, pfdhfr, pfdhps and pfkelch13. The geographic origin of parasites was assigned using mitochondrial sequences.ResultsRelevant mutations were detected in the pfcrt (22%), pfmdr1 (>58%), pfdhfr (100%) and pfdhps (>80%) genes while no resistance-associated mutations were found in the pfkelch13 gene. The mitochondrial barcodes were consistent with a West African parasite origin with one exception indicating an isolate imported from East Africa.DiscussionDetection of the pfmdr1 NFSND haplotype in 50% of the samples indicated the increasing prevalence of strains with elevated tolerance to artemeter + lumefantrine (AL) threatening the combination currently used to treat uncomplicated malaria in Sierra Leone. The frequency of mutations linked to resistance to antifolates suggests widespread resistance to the drug combination used for intermittent preventive treatment during pregnancy.
Collapse
|
8
|
Al-Mekhlafi HM, Madkhali AM, Abdulhaq AA, Atroosh WM, Ghzwani AH, Zain KA, Ghailan KY, Hamali HA, Mobarki AA, Alharazi TH, Eisa ZM, Lau YL. Polymorphism analysis of pfmdr1 gene in Plasmodium falciparum isolates 11 years post-adoption of artemisinin-based combination therapy in Saudi Arabia. Sci Rep 2022; 12:517. [PMID: 35017593 PMCID: PMC8752599 DOI: 10.1038/s41598-021-04450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
A total of 227 Plasmodium falciparum isolates from Jazan region, southwestern Saudi Arabia were amplified for the P. falciparum multi-drug resistance 1 (pfmdr1) gene to detect point mutations 11 years after the introduction of artemisinin-based combination therapy (ACT) in Saudi Arabia. The pfmdr1 86Y mutation was found in 11.5% (26/227) of the isolates while the N86 wild allele was detected in 88.5%. Moreover, 184F point mutations dominated (86.3%) the instances of pfmdr1 polymorphism while no mutation was observed at codons 1034, 1042 and 1246. Three pfmdr1 haplotypes were identified, NFSND (74.9%), NYSND (13.7%) and YFSND (11.4%). Associations of the prevalence of 86Y mutation and YFSND haplotype with participants' nationality, residency and parasitaemia level were found to be significant (P < 0.05). The findings revealed significant decline in the prevalence of the pfmdr1 86Y mutation in P. falciparum isolates from Jazan region over a decade after the implementation of ACT treatment. Moreover, the high prevalence of the NFSND haplotype might be indicative of the potential emergence of CQ-sensitive but artemether-lumefantrine-resistant P. falciparum strains since the adoption of ACT. Therefore, continuous monitoring of the molecular markers of antimalarial drug resistance in Jazan region is highly recommended.
Collapse
Affiliation(s)
- Hesham M Al-Mekhlafi
- Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia.
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia.
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | - Aymen M Madkhali
- Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia.
| | - Ahmed A Abdulhaq
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University of Aden, Aden, Yemen
| | | | - Khalid Ammash Zain
- Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Khalid Y Ghailan
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia
- Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Hassan A Hamali
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Abdullah A Mobarki
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Talal H Alharazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Zaki M Eisa
- Saudi Centre for Disease Prevention and Control, Ministry of Health, Jazan, Kingdom of Saudi Arabia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Tuedom AGB, Sarah-Matio EM, Moukoko CEE, Feufack-Donfack BL, Maffo CN, Bayibeki AN, Awono-Ambene HP, Ayong L, Berry A, Abate L, Morlais I, Nsango SE. Antimalarial drug resistance in the Central and Adamawa regions of Cameroon: Prevalence of mutations in P. falciparum crt, Pfmdr1, Pfdhfr and Pfdhps genes. PLoS One 2021; 16:e0256343. [PMID: 34411157 PMCID: PMC8376100 DOI: 10.1371/journal.pone.0256343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
The spread of Plasmodium falciparum resistant parasites remains one of the major challenges for malaria control and elimination in Sub Saharan Africa. Monitoring of molecular markers conferring resistance to different antimalarials is important to track the spread of resistant parasites and to optimize the therapeutic lifespan of current drugs. This study aimed to evaluate the prevalence of known mutations in the drug resistance genes Pfcrt, Pfmdr1, Pfdhfr and Pfdhps in two different epidemiological settings in Cameroon. Dried blood spots collected in 2018 and 2019 from asymptomatic individuals were used for DNA extraction and then the Plasmodium infection status was determined byPCR. Detection of SNPs was performed by nested PCR followed by allele-specific restriction analysis (ASRA). The prevalence of each genotype was compared between sites using the Chi square and Fisher's exact tests. A high prevalence of the Pfcrt K76 wild type allele was found in both sites (88.5 and 62.29% respectively; P< 0,0001). The prevalence of Pfmdr1 mutations 86Y and 1246Y was respectively 55.83 and 1.45% in Mfou and 45.87 and 5.97% in Tibati, with significant difference between the studied areas (P<0.0001). Overall, the Pfdhfr triple-mutant genotype (51I/59R/108N) was highly prevalent (> 96%), however no SNP was detected at codon 164. In Pfdhps, the prevalence of the 437G mutation reached (90%) and was at higher frequency in Mfou (P< 0.0001). Overall, the Pfdhps mutations 540E and 581G were less common (0.33 and 3.26%, respectively). The quadruple resistant genotype (Pfdhfr 51I/59R/108N+Pfdhp437G) was found almost 90% of the samples. The wild-type genotype (Pfdhfr N51/C59/S108/164I+Pfdhps A437/K540/A581) was never identified and the sextuple mutant (Pfdhfr 51I/59R/108N+Pfdhp437G/540E/581G), kwon as super resistant appeared in two samples from Tibati. These findings demonstrate declining trends in the prevalence of mutations conferring resistance to 4-aminoquinolines, especially to chloroquine. However, a high level of mutations in P. falciparum genes related to SP resistance was detected and this raises concerns about the future efficacy of IPTp-SP and SMC in Cameroon.
Collapse
Affiliation(s)
- Aline Gaelle Bouopda Tuedom
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Elangwe Milo Sarah-Matio
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Brice Lionel Feufack-Donfack
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- CNRS UPR9022, INSERM U963, Strasbourg, France
| | - Christelle Ngou Maffo
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Albert Ngano Bayibeki
- Université Catholique d’Afrique Centrale, Yaoundé-Campus Messa Cameroun, Yaoundé, Cameroun
| | - Hermann Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroun
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse et UMR152 UPS-IRD, Université de Toulouse, Toulouse, France
| | - Luc Abate
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Isabelle Morlais
- UMR MIVEGEC, IRD, CNRS, Institut de Recherche pour le Développement, Université Montpellier, Montpellier Cedex, France
| | - Sandrine Eveline Nsango
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| |
Collapse
|
10
|
Aninagyei E, Tetteh CD, Oppong M, Boye A, Acheampong DO. Efficacy of Artemether-Lumefantrine on various Plasmodium falciparum Kelch 13 and Pfmdr1 genes isolated in Ghana. Parasite Epidemiol Control 2020; 11:e00190. [PMID: 33163636 PMCID: PMC7607505 DOI: 10.1016/j.parepi.2020.e00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction Artemether-Lumefantrine (A-L) remains the drug of choice for the treatment of uncomplicated malaria in Ghana. However, the pharmaco-activity of A-L has not been assessed on various Plasmodium falciparum Kelch 13 and Pfmdr1 genes. Therefore, this study sought to determine the therapeutic efficacy of A-L on P. falciparum parasites isolated from Ghana. Methods The clinical study was done in Ga West Municipality, Ghana, where 78 uncomplicated malaria patients were recruited with prior consent. The patients were treated orally with A-L according to national treatment guidelines. Baseline parasitaemia was determined before treatment and 8-hourly parasitaemia posttreatment were determined till initial clearance of parasitaemia and at days 7, 14, 21, and 28. Kelch 13 and Pfmdr1 genes were genotyped by sequencing using baseline samples. Parasite clearance characteristics were determined using Parasite Clearance Estimator beta 0.9 application. Results Five Kelch 13 (F446I, S466N, R539I, A578S, and A676S) and three Pfmdr1 mutations (N86Y, Y184F and D1246Y) were identified in 78 infected samples. About 8% of the samples contained two Pfmdr1 double mutations (N86Y & D1246Y and Y184F & N86Y). Additionally, three samples (3.8%) were found to contain both Kelch 13 mutations and Pfmdr1 wild type genes. In all patients, parasitaemia persisted within the first 24 h of A-L therapy. However, at hour 40, only two patients were parasitaemic while all patients were aparasitaemic at hour 48. The genotypic profiles of the two persistent parasites at hour 40 were F446I and D1246Y, and R539I, Y184F, and N86Y. The slope half-life of the former was 6.4 h while the latter was 6.9 h and their respective PCT99 were 47.9 h and 49.2 h as well as a clearance rate constants of 0.109 and 0.092 respectively. Conclusion This study reports the effectiveness of A-L on various P. falciparum mutant alleles. However, continuous surveillance of Kelch 13 mutations and Pfmdr1 gene in Ghana and regular assessment of the therapeutic efficacy of A-L and other artemisinin derivatives is recommended.
Collapse
Key Words
- A, alanine
- A-L, Artemether-Lumefantrine
- ACT, Artemisinin-based Combination Therapy
- AS-AQ, Artesunate-Amodiaquine
- Amino acids:, A-alanine
- Artemether-Lumefantrine
- C, cysteine
- CRC, clearance rate constant
- D, aspartic acid
- DHAP, Dihydroartemisinin-Piperaquine
- F, phenylalanine
- G, glycine
- G-6-PD, Glucose-6-phosphate dehydrogenase
- GHS, Ghana Health Service
- Ga West Municipal
- Ghana
- I, isoleucine
- Kelch 13 gene mutations
- N, asparagine
- PCTs, parasite clearance times
- Parasite clearance characteristics
- Pfmdr1 genes
- Pfmdr1, Plasmodium multidrug resistance gene
- SNPs, Single nucleotide polymorphisms
- V, valine
- WHO, World Health Organization
- Y, tyrosine
- dsDNA, double stranded DNA
- sWGA, selective whole genome amplification
Collapse
Affiliation(s)
- Enoch Aninagyei
- University of Health and Allied Sciences, School of Basic and Biomedical Sciences, Department of Biomedical Sciences, PMB 31, Ho-Volta Region, Ghana
- Corresponding authors.
| | - Comfort Dede Tetteh
- Ghana Health Service, Municipal Health Directorate, Ga West Municipal, Amasaman, Ghana
| | - Martin Oppong
- Ghana Health Service, Municipal Health Directorate, Ga West Municipal, Amasaman, Ghana
| | - Alex Boye
- University of Cape Coast, School of Allied Health Sciences, Department of Medical Laboratory Science, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- University of Cape Coast, School of Allied Health Sciences, Department of Biomedical Sciences, Cape Coast, Ghana
- Corresponding authors.
| |
Collapse
|
11
|
Sharma M, Prasher P. An epigrammatic status of the ' azole'-based antimalarial drugs. RSC Med Chem 2020; 11:184-211. [PMID: 33479627 PMCID: PMC7536834 DOI: 10.1039/c9md00479c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
The development of multidrug resistance in the malarial parasite has sabotaged majority of the eradication efforts by restraining the inhibition profile of first line as well as second line antimalarial drugs, thus necessitating the development of novel pharmaceutics constructed on appropriate scaffolds with superior potency against the drug-resistant and drug-susceptible Plasmodium parasite. Over the past decades, the infectious malarial parasite has developed resistance against most of the contemporary therapeutics, thus necessitating the rational development of novel approaches principally focused on MDR malaria. This review presents an epigrammatic collation of the epidemiology and the contemporary antimalarial therapeutics based on the 'azole' motif.
Collapse
Affiliation(s)
- Mousmee Sharma
- Department of Chemistry , Uttaranchal University , Dehradun 248007 , India
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| | - Parteek Prasher
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India . ;
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| |
Collapse
|