1
|
Khulan B, Ye K, Shi MK, Waldman S, Marsh A, Siddiqui T, Okorozo A, Desai A, Patel D, Dobkin J, Sadoughi A, Shah C, Gera S, Peter Y, Liao W, Vijg J, Spivack SD. Normal bronchial field basal cells show persistent methylome-wide impact of tobacco smoking, including in known cancer genes. Epigenetics 2025; 20:2466382. [PMID: 39980243 PMCID: PMC11849931 DOI: 10.1080/15592294.2025.2466382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Lung carcinogenesis is causally linked to cigarette smoking, in part by epigenetic changes. We tested whether accumulated epigenetic change in smokers is apparent in bronchial basal cells as cells of origin of squamous cell carcinoma. Using an EM-seq platform covering 53.8 million CpGs (96% of the entire genome) at an average of 7.5 sequencing reads per CpG site at a single base resolution, we evaluated cytology-normal basal cells bronchoscopically brushed from the in situ tobacco smoke-exposed 'bronchial epithelial field' and isolated by short-term primary culture from 54 human subjects. We found that mean methylation was globally lower in ever (former and current) smokers versus never smokers (p = 0.0013) across promoters, CpG shores, exons, introns, 3'-UTRs, and intergenic regions, but not in CpG islands. Among 6mers with dinucleotides flanking CpG, those containing CGCG showed no effect from smoking, while those flanked with TT and AA displayed the strongest effects. At the gene level, smoking-related differences in methylation level were observed in CDKL1, ARTN, EDC3, CYP1B1, FAM131A, and MAGI2. Among candidate cancer genes, smoking reduced the methylation level in KRAS, ROS1, CDKN1A, CHRNB4, and CADM1. We conclude that smoking reduces long-term epigenome-wide methylation in bronchial stem cells, is impacted by the flanking sequence, and persists indefinitely beyond smoking cessation.
Collapse
Affiliation(s)
- Batbayar Khulan
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miao Kevin Shi
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Spencer Waldman
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ava Marsh
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Taha Siddiqui
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aham Okorozo
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aditi Desai
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dhruv Patel
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jay Dobkin
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ali Sadoughi
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chirag Shah
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shweta Gera
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yakov Peter
- Department of Biology, Lander College, Touro University, NY, USA
| | - Will Liao
- New York Genome Center, New York, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simon D. Spivack
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Lee JE, Cho S, So MH, Lee HY. DNA methylation-based semen age prediction using the markers identified in Koreans and Europeans. Forensic Sci Int Genet 2025; 77:103243. [PMID: 40023960 DOI: 10.1016/j.fsigen.2025.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
In the forensic field, sexual assaults have consistently been the important issue, with semen frequently serving as the primary evidence. When the suspect is unidentified, estimating the perpetrator's age using investigating semen can provide important information. The VISAGE consortium conducted research on the semen age prediction focused on European semen samples, but the age prediction model has remained undisclosed. Additionally, several studies have reported methylation differences across populations, indicating that the European semen age prediction model might not be broadly applicable to other groups. A study did explore semen age prediction in Koreans using Illumina's Infinium Methylation450K BeadChip array, however recent developments in technology could enhance this approach. To address this, we conducted a study on Korean males aged 18-70 years. We initially analyzed 49 samples utilizing Illumina's Infinium MethylationEPIC BeadChip array to identify age-related CpG sites. From this analysis, we identified 9 age-related CpG markers, excluding one due to difficulties in locus-specific analysis. As a result, we used 11 markers including 8 newly identified CpGs from the EPIC array and 3 CpG markers from previous research utilizing the SNaPshot assay. Furthermore, we incorporated 13 CpG markers from the European study to analyze a total of 159 semen samples using the Illumina Nextera MPS system. This approach enabled us to test age-related markers identified in Europeans within the Korean population and to construct a more accurate age prediction model using markers from both Korean and European sources.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sohee Cho
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Moon Hyun So
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea; Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Zhao Z, Bhardwaj M, Fan Z, Li X, Schrotz‐King P, Brenner H. Smoking-independent DNA methylation markers for lung cancer risk: External validation in a large population-based cohort study. Cancer Sci 2025; 116:775-782. [PMID: 39624886 PMCID: PMC11875777 DOI: 10.1111/cas.16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 03/05/2025] Open
Abstract
Smoking-associated epigenetic changes have been linked to lung cancer (LC) risk; however, the role of epigenetic alterations independent of smoking is yet to be fully understood. This study aimed to validate 16 previously reported CpG sites that are independent of smoking yet associated with LC risk within a population-based prospective cohort. Using the Infinium Methylation EPIC BeadChip kit or the Infinium HumanMethylation450K BeadChip Assay, DNA methylation (DNAm) in whole blood was assessed in four subsets (n = 736, 1027, 997, and 312) of a population-based cohort from Germany. The DNAm levels of the 16 smoking-independent CpG sites were analyzed. Hazard ratios (HRs) and their 95% confidence intervals (95% CIs) were calculated to assess associations of DNAm at the 16 CpG sites with LC risk, adjusting for multiple covariates, including smoking habits and a smoking-associated DNAm score. Over 17 years of follow-up, a total of 199 LCs were observed. Among the 16 CpGs, cg02211449 showed a negative association with LC risk (HR [95% CI] per SD increase, = 0.70 [0.63-0.78]), while cg11385536 (1.04 [1.01-1.07]), cg09736286 (1.64 [1.10-2.44]), cg19907023 (1.64 [1.01-2.66]), and cg22032485 (1.52 [1.04-2.21]) displayed positive associations with LC risk. Five of the 16 suggested smoking-independent CpGs could be externally validated as predictors of LC risk. Further research should address their potential contribution to enhanced LC risk stratification.
Collapse
Affiliation(s)
- Zitong Zhao
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Medical Faculty HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Megha Bhardwaj
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Ziwen Fan
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Xianzhe Li
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Medical Faculty HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Petra Schrotz‐King
- NCT Heidelberg, National Center for Tumor Diseases (NCT)A partnership between DKFZ and University HospitalHeidelbergGermany
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- NCT Heidelberg, National Center for Tumor Diseases (NCT)A partnership between DKFZ and University HospitalHeidelbergGermany
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
4
|
Singh K, Jin Y, Hu MW, Palazzo I, Cano M, Hoang T, Bhutto I, Wang S, Sinha D, Blackshaw S, Qian J, Handa JT. Cigarette smoke and biological age induce degenerative heterogeneity in retinal pigment epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635096. [PMID: 39974955 PMCID: PMC11838378 DOI: 10.1101/2025.01.27.635096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Environmental exposure such as cigarette smoke induces epigenetic changes that can induce degenerative heterogeneity and accelerate aging. In early age-related macular degeneration (AMD), the leading worldwide cause of blindness among the elderly, retinal pigment epithelial (RPE) cell heterogeneity is a key change. Since smoking is the strongest environmental risk factor for AMD, we hypothesized that cigarette smoke induces degenerative RPE heterogeneity through epigenetic changes that are distinct from aging, and that with aging, the RPE becomes vulnerable to cigarette smoke insult. We administered cigarette smoke condensate (CSC) intravitreally to young and aged mice and performed snRNA-seq and snATAC-seq on the RPE/choroid. This analysis identified separate cell clusters corresponding to healthy and abnormal, dedifferentiated RPE in both aged vehicle-treated and young CSC-treated mice. The dedifferentiated RPE were characterized by a global decrease in chromatin accessibility and decreased expression of genes in functional categories that were linked to hallmarks of aging. Notably, young, dedifferentiated RPE also exhibited a compensatory upregulation of hallmarks of aging-related genes, specifically those related to mitochondrial function and proteostasis. In contrast, aged dedifferentiated RPE did not express these compensatory changes, and did not survive CSC treatment, as experimentally verified with TUNEL labeling. These changes are relevant to early AMD because we identified through scRNA-seq, similar dedifferentiated and healthy macular RPE clusters in a donor who smoked and another with early AMD, but not from a nonsmoker. Degenerative cellular heterogeneity can include an abnormal cluster that jeopardizes cell survival and may represent an additional hallmark of ocular aging.
Collapse
Affiliation(s)
- Krishna Singh
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Yang Jin
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Ming-Wen Hu
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Isabella Palazzo
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Marisol Cano
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Thanh Hoang
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Imran Bhutto
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Shusheng Wang
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
| | - Debasish Sinha
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Jiang Qian
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - James T Handa
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| |
Collapse
|
5
|
Chaar DL, Tu L, Moore K, Du J, Opsasnick LA, Ratliff SM, Mosley TH, Kardia SLR, Zhao W, Zhou X, Diez Roux AV, Faruque FS, Butler KR, Smith JA. Neighborhood environment associations with cognitive function and structural brain measures in older African Americans. BMC Med 2025; 23:15. [PMID: 39800688 PMCID: PMC11727707 DOI: 10.1186/s12916-024-03845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Since older adults spend significant time in their neighborhood environment, environmental factors such as neighborhood socioeconomic disadvantage, high racial segregation, low healthy food availability, low access to recreation, and minimal social engagement may have adverse effects on cognitive function and increase susceptibility to dementia. DNA methylation, which is associated with neighborhood characteristics as well as cognitive function and white matter hyperintensity (WMH), may act as a mediator between neighborhood characteristics and neurocognitive outcomes. METHODS In this study, we examined whether DNA methylation in peripheral blood leukocytes mediates the relationship between neighborhood characteristics and cognitive function (N = 542) or WMH (N = 466) in older African American (AA) participants without preliminary evidence of dementia from the Genetic Epidemiology Network of Arteriopathy (GENOA). RESULTS For a 1-mile buffer around a participant's residence, each additional fast food destination or unfavorable food store with alcohol per square mile was nominally associated with a 0.05 (95%CI: 0.01, 0.09) and a 0.04 (0.00, 0.08) second improvement in visual conceptual tracking score, respectively. Also, each additional alcohol drinking place per square mile was nominally associated with a 0.62 (0.05, 1.19) word increase in delayed recall score, indicating better memory function (all p < 0.05). Neighborhood characteristics were not associated with WMH. We did not find evidence that DNA methylation mediates the observed associations between neighborhood characteristics and cognitive function. CONCLUSIONS The presence of fast food destinations and unfavorable food stores with alcohol was associated cognitive measures, possibly due to greater social interaction provided in these venues. However, replication of these findings is necessary. Further examination of the potential pathways between the neighborhood environment and cognitive function/WMH may allow the development of potential behavioral, infrastructural, and pharmaceutical interventions to facilitate aging in place and healthy brain aging in older adults, especially in marginal populations that are most at risk.
Collapse
Affiliation(s)
- Dima L Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Le Tu
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, USA
| | - Kari Moore
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
| | - Jiacong Du
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ana V Diez Roux
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
| | - Fazlay S Faruque
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, USA
| | - Kenneth R Butler
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Cao S, Zeng Y, Pang K, Chen M, Guo R, Wu N, Fang C, Deng H, Zhang X, Xie X, Ouyang W, Yang H. Unraveling the causal impact of smoking and its DNA methylation signatures on cardiovascular disease: Mendelian randomization and colocalization analysis. Clin Epigenetics 2025; 17:1. [PMID: 39748436 PMCID: PMC11694376 DOI: 10.1186/s13148-024-01808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND To explore the mechanisms linking smoking to cardiovascular diseases (CVDs) from an epigenetic perspective. METHODS Mendelian Randomization (MR) analysis was performed to assess the causal effects of smoking behavior and DNA methylation levels at smoking-related CpG sites on nine CVDs, including aortic aneurysm, atrial fibrillation, coronary atherosclerosis, coronary heart disease, heart failure, intracerebral hemorrhage, ischemic stroke, myocardial infarction, subarachnoid hemorrhage. Colocalization analysis was used to further identify key smoking-related CpG sites from the MR causal estimates. Reactome enrichment analysis was used to elucidate the potential mechanisms. RESULTS MR analysis indicates that smoking behaviors are significantly associated with an increased risk of nine CVDs (OR > 1, P < 0.05). Through MR and colocalization analysis, five key smoking-related CpG sites were ultimately determined. DNA methylation alteration at cg25313468 (located in the TSS1500 region of REST) is simultaneously associated with the risk of atrial fibrillation, coronary atherosclerosis, coronary heart disease, and myocardial infarction. Additionally, cg21647257 (located in the TSS200 region of CLIP3) is associated with the risk of atrial fibrillation; cg06197751 (located in SGEF gene body) and cg07520810 (located in ARID5B gene body) are associated with the risk of coronary atherosclerosis; cg16822035 (located in MCF2L gene body) is associated with the risk of myocardial infarction. Enrichment analysis suggests that phosphatase and tensin homologue (PTEN) may be involved in the downstream mechanisms of cg25313468 (REST). CONCLUSION This study uncovers the relationship between smoking, DNA methylation, and CVDs, providing new insights into the pathogenic effect of smoking on CVDs from an epigenetic perspective.
Collapse
Affiliation(s)
- Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ke Pang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Minghua Chen
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Chao Fang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Huiyin Deng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoyi Zhang
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xiaohui Xie
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Schiele MA, Crespo Salvador O, Lipovsek J, Schwarte K, Schlosser P, Zwanzger P, Arolt V, Baune BT, Köttgen A, Domschke K. Epigenome-Wide DNA Methylation in Unipolar Depression: Predictive Biomarker of Antidepressant Treatment Response? Int J Neuropsychopharmacol 2024; 27:pyae045. [PMID: 39367879 PMCID: PMC11558245 DOI: 10.1093/ijnp/pyae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Despite the well-documented efficacy of antidepressant agents for the treatment of major depressive disorder (MDD), initial treatment nonresponse rates are high. Recent years have seen an increase in research into predictive biomarkers toward improving diagnosis and individualized treatment. Among those, epigenetic mechanisms such as DNA methylation constitute promising candidate markers in predicting antidepressant treatment response in MDD. The present study sought to address epigenome-wide DNA methylation as a predictor of antidepressant treatment response in the largest sample to date of patients with MDD. METHODS Epigenome-wide DNA methylation was analyzed using the Infinium MethylationEPIC BeadChip in peripheral blood of n = 230 Caucasian patients with MDD receiving 6-week antidepressant treatment in a naturalistic in-patient setting as well as in a subsample of n = 107 patients primarily receiving continuous treatment with serotonin reuptake inhibitors or serotonin and norepinephrine reuptake inhibitors. Treatment response was assessed by means of the Hamilton Depression Scale. RESULTS No genome-wide significant hits were observed. Suggestive (P < 1E-5) epigenome-wide evidence was discerned for altered DNA methylation at 6 CpG sites (LOC102724467, LOC100506023, RSPO2, SAG, IL16, PRKCI) to predict response to naturalistic antidepressant treatment. In patients treated with serotonin reuptake inhibitors or serotonin and norepinephrine reuptake inhibitors, differential DNA methylation at 11 CpGs, for example, mapping to the TIMP2, VDAC1, or SORL1 genes, was suggestively associated with treatment response. CONCLUSIONS The present results provide preliminary evidence for altered DNA methylation patterns to be associated with antidepressant treatment response in MDD. Provided significant replication in independent and larger samples, the present findings might in the future aid in clinical decision-making toward more individualized and thus more efficacious treatments of MDD.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oscar Crespo Salvador
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Lipovsek
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Kathrin Schwarte
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Pascal Schlosser
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Peter Zwanzger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
- kbo-Inn-Salzach-Klinikum, Wasserburg am Inn, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Muenster, Muenster, Germany
| | - Bernhard T Baune
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Pośpiech E, Rudnicka J, Noroozi R, Pisarek-Pacek A, Wysocka B, Masny A, Boroń M, Migacz-Gruszka K, Pruszkowska-Przybylska P, Kobus M, Lisman D, Zielińska G, Cytacka S, Iljin A, Wiktorska JA, Michalczyk M, Kaczka P, Krzysztofik M, Sitek A, Spólnicka M, Ossowski A, Branicki W. DNA methylation at AHRR as a master predictor of smoke exposure and a biomarker for sleep and exercise. Clin Epigenetics 2024; 16:147. [PMID: 39425209 PMCID: PMC11490037 DOI: 10.1186/s13148-024-01757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND DNA methylation profiling may provide a more accurate measure of the smoking status than self-report and may be useful in guiding clinical interventions and forensic investigations. In the current study, blood DNA methylation profiles of nearly 800 Polish individuals were assayed using Illuminia EPIC and the inference of smoking from epigenetic data was explored. In addition, we focused on the role of the AHRR gene as a top marker for smoking and investigated its responsiveness to other lifestyle behaviors. RESULTS We found > 450 significant CpGs associated with cigarette consumption, and overrepresented in various biological functions including cell communication, response to stress, blood vessel development, cell death, and atherosclerosis. The model consisting of cg05575921 in AHRR (p = 4.5 × 10-32) and three additional CpGs (cg09594361, cg21322436 in CNTNAP2 and cg09842685) was able to predict smoking status with a high accuracy of AUC = 0.8 in the test set. Importantly, a gradual increase in the probability of smoking was observed, starting from occasional smokers to regular heavy smokers. Furthermore, former smokers displayed the intermediate DNA methylation profiles compared to current and never smokers, and thus our results indicate the potential reversibility of DNA methylation after smoking cessation. The AHRR played a key role in a predictive analysis, explaining 21.5% of the variation in smoking. In addition, the AHRR methylation was analyzed for association with other modifiable lifestyle factors, and showed significance for sleep and physical activity. We also showed that the epigenetic score for smoking was significantly correlated with most of the epigenetic clocks tested, except for two first-generation clocks. CONCLUSIONS Our study suggests that a more rapid return to never-smoker methylation levels after smoking cessation may be achievable in people who change their lifestyle in terms of physical activity and sleep duration. As cigarette smoking has been implicated in the literature as a leading cause of epigenetic aging and AHRR appears to be modifiable by multiple exogenous factors, it emerges as a promising target for intervention and investment.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| | - Joanna Rudnicka
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Rezvan Noroozi
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Johns Hopkins University School of Medicine, Baltimore, USA
| | - Aleksandra Pisarek-Pacek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Institute of Zoology and Biomedical Research of the Jagiellonian University, Krakow, Poland
| | - Bożena Wysocka
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | | | - Michał Boroń
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | | | | | - Magdalena Kobus
- Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Dagmara Lisman
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Grażyna Zielińska
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Sandra Cytacka
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Aleksandra Iljin
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Lodz, Lodz, Poland
| | | | - Małgorzata Michalczyk
- Department of Sport Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Piotr Kaczka
- Department of Sport Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michał Krzysztofik
- Institute of Sports Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Aneta Sitek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Andrzej Ossowski
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research of the Jagiellonian University, Krakow, Poland
- Institute of Forensic Research, Krakow, Poland
| |
Collapse
|
10
|
Warner B, Ratner E, Datta A, Lendasse A. A systematic review of phenotypic and epigenetic clocks used for aging and mortality quantification in humans. Aging (Albany NY) 2024; 16:12414-12427. [PMID: 39215995 PMCID: PMC11424583 DOI: 10.18632/aging.206098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Aging is the leading driver of disease in humans and has profound impacts on mortality. Biological clocks are used to measure the aging process in the hopes of identifying possible interventions. Biological clocks may be categorized as phenotypic or epigenetic, where phenotypic clocks use easily measurable clinical biomarkers and epigenetic clocks use cellular methylation data. In recent years, methylation clocks have attained phenomenal performance when predicting chronological age and have been linked to various age-related diseases. Additionally, phenotypic clocks have been proven to be able to predict mortality better than chronological age, providing intracellular insights into the aging process. This review aimed to systematically survey all proposed epigenetic and phenotypic clocks to date, excluding mitotic clocks (i.e., cancer risk clocks) and those that were modeled using non-human samples. We reported the predictive performance of 33 clocks and outlined the statistical or machine learning techniques used. We also reported the most influential clinical measurements used in the included phenotypic clocks. Our findings provide a systematic reporting of the last decade of biological clock research and indicate possible avenues for future research.
Collapse
Affiliation(s)
| | | | | | - Amaury Lendasse
- Department of IST, University of Houston, Houston, TX 77004, USA
- Department of Engineering Management and Systems Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
11
|
Viet CT, Asam KR, Yu G, Dyer EC, Kochanny S, Thomas CM, Callahan NF, Morlandt AB, Cheng AC, Patel AA, Roden DF, Young S, Melville J, Shum J, Walker PC, Nguyen KK, Kidd SN, Lee SC, Folk GS, Viet DT, Grandhi A, Deisch J, Ye Y, Momen-Heravi F, Pearson AT, Aouizerat BE. Artificial intelligence-based epigenomic, transcriptomic and histologic signatures of tobacco use in oral squamous cell carcinoma. NPJ Precis Oncol 2024; 8:130. [PMID: 38851780 PMCID: PMC11162452 DOI: 10.1038/s41698-024-00605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/08/2024] [Indexed: 06/10/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) biomarker studies rarely employ multi-omic biomarker strategies and pertinent clinicopathologic characteristics to predict mortality. In this study we determine for the first time a combined epigenetic, gene expression, and histology signature that differentiates between patients with different tobacco use history (heavy tobacco use with ≥10 pack years vs. no tobacco use). Using The Cancer Genome Atlas (TCGA) cohort (n = 257) and an internal cohort (n = 40), we identify 3 epigenetic markers (GPR15, GNG12, GDNF) and 13 expression markers (IGHA2, SCG5, RPL3L, NTRK1, CD96, BMP6, TFPI2, EFEMP2, RYR3, DMTN, GPD2, BAALC, and FMO3), which are dysregulated in OSCC patients who were never smokers vs. those who have a ≥ 10 pack year history. While mortality risk prediction based on smoking status and clinicopathologic covariates alone is inaccurate (c-statistic = 0.57), the combined epigenetic/expression and histologic signature has a c-statistic = 0.9409 in predicting 5-year mortality in OSCC patients.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA.
| | - Kesava R Asam
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Gary Yu
- New York University Rory Meyers College of Nursing, New York, NY, USA
| | - Emma C Dyer
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Sara Kochanny
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Carissa M Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas F Callahan
- Department of Oral and Maxillofacial Surgery, University of Illinois Chicago, College of Dentistry, Chicago, IL, USA
| | - Anthony B Morlandt
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Allen C Cheng
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Ashish A Patel
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Dylan F Roden
- Department of Otolaryngology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Simon Young
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - James Melville
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Jonathan Shum
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Paul C Walker
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Khanh K Nguyen
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephanie N Kidd
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Steve C Lee
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | - Anupama Grandhi
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Jeremy Deisch
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yi Ye
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Fatemeh Momen-Heravi
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Bradley E Aouizerat
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
- New York University Rory Meyers College of Nursing, New York, NY, USA
| |
Collapse
|
12
|
Hu W, Chen S, Cai J, Yang Y, Yan H, Chen F. High-dimensional mediation analysis for continuous outcome with confounders using overlap weighting method in observational epigenetic study. BMC Med Res Methodol 2024; 24:125. [PMID: 38831262 PMCID: PMC11145821 DOI: 10.1186/s12874-024-02254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Mediation analysis is a powerful tool to identify factors mediating the causal pathway of exposure to health outcomes. Mediation analysis has been extended to study a large number of potential mediators in high-dimensional data settings. The presence of confounding in observational studies is inevitable. Hence, it's an essential part of high-dimensional mediation analysis (HDMA) to adjust for the potential confounders. Although the propensity score (PS) related method such as propensity score regression adjustment (PSR) and inverse probability weighting (IPW) has been proposed to tackle this problem, the characteristics with extreme propensity score distribution of the PS-based method would result in the biased estimation. METHODS In this article, we integrated the overlapping weighting (OW) technique into HDMA workflow and proposed a concise and powerful high-dimensional mediation analysis procedure consisting of OW confounding adjustment, sure independence screening (SIS), de-biased Lasso penalization, and joint-significance testing underlying the mixture null distribution. We compared the proposed method with the existing method consisting of PS-based confounding adjustment, SIS, minimax concave penalty (MCP) variable selection, and classical joint-significance testing. RESULTS Simulation studies demonstrate the proposed procedure has the best performance in mediator selection and estimation. The proposed procedure yielded the highest true positive rate, acceptable false discovery proportion level, and lower mean square error. In the empirical study based on the GSE117859 dataset in the Gene Expression Omnibus database using the proposed method, we found that smoking history may lead to the estimated natural killer (NK) cell level reduction through the mediation effect of some methylation markers, mainly including methylation sites cg13917614 in CNP gene and cg16893868 in LILRA2 gene. CONCLUSIONS The proposed method has higher power, sufficient false discovery rate control, and precise mediation effect estimation. Meanwhile, it is feasible to be implemented with the presence of confounders. Hence, our method is worth considering in HDMA studies.
Collapse
Affiliation(s)
- Weiwei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shiyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuhui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Fangyao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Duko B, Bedaso A, Dachew BA, Newnham E, Gebremedhin AT, Tessema G, Einarsdottir K, Alati R, Pereira G. The effect of maternal prenatal tobacco smoking on offspring academic achievement: A systematic review and meta-analysis. Addict Behav 2024; 153:107985. [PMID: 38367506 DOI: 10.1016/j.addbeh.2024.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Previous epidemiological studies examining the prospective association between maternal prenatal tobacco smoking and offspring academic achievement have reported conflicting results. Therefore, this systematic review and meta-analysis was conducted to examine the magnitude and consistency of association reported by those studies. METHODS This systematic review and meta-analysis was guided by the PRISMA protocol. Relevant epidemiological studies on the topic were extracted from four main databases (PubMed/Medline, Embase, PsycINFO, and Scopus). The Newcastle-Ottawa Scale (NOS) was used to appraise the methodological quality of the included studies. We conducted a narrative assessment of the studies that did not report effect estimates. Inverse variance-weighted random effect meta-analysis was used to combine studies reporting effect sizes to estimate pooled adjusted odds ratio with 95% confidence intervals (95% CI). The review was prospectively registered in PROSPERO (CRD42022350901). RESULTS Nineteen observational studies, published between 1973 and 2021 with a total of 1.25 million study participants were included in the final review. Of these, fifteen studies (79 %) reported reduced academic achievement in offspring exposed to maternal prenatal tobacco smoking. The eight primary studies (sample size = 723,877) included in the meta-analysis together suggested a 49 % higher risk of reduced academic achievement in offspring exposed to maternal prenatal tobacco smoking when compared to non-exposed offspring (Pooled odds ratio = 1.49, 95 % CI:1.17-1.91). CONCLUSION Our review found a positive association between maternal prenatal tobacco smoking and offspring reduced academic achievement. However, variation in the adjustment of potential confounders and significant heterogeneity across included studies limited more conclusive inference. Mechanistic studies to identify causal pathways and specific academic impacts are needed to inform targeted developmental programs to assist child learning and academic performance.
Collapse
Affiliation(s)
- Bereket Duko
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia; Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| | - Asres Bedaso
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council, New South Wales, Australia
| | - Berihun Assefa Dachew
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Elizabeth Newnham
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia; enAble Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia; FXB Center for Health and Human Rights, Harvard University, Boston, MA, USA
| | | | - Gizachew Tessema
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia; enAble Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Kristjana Einarsdottir
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia; School of Health Sciences, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavík, Iceland
| | - Rosa Alati
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia; enAble Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia; Institute for Social Sciences Research, The University of Queensland, 80 Meier's Rd, Indooroopilly, Qld 4068 Australia
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia; enAble Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia; Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
14
|
Tong H, Dwaraka VB, Chen Q, Luo Q, Lasky-Su JA, Smith R, Teschendorff AE. Quantifying the stochastic component of epigenetic aging. NATURE AGING 2024; 4:886-901. [PMID: 38724732 PMCID: PMC11186785 DOI: 10.1038/s43587-024-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 05/15/2024]
Abstract
DNA methylation clocks can accurately estimate chronological age and, to some extent, also biological age, yet the process by which age-associated DNA methylation (DNAm) changes are acquired appears to be quasi-stochastic, raising a fundamental question: how much of an epigenetic clock's predictive accuracy could be explained by a stochastic process of DNAm change? Here, using DNAm data from sorted immune cells, we build realistic simulation models, subsequently demonstrating in over 22,770 sorted and whole-blood samples from 25 independent cohorts that approximately 66-75% of the accuracy underpinning Horvath's clock could be driven by a stochastic process. This fraction increases to 90% for the more accurate Zhang's clock, but is lower (63%) for the PhenoAge clock, suggesting that biological aging is reflected by nonstochastic processes. Confirming this, we demonstrate that Horvath's age acceleration in males and PhenoAge's age acceleration in severe coronavirus disease 2019 cases and smokers are not driven by an increased rate of stochastic change but by nonstochastic processes. These results significantly deepen our understanding and interpretation of epigenetic clocks.
Collapse
Affiliation(s)
- Huige Tong
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Bruzzone SEP, Ozenne B, Fisher PM, Ortega G, Jensen PS, Dam VH, Svarer C, Knudsen GM, Lesch KP, Frokjaer VG. No association between peripheral serotonin-gene-related DNA methylation and brain serotonin neurotransmission in the healthy and depressed state. Clin Epigenetics 2024; 16:71. [PMID: 38802956 PMCID: PMC11131311 DOI: 10.1186/s13148-024-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Methylation of serotonin-related genes has been proposed as a plausible gene-by-environment link which may mediate environmental stress, depressive and anxiety symptoms. DNA methylation is often measured in blood cells, but little is known about the association between this peripheral epigenetic modification and brain serotonergic architecture. Here, we evaluated the association between whole-blood-derived methylation of four CpG sites in the serotonin transporter (SLC6A4) and six CpG sites of the tryptophan hydroxylase 2 (TPH2) gene and in-vivo brain levels of serotonin transporter (5-HTT) and serotonin 4 receptor (5-HT4) in a cohort of healthy individuals (N = 254) and, for 5-HT4, in a cohort of unmedicated patients with depression (N = 90). To do so, we quantified SLC6A4/TPH2 methylation using bisulfite pyrosequencing and estimated brain 5-HT4 and 5-HTT levels using positron emission tomography. In addition, we explored the association between SLC6A4 and TPH2 methylation and measures of early life and recent stress, depressive and anxiety symptoms on 297 healthy individuals. RESULTS We found no statistically significant association between peripheral DNA methylation and brain markers of serotonergic neurotransmission in patients with depression or in healthy individuals. In addition, although SLC6A4 CpG2 (chr17:30,236,083) methylation was marginally associated with the parental bonding inventory overprotection score in the healthy cohort, statistical significance did not remain after accounting for blood cell heterogeneity. CONCLUSIONS We suggest that findings on peripheral DNA methylation in the context of brain serotonin-related features should be interpreted with caution. More studies are needed to rule out a role of SLC6A4 and TPH2 methylation as biomarkers for environmental stress, depressive or anxiety symptoms.
Collapse
Affiliation(s)
- S E P Bruzzone
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - P M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - G Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - P S Jensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - V H Dam
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - C Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - G M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - K P Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - V G Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Capital Region of Denmark, Denmark.
| |
Collapse
|
16
|
Ambroa-Conde A, Casares de Cal MA, Gómez-Tato A, Robinson O, Mosquera-Miguel A, de la Puente M, Ruiz-Ramírez J, Phillips C, Lareu MV, Freire-Aradas A. Inference of tobacco and alcohol consumption habits from DNA methylation analysis of blood. Forensic Sci Int Genet 2024; 70:103022. [PMID: 38309257 DOI: 10.1016/j.fsigen.2024.103022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
DNA methylation has become a biomarker of great interest in the forensic and clinical fields. In criminal investigations, the study of this epigenetic marker has allowed the development of DNA intelligence tools providing information that can be useful for investigators, such as age prediction. Following a similar trend, when the origin of a sample in a criminal scenario is unknown, the inference of an individual's lifestyle such as tobacco use and alcohol consumption could provide relevant information to help in the identification of DNA donors at the crime scene. At the same time, in the clinical domain, prediction of these trends of consumption could allow the identification of people at risk or better identification of the causes of different pathologies. In the present study, DNA methylation data from the UK AIRWAVE study was used to build two binomial logistic models for the inference of smoking and drinking status. A total of 348 individuals (116 non-smokers, 116 former smokers and 116 smokers) plus a total of 237 individuals (79 non-drinkers, 79 moderate drinkers and 79 drinkers) were used for development of tobacco and alcohol consumption prediction models, respectively. The tobacco prediction model was composed of two CpGs (cg05575921 in AHRR and cg01940273) and the alcohol prediction model three CpGs (cg06690548 in SLC7A11, cg0886875 and cg21294714 in MIR4435-2HG), providing correct classifications of 86.49% and 74.26%, respectively. Validation of the models was performed using leave-one-out cross-validation. Additionally, two independent testing sets were also assessed for tobacco and alcohol consumption. Considering that the consumption of these substances could underlie accelerated epigenetic ageing patterns, the effect of these lifestyles on the prediction of age was evaluated. To do that, a quantile regression model based on previous studies was generated, and the potential effect of tobacco and alcohol consumption with the epigenetic age was assessed. The Wilcoxon test was used to evaluate the residuals generated by the model and no significant differences were observed between the categories analyzed.
Collapse
Affiliation(s)
- A Ambroa-Conde
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M A Casares de Cal
- CITMAga (Center for Mathematical Research and Technology of Galicia), University of Santiago de Compostela, Spain
| | - A Gómez-Tato
- CITMAga (Center for Mathematical Research and Technology of Galicia), University of Santiago de Compostela, Spain
| | - O Robinson
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - A Mosquera-Miguel
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M de la Puente
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - J Ruiz-Ramírez
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - C Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M V Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Teschendorff AE. On epigenetic stochasticity, entropy and cancer risk. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230054. [PMID: 38432318 PMCID: PMC10909509 DOI: 10.1098/rstb.2023.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/26/2023] [Indexed: 03/05/2024] Open
Abstract
Epigenetic changes are known to accrue in normal cells as a result of ageing and cumulative exposure to cancer risk factors. Increasing evidence points towards age-related epigenetic changes being acquired in a quasi-stochastic manner, and that they may play a causal role in cancer development. Here, I describe the quasi-stochastic nature of DNA methylation (DNAm) changes in ageing cells as well as in normal cells at risk of neoplastic transformation, discussing the implications of this stochasticity for developing cancer risk prediction strategies, and in particular, how it may require a conceptual paradigm shift in how we select cancer risk markers. I also describe the mounting evidence that a significant proportion of DNAm changes in ageing and cancer development are related to cell proliferation, reflecting tissue-turnover and the opportunity this offers for predicting cancer risk via the development of epigenetic mitotic-like clocks. Finally, I describe how age-associated DNAm changes may be causally implicated in cancer development via an irreversible suppression of tissue-specific transcription factors that increases epigenetic and transcriptomic entropy, promoting a more plastic yet aberrant cancer stem-cell state. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, People's Republic of China
| |
Collapse
|
18
|
Li JL, Jain N, Tamayo LI, Tong L, Jasmine F, Kibriya MG, Demanelis K, Oliva M, Chen LS, Pierce BL. The association of cigarette smoking with DNA methylation and gene expression in human tissue samples. Am J Hum Genet 2024; 111:636-653. [PMID: 38490207 PMCID: PMC11023923 DOI: 10.1016/j.ajhg.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Cigarette smoking adversely affects many aspects of human health, and epigenetic responses to smoking may reflect mechanisms that mediate or defend against these effects. Prior studies of smoking and DNA methylation (DNAm), typically measured in leukocytes, have identified numerous smoking-associated regions (e.g., AHRR). To identify smoking-associated DNAm features in typically inaccessible tissues, we generated array-based DNAm data for 916 tissue samples from the GTEx (Genotype-Tissue Expression) project representing 9 tissue types (lung, colon, ovary, prostate, blood, breast, testis, kidney, and muscle). We identified 6,350 smoking-associated CpGs in lung tissue (n = 212) and 2,735 in colon tissue (n = 210), most not reported previously. For all 7 other tissue types (sample sizes 38-153), no clear associations were observed (false discovery rate 0.05), but some tissues showed enrichment for smoking-associated CpGs reported previously. For 1,646 loci (in lung) and 22 (in colon), smoking was associated with both DNAm and local gene expression. For loci detected in both lung and colon (e.g., AHRR, CYP1B1, CYP1A1), top CpGs often differed between tissues, but similar clusters of hyper- or hypomethylated CpGs were observed, with hypomethylation at regulatory elements corresponding to increased expression. For lung tissue, 17 hallmark gene sets were enriched for smoking-associated CpGs, including xenobiotic- and cancer-related gene sets. At least four smoking-associated regions in lung were impacted by lung methylation quantitative trait loci (QTLs) that co-localize with genome-wide association study (GWAS) signals for lung function (FEV1/FVC), suggesting epigenetic alterations can mediate the effects of smoking on lung health. Our multi-tissue approach has identified smoking-associated regions in disease-relevant tissues, including effects that are shared across tissue types.
Collapse
Affiliation(s)
- James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Niyati Jain
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Committee on Genetics, Genomics, Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lizeth I Tamayo
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn Demanelis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
19
|
Liu Y, Zeng X, Zhang H. An Emerging Approach of Age-Related Hearing Loss Research: Application of Integrated Multi-Omics Analysis. Adv Biol (Weinh) 2024; 8:e2300613. [PMID: 38279573 DOI: 10.1002/adbi.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Indexed: 01/28/2024]
Abstract
As one of the most common otologic diseases in the elderly, age-related hearing loss (ARHL) usually characterized by hearing loss and cognitive disorders, which have a significant impact on the elderly's physical and mental health and quality of life. However, as a typical disease of aging, it is unclear why aging causes widespread hearing impairment in the elderly. As molecular biological experiments have been conducted for research recently, ARHL is gradually established at various levels with the application and development of integrated multi-omics analysis in the studies of ARHL. Here, the recent progress in the application of multi-omics analysis in the molecular mechanisms of ARHL development and therapeutic regimens, including the combined analysis of different omics, such as transcriptome, proteome, and metabolome, to screen for risk sites, risk genes, and differences in lipid metabolism, etc., is outlined and the integrated histological data further promote the profound understanding of the disease process as well as physiological mechanisms of ARHL. The advantages and disadvantages of multi-omics analysis in disease research are also discussed and the authors speculate on the future prospects and applications of this part-to-whole approach, which may provide more comprehensive guidance for ARHL and aging disease prevention and treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Huasong Zhang
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
| |
Collapse
|
20
|
Fitzgerald S, Bhat B, Print C, Jones GT. A validated restriction enzyme ddPCR cg05575921 (AHRR) assay to accurately assess smoking exposure. Clin Epigenetics 2024; 16:45. [PMID: 38528596 PMCID: PMC10962207 DOI: 10.1186/s13148-024-01659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND & METHODS In this study, a novel restriction enzyme (RE) digestion-based droplet digital polymerase chain reaction (ddPCR) assay was designed for cg005575921 within the AHRR gene body and compared with matching results obtained by bisulfite conversion (BIS) ddPCR and Illumina DNA methylation array. RESULTS The RE ddPCR cg05575921 assay appeared concordant with BIS ddPCR (r2 = 0.94, P < 0.0001) and, when compared with the Illumina array, had significantly better smoking status classification performance for current versus never smoked (AUC 0.96 versus 0.93, P < 0.04) and current versus ex-smoker (AUC 0.88 versus 0.83, P < 0.04) comparisons. CONCLUSIONS The RE ddPCR cg05575921 assay accurately predicts smoking status and could be a useful component of 'precision-medicine' chronic disease risk screening tools.
Collapse
Affiliation(s)
- Sandra Fitzgerald
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence, Auckland, New Zealand
| | - Basharat Bhat
- Vascular Research Group, Department of Surgical Sciences, Dunedin Medical School, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Cristin Print
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence, Auckland, New Zealand
| | - Gregory T Jones
- Vascular Research Group, Department of Surgical Sciences, Dunedin Medical School, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
21
|
Huang BZ, Binder AM, Quon B, Patel YM, Lum-Jones A, Tiirikainen M, Murphy SE, Loo L, Maunakea AK, Haiman CA, Wilkens LR, Koh WP, Cai Q, Aldrich MC, Siegmund KD, Hecht SS, Yuan JM, Blot WJ, Stram DO, Le Marchand L, Park SL. Epigenome-wide association study of total nicotine equivalents in multiethnic current smokers from three prospective cohorts. Am J Hum Genet 2024; 111:456-472. [PMID: 38367619 PMCID: PMC10940014 DOI: 10.1016/j.ajhg.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.
Collapse
Affiliation(s)
- Brian Z Huang
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.
| | - Alexandra M Binder
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA; Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brandon Quon
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Yesha M Patel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Annette Lum-Jones
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Maarit Tiirikainen
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lenora Loo
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lynne R Wilkens
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda C Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sungshim L Park
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
22
|
Zhang H, Kalla R, Chen J, Zhao J, Zhou X, Adams A, Noble A, Ventham NT, Wellens J, Ho GT, Dunlop MG, Nowak JK, Ding Y, Liu Z, Satsangi J, Theodoratou E, Li X. Altered DNA methylation within DNMT3A, AHRR, LTA/TNF loci mediates the effect of smoking on inflammatory bowel disease. Nat Commun 2024; 15:595. [PMID: 38238335 PMCID: PMC10796384 DOI: 10.1038/s41467-024-44841-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
This work aims to investigate how smoking exerts effect on the development of inflammatory bowel disease (IBD). A prospective cohort study and a Mendelian randomization study are first conducted to evaluate the association between smoking behaviors, smoking-related DNA methylation and the risks of Crohn's disease (CD) and ulcerative colitis (UC). We then perform both genome-wide methylation analysis and co-localization analysis to validate the observed associations. Compared to never smoking, current and previous smoking habits are associated with increased CD (P = 7.09 × 10-10) and UC (P < 2 × 10-16) risk, respectively. DNA methylation alteration at cg17742416 [DNMT3A] is linked to both CD (P = 7.30 × 10-8) and UC (P = 1.04 × 10-4) risk, while cg03599224 [LTA/TNF] is associated with CD risk (P = 1.91 × 10-6), and cg14647125 [AHRR] and cg23916896 [AHRR] are linked to UC risk (P = 0.001 and 0.002, respectively). Our study identifies biological mechanisms and pathways involved in the effects of smoking on the pathogenesis of IBD.
Collapse
Affiliation(s)
- Han Zhang
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rahul Kalla
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Alex Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexandra Noble
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Academic Coloproctology, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Judith Wellens
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Dunlop
- Cancer Research UK Scotland Centre and Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Jan Krzysztof Nowak
- Department of Paediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Evropi Theodoratou
- Cancer Research UK Scotland Centre and Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
23
|
Kasela S, Aguet F, Kim-Hellmuth S, Brown BC, Nachun DC, Tracy RP, Durda P, Liu Y, Taylor KD, Johnson WC, Van Den Berg D, Gabriel S, Gupta N, Smith JD, Blackwell TW, Rotter JI, Ardlie KG, Manichaikul A, Rich SS, Barr RG, Lappalainen T. Interaction molecular QTL mapping discovers cellular and environmental modifiers of genetic regulatory effects. Am J Hum Genet 2024; 111:133-149. [PMID: 38181730 PMCID: PMC10806864 DOI: 10.1016/j.ajhg.2023.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024] Open
Abstract
Bulk-tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue. The interpretation of age iQTLs, however, warrants caution because the moderation effect of age on the genotype and molecular phenotype association could be mediated by changes in cell-type composition. Finally, we show that cell-type iQTLs contribute to cell-type-specific enrichment of diseases that, in combination with additional functional data, could guide future functional studies. Overall, this study highlights the use of iQTLs to gain insights into the context specificity of regulatory effects.
Collapse
Affiliation(s)
- Silva Kasela
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA.
| | | | - Sarah Kim-Hellmuth
- New York Genome Center, New York, NY, USA; Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, Munich, Germany; Computational Health Center, Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
| | - Brielin C Brown
- New York Genome Center, New York, NY, USA; Data Science Institute, Columbia University, New York, NY, USA
| | - Daniel C Nachun
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Russell P Tracy
- Pathology and Laboratory Medicine, The University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Peter Durda
- Pathology and Laboratory Medicine, The University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Yongmei Liu
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua D Smith
- Northwest Genomics Center, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA; Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
24
|
Figueroa M, Ma H, Alfayez M, Morales-Mantilla DE, Wang F, Lu Y, Estecio MR, King KY, Kleinerman E, Moghaddam SJ, Daver N, Andreeff M, Konopleva M, DiNardo C, Chandra J. Cigarette smoke exposure accelerates AML progression in FLT3-ITD models. Blood Adv 2023; 7:6624-6629. [PMID: 37486624 PMCID: PMC10628807 DOI: 10.1182/bloodadvances.2023010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Mary Figueroa
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX
- Center of Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Huaxian Ma
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mansour Alfayez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Fei Wang
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marcos R. Estecio
- Center of Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katherine Y. King
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Eugenie Kleinerman
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joya Chandra
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX
- Center of Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
25
|
Song MA, Mori KM, McElroy JP, Freudenheim JL, Weng DY, Reisinger SA, Brasky TM, Wewers MD, Shields PG. Accelerated epigenetic age, inflammation, and gene expression in lung: comparisons of smokers and vapers with non-smokers. Clin Epigenetics 2023; 15:160. [PMID: 37821974 PMCID: PMC10568901 DOI: 10.1186/s13148-023-01577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Cigarette smoking and aging are the main risk factors for pulmonary diseases, including cancer. Epigenetic aging may explain the relationship between smoking, electronic cigarette vaping, and pulmonary health. No study has examined smoking and vaping-related epigenetic aging in relation to lung biomarkers. METHODS Lung epigenetic aging measured by DNA methylation (mAge) and its acceleration (mAA) was assessed in young (age 21-30) electronic cigarette vapers (EC, n = 14, including 3 never-smoking EC), smokers (SM, n = 16), and non-EC/non-SM (NS, n = 39). We investigated relationships of mAge estimates with chronological age (Horvath-mAge), lifespan/mortality (Grim-mAge), telomere length (TL-mAge), smoking/EC history, urinary biomarkers, lung cytokines, and transcriptome. RESULTS Compared to NS, EC and SM had significantly older Grim-mAge, shorter TL-mAge, significantly accelerated Grim-mAge and decelerated TL-mAge. Among SM, Grim-mAA was associated with nicotine intake and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). For EC, Horvath-mAA was significantly correlated with puffs per day. Overall, cytokines (IL-1β, IL-6, and IL-8) and 759 transcripts (651 unique genes) were significantly associated with Grim-mAA. Grim-mAA-associated genes were highly enriched in immune-related pathways and genes that play a role in the morphology and structures of cells/tissues. CONCLUSIONS Faster lung mAge for SM is consistent with prior studies of blood. Faster lung mAge for EC compared to NS indicates possible adverse pulmonary effects of EC on biological aging. Our findings support further research, particularly on epigenetic markers, on effects of smoking and vaping on pulmonary health. Given that most EC are former smokers, further study is needed to understand unique effects of electronic cigarettes on biological aging.
Collapse
Affiliation(s)
- Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 404 Cunz Hall, 1841 Neil Ave., Columbus, OH, 43210, USA.
| | - Kellie M Mori
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 404 Cunz Hall, 1841 Neil Ave., Columbus, OH, 43210, USA
| | - Joseph P McElroy
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Sarah A Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Mark D Wewers
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| |
Collapse
|
26
|
Zhou X, Xiao Q, Jiang F, Sun J, Wang L, Yu L, Zhou Y, Zhao J, Zhang H, Yuan S, Timofeeva M, Spiliopoulou A, Mesa-Eguiagaray I, Farrington SM, Law PJ, Houlston RS, Ding K, Dunlop MG, Theodoratou E, Li X. Dissecting the pathogenic effects of smoking and its hallmarks in blood DNA methylation on colorectal cancer risk. Br J Cancer 2023; 129:1306-1313. [PMID: 37608097 PMCID: PMC10576058 DOI: 10.1038/s41416-023-02397-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Tobacco smoking is suggested as a risk factor for colorectal cancer (CRC), but the complex relationship and the potential pathway are not fully understood. METHODS We performed two-sample Mendelian randomisation (MR) analyses with genetic instruments for smoking behaviours and related DNA methylation in blood and summary-level GWAS data of colorectal cancer to disentangle the relationship. Colocalization analyses and prospective gene-environment interaction analyses were also conducted as replication. RESULTS Convincing evidence was identified for the pathogenic effect of smoking initiation on CRC risk and suggestive evidence was observed for the protective effect of smoking cessation in the univariable MR analyses. Multivariable MR analysis revealed that these associations were independent of other smoking phenotypes and alcohol drinking. Genetically predicted methylation at CpG site cg17823346 [ZMIZ1] were identified to decrease CRC risk; while genetically predicted methylation at cg02149899 would increase CRC risk. Colocalization and gene-environment interaction analyses added further evidence to the relationship between epigenetic modification at cg17823346 [ZMIZ1] as well as cg02149899 and CRC risk. DISCUSSION Our study confirms the significant association between tobacco smoking, DNA methylation and CRC risk and yields a novel insight into the pathogenic effect of tobacco smoking on CRC risk.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Qian Xiao
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Lili Yu
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yajing Zhou
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Zhang
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Timofeeva
- Danish Institute for Advanced Study (DIAS), Epidemiology, Biostatistics and Biodemography Research Unit, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Athina Spiliopoulou
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ines Mesa-Eguiagaray
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan M Farrington
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
van Dongen J, Willemsen G, de Geus EJC, Boomsma DI, Neale MC. Effects of smoking on genome-wide DNA methylation profiles: A study of discordant and concordant monozygotic twin pairs. eLife 2023; 12:e83286. [PMID: 37643467 PMCID: PMC10501767 DOI: 10.7554/elife.83286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Background Smoking-associated DNA methylation levels identified through epigenome-wide association studies (EWASs) are generally ascribed to smoking-reactive mechanisms, but the contribution of a shared genetic predisposition to smoking and DNA methylation levels is typically not accounted for. Methods We exploited a strong within-family design, that is, the discordant monozygotic twin design, to study reactiveness of DNA methylation in blood cells to smoking and reversibility of methylation patterns upon quitting smoking. Illumina HumanMethylation450 BeadChip data were available for 769 monozygotic twin pairs (mean age = 36 years, range = 18-78, 70% female), including pairs discordant or concordant for current or former smoking. Results In pairs discordant for current smoking, 13 differentially methylated CpGs were found between current smoking twins and their genetically identical co-twin who never smoked. Top sites include multiple CpGs in CACNA1D and GNG12, which encode subunits of a calcium voltage-gated channel and G protein, respectively. These proteins interact with the nicotinic acetylcholine receptor, suggesting that methylation levels at these CpGs might be reactive to nicotine exposure. All 13 CpGs have been previously associated with smoking in unrelated individuals and data from monozygotic pairs discordant for former smoking indicated that methylation patterns are to a large extent reversible upon smoking cessation. We further showed that differences in smoking level exposure for monozygotic twins who are both current smokers but differ in the number of cigarettes they smoke are reflected in their DNA methylation profiles. Conclusions In conclusion, by analysing data from monozygotic twins, we robustly demonstrate that DNA methylation level in human blood cells is reactive to cigarette smoking. Funding We acknowledge funding from the National Institute on Drug Abuse grant DA049867, the Netherlands Organization for Scientific Research (NWO): Biobanking and Biomolecular Research Infrastructure (BBMRI-NL, NWO 184.033.111) and the BBRMI-NL-financed BIOS Consortium (NWO 184.021.007), NWO Large Scale infrastructures X-Omics (184.034.019), Genotype/phenotype database for behaviour genetic and genetic epidemiological studies (ZonMw Middelgroot 911-09-032); Netherlands Twin Registry Repository: researching the interplay between genome and environment (NWO-Groot 480-15-001/674); the Avera Institute, Sioux Falls (USA), and the National Institutes of Health (NIH R01 HD042157-01A1, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995); epigenetic data were generated at the Human Genomics Facility (HuGe-F) at ErasmusMC Rotterdam. Cotinine assaying was sponsored by the Neuroscience Campus Amsterdam. DIB acknowledges the Royal Netherlands Academy of Science Professor Award (PAH/6635).
Collapse
Affiliation(s)
- Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Public Health Research InstituteAmsterdamNetherlands
- Amsterdam Reproduction and Development (AR&D) Research InstituteAmsterdamNetherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Public Health Research InstituteAmsterdamNetherlands
| | - Eco JC de Geus
- Department of Biological Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Public Health Research InstituteAmsterdamNetherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Amsterdam Public Health Research InstituteAmsterdamNetherlands
- Amsterdam Reproduction and Development (AR&D) Research InstituteAmsterdamNetherlands
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmondUnited States
| |
Collapse
|
28
|
Johansson J, Lidéus S, Höijer I, Ameur A, Gudmundsson S, Annerén G, Bondeson ML, Wilbe M. A novel quantitative targeted analysis of X-chromosome inactivation (XCI) using nanopore sequencing. Sci Rep 2023; 13:12856. [PMID: 37553382 PMCID: PMC10409790 DOI: 10.1038/s41598-023-34413-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2023] [Indexed: 08/10/2023] Open
Abstract
X-chromosome inactivation (XCI) analyses often assist in diagnostics of X-linked traits, however accurate assessment remains challenging with current methods. We developed a novel strategy using amplification-free Cas9 enrichment and Oxford nanopore technologies sequencing called XCI-ONT, to investigate and rigorously quantify XCI in human androgen receptor gene (AR) and human X-linked retinitis pigmentosa 2 gene (RP2). XCI-ONT measures methylation over 116 CpGs in AR and 58 CpGs in RP2, and separate parental X-chromosomes without PCR bias. We show the usefulness of the XCI-ONT strategy over the PCR-based golden standard XCI technique that only investigates one or two CpGs per gene. The results highlight the limitations of using the golden standard technique when the XCI pattern is partially skewed and the advantages of XCI-ONT to rigorously quantify XCI. This study provides a universal XCI-method on DNA, which is highly valuable in clinical and research framework of X-linked traits.
Collapse
Affiliation(s)
- Josefin Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Sarah Lidéus
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Ida Höijer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Sanna Gudmundsson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 815, SE-751 08, Uppsala, Sweden.
| |
Collapse
|
29
|
Shang J, Nie X, Qi Y, Zhou J, Qi Y. Short-term smoking cessation leads to a universal decrease in whole blood genomic DNA methylation in patients with a smoking history. World J Surg Oncol 2023; 21:227. [PMID: 37496025 PMCID: PMC10369823 DOI: 10.1186/s12957-023-03099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Epigenetics is involved in various human diseases. Smoking is one of the most common environmental factors causing epigenetic changes. The DNA methylation changes and mechanisms after quitting smoking have yet to be defined. The present study examined the changes in DNA methylation levels before and after short-term smoking cessation and explored the potential mechanism. METHODS Whole blood and clinical data were collected from 8 patients before and after short-term smoking cessation, DNA methylation was assessed, and differentially methylated sites were analyzed, followed by a comprehensive analysis of the differentially methylated sites with clinical data. GO/KEGG enrichment and protein-protein interaction (PPI) network analyses identified the hub genes. The differentially methylated sites between former and current smokers in GSE50660 from the GEO database were detected by GEO2R. Then, a Venn analysis was carried out using the differentially methylated sites. GO/KEGG enrichment analysis was performed on the genes corresponding to the common DNA methylation sites, the PPI network was constructed, and hub genes were predicted. The enriched genes associated with the cell cycle were selected, and the pan-cancer gene expression and clinical significance in lung cancer were analyzed based on the TCGA database. RESULTS Most genes showed decreased DNA methylation levels after short-term smoking cessation; 694 upregulated methylation CpG sites and 3184 downregulated methylation CpG sites were identified. The DNA methylation levels were altered according to the clinical data (body weight, expiratory, and tobacco dependence score). Enrichment analysis, construction of the PPI network, and pan-cancer analysis suggested that smoking cessation may affect various biological processes. CONCLUSIONS Smoking cessation leads to epigenetic changes, mainly decreased in the decline of most DNA methylation levels. Bioinformatics further identified the biologically relevant changes after short-term smoking cessation.
Collapse
Affiliation(s)
- Junyi Shang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University; People's Hospital of Henan University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Xinran Nie
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Department of Respiratory and Critical Care Medicine, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Yanan Qi
- Department of Respiratory and Critical Care Medicine, Central China Fuwai Hospital; Central China Fuwai Hospital of Zhengzhou University; People's Hospital of Zhengzhou University; Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jing Zhou
- Department of Health Management, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University; People's Hospital of Henan University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
30
|
Kasela S, Aguet F, Kim-Hellmuth S, Brown BC, Nachun DC, Tracy RP, Durda P, Liu Y, Taylor KD, Craig Johnson W, Berg DVD, Gabriel S, Gupta N, Smith JD, Blackwell TW, Rotter JI, Ardlie KG, Manichaikul A, Rich SS, Graham Barr R, Lappalainen T. Interaction molecular QTL mapping discovers cellular and environmental modifiers of genetic regulatory effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546528. [PMID: 37425716 PMCID: PMC10326995 DOI: 10.1101/2023.06.26.546528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Bulk tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, while context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell type proportions, we demonstrate that cell type iQTLs could be considered as proxies for cell type-specific QTL effects. The interpretation of age iQTLs, however, warrants caution as the moderation effect of age on the genotype and molecular phenotype association may be mediated by changes in cell type composition. Finally, we show that cell type iQTLs contribute to cell type-specific enrichment of diseases that, in combination with additional functional data, may guide future functional studies. Overall, this study highlights iQTLs to gain insights into the context-specificity of regulatory effects.
Collapse
Affiliation(s)
- Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Sarah Kim-Hellmuth
- New York Genome Center, New York, NY, USA
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich, Munich, Germany
- Computational Health Center, Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Brielin C. Brown
- New York Genome Center, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| | | | - Russell P. Tracy
- Pathology and Laboratory Medicine, The University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Peter Durda
- Pathology and Laboratory Medicine, The University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Yongmei Liu
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kent D. Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - David Van Den Berg
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | | | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua D. Smith
- Northwest Genomic Center, University of Washington, Seattle, WA, USA
| | - Thomas W. Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jerome I. Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Ani Manichaikul
- Center for Public health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S. Rich
- Center for Public health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R. Graham Barr
- Epidemiology and Medicine, Columbia University Medical Center, New York, NY, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
31
|
Ventham NT, Kennedy NA, Kalla R, Adams AT, Noble A, Ennis H, Mowat C, Dunlop MG, Satsangi J. Genome-Wide Methylation Profiling in 229 Patients With Crohn's Disease Requiring Intestinal Resection: Epigenetic Analysis of the Trial of Prevention of Post-operative Crohn's Disease (TOPPIC). Cell Mol Gastroenterol Hepatol 2023; 16:431-450. [PMID: 37331566 PMCID: PMC10372903 DOI: 10.1016/j.jcmgh.2023.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND & AIMS DNA methylation alterations may provide important insights into gene-environment interaction in cancer, aging, and complex diseases, such as inflammatory bowel disease (IBD). We aim first to determine whether the circulating DNA methylome in patients requiring surgery may predict Crohn's disease (CD) recurrence following intestinal resection; and second to compare the circulating methylome seen in patients with established CD with that we had reported in a series of inception cohorts. METHODS TOPPIC was a placebo-controlled, randomized controlled trial of 6-mercaptopurine at 29 UK centers in patients with CD undergoing ileocolic resection between 2008 and 2012. Genomic DNA was extracted from whole blood samples from 229 of the 240 patients taken before intestinal surgery and analyzed using 450KHumanMethylation and Infinium Omni Express Exome arrays (Illumina, San Diego, CA). Coprimary objectives were to determine whether methylation alterations may predict clinical disease recurrence; and to assess whether the epigenetic alterations previously reported in newly diagnosed IBD were present in the patients with CD recruited into the TOPPIC study. Differential methylation and variance analysis was performed comparing patients with and without clinical evidence of recurrence. Secondary analyses included investigation of methylation associations with smoking, genotype (MeQTLs), and chronologic age. Validation of our previously published case-control observation of the methylome was performed using historical control data (CD, n = 123; Control, n = 198). RESULTS CD recurrence in patients following surgery is associated with 5 differentially methylated positions (Holm P < .05), including probes mapping to WHSC1 (P = 4.1 × 10-9, Holm P = .002) and EFNA3 (P = 4.9 × 10-8, Holm P = .02). Five differentially variable positions are demonstrated in the group of patients with evidence of disease recurrence including a probe mapping to MAD1L1 (P = 6.4 × 10-5). DNA methylation clock analyses demonstrated significant age acceleration in CD compared with control subjects (GrimAge + 2 years; 95% confidence interval, 1.2-2.7 years), with some evidence for accelerated aging in patients with CD with disease recurrence following surgery (GrimAge +1.04 years; 95% confidence interval, -0.04 to 2.22). Significant methylation differences between CD cases and control subjects were seen by comparing this cohort in conjunction with previously published control data, including validation of our previously described differentially methylated positions (RPS6KA2 P = 1.2 × 10-19, SBNO2 = 1.2 × 10-11) and regions (TXK [false discovery rate, P = 3.6 × 10-14], WRAP73 [false discovery rate, P = 1.9 × 10-9], VMP1 [false discovery rate, P = 1.7 × 10-7], and ITGB2 [false discovery rate, P = 1.4 × 10-7]). CONCLUSIONS We demonstrate differential methylation and differentially variable methylation in patients developing clinical recurrence within 3 years of surgery. Moreover, we report replication of the CD-associated methylome, previously characterized only in adult and pediatric inception cohorts, in patients with medically refractory disease needing surgery.
Collapse
Affiliation(s)
- Nicholas T Ventham
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom.
| | - Nicholas A Kennedy
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Rahul Kalla
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Alex T Adams
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Alexandra Noble
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Holly Ennis
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Craig Mowat
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Malcolm G Dunlop
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Jack Satsangi
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
32
|
Torsvik A, Brattbakk HR, Trentani A, Holdhus R, Stansberg C, Bartz-Johannessen CA, Hughes T, Steen NE, Melle I, Djurovic S, Andreassen OA, Steen VM. Patients with schizophrenia and bipolar disorder display a similar global gene expression signature in whole blood that reflects elevated proportion of immature neutrophil cells with association to lipid changes. Transl Psychiatry 2023; 13:147. [PMID: 37147304 PMCID: PMC10163263 DOI: 10.1038/s41398-023-02442-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) share clinical characteristics, genetic susceptibility, and immune alterations. We aimed to identify differential transcriptional patterns in peripheral blood cells of patients with SCZ or BD versus healthy controls (HC). We analyzed microarray-based global gene expression data in whole blood from a cohort of SCZ (N = 329), BD (N = 203) and HC (N = 189). In total, 65 genes were significantly differentially expressed in SCZ and 125 in BD, as compared to HC, with similar ratio of up- and downregulated genes in both disorders. Among the top differentially expressed genes, we found an innate immunity signature that was shared between SCZ and BD, consisting of a cluster of upregulated genes (e.g., OLFM4, ELANE, BPI and MPO) that indicate an increased fraction of immature neutrophils. Several of these genes displayed sex differences in the expression pattern, and post-hoc analysis demonstrated a positive correlation with triglyceride and a negative correlation with HDL cholesterol. We found that many of the downregulated genes in SCZ and BD were associated with smoking. These findings of neutrophil granulocyte-associated transcriptome signatures in both SCZ and BD point at altered innate immunity pathways with association to lipid changes and potential for clinical translation.
Collapse
Affiliation(s)
- Anja Torsvik
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| | - Hans-Richard Brattbakk
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Andrea Trentani
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Rita Holdhus
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Christine Stansberg
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | | | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Vidar M Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
33
|
Arpawong TE, Klopack ET, Kim JK, Crimmins EM. ADHD genetic burden associates with older epigenetic age: mediating roles of education, behavioral and sociodemographic factors among older adults. Clin Epigenetics 2023; 15:67. [PMID: 37101297 PMCID: PMC10131361 DOI: 10.1186/s13148-023-01484-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Shortened lifespans are associated with having Attention Deficit Hyperactivity Disorder (ADHD), which is likely mediated by related behavioral and sociodemographic factors that are also associated with accelerated physiological aging. Such factors include exhibiting more depressive symptoms, more cigarette smoking, higher body mass index, lower educational attainment, lower income in adulthood, and more challenges with cognitive processes compared to the general population. A higher polygenic score for ADHD (ADHD-PGS) is associated with having more characteristic features of ADHD. The degree to which (1) the ADHD-PGS associates with an epigenetic biomarker developed to predict accelerated aging and earlier mortality is unknown, as are whether (2) an association would be mediated by behavioral and sociodemographic correlates of ADHD, or (3) an association would be mediated first by educational attainment, then by behavioral and sociodemographic correlates. We evaluated these relationships in a population-based sample from the US Health and Retirement Study, among N = 2311 adults age 50 and older, of European-ancestry, with blood-based epigenetic and genetic data. The ADHD-PGS was calculated from a prior genomewide meta-analysis. Epigenome-wide DNA methylation levels that index biological aging and earlier age of mortality were quantified by a blood-based biomarker called GrimAge. We used a structural equation modeling approach to test associations with single and multi-mediation effects of behavioral and contextual indicators on GrimAge, adjusted for covariates. RESULTS The ADHD-PGS was significantly and directly associated with GrimAge when adjusting for covariates. In single mediation models, the effect of the ADHD-PGS on GrimAge was partially mediated via smoking, depressive symptoms, and education. In multi-mediation models, the effect of the ADHD-PGS on GrimAge was mediated first through education, then smoking, depressive symptoms, BMI, and income. CONCLUSIONS Findings have implications for geroscience research in elucidating lifecourse pathways through which ADHD genetic burden and symptoms can alter risks for accelerated aging and shortened lifespans, when indexed by an epigenetic biomarker. More education appears to play a central role in attenuating negative effects on epigenetic aging from behavioral and sociodemographic risk factors related to ADHD. We discuss implications for the potential behavioral and sociodemographic mediators that may attenuate negative biological system effects.
Collapse
Affiliation(s)
- Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Eric T Klopack
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jung Ki Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Vidaki A, Planterose Jiménez B, Poggiali B, Kalamara V, van der Gaag KJ, Maas SCE, Ghanbari M, Sijen T, Kayser M. Targeted DNA methylation analysis and prediction of smoking habits in blood based on massively parallel sequencing. Forensic Sci Int Genet 2023; 65:102878. [PMID: 37116245 DOI: 10.1016/j.fsigen.2023.102878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Tobacco smoking is a frequent habit sustained by > 1.3 billion people in 2020 and the leading preventable factor for health risk and premature mortality worldwide. In the forensic context, predicting smoking habits from biological samples may allow broadening DNA phenotyping. In this study, we aimed to implement previously published smoking habit classification models based on blood DNA methylation at 13 CpGs. First, we developed a matching lab tool based on bisulfite conversion and multiplex PCR followed by amplification-free library preparation and targeted paired-end massively parallel sequencing (MPS). Analysis of six technical duplicates revealed high reproducibility of methylation measurements (Pearson correlation of 0.983). Artificially methylated standards uncovered marker-specific amplification bias, which we corrected via bi-exponential models. We then applied our MPS tool to 232 blood samples from Europeans of a wide age range, of which 90 were current, 71 former and 71 never smokers. On average, we obtained 189,000 reads/sample and 15,000 reads/CpG, without marker drop-out. Methylation distributions per smoking category roughly corresponded to previous microarray analysis, showcasing large inter-individual variation but with technology-driven bias. Methylation at 11 out of 13 smoking-CpGs correlated with daily cigarettes in current smokers, while solely one was weakly correlated with time since cessation in former smokers. Interestingly, eight smoking-CpGs correlated with age, and one displayed weak but significant sex-associated methylation differences. Using bias-uncorrected MPS data, smoking habits were relatively accurately predicted using both two- (current/non-current) and three- (never/former/current) category model, but bias correction resulted in worse prediction performance for both models. Finally, to account for technology-driven variation, we built new, joint models with inter-technology corrections, which resulted in improved prediction results for both models, with or without PCR bias correction (e.g. MPS cross-validation F1-score > 0.8; 2-categories). Overall, our novel assay takes us one step closer towards the forensic application of viable smoking habit prediction from blood traces. However, future research is needed towards forensically validating the assay, especially in terms of sensitivity. We also need to further shed light on the employed biomarkers, particularly on the mechanistics, tissue specificity and putative confounders of smoking epigenetic signatures.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Brando Poggiali
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vivian Kalamara
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Silvana C E Maas
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Titia Sijen
- Division of Biological Traces, Netherlands Forensic Institute, The Hague, the Netherlands; Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
35
|
Kalla R, Adams AT, Nowak JK, Bergemalm D, Vatn S, Ventham NT, Kennedy NA, Ricanek P, Lindstrom J, Söderholm J, Pierik M, D’Amato M, Gomollón F, Olbjørn C, Richmond R, Relton C, Jahnsen J, Vatn MH, Halfvarson J, Satsangi J. Analysis of Systemic Epigenetic Alterations in Inflammatory Bowel Disease: Defining Geographical, Genetic and Immune-Inflammatory influences on the Circulating Methylome. J Crohns Colitis 2023; 17:170-184. [PMID: 36029471 PMCID: PMC10024547 DOI: 10.1093/ecco-jcc/jjac127] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Epigenetic alterations may provide valuable insights into gene-environment interactions in the pathogenesis of inflammatory bowel disease [IBD]. METHODS Genome-wide methylation was measured from peripheral blood using the Illumina 450k platform in a case-control study in an inception cohort (295 controls, 154 Crohn's disease [CD], 161 ulcerative colitis [UC], 28 IBD unclassified [IBD-U)] with covariates of age, sex and cell counts, deconvoluted by the Houseman method. Genotyping was performed using Illumina HumanOmniExpressExome-8 BeadChips and gene expression using the Ion AmpliSeq Human Gene Expression Core Panel. Treatment escalation was characterized by the need for biological agents or surgery after initial disease remission. RESULTS A total of 137 differentially methylated positions [DMPs] were identified in IBD, including VMP1/MIR21 [p = 9.11 × 10-15] and RPS6KA2 [6.43 × 10-13], with consistency seen across Scandinavia and the UK. Dysregulated loci demonstrate strong genetic influence, notably VMP1 [p = 1.53 × 10-15]. Age acceleration is seen in IBD [coefficient 0.94, p < 2.2 × 10-16]. Several immuno-active genes demonstrated highly significant correlations between methylation and gene expression in IBD, in particular OSM: IBD r = -0.32, p = 3.64 × 10-7 vs non-IBD r = -0.14, p = 0.77]. Multi-omic integration of the methylome, genome and transcriptome also implicated specific pathways that associate with immune activation, response and regulation at disease inception. At follow-up, a signature of three DMPs [TAP1, TESPA1, RPTOR] were associated with treatment escalation to biological agents or surgery (hazard ratio of 5.19 [CI: 2.14-12.56], logrank p = 9.70 × 10-4). CONCLUSION These data demonstrate consistent epigenetic alterations at diagnosis in European patients with IBD, providing insights into the pathogenetic importance and translational potential of epigenetic mapping in complex disease.
Collapse
Affiliation(s)
- Rahul Kalla
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alex T Adams
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jan K Nowak
- Department of Paediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simen Vatn
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Nicholas T Ventham
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Nicholas A Kennedy
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Exeter IBD and Pharmacogenetics group, University of Exeter, Exeter, UK
| | - Petr Ricanek
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Jonas Lindstrom
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Johan Söderholm
- Department of Surgery and Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marie Pierik
- Maastricht University Medical Centre (MUMC), Department of Gastroenterology and Hepatology, Maastricht, Netherlands
| | - Mauro D’Amato
- CIC bioGUNE – BRTA, Derio, SpainIKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Christine Olbjørn
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Rebecca Richmond
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Caroline Relton
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Morten H Vatn
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jack Satsangi
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
36
|
Tan Q, Møller AMJ, Qiu C, Madsen JS, Shen H, Bechmann T, Delaisse JM, Kristensen BW, Deng HW, Karasik D, Søe K. A variability in response of osteoclasts to zoledronic acid is mediated by smoking-associated modification in the DNA methylome. Clin Epigenetics 2023; 15:42. [PMID: 36915112 PMCID: PMC10012449 DOI: 10.1186/s13148-023-01449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Clinical trials have shown zoledronic acid as a potent bisphosphonate in preventing bone loss, but with varying potency between patients. Human osteoclasts ex vivo reportedly displayed a variable sensitivity to zoledronic acid > 200-fold, determined by the half-maximal inhibitory concentration (IC50), with cigarette smoking as one of the reported contributors to this variation. To reveal the molecular basis of the smoking-mediated variation on treatment sensitivity, we performed a DNA methylome profiling on whole blood cells from 34 healthy female blood donors. Multiple regression models were fitted to associate DNA methylation with ex vivo determined IC50 values, smoking, and their interaction adjusting for age and cell compositions. RESULTS We identified 59 CpGs displaying genome-wide significance (p < 1e-08) with a false discovery rate (FDR) < 0.05 for the smoking-dependent association with IC50. Among them, 3 CpGs have p < 1e-08 and FDR < 2e-03. By comparing with genome-wide association studies, 15 significant CpGs were locally enriched (within < 50,000 bp) by SNPs associated with bone and body size measures. Furthermore, through a replication analysis using data from a published multi-omics association study on bone mineral density (BMD), we could validate that 29 out of the 59 CpGs were in close vicinity of genomic sites significantly associated with BMD. Gene Ontology (GO) analysis on genes linked to the 59 CpGs displaying smoking-dependent association with IC50, detected 18 significant GO terms including cation:cation antiporter activity, extracellular matrix conferring tensile strength, ligand-gated ion channel activity, etc. CONCLUSIONS: Our results suggest that smoking mediates individual sensitivity to zoledronic acid treatment through epigenetic regulation. Our novel findings could have important clinical implications since DNA methylation analysis may enable personalized zoledronic acid treatment.
Collapse
Affiliation(s)
- Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, 5000 Odense C, Denmark
| | - Anaïs Marie Julie Møller
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, J. B. Winsløvs Vej 25, 1st Floor, 5000 Odense C, Denmark
- Clinical Cell Biology, Department of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| | - Chuan Qiu
- Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane Center of Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112 USA
| | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Hui Shen
- Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane Center of Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112 USA
| | - Troels Bechmann
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Oncology, Regional Hospital West Jutland, 7400 Herning, Denmark
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, J. B. Winsløvs Vej 25, 1st Floor, 5000 Odense C, Denmark
- Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Hong-Wen Deng
- Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane Center of Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112 USA
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, 130010 Safed, Israel
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, J. B. Winsløvs Vej 25, 1st Floor, 5000 Odense C, Denmark
- Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
37
|
Bernabeu E, McCartney DL, Gadd DA, Hillary RF, Lu AT, Murphy L, Wrobel N, Campbell A, Harris SE, Liewald D, Hayward C, Sudlow C, Cox SR, Evans KL, Horvath S, McIntosh AM, Robinson MR, Vallejos CA, Marioni RE. Refining epigenetic prediction of chronological and biological age. Genome Med 2023; 15:12. [PMID: 36855161 PMCID: PMC9976489 DOI: 10.1186/s13073-023-01161-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Epigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epigenetic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture. METHODS First, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women's Health Initiative study). RESULTS Through the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 × 10-52, and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 × 10-60). Finally, we introduce MethylBrowsR, an online tool to visualise epigenome-wide CpG-age associations. CONCLUSIONS The integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronological age.
Collapse
Affiliation(s)
- Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, USA
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - David Liewald
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Cathie Sudlow
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- BHF Data Science Centre, Health Data Research UK, London, UK
- Edinburgh Medical School, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, USA
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | | | - Catalina A Vallejos
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- The Alan Turing Institute, London, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
38
|
Laqqan MM, Yassin MM. Effect of hubble-bubble smoking on global DNA methylation and transcription levels of protamine and histone genes in human spermatozoa. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:53-60. [PMID: 36744325 DOI: 10.1080/10934529.2023.2174326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
This study was conducted to assess the impact of hubble-bubble smoking on global DNA methylation, DNA fragmentation; protamine deficiency of spermatozoa, and to determine whether the transcription levels of the protamine and histone genes are different in hubble-bubble smokers compared to nonsmokers. Five hundred semen samples were collected from males with an average age of 32.2 ± 6.1 years (300 hubble-bubble smokers "60%" and 200 nonsmokers "40%"). The nucleic acid was isolated from purified sperm, then ELISA and qPCR were used to evaluate the global DNA methylation and transcription level of protamine and histone, respectively. A significant elevation in global DNA methylation, protamine deficiency, and DNA fragmentation was found in hubble-bubble smokers compared to nonsmokers (P < 0.0001). A significant decline was shown in transcription levels of protamine and histone genes in hubble-bubble compared to nonsmokers (P < 0.0001). Additionally, a down-regulation in the transcription levels of protamine and histone was revealed in hubble-bubble compared to nonsmokers with fold change (0.0001 and 0.007, respectively). In conclusion, this study provided proof that hubble-bubble smoking has a negative impact on global DNA methylation, DNA fragmentation, protamine deficiency, and the transcription of protamine and histone genes in spermatozoa, and these findings influence negatively males' fecundity.
Collapse
Affiliation(s)
- Mohammed M Laqqan
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Islamic University of Gaza, Gaza, Palestine
- Department of Gynecology & Obstetrics, Faculty of Medicine, Saarland University "Graduate", Saarbrucken, Germany
| | - Maged M Yassin
- Department of Human Physiology, Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine
| |
Collapse
|
39
|
Han Q, Wang Y, Sun N, Chu J, Hu W, Shen Y. Mediation analysis method review of high throughput data. Stat Appl Genet Mol Biol 2023; 22:sagmb-2023-0031. [PMID: 38015771 DOI: 10.1515/sagmb-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
High-throughput technologies have made high-dimensional settings increasingly common, providing opportunities for the development of high-dimensional mediation methods. We aimed to provide useful guidance for researchers using high-dimensional mediation analysis and ideas for biostatisticians to develop it by summarizing and discussing recent advances in high-dimensional mediation analysis. The method still faces many challenges when extended single and multiple mediation analyses to high-dimensional settings. The development of high-dimensional mediation methods attempts to address these issues, such as screening true mediators, estimating mediation effects by variable selection, reducing the mediation dimension to resolve correlations between variables, and utilizing composite null hypothesis testing to test them. Although these problems regarding high-dimensional mediation have been solved to some extent, some challenges remain. First, the correlation between mediators are rarely considered when the variables are selected for mediation. Second, downscaling without incorporating prior biological knowledge makes the results difficult to interpret. In addition, a method of sensitivity analysis for the strict sequential ignorability assumption in high-dimensional mediation analysis is still lacking. An analyst needs to consider the applicability of each method when utilizing them, while a biostatistician could consider extensions and improvements in the methodology.
Collapse
Affiliation(s)
- Qiang Han
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Na Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Jiadong Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Wei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yueping Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
40
|
Okazaki S, Kimura R, Otsuka I, Tomiwa K, Funabiki Y, Hagiwara M, Murai T, Hishimoto A. Epigenetic aging in Williams syndrome. J Child Psychol Psychiatry 2022; 63:1553-1562. [PMID: 35416284 DOI: 10.1111/jcpp.13613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Williams syndrome (WS) is a rare genetic disorder caused by a microdeletion at the 7q11.23 region and is characterized by diverse symptoms encompassing physical and cognitive features. WS was reported to be associated to altered DNA methylation (DNAm) patterns. However, due to the limited information from long-term studies, it remains unclear whether WS accelerates aging. Genome-wide DNAm profiles can serve as "epigenetic clocks" to help estimate biological aging along with age-related markers, such as plasma proteins and telomere length. METHODS We investigated GrimAge, DNAm-based telomere length (DNAmTL), and other epigenetic clocks in blood samples of 32 patients with WS and 32 healthy controls. RESULTS We observed a significant acceleration in GrimAge, DNAmTL, and other epigenetic clocks in patients with WS as compared with those of controls. In addition, several GrimAge components, such as adrenomedullin, growth differentiation factor-15, leptin and plasminogen activator inhibitor-1, were altered in patients with WS. CONCLUSIONS This study provides novel evidence supporting the hypothesis that WS may be associated to accelerated biological aging. A better understanding of the overall underlying biological effects of WS can provide new foundations for improved patient care; thus, long-term follow-up studies are still warranted.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Yasuko Funabiki
- Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.,Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Child and Adolescent Psychiatry, Yokohama City University Hospital, Yokohama, Japan
| |
Collapse
|
41
|
Song J, Kuan PF. A systematic assessment of cell type deconvolution algorithms for DNA methylation data. Brief Bioinform 2022; 23:bbac449. [PMID: 36242584 PMCID: PMC9947552 DOI: 10.1093/bib/bbac449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022] Open
Abstract
We performed systematic assessment of computational deconvolution methods that play an important role in the estimation of cell type proportions from bulk methylation data. The proposed framework methylDeConv (available as an R package) integrates several deconvolution methods for methylation profiles (Illumina HumanMethylation450 and MethylationEPIC arrays) and offers different cell-type-specific CpG selection to construct the extended reference library which incorporates the main immune cell subsets, epithelial cells and cell-free DNAs. We compared the performance of different deconvolution algorithms via simulations and benchmark datasets and further investigated the associations of the estimated cell type proportions to cancer therapy in breast cancer and subtypes in melanoma methylation case studies. Our results indicated that the deconvolution based on the extended reference library is critical to obtain accurate estimates of cell proportions in non-blood tissues.
Collapse
Affiliation(s)
- Junyan Song
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
| |
Collapse
|
42
|
Chaar DL, Nguyen K, Wang YZ, Ratliff SM, Mosley TH, Kardia SLR, Smith JA, Zhao W. SNP-by-CpG Site Interactions in ABCA7 Are Associated with Cognition in Older African Americans. Genes (Basel) 2022; 13:2150. [PMID: 36421824 PMCID: PMC9691156 DOI: 10.3390/genes13112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 06/28/2024] Open
Abstract
SNPs in ABCA7 confer the largest genetic risk for Alzheimer's Disease (AD) in African Americans (AA) after APOE ε4. However, the relationship between ABCA7 and cognitive function has not been thoroughly examined. We investigated the effects of five known AD risk SNPs and 72 CpGs in ABCA7, as well as their interactions, on general cognitive function (cognition) in 634 older AA without dementia from Genetic Epidemiology Network of Arteriopathy (GENOA). Using linear mixed models, no SNP or CpG was associated with cognition after multiple testing correction, but five CpGs were nominally associated (p < 0.05). Four SNP-by-CpG interactions were associated with cognition (FDR q < 0.1). Contrast tests show that methylation is associated with cognition in some genotype groups (p < 0.05): a 1% increase at cg00135882 and cg22271697 is associated with a 0.68 SD decrease and 0.14 SD increase in cognition for those with the rs3764647 GG/AG (p = 0.004) and AA (p = 2 × 10-4) genotypes, respectively. In addition, a 1% increase at cg06169110 and cg17316918 is associated with a 0.37 SD decrease (p = 2 × 10-4) and 0.33 SD increase (p = 0.004), respectively, in cognition for those with the rs115550680 GG/AG genotype. While AD risk SNPs in ABCA7 were not associated with cognition in this sample, some have interactions with proximal methylation on cognition.
Collapse
Affiliation(s)
- Dima L. Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kim Nguyen
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi-Zhe Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MI 39216, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
43
|
Li X, Delerue T, Schöttker B, Holleczek B, Grill E, Peters A, Waldenberger M, Thorand B, Brenner H. Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults. Nat Commun 2022; 13:5269. [PMID: 36071044 PMCID: PMC9450828 DOI: 10.1038/s41467-022-32893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
DNA methylation (DNAm) patterns in peripheral blood have been shown to be associated with aging related health outcomes. We perform an epigenome-wide screening to identify CpGs related to frailty, defined by a frailty index (FI), in a large population-based cohort of older adults from Germany, the ESTHER study. Sixty-five CpGs are identified as frailty related methylation loci. Using LASSO regression, 20 CpGs are selected to derive a DNAm based algorithm for predicting frailty, the epigenetic frailty risk score (eFRS). The eFRS exhibits strong associations with frailty at baseline and after up to five-years of follow-up independently of established frailty risk factors. These associations are confirmed in another independent population-based cohort study, the KORA-Age study, conducted in older adults. In conclusion, we identify 65 CpGs as frailty-related loci, of which 20 CpGs are used to calculate the eFRS with predictive performance for frailty over long-term follow-up.
Collapse
Affiliation(s)
- Xiangwei Li
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Krebsregister Saarland, Neugeländstraße 9, 66117, Saarbrücken, Germany
| | - Eva Grill
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Vertigo and Balance Disorders, Klinikum der Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany.,Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
| | - Barbara Thorand
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany. .,German Cancer Consortium, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
44
|
Marrie RA, Allegretta M, Barcellos LF, Bebo B, Calabresi PA, Correale J, Davis B, De Jager PL, Gasperi C, Greenbaum C, Helme A, Hemmer B, Kanellis P, Kostich W, Landsman D, Lebrun-Frenay C, Makhani N, Munger KL, Okuda DT, Ontaneda D, Postuma RB, Quandt JA, Roman S, Saidha S, Sormani MP, Strum J, Valentine P, Walton C, Zackowski KM, Zhao Y, Tremlett H. From the prodromal stage of multiple sclerosis to disease prevention. Nat Rev Neurol 2022; 18:559-572. [PMID: 35840705 DOI: 10.1038/s41582-022-00686-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
A prodrome is an early set of signs or symptoms that indicate the onset of a disease before more typical symptoms develop. Prodromal stages are well recognized in some neurological and immune-mediated diseases such as Parkinson disease, schizophrenia, type 1 diabetes mellitus and rheumatoid arthritis. Emerging evidence indicates that a prodromal stage exists in multiple sclerosis (MS), raising the possibility of intervention at this stage to delay or prevent the development of classical MS. However, much remains unclear about the prodromal stage of MS and considerable research is needed to fully characterize the prodrome and develop standardized criteria to reliably identify individuals with prodromal MS who are at high risk of progressing to a diagnosis of MS. In this Roadmap, we draw on work in other diseases to propose a disease framework for MS that incorporates the prodromal stage, and set out key steps and considerations needed in future research to fully characterize the MS prodrome, identify early disease markers and develop standardized criteria that will enable reliable identification of individuals with prodromal MS, thereby facilitating trials of interventions to slow or stop progression beyond the prodrome.
Collapse
Affiliation(s)
- Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | - Lisa F Barcellos
- Division of Epidemiology and Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California Berkeley, Berkeley, CA, USA
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | - Bruce Bebo
- National Multiple Sclerosis Society, New York, NY, USA
| | - Peter A Calabresi
- Johns Hopkins University School of Medicine, Departments of Neurology, Neuroscience and Ophthalmology, Baltimore, MD, USA
| | | | - Benjamin Davis
- Multiple Sclerosis Society of Canada, Toronto, Ontario, Canada
| | - Philip L De Jager
- Multiple Sclerosis Center, Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Christiane Gasperi
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Carla Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA
| | - Anne Helme
- Multiple Sclerosis International Federation, London, UK
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pamela Kanellis
- Multiple Sclerosis Society of Canada, Toronto, Ontario, Canada
| | | | | | | | - Naila Makhani
- Departments of Pediatrics and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Kassandra L Munger
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Darin T Okuda
- The University of Texas Southwestern Medical Center, Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Dallas, TX, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald B Postuma
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sharon Roman
- Patient representative, Vancouver, British Columbia, Canada
| | - Shiv Saidha
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | | | | | - Yinshan Zhao
- Faculty of Medicine (Neurology), University of British Columbia, Vancouver, British Columbia, Canada
| | - Helen Tremlett
- Faculty of Medicine (Neurology), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
45
|
Zhu L, Zhu C, Wang J, Yang R, Zhao X. The association between DNA methylation of 6p21.33 and AHRR in blood and coronary heart disease in Chinese population. BMC Cardiovasc Disord 2022; 22:370. [PMID: 35964014 PMCID: PMC9375073 DOI: 10.1186/s12872-022-02766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early detection could significantly improve the prognosis of coronary heart disease (CHD). In-invitro diagnostic technique may provide a solution when sufficient biomarkers could be identified. Pertinent associations between blood-based aberrant DNA methylation and smoking, the pathogenesis of atherosclerosis, and CHD have been robustly demonstrated and replicated, but that studies in Chinese populations are rare. The blood-based methylation of aryl-hydrocarbon receptor repressor (AHRR) cg05575921 and 6p21.33 cg06126421 has been associated with cardiovascular mortality in Caucasians. Here, we aim to investigate whether the AHRR and 6p21.33 methylation in the blood is associated with CHD in the Chinese population. METHODS In this case-control study, 180 CHD patients recruited at their first registration in our study center, and 184 controls randomly selected from the people who participated in the annual health examination were enrolled. Methylation intensities of 19 CpG sites, including AHRR cg05575921, 6p21.33 cg06126421, and their flanking CpG sites, were quantified by mass spectrometry. The association between methylation intensities and CHD was estimated by logistic regression analyses adjusted for covariant. RESULTS Compared to the controls, lower methylation of 6p21.33_CpG_4.5/cg06126421 was independently associated with increased odds of being a CHD patient (OR per - 10% methylation = 1.42 after adjustment for age, gender, and batch effect; p = 0.032 by multiple testing corrections). No association between blood-based AHRR methylation and CHD was found. CONCLUSIONS 6p21.33 methylation exhibits a significant association with CHD. The combination of 6p21.33 methylation and conventional risk factors might be an intermediate step towards the early detection of CHD.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chao Zhu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, West District, Beijing, 100050, China
| | - Jinxin Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaojing Zhao
- Military Translational Medicine Lab, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China. .,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
46
|
Abstract
Advances in high-throughput technologies and the generation of multiomics, such as genomic, epigenomic, transcriptomic, and metabolomic data, are paving the way for the biological risk stratification and prediction of oral diseases. When integrated with electronic health records, survey, census, and/or epidemiologic data, multiomics are anticipated to facilitate data-driven precision oral health, or the delivery of the right oral health intervention to the right individuals/populations at the right time. Meanwhile, multiomics may be modified by a multitude of social exposures, cumulatively along the life course and at various time points from conception onward, also referred to as the socio-exposome. For example, adverse exposures, such as precarious social and living conditions and related psychosocial stress among others, have been linked to specific genes being switched "on and off" through epigenetic mechanisms. These in turn are associated with various health conditions in different age groups and populations. This article argues that considering the impact of the socio-exposome in the biological profiling for precision oral health applications is necessary to ensure that definitions of biological risk do not override social ones. To facilitate the uptake of the socio-exposome in multiomics oral health studies and subsequent interventions, 3 pertinent facets are discussed. First, a summary of the epigenetic landscape of oral health is presented. Next, findings from the nondental literature are drawn on to elaborate the pathways and mechanisms that link the socio-exposome with gene expression-or the biological embedding of social experiences through epigenetics. Then, methodological considerations for implementing social epigenomics into oral health research are highlighted, with emphasis on the implications for study design and interpretation. The article concludes by shedding light on some of the current and prospective opportunities for social epigenomics research applied to the study of life course oral epidemiology.
Collapse
Affiliation(s)
- N Gomaa
- Schulich School of Medicine and Dentistry, Western University, London, Canada.,Children's Health Research Institute, London, Canada
| |
Collapse
|
47
|
Eckhardt CM, Wu H, Prada D, Vokonas PS, Sparrow D, Hou L, Schwartz J, Baccarelli AA. Predicting risk of lung function impairment and all-cause mortality using a DNA methylation-based classifier of tobacco smoke exposure. Respir Med 2022; 200:106896. [PMID: 35716602 PMCID: PMC10560590 DOI: 10.1016/j.rmed.2022.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The Epigenetic Smoking Status Estimator (EpiSmokEr) predicts smoking phenotypes based on DNA methylation at 121 CpG sites. OBJECTIVE Evaluate associations of EpiSmokEr-predicted versus self-reported smoking phenotypes with lung function and all-cause mortality in a cohort of older adults. METHODS The prospective Normative Aging Study collected DNA methylation measurements from 1999 to 2012 with follow-up through 2016. The R package EpiSmokEr derived predicted smoking phenotypes based on DNA methylation levels assayed by the Illumina HumanMethylation450 Beadchip. Spirometry was collected every 3-5 years. Airflow limitation was defined as forced expiratory volume in 1 s/forced vital capacity <0.7. Vital status was monitored through periodic mailings. RESULTS Among 784 participants contributing 5414 person-years of follow-up, the EpiSmokEr-predicted smoking phenotypes matched the self-reported phenotypes for 228 (97%) never smokers and 22 (71%) current smokers. In contrast, EpiSmokEr classified 407 (79%) self-reported former smokers as never smokers. Nonetheless, the EpiSmokEr-predicted former smoking phenotype was more strongly associated with incident airflow limitation (hazard ratio [HR] = 3.15, 95% confidence interval [CI] = 1.50-6.59) and mortality (HR = 2.11, 95% CI = 1.56-2.85) compared to the self-reported former smoking phenotype (airflow limitation: HR = 2.21, 95% CI = 1.13-4.33; mortality: HR = 1.08, 95% CI = 0.86-1.36). Risk of airflow limitation and death did not differ among self-reported never smokers and former smokers who were classified as never smokers. The discriminative accuracy of EpiSmokEr-predicted phenotypes for incident airflow limitation and mortality was improved compared to self-reported phenotypes. CONCLUSIONS The DNA methylation-based EpiSmokEr classifier may be a useful surrogate of smoking-induced lung damage and may identify former smokers most at risk of adverse smoking-related health effects.
Collapse
Affiliation(s)
- Christina M Eckhardt
- Columbia University Irving Medical Center, Division of Pulmonary, Allergy and Critical, Care Medicine, Department of Medicine, New York, NY, USA.
| | - Haotian Wu
- Columbia University Mailman School of Public Health, Environmental Health Sciences, Department, New York, NY, USA
| | - Diddier Prada
- Columbia University Mailman School of Public Health, Environmental Health Sciences, Department, New York, NY, USA; Instituto Nacional de Cancerología, México City, Mexico
| | - Pantel S Vokonas
- Boston University School of Medicine, VA Normative Aging Study, VA, Boston, USA; Healthcare System and Department of Medicine, Boston, MA, USA
| | - David Sparrow
- Boston University School of Medicine, VA Normative Aging Study, VA, Boston, USA; Healthcare System and Department of Medicine, Boston, MA, USA
| | - Lifang Hou
- Northwestern Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL, USA
| | - Joel Schwartz
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Cambridge, MA, USA
| | - Andrea A Baccarelli
- Columbia University Mailman School of Public Health, Environmental Health Sciences, Department, New York, NY, USA
| |
Collapse
|
48
|
Qi S, Fu Z, Wu L, Calhoun VD, Zhang D, Daughters SB, Hsu PC, Jiang R, Vergara VM, Sui J, Addicott MA. Cognition, Aryl Hydrocarbon Receptor Repressor Methylation, and Abstinence Duration-Associated Multimodal Brain Networks in Smoking and Long-Term Smoking Cessation. Front Neurosci 2022; 16:923065. [PMID: 35968362 PMCID: PMC9363622 DOI: 10.3389/fnins.2022.923065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cigarette smoking and smoking cessation are associated with changes in cognition and DNA methylation; however, the neurobiological correlates of these effects have not been fully elucidated, especially in long-term cessation. Cognitive performance, percent methylation of the aryl hydrocarbon receptor repressor (AHRR) gene, and abstinence duration were used as references to supervise a multimodal fusion analysis of functional, structural, and diffusion magnetic resonance imaging (MRI) data, in order to identify associated brain networks in smokers and ex-smokers. Correlations among these networks and with smoking-related measures were performed. Cognition-, methylation-, and abstinence duration-associated networks discriminated between smokers and ex-smokers and correlated with differences in fractional amplitude of low frequency fluctuations (fALFF) values, gray matter volume (GMV), and fractional anisotropy (FA) values. Long-term smoking cessation was associated with more accurate cognitive performance, as well as lower fALFF and more GMV in the hippocampus complex. The methylation- and abstinence duration-associated networks positively correlated with smoking-related measures of abstinence duration and percent methylation, respectively, suggesting they are complementary measures. This analysis revealed structural and functional co-alterations linked to smoking abstinence and cognitive performance in brain regions including the insula, frontal gyri, and lingual gyri. Furthermore, AHRR methylation, a promising epigenetic biomarker of smoking recency, may provide an important complement to self-reported abstinence duration.
Collapse
Affiliation(s)
- Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Lei Wu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Stacey B. Daughters
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ping-Ching Hsu
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - Victor M. Vergara
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Merideth A. Addicott
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
49
|
Liu T, Guo W, Luo K, Li L, Dong J, Liu M, Shi X, Wang Z, Zhang J, Yin J, Qiu N, Lu M, Chen D, Jia X, Liu H, Gu Y, Xiong Y, Zheng G, Xu G, He Z, Zhang Z. Smoke-induced SAV1 Gene Promoter Hypermethylation Disrupts YAP Negative Feedback and Promotes Malignant Progression of Non-small Cell Lung Cancer. Int J Biol Sci 2022; 18:4497-4512. [PMID: 35864957 PMCID: PMC9295071 DOI: 10.7150/ijbs.73428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/02/2022] [Indexed: 11/26/2022] Open
Abstract
YAP (gene symbol YAP1) as a potential oncoprotein, is positively correlated with the malignancy of various tumors. However, overexpression of YAP alone in multiple normal tissue cells has failed to induce tumor formation and the underlying mechanism is poorly understood. Herein, we show that YAP activation directly induces transcription of its negative regulator, SAV1, to constitute a negative feedback loop, which plays a vital role in maintaining lung epithelial cell homeostasis and was dysregulated in non-small cell lung cancer (NSCLC). Notably, smoking promotes the hypermethylation of the SAV1 promoter region, which disrupts YAP negative feedback by inactivating the Hippo pathway. Besides, exogenous overexpression of SAV1 can act as a traffic protein, activating the Hippo signaling and concurrently inhibiting the WNT pathway to decrease cancer cell growth. Furthermore, using the lung cancer organoids, we found that lentivirus-mediated SAV1 gene transfer combined with methylation inhibitor and YAP-TEAD inhibitor is a potential feasible clinical medication regimen for the lung cancer patient, especially among the smoking population. Thus, this SAV1 mediated feedback loop provides an efficient mechanism to establish the robustness and homeostasis of YAP regulation and as a potential target of gene therapy for the smoking NSCLC population.
Collapse
Affiliation(s)
- Ting Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Wei Guo
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Kai Luo
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Lei Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Jing Dong
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Meijun Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Xingyuan Shi
- Department of Central Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhiyuan Wang
- Department of Central Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Jianlei Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Jiang Yin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Ni Qiu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Minying Lu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Danyang Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Xiaoting Jia
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Hao Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Yixue Gu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Yan Xiong
- Department of Central Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Guopei Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China.,The State Key Laboratory of Respiratory, Guangzhou, Guangdong, P. R. China
| | - Gang Xu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Zhimin He
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| | - Zhijie Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou city, Guangdong, P. R. China
| |
Collapse
|
50
|
Hilser JR, Hartiala JA, Sriprasert I, Kono N, Cai Z, Karim R, DeYoung J, Mack WJ, Hodis HN, Allayee H. Effect of menopausal hormone therapy on methylation levels in early and late postmenopausal women. Clin Epigenetics 2022; 14:90. [PMID: 35850911 PMCID: PMC9295504 DOI: 10.1186/s13148-022-01311-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of death among postmenopausal women but standard primary prevention strategies in women are not as effective as in men. By comparison, the Early versus Late Intervention Trial with Estradiol (ELITE) study demonstrated that hormone therapy (HT) was associated with significant reduction in atherosclerosis progression in women who were within six years of menopause compared to those who were 10 or more years from menopause. These findings are consistent with other studies showing significant reductions in all-cause mortality and CVD with HT, particularly when initiated in women younger than 60 years of age or within 10 years since menopause. To explore the biological mechanisms underlying the age-related atheroprotective effects of HT, we investigated changes in methylation of blood cells of postmenopausal women who participated in ELITE. RESULTS We first validated the epigenetic data generated from blood leukocytes of ELITE participants by replicating previously known associations between smoking and methylation levels at previously identified CpG sites, such as cg05575921 at the AHRR locus. An epigenome-wide association study (EWAS) evaluating changes in methylation through interactions with time-since-menopause and HT revealed two significantly associated CpG sites on chromosomes 12 (cg19552895; p = 1.1 × 10-9) and 19 (cg18515510; p = 2.4 × 10-8). Specifically, HT resulted in modest, but significant, increases in methylation levels at both CpGs but only in women who were 10 or more years since menopause and randomized to HT. Changes in carotid artery intima-media thickness (CIMT) from baseline to 36 months after HT were not significantly correlated with changes in methylation levels at either cg19552895 or cg18515510. Evaluation of other previously identified CpG sites at which methylation levels in either blood or vascular tissue were associated with atherosclerosis also did not reveal any differences in methylation as a function of HT and time-since-menopause or with changes in CIMT. CONCLUSIONS We identified specific methylation differences in blood in response to HT among women who were 10 or more years since menopause. The functional consequence of these change with respect to atherosclerosis progression and protective effects of HT remains to be determined and will require additional studies.
Collapse
Affiliation(s)
- James R. Hilser
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Departments of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Jaana A. Hartiala
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA
| | - Intira Sriprasert
- grid.42505.360000 0001 2156 6853Departments of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Naoko Kono
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Zhiheng Cai
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Departments of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Roksana Karim
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Joseph DeYoung
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095 USA
| | - Wendy J. Mack
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Howard N. Hodis
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Departments of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Hooman Allayee
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Departments of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|