1
|
Shulhai AM, Munerati A, Menzella M, Palanza P, Esposito S, Street ME. Insights into pubertal development: a narrative review on the role of epigenetics. J Endocrinol Invest 2025; 48:817-830. [PMID: 39704935 PMCID: PMC11950117 DOI: 10.1007/s40618-024-02513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Puberty is a key phase of growth and development, characterized by psychophysical transformations. It is driven by a combination of genetic, hormonal, and environmental variables. Epigenetic mechanisms, including histone post-translational modifications and chromatin remodeling, microRNAs, and DNA methylation, play important roles in orchestrating the developmental processes. We describe environmental factors that may interact with genetics, and factors influencing puberty onset, focusing in particular on epigenetic mechanisms that can help understand the timing and variations that lead to precocious or delayed puberty. METHODS We conducted a narrative review of associations between puberty and epigenetic mechanisms through a comprehensive search of PubMed, Scopus, and Web of Science databases. RESULTS The chromatin landscape of genes as KISS1 has revealed dynamic changes in histone modifications as puberty approaches, influencing the stimulation or inhibition of gene expression critical for reproductive maturation. MiRNAs regulate gene expression, whereas DNA methylation affects activation or repression of gene transcription of genes involved in pubertal timing. Moreover, studies in animal models have provided insights into the role of DNA methylation and miRNAs in brain sexual differentiation, highlighting the active involvement of epigenetic mechanisms in shaping sexually dimorphic brain structures. CONCLUSION This review highlights the importance of understanding the complex interplay between epigenetic regulation and pubertal development, which can lead to new therapeutic options and shed light on the fundamental processes driving reproductive maturation.
Collapse
Affiliation(s)
- Anna-Mariia Shulhai
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
- Department of Pediatrics №2, Ivan Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Anna Munerati
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Marialaura Menzella
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Maria Elisabeth Street
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy.
| |
Collapse
|
2
|
Li R, He T, Xing Z, Mi L, Su A, Wu W. The immune system in Hashimoto's thyroiditis: Updating the current state of knowledge on potential therapies and animal model construction. Autoimmun Rev 2025; 24:103783. [PMID: 40037463 DOI: 10.1016/j.autrev.2025.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Hashimoto's thyroiditis (HT) is one of the most prevalent endocrine disorders worldwide, and it can occur in people of all ages, including children. HT has a multifactorial pathogenesis and develops after a combination of gene regulation, environmental modifiers, and infection triggers. Various coamplifying feedback chronic inflammatory systems are involved in immune mechanisms, including oxidative stress, lymphocyte infiltration, and thyroid cell death. Furthermore, there is no effective treatment for HT at their roots. Thus, this review systematically summarizes and updates the existing etiology and pathogenesis, potential malignant transformation, emerging therapeutic drugs and animal model construction, making it more convenient for researchers to obtain effective information about HT and better explore potential strategies for short-term treatment of the disease.
Collapse
Affiliation(s)
- Ruixi Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Lee A, Zhang Q, Wei H, Felmlee MA. Effects of Sex and Cross-Sex Hormone Treatment on Renal MCT/SMCT Expression Following Prepubertal Gonadectomy. Pharmaceutics 2025; 17:252. [PMID: 40006619 PMCID: PMC11859816 DOI: 10.3390/pharmaceutics17020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Kidney proton- and sodium-dependent monocarboxylate transporters (MCT/SMCT) are involved in the renal reabsorption of substrates, and thus factors involved in their regulation may have pharmacokinetic implications. Previous studies have demonstrated sex hormone-dependent regulation of MCTs and SMCTs in tissues involved in drug disposition. The present study evaluates the impact of puberty on renal MCT/SMCT expression with ovariectomy and castration conducted before puberty, removing the initial exposure to sex hormones. Methods: Male and female rats were castrated or ovariectomized before puberty (4 weeks of age), and subsequently treated with testosterone, 17β-estradiol, progesterone, or both 17β-estradiol and progesterone for 21 days starting at 10 weeks of age. MCT1, CD147, and SMCT1 membrane-bound kidney expression were quantified by Western blot. Results: SMCT1 and CD147 expression were significantly higher in OVX and CST rats treated with testosterone, and testosterone plasma concentrations showed a significant positive correlation with MCT1, SMCT1, and CD147 expression. CD147 expression was significantly downregulated in OVX rats treated with estrogen, compared to placebo controls, and estrogen plasma concentrations were significantly negatively correlated with CD147 expression. Conclusions: Sex and cross-sex hormone treatment altered MCT1, CD147, and SMCT1 expression when gonadectomy was conducted before puberty. The magnitude and direction of the expression differences differed when compared to animals that underwent gonadectomy after puberty, suggesting that sex hormone exposure during puberty plays a key role in MCT1/SMCT1 renal expression. Further studies are needed to elucidate the underlying mechanisms for the differential regulation of MCTs/SMCTs when gonadectomy occurs before or after puberty.
Collapse
Affiliation(s)
| | | | | | - Melanie A. Felmlee
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (A.L.); (Q.Z.); (H.W.)
| |
Collapse
|
4
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
5
|
Jensen D, Chen J, Turner JA, Stephen JM, Wang YP, Wilson TW, Calhoun VD, Liu J. Co-methylation networks associated with cognition and structural brain development during adolescence. Front Genet 2025; 15:1451150. [PMID: 39840280 PMCID: PMC11746905 DOI: 10.3389/fgene.2024.1451150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/26/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Typical adolescent neurodevelopment is marked by decreases in grey matter (GM) volume, increases in myelination, measured by fractional anisotropy (FA), and improvement in cognitive performance. Methods To understand how epigenetic changes, methylation (DNAm) in particular, may be involved during this phase of development, we studied cognitive assessments, DNAm from saliva, and neuroimaging data from a longitudinal cohort of normally developing adolescents, aged nine to fourteen. We extracted networks of methylation with patterns of correlated change using a weighted gene correlation network analysis (WCGNA). Modules from these analyses, consisting of co-methylation networks, were then used in multivariate analyses with GM, FA, and cognitive measures to assess the nature of their relationships with cognitive improvement and brain development in adolescence. Results This longitudinal exploration of co-methylated networks revealed an increase in correlated epigenetic changes as subjects progressed into adolescence. Co-methylation networks enriched for pathways involved in neuronal systems, potassium channels, neurexins and neuroligins were both conserved across time as well as associated with maturation patterns in GM, FA, and cognition. Discussion Our research shows that correlated changes in the DNAm of genes in neuronal processes involved in adolescent brain development that were both conserved across time and related to typical cognitive and brain maturation, revealing possible epigenetic mechanisms driving this stage of development.
Collapse
Affiliation(s)
- Dawn Jensen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Jessica A. Turner
- Department of Psychiatry and Behavioral Health, Wexnar Medical Center, Ohio State University, Columbus, OH, United States
| | | | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
- The Mind Research Network, Albuquerque, NM, United States
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
6
|
Han LKM, Aghajani M, Penninx BWJH, Copeland WE, Aberg KA, van den Oord EJCG. Lagged effects of childhood depressive symptoms on adult epigenetic aging. Psychol Med 2024; 54:1-9. [PMID: 39370998 PMCID: PMC11496221 DOI: 10.1017/s0033291724001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Cross-sectional studies have identified health risks associated with epigenetic aging. However, it is unclear whether these risks make epigenetic clocks 'tick faster' (i.e. accelerate biological aging). The current study examines concurrent and lagged within-person changes of a variety of health risks associated with epigenetic aging. METHODS Individuals from the Great Smoky Mountains Study were followed from age 9 to 35 years. DNA methylation profiles were assessed from blood, at multiple timepoints (i.e. waves) for each individual. Health risks were psychiatric, lifestyle, and adversity factors. Concurrent (N = 539 individuals; 1029 assessments) and lagged (N = 380 individuals; 760 assessments) analyses were used to determine the link between health risks and epigenetic aging. RESULTS Concurrent models showed that BMI (r = 0.15, PFDR < 0.01) was significantly correlated to epigenetic aging at the subject-level but not wave-level. Lagged models demonstrated that depressive symptoms (b = 1.67 months per symptom, PFDR = 0.02) in adolescence accelerated epigenetic aging in adulthood, also when models were fully adjusted for BMI, smoking, and cannabis and alcohol use. CONCLUSIONS Within-persons, changes in health risks were unaccompanied by concurrent changes in epigenetic aging, suggesting that it is unlikely for risks to immediately 'accelerate' epigenetic aging. However, time lagged analyses indicated that depressive symptoms in childhood/adolescence predicted epigenetic aging in adulthood. Together, findings suggest that age-related biological embedding of depressive symptoms is not instant but provides prognostic opportunities. Repeated measurements and longer follow-up times are needed to examine stable and dynamic contributions of childhood experiences to epigenetic aging across the lifespan.
Collapse
Affiliation(s)
- Laura K. M. Han
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Institute of Child & Education Studies, Section Forensic Family & Youth Care, Leiden University, The Netherlands
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Amsterdam UMC, location Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Karolina A. Aberg
- The Center for Biomarker Research and Precision Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Edwin J. C. G. van den Oord
- The Center for Biomarker Research and Precision Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Palumbo S, Palumbo D, Cirillo G, Giurato G, Aiello F, Miraglia Del Giudice E, Grandone A. Methylome analysis in girls with idiopathic central precocious puberty. Clin Epigenetics 2024; 16:82. [PMID: 38909248 PMCID: PMC11193236 DOI: 10.1186/s13148-024-01683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Genetic and environmental factors are implicated in many developmental processes. Recent evidence, however, has suggested that epigenetic changes may also influence the onset of puberty or the susceptibility to a wide range of diseases later in life. The present study aims to investigate changes in genomic DNA methylation profiles associated with pubertal onset analyzing human peripheral blood leukocytes from three different groups of subjects: 19 girls with central precocious puberty (CPP), 14 healthy prepubertal girls matched by age and 13 healthy pubertal girls matched by pubertal stage. For this purpose, the comparisons were performed between pre- and pubertal controls to identify changes in normal pubertal transition and CPP versus pre- and pubertal controls. RESULTS Analysis of methylation changes associated with normal pubertal transition identified 1006 differentially methylated CpG sites, 86% of them were found to be hypermethylated in prepubertal controls. Some of these CpG sites reside in genes associated with the age of menarche or transcription factors involved in the process of pubertal development. Analysis of methylome profiles in CPP patients showed 65% and 55% hypomethylated CpG sites compared with prepubertal and pubertal controls, respectively. In addition, interestingly, our results revealed the presence of 43 differentially methylated genes coding for zinc finger (ZNF) proteins. Gene ontology and IPA analysis performed in the three groups studied revealed significant enrichment of them in some pathways related to neuronal communication (semaphorin and gustation pathways), estrogens action, some cancers (particularly breast and ovarian) or metabolism (particularly sirtuin). CONCLUSIONS The different methylation profiles of girls with normal and precocious puberty indicate that regulation of the pubertal process in humans is associated with specific epigenetic changes. Differentially methylated genes include ZNF genes that may play a role in developmental control. In addition, our data highlight changes in the methylation status of genes involved in signaling pathways that determine the migration and function of GnRH neurons and the onset of metabolic and neoplastic diseases that may be associated with CPP in later life.
Collapse
Affiliation(s)
- Stefania Palumbo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy.
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Grazia Cirillo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesca Aiello
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Anna Grandone
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| |
Collapse
|
8
|
Xu Q, Ye M, Su Y, Feng L, Zhou L, Xu J, Wang D. Hypogonadotropic hypogonadism in male tilapia lacking a functional rln3b gene. Int J Biol Macromol 2024; 270:132165. [PMID: 38729472 DOI: 10.1016/j.ijbiomac.2024.132165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Relaxin 3 is a neuropeptide that plays a crucial role in reproductive functions of mammals. Previous studies have confirmed that rln3a plays an important role in the male reproduction of tilapia. To further understand the significance of its paralogous gene rln3b in male fertility, we generated a homozygous mutant line of rln3b in Nile tilapia. Our findings indicated that rln3b mutation delayed spermatogenesis and led to abnormal testes structure. Knocking out rln3b gene resulted in a decrease in sperm count, sperm motility and male fish fertility. TUNEL detection revealed a small amount of apoptosis in the testes of rln3b-/- male fish at 390 days after hatching (dah). RT-qPCR analysis demonstrated that mutation of rln3b gene caused a significant downregulation of steroid synthesis-related genes such as cyp17a1, cyp11b2, germ cell marker gene, Vasa, and gonadal somatic cell marker genes of amh and amhr2. Furthermore, we found a significant down-regulation of hypothalamic-pituitary-gonadal (HPG) axis-related genes, while a significantly up-regulation of the dopamine synthetase gene in the rln3b-/- male fish. Taken together, our data strongly suggested that Rln3b played a crucial role in the fertility of XY tilapia by regulating HPG axis genes.
Collapse
Affiliation(s)
- Qinglei Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Maolin Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yun Su
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Jian Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Ingram SJ, Vazquez AY, Klump KL, Hyde LW, Burt SA, Clark SL. Associations of depression and anxiety symptoms in childhood and adolescence with epigenetic aging. J Affect Disord 2024; 352:250-258. [PMID: 38360371 PMCID: PMC11000694 DOI: 10.1016/j.jad.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Childhood anxiety and depression symptoms are potential risk factors for accelerated biological aging. In child and adolescent twins, we tested whether these symptoms were associated with DNA methylation (DNAm) aging, a measure of biological aging. METHODS 276 twins (135 pairs, 6 singletons) had DNAm assayed from saliva in middle childhood (mean = 7.8 years). Residuals of five different DNAm age estimates regressed on chronological age were used to indicate accelerated aging. Anxiety and depression symptoms were assessed in middle childhood and early adolescence using the Child Behavior Checklist. Mixed effect regression was used to examine potential relationships between anxiety or depression symptoms, and accelerated DNAm age. MZ twin difference analysis was then utilized to determine if associations were environmentally-driven or due to genetic or shared-environment confounding. RESULTS Anxiety and depression symptoms were not associated with accelerated DNAm aging in middle childhood. In early adolescence, only the Wu clock was significant and indicated that each one symptom increase in anxiety symptoms had an associated age acceleration of 0.03 years (~0.4 months; p = 0.019). MZ twin difference analysis revealed non-significant within-pair effects, suggesting genetic and shared environmental influences. LIMITATIONS Sample is predominantly male and white. Generalizability to other populations may be limited. CONCLUSION Accelerated DNAm aging of the Wu clock in middle childhood is associated with anxiety, but not depression, symptoms in early adolescence. Further, this association may be the result of shared genetic and environmental influences. Accelerated DNAm aging may serve as an early risk factor or predictor of later anxiety symptoms.
Collapse
Affiliation(s)
- Sarah J Ingram
- Interdisciplinary Graduate Program in Genetics, Department of Psychiatry & Behavioral Sciences, Texas A&M University, United States of America
| | - Alexandra Y Vazquez
- Department of Psychology, Michigan State University, United States of America
| | - Kelly L Klump
- Department of Psychology, Michigan State University, United States of America
| | - Luke W Hyde
- Department of Psychology, University of Michigan, United States of America
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, United States of America
| | - Shaunna L Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, United States of America.
| |
Collapse
|
10
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|
11
|
Lafontaine N, Shore CJ, Campbell PJ, Mullin BH, Brown SJ, Panicker V, Dudbridge F, Brix TH, Hegedüs L, Wilson SG, Bell JT, Walsh JP. Epigenome-wide Association Study Shows Differential DNA Methylation of MDC1, KLF9, and CUTA in Autoimmune Thyroid Disease. J Clin Endocrinol Metab 2024; 109:992-999. [PMID: 37962983 PMCID: PMC10940258 DOI: 10.1210/clinem/dgad659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
CONTEXT Autoimmune thyroid disease (AITD) includes Graves disease (GD) and Hashimoto disease (HD), which often run in the same family. AITD etiology is incompletely understood: Genetic factors may account for up to 75% of phenotypic variance, whereas epigenetic effects (including DNA methylation [DNAm]) may contribute to the remaining variance (eg, why some individuals develop GD and others HD). OBJECTIVE This work aimed to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) comparing GD to HD. METHODS Whole-blood DNAm was measured across the genome using the Infinium MethylationEPIC array in 32 Australian patients with GD and 30 with HD (discovery cohort) and 32 Danish patients with GD and 32 with HD (replication cohort). Linear mixed models were used to test for differences in quantile-normalized β values of DNAm between GD and HD and data were later meta-analyzed. Comb-p software was used to identify DMRs. RESULTS We identified epigenome-wide significant differences (P < 9E-8) and replicated (P < .05) 2 DMPs between GD and HD (cg06315208 within MDC1 and cg00049440 within KLF9). We identified and replicated a DMR within CUTA (5 CpGs at 6p21.32). We also identified 64 DMPs and 137 DMRs in the meta-analysis. CONCLUSION Our study reveals differences in DNAm between GD and HD, which may help explain why some people develop GD and others HD and provide a link to environmental risk factors. Additional research is needed to advance understanding of the role of DNAm in AITD and investigate its prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Nicole Lafontaine
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
| | - Christopher J Shore
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Purdey J Campbell
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Vijay Panicker
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
| | - Frank Dudbridge
- Population Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas H Brix
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, 5000, Denmark
| | - Laszlo Hegedüs
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, 5000, Denmark
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
12
|
Kundakovic M, Tickerhoof M. Epigenetic mechanisms underlying sex differences in the brain and behavior. Trends Neurosci 2024; 47:18-35. [PMID: 37968206 PMCID: PMC10841872 DOI: 10.1016/j.tins.2023.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Sex differences are found across brain regions, behaviors, and brain diseases. Sexual differentiation of the brain is initiated prenatally but it continues throughout life, as a result of the interaction of three major factors: gonadal hormones, sex chromosomes, and the environment. These factors are thought to act, in part, via epigenetic mechanisms which control chromatin and transcriptional states in brain cells. In this review, we discuss evidence that epigenetic mechanisms underlie sex-specific neurobehavioral changes during critical organizational periods, across the estrous cycle, and in response to diverse environments throughout life. We further identify future directions for the field that will provide novel mechanistic insights into brain sex differences, inform brain disease treatments and women's brain health in particular, and apply to people across genders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| | - Maria Tickerhoof
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
13
|
Sehovic E, Zellers SM, Youssef MK, Heikkinen A, Kaprio J, Ollikainen M. DNA methylation sites in early adulthood characterised by pubertal timing and development: a twin study. Clin Epigenetics 2023; 15:181. [PMID: 37950287 PMCID: PMC10638786 DOI: 10.1186/s13148-023-01594-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Puberty is a highly heritable and variable trait, with environmental factors having a role in its eventual timing and development. Early and late pubertal onset are both associated with various diseases developing later in life, and epigenetic characterisation of pubertal timing and development could lead to important insights. Blood DNA methylation, reacting to both genotype and environment, has been associated with puberty; however, such studies are relatively scarce. We investigated peripheral blood DNA methylation profiles (using Illumina 450 K and EPIC platforms) of 1539 young adult Finnish twins associated with pubertal development scale (PDS) at ages 12 and 14 as well as pubertal age (PA). RESULTS Fixed effect meta-analysis of the two platforms on 347,521 CpGs in common identified 58 CpG sites associated (p < 1 × 10-5) with either PDS or PA. All four CpGs associated with PA and 45 CpGs associated with PDS were sex-specific. Thirteen CpGs had a high heritability (h2: 0.51-0.98), while one CpG site (mapped to GET4) had a high shared environmental component accounting for 68% of the overall variance in methylation at the site. Utilising twin discordance analysis, we found 6 CpG sites (5 associated with PDS and 1 with PA) that had an environmentally driven association with puberty. Furthermore, genes with PDS- or PA-associated CpGs were consistently linked to various developmental processes and diseases such as breast, prostate and ovarian cancer, while methylation quantitative trait loci of associated CpG sites were enriched in immune pathways developing during puberty. CONCLUSIONS By identifying puberty-associated DNA methylation sites and examining the effects of sex, environment and genetics, we shed light on the intricate interplay between environment and genetics in the context of puberty. Through our comprehensive analysis, we not only deepen the understanding of the significance of both genetic and environmental factors in the complex processes of puberty and its timing, but also gain insights into potential links with disease risks.
Collapse
Affiliation(s)
- Emir Sehovic
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Stephanie M Zellers
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Markus K Youssef
- Laboratory for Topology and Neuroscience, Brain Mind Institute, EPFL, 1015, Lausanne, Switzerland
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
14
|
deSteiguer AJ, Raffington L, Sabhlok A, Tanksley P, Tucker-Drob EM, Harden KP. Stability of DNA-Methylation Profiles of Biological Aging in Children and Adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564766. [PMID: 37961459 PMCID: PMC10635005 DOI: 10.1101/2023.10.30.564766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background and Objectives Methylation profile scores (MPSs) index biological aging and aging-related disease in adults and are cross-sectionally associated with social determinants of health in childhood. MPSs thus provide an opportunity to trace how aging-related biology responds to environmental changes in early life. Information regarding the stability of MPSs in early life is currently lacking. Method We use longitudinal data from children and adolescents ages 8-18 (N = 428, M age = 12.15 years) from the Texas Twin Project. Participants contributed two waves of salivary DNA-methylation data (mean lag = 3.94 years), which were used to construct four MPSs reflecting multi-system physiological decline and mortality risk (PhenoAgeAccel and GrimAgeAccel), pace of biological aging (DunedinPACE), and cognitive function (Epigenetic-g). Furthermore, we exploit variation among participants in whether they were exposed to the COVID-19 pandemic during the course of study participation, in order to test how a historical period characterized by environmental disruption might affect children's aging-related MPSs. Results All MPSs showed moderate longitudinal stability (test-retest rs = 0.42, 0.44, 0.46, 0.51 for PhenoAgeAccel, GrimAgeAccel, and Epigenetic-g, and DunedinPACE, respectively). No differences in the stability of MPSs were apparent between those whose second assessment took place after the onset of the COVID-19 pandemic vs. those for whom both assessments took place prior to the pandemic. Conclusions Aging-related DNA-methylation patterns are less stable in childhood than has been previously observed in adulthood. Further developmental research on the methylome is necessary to understand which environmental perturbations in childhood impact trajectories of biological aging and when children are most sensitive to those impacts.
Collapse
Affiliation(s)
- Abby J. deSteiguer
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Laurel Raffington
- Max Planck Research Group Biosocial – Biology, Social Disparities, and Development, Max Planck Institute for Human Development, Berlin, Germany
| | - Aditi Sabhlok
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Peter Tanksley
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| | - Elliot M. Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| | - K. Paige Harden
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
15
|
Vasileva D, Greenwood CMT, Daley D. A Review of the Epigenetic Clock: Emerging Biomarkers for Asthma and Allergic Disease. Genes (Basel) 2023; 14:1724. [PMID: 37761864 PMCID: PMC10531327 DOI: 10.3390/genes14091724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
DNA methylation (DNAm) is a dynamic, age-dependent epigenetic modification that can be used to study interactions between genetic and environmental factors. Environmental exposures during critical periods of growth and development may alter DNAm patterns, leading to increased susceptibility to diseases such as asthma and allergies. One method to study the role of DNAm is the epigenetic clock-an algorithm that uses DNAm levels at select age-informative Cytosine-phosphate-Guanine (CpG) dinucleotides to predict epigenetic age (EA). The difference between EA and calendar age (CA) is termed epigenetic age acceleration (EAA) and reveals information about the biological capacity of an individual. Associations between EAA and disease susceptibility have been demonstrated for a variety of age-related conditions and, more recently, phenotypes such as asthma and allergic diseases, which often begin in childhood and progress throughout the lifespan. In this review, we explore different epigenetic clocks and how they have been applied, particularly as related to childhood asthma. We delve into how in utero and early life exposures (e.g., smoking, air pollution, maternal BMI) result in methylation changes. Furthermore, we explore the potential for EAA to be used as a biomarker for asthma and allergic diseases and identify areas for further study.
Collapse
Affiliation(s)
- Denitsa Vasileva
- Centre for Heart Lung Innovation, University of British Columbia and Saint Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
| | - Celia M. T. Greenwood
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada;
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC H3A 0G4, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Denise Daley
- Centre for Heart Lung Innovation, University of British Columbia and Saint Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
16
|
Bar-Sadeh B, Pnueli L, Keestra S, Bentley GR, Melamed P. Srd5a1 is Differentially Regulated and Methylated During Prepubertal Development in the Ovary and Hypothalamus. J Endocr Soc 2023; 7:bvad108. [PMID: 37646011 PMCID: PMC10461783 DOI: 10.1210/jendso/bvad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Indexed: 09/01/2023] Open
Abstract
5α-reductase-1 catalyzes production of various steroids, including neurosteroids. We reported previously that expression of its encoding gene, Srd5a1, drops in murine ovaries and hypothalamic preoptic area (POA) after early-life immune stress, seemingly contributing to delayed puberty and ovarian follicle depletion, and in the ovaries the first intron was more methylated at two CpGs. Here, we hypothesized that this CpG-containing locus comprises a methylation-sensitive transcriptional enhancer for Srd5a1. We found that ovarian Srd5a1 mRNA increased 8-fold and methylation of the same two CpGs decreased up to 75% between postnatal days 10 and 30. Estradiol (E2) levels rise during this prepubertal stage, and exposure of ovarian cells to E2 increased Srd5a1 expression. Chromatin immunoprecipitation in an ovarian cell line confirmed ESR1 binding to this differentially methylated genomic region and enrichment of the enhancer modification, H3K4me1. Targeting dCas9-DNMT3 to this locus increased CpG2 methylation 2.5-fold and abolished the Srd5a1 response to E2. In the POA, Srd5a1 mRNA levels decreased 70% between postnatal days 7 and 10 and then remained constant without correlation to CpG methylation levels. Srd5a1 mRNA levels did not respond to E2 in hypothalamic GT1-7 cells, even after dCas9-TET1 reduced CpG1 methylation by 50%. The neonatal drop in POA Srd5a1 expression occurs at a time of increasing glucocorticoids, and treatment of GT1-7 cells with dexamethasone reduced Srd5a1 mRNA levels; chromatin immunoprecipitation confirmed glucocorticoid receptor binding at the enhancer. Our findings on the tissue-specific regulation of Srd5a1 and its methylation-sensitive control by E2 in the ovaries illuminate epigenetic mechanisms underlying reproductive phenotypic variation that impact life-long health.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sarai Keestra
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Department of Anthropology, Durham University, Durham, DH1 3LE, UK
| | | | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
17
|
Jensen D, Chen J, Turner JA, Stephen JM, Wang YP, Wilson TW, Calhoun VD, Liu J. Epigenetic associations with adolescent grey matter maturation and cognitive development. Front Genet 2023; 14:1222619. [PMID: 37529779 PMCID: PMC10390095 DOI: 10.3389/fgene.2023.1222619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction: Adolescence, a critical phase of human neurodevelopment, is marked by a tremendous reorganization of the brain and accompanied by improved cognitive performance. This development is driven in part by gene expression, which in turn is partly regulated by DNA methylation (DNAm). Methods: We collected brain imaging, cognitive assessments, and DNAm in a longitudinal cohort of approximately 200 typically developing participants, aged 9-14. This data, from three time points roughly 1 year apart, was used to explore the relationships between seven cytosine-phosphate-guanine (CpG) sites in genes highly expressed in brain tissues (GRIN2D, GABRB3, KCNC1, SLC12A9, CHD5, STXBP5, and NFASC), seven networks of grey matter (GM) volume change, and scores from seven cognitive tests. Results: The demethylation of the CpGs as well as the rates of change in DNAm were significantly related to improvements in total, crystalized, and fluid cognition scores, executive function, episodic memory, and processing speed, as well as several networks of GM volume increases and decreases that highlight typical patterns of brain maturation. Discussion: Our study provides a first look at the DNAm of genes involved in myelination, excitatory and inhibitory receptors, and connectivity, how they are related to the large-scale changes occurring in the brain structure as well as cognition during adolescence.
Collapse
Affiliation(s)
- Dawn Jensen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Jessica A. Turner
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Wexnar Medical Center, Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, United States
| | | | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
- The Mind Research Network, Albuquerque, NM, United States
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
18
|
Stoccoro A, Conti E, Scaffei E, Calderoni S, Coppedè F, Migliore L, Battini R. DNA Methylation Biomarkers for Young Children with Idiopathic Autism Spectrum Disorder: A Systematic Review. Int J Mol Sci 2023; 24:9138. [PMID: 37298088 PMCID: PMC10252672 DOI: 10.3390/ijms24119138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, the underlying pathological mechanisms of which are not yet completely understood. Although several genetic and genomic alterations have been linked to ASD, for the majority of ASD patients, the cause remains unknown, and the condition likely arises due to complex interactions between low-risk genes and environmental factors. There is increasing evidence that epigenetic mechanisms that are highly sensitive to environmental factors and influence gene function without altering the DNA sequence, particularly aberrant DNA methylation, are involved in ASD pathogenesis. This systematic review aimed to update the clinical application of DNA methylation investigations in children with idiopathic ASD, investigating its potential application in clinical settings. To this end, a literature search was performed on different scientific databases using a combination of terms related to the association between peripheral DNA methylation and young children with idiopathic ASD; this search led to the identification of 18 articles. In the selected studies, DNA methylation is investigated in peripheral blood or saliva samples, at both gene-specific and genome-wide levels. The results obtained suggest that peripheral DNA methylation could represent a promising methodology in ASD biomarker research, although further studies are needed to develop DNA-methylation-based clinical applications.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Eugenia Conti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Elena Scaffei
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
19
|
Associations between maternal exposure to surgery or pregnancy exposure to fluorinated anesthetics and children's cognitive development and educational outcomes. J Dev Orig Health Dis 2023; 14:199-208. [PMID: 35968856 DOI: 10.1017/s2040174422000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A transgenerational, epigenetic effect of anesthesia, particularly fluorinated agents, has been examined in rat models, but translation to humans is unclear. This study examined associations of maternal lifetime exposure to anesthesia and pregnancy exposure to fluorinated anesthetics with child cognitive and educational outcomes. Women in the US Collaborative Perinatal Project (1959-1963) reported lifetime history of surgeries, and the obstetric record captured pregnancy exposure to anesthetics. Children were followed to age 7 for global cognitive ability and educational outcomes (n=47,977). Logistic and linear regressions were adjusted for maternal and child birth years, race and ethnicity, smoking, education, parity, study site. Many outcomes were not associated with exposure to maternal surgery that occurred at various life stages. However, maternal surgery in early childhood was associated both with being in a special school or not in school (adj OR=1.42; 95% CI 1.02, 1.98) and with slightly better cognitive ability across childhood (e.g., WISC IQ (adj β=0.59; CI 0.13, 1.04) (especially among boys)). Maternal surgery in puberty was associated with slightly lower IQ (adj β = -0.42; CI -0.79, -0.05) and poorer spelling at age 7. Children's prenatal exposure to fluorinated anesthetics was associated with slightly better spelling ability (adj β = 1.20; CI 0.02, 2.38) but lower performance IQ at age 7 (only among boys, adj β = -1.97; CI -3.88, -0.06). This study shows inconsistent evidence of effects of maternal exposure to surgery or prenatal exposure to fluorinated agents on child developmental and educational outcomes Residual confounding by indication and socioeconomic status may explain observed associations.
Collapse
|
20
|
Argente J, Dunkel L, Kaiser UB, Latronico AC, Lomniczi A, Soriano-Guillén L, Tena-Sempere M. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications. Lancet Diabetes Endocrinol 2023; 11:203-216. [PMID: 36620967 PMCID: PMC10198266 DOI: 10.1016/s2213-8587(22)00339-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 01/07/2023]
Abstract
Puberty is a major maturational event; its mechanisms and timing are driven by genetic determinants, but also controlled by endogenous and environmental cues. Substantial progress towards elucidation of the neuroendocrine networks governing puberty has taken place. However, key aspects of the mechanisms responsible for the precise timing of puberty and its alterations have only recently begun to be deciphered, propelled by epidemiological data suggesting that pubertal timing is changing in humans, via mechanisms that are not yet understood. By integrating basic and clinical data, we provide a comprehensive overview of current advances on the physiological basis of puberty, with a particular focus on the roles of kisspeptins and other central transmitters, the underlying molecular and endocrine mechanisms, and the pathways involved in pubertal modulation by nutritional and metabolic cues. Additionally, we have summarised molecular features of precocious and delayed puberty in both sexes, as revealed by clinical and genetic studies. This Review is a synoptic up-to-date view of how puberty is controlled and of the pathogenesis of major pubertal alterations, from both a clinical and translational perspective. We also highlight unsolved challenges that will seemingly concentrate future research efforts in this active domain of endocrinology.
Collapse
Affiliation(s)
- Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Universidad Autónoma de Madrid, University Hospital Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Madrid, Spain.
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, London, UK
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Latronico
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics, LIM42, Department of Endocrinology and Metabolism, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Leandro Soriano-Guillén
- Service of Pediatrics, University Hospital Fundación Jiménez Díaz, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Córdoba, Spain; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
21
|
Lafontaine N, Wilson SG, Walsh JP. DNA Methylation in Autoimmune Thyroid Disease. J Clin Endocrinol Metab 2023; 108:604-613. [PMID: 36420742 DOI: 10.1210/clinem/dgac664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Graves disease and Hashimoto disease form part of the spectrum of autoimmune thyroid disease (AITD), to which genetic and environmental factors are recognized contributors. Epigenetics provides a potential link between environmental influences, gene expression, and thyroid autoimmunity. DNA methylation (DNAm) is the best studied epigenetic process, and global hypomethylation of leukocyte DNA is reported in several autoimmune disorders. This review summarizes the current understanding of DNAm in AITD. Targeted DNAm studies of blood samples from AITD patients have reported differential DNAm in the promoter regions of several genes implicated in AITD, including TNF, IFNG, IL2RA, IL6, ICAM1, and PTPN22. In many cases, however, the findings await replication and are unsupported by functional studies to support causal roles in AITD pathogenesis. Furthermore, thyroid hormones affect DNAm, and in many studies confounding by reverse causation has not been considered. Recent studies have shown that DNAm patterns in candidate genes including ITGA6, PRKAA2, and DAPK1 differ between AITD patients from regions with different iodine status, providing a potential mechanism for associations between iodine and AITD. Research focus in the field is moving from candidate gene studies to an epigenome-wide approach. Genome-wide methylation studies of AITD patients have demonstrated multiple differentially methylated positions, including some in immunoregulatory genes such as NOTCH1, HLA-DRB1, TNF, and ICAM1. Large, epigenome-wide studies are required to elucidate the pathophysiological role of DNAm in AITD, with the potential to provide novel diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Nicole Lafontaine
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- Medical School, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- Medical School, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
22
|
Aljahdali AA, Goodrich JM, Dolinoy DC, Kim HM, Ruiz-Narváez EA, Baylin A, Cantoral A, Torres-Olascoaga LA, Téllez-Rojo MM, Peterson KE. DNA Methylation Is a Potential Biomarker for Cardiometabolic Health in Mexican Children and Adolescents. EPIGENOMES 2023; 7:4. [PMID: 36810558 PMCID: PMC9944859 DOI: 10.3390/epigenomes7010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
DNA methylation (DNAm) is a plausible mechanism underlying cardiometabolic abnormalities, but evidence is limited among youth. This analysis included 410 offspring of the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohort followed up to two time points in late childhood/adolescence. At Time 1, DNAm was quantified in blood leukocytes at long interspersed nuclear elements (LINE-1), H19, and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2), and at Time 2 in peroxisome proliferator-activated receptor alpha (PPAR-α). At each time point, cardiometabolic risk factors were assessed including lipid profiles, glucose, blood pressure, and anthropometry. Linear mixed effects models were used for LINE-1, H19, and 11β-HSD-2 to account for the repeated-measure outcomes. Linear regression models were conducted for the cross-sectional association between PPAR-α with the outcomes. DNAm at LINE-1 was associated with log glucose at site 1 [β = -0.029, p = 0.0006] and with log high-density lipoprotein cholesterol at site 3 [β = 0.063, p = 0.0072]. 11β-HSD-2 DNAm at site 4 was associated with log glucose (β = -0.018, p = 0.0018). DNAm at LINE-1 and 11β-HSD-2 was associated with few cardiometabolic risk factors among youth in a locus-specific manner. These findings underscore the potential for epigenetic biomarkers to increase our understanding of cardiometabolic risk earlier in life.
Collapse
Affiliation(s)
- Abeer A. Aljahdali
- Department of Clinical Nutrition, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Hyungjin M. Kim
- Center for Computing, Analytics and Research, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Ana Baylin
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Cantoral
- Department of Health, Iberoamericana University, Mexico City 01219, Mexico
| | - Libni A. Torres-Olascoaga
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Resztak JA, Choe J, Nirmalan S, Wei J, Bruinsma J, Houpt R, Alazizi A, Mair-Meijers HE, Wen X, Slatcher RB, Zilioli S, Pique-Regi R, Luca F. Analysis of transcriptional changes in the immune system associated with pubertal development in a longitudinal cohort of children with asthma. Nat Commun 2023; 14:230. [PMID: 36646693 PMCID: PMC9842661 DOI: 10.1038/s41467-022-35742-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Puberty is an important developmental period marked by hormonal, metabolic and immune changes. Puberty also marks a shift in sex differences in susceptibility to asthma. Yet, little is known about the gene expression changes in immune cells that occur during pubertal development. Here we assess pubertal development and leukocyte gene expression in a longitudinal cohort of 251 children with asthma. We identify substantial gene expression changes associated with age and pubertal development. Gene expression changes between pre- and post-menarcheal females suggest a shift from predominantly innate to adaptive immunity. We show that genetic effects on gene expression change dynamically during pubertal development. Gene expression changes during puberty are correlated with gene expression changes associated with asthma and may explain sex differences in prevalence. Our results show that molecular data used to study the genetics of early onset diseases should consider pubertal development as an important factor that modifies the transcriptome.
Collapse
Affiliation(s)
- Justyna A Resztak
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Jane Choe
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Shreya Nirmalan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Julian Bruinsma
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Russell Houpt
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | | | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Samuele Zilioli
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
24
|
Alfano R, Zugna D, Barros H, Bustamante M, Chatzi L, Ghantous A, Herceg Z, Keski-Rahkonen P, de Kok TM, Nawrot TS, Relton CL, Robinson O, Roumeliotaki T, Scalbert A, Vrijheid M, Vineis P, Richiardi L, Plusquin M. Cord blood epigenome-wide meta-analysis in six European-based child cohorts identifies signatures linked to rapid weight growth. BMC Med 2023; 21:17. [PMID: 36627699 PMCID: PMC9831885 DOI: 10.1186/s12916-022-02685-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rapid postnatal growth may result from exposure in utero or early life to adverse conditions and has been associated with diseases later in life and, in particular, with childhood obesity. DNA methylation, interfacing early-life exposures and subsequent diseases, is a possible mechanism underlying early-life programming. METHODS Here, a meta-analysis of Illumina HumanMethylation 450K/EPIC-array associations of cord blood DNA methylation at single CpG sites and CpG genomic regions with rapid weight growth at 1 year of age (defined with reference to WHO growth charts) was conducted in six European-based child cohorts (ALSPAC, ENVIRONAGE, Generation XXI, INMA, Piccolipiù, and RHEA, N = 2003). The association of gestational age acceleration (calculated using the Bohlin epigenetic clock) with rapid weight growth was also explored via meta-analysis. Follow-up analyses of identified DNA methylation signals included prediction of rapid weight growth, mediation of the effect of conventional risk factors on rapid weight growth, integration with transcriptomics and metabolomics, association with overweight in childhood (between 4 and 8 years), and comparison with previous findings. RESULTS Forty-seven CpGs were associated with rapid weight growth at suggestive p-value <1e-05 and, among them, three CpGs (cg14459032, cg25953130 annotated to ARID5B, and cg00049440 annotated to KLF9) passed the genome-wide significance level (p-value <1.25e-07). Sixteen differentially methylated regions (DMRs) were identified as associated with rapid weight growth at false discovery rate (FDR)-adjusted/Siddak p-values < 0.01. Gestational age acceleration was associated with decreasing risk of rapid weight growth (p-value = 9.75e-04). Identified DNA methylation signals slightly increased the prediction of rapid weight growth in addition to conventional risk factors. Among the identified signals, three CpGs partially mediated the effect of gestational age on rapid weight growth. Both CpGs (N=3) and DMRs (N=3) were associated with differential expression of transcripts (N=10 and 7, respectively), including long non-coding RNAs. An AURKC DMR was associated with childhood overweight. We observed enrichment of CpGs previously reported associated with birthweight. CONCLUSIONS Our findings provide evidence of the association between cord blood DNA methylation and rapid weight growth and suggest links with prenatal exposures and association with childhood obesity providing opportunities for early prevention.
Collapse
Affiliation(s)
- Rossella Alfano
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Daniela Zugna
- Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Henrique Barros
- Institute of Public Health, University of Porto, Porto, Portugal
| | - Mariona Bustamante
- ISGlobal, Institute of Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Akram Ghantous
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Caroline L Relton
- Μedical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Oliver Robinson
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
- Mohn Centre for Children's Health and Well-being, The School of Public Health, Imperial College London, London, UK
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Augustin Scalbert
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Martine Vrijheid
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Paolo Vineis
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
25
|
Devall MA, Sun X, Eaton S, Cooper GS, Willis JE, Weisenberger DJ, Casey G, Li L. A Race-Specific, DNA Methylation Analysis of Aging in Normal Rectum: Implications for the Biology of Aging and Its Relationship to Rectal Cancer. Cancers (Basel) 2022; 15:cancers15010045. [PMID: 36612042 PMCID: PMC9817986 DOI: 10.3390/cancers15010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Approximately 90% of colorectal cancer (CRC) develop over the age of 50, highlighting the important role of aging in CRC risk. African Americans (AAs) shoulder a greater CRC burden than European Americans (EA) and are more likely to develop CRC at a younger age. The effects of aging in AA and EA normal rectal tissue have yet to be defined. Here, we performed epigenome-wide DNA methylation analysis in the first, large-scale biracial cohort of normal rectum (n = 140 samples). We identified increased epigenetic age acceleration in EA than AA rectum (p = 3.91 × 10-4) using linear regression. We also identified differentially methylated regions (DMRs) associated with chronological aging in AA and EA, separately using DMRcate. Next, a consensus set of regions associated with cancer was identified through DMR analysis of two rectal cancer cohorts. The vast majority of AA DMRs were present in our analysis of aging in rectum of EA subjects, though rates of epigenetic drift were significantly greater in AA (p = 1.94 × 10-45). However, 3.66-fold more DMRs were associated with aging in rectum of EA subjects, many of which were also associated with rectal cancer. Our findings reveal a novel relationship between race, age, DNA methylation and rectal cancer risk that warrants further investigation.
Collapse
Affiliation(s)
- Matthew A. Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Xiangqing Sun
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen Eaton
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Gregory S. Cooper
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph E. Willis
- Department of Pathology, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: ; Tel.: +1-434-982-3975
| |
Collapse
|
26
|
Li L, Holloway JW, Ewart S, Arshad SH, Relton CL, Karmaus W, Zhang H. Newborn DNA methylation and asthma acquisition across adolescence and early adulthood. Clin Exp Allergy 2022; 52:658-669. [PMID: 34995380 PMCID: PMC9050758 DOI: 10.1111/cea.14091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Little is known about the association of newborn DNA methylation (DNAm) with asthma acquisition across adolescence and early adult life. OBJECTIVE We aim to identify epigenetic biomarkers in newborns for asthma acquisition during adolescence or young adulthood. METHODS The Isle of Wight Birth Cohort (IOWBC) (n = 1456) data at ages 10, 18 and 26 years were assessed. To screen cytosine-phosphate-guanine site (CpGs) potentially associated with asthma acquisition, at the genome scale, we examined differentially methylated regions (DMR) using dmrff R package and individual CpG sites using linear regression on such associations. For CpGs that passed screening, we examined their enrichment in biological pathways using their mapping genes and tested their associations with asthma acquisitions using logistic regressions. Findings in IOWBC were tested in an independent cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. RESULTS In total, 2636 unique CpGs passed screening, based on which we identified one biological pathway linked to asthma acquisition during adolescence in females (FDR adjusted p-value = .003 in IOWBC). Via logistic regressions, for females, four CpGs were shown to be associated with asthma acquisition during adolescence, and another four CpGs with asthma acquisition in young adulthood (FDR adjusted p-value < .05 in IOWBC) and these eight CpGs were replicated in ALSPAC (all p-values < .05). DNAm at all the identified CpGs was shown to be temporally consistent, and at six of the CpGs was associated with expressions of adjacent or mapping genes in females (all p-values < .05). For males, 622 CpGs were identified in IOWBC (FDR = 0.01), but these were not tested in ALSPAC due to small sample sizes. CONCLUSION AND CLINICAL RELEVANCE Eight CpGs on LHX5, IL22RA2, SOX11, CBX4, ACPT, CFAP46, MUC4, and ATP1B2 genes have the potential to serve as candidate epigenetic biomarkers in newborns for asthma acquisition in females during adolescence or young adulthood.
Collapse
Affiliation(s)
- Liang Li
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - S. Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- The David Hide Asthma and Allergy Research Centre, St Mary’s, Hospital, Parkhurst Road, Newport, Isle of Wight PO30 5TG, UK
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| |
Collapse
|
27
|
Bar-Sadeh B, Amichai OE, Pnueli L, Begum K, Leeman G, Emes RD, Stöger R, Bentley GR, Melamed P. Epigenetic regulation of 5α reductase-1 underlies adaptive plasticity of reproductive function and pubertal timing. BMC Biol 2022; 20:11. [PMID: 34996447 PMCID: PMC8742331 DOI: 10.1186/s12915-021-01219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Background Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. Results Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women’s buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. Conclusions SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01219-6.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Or E Amichai
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Khurshida Begum
- Department of Anthropology, Durham University, Durham, DH1 3LE, UK
| | - Gregory Leeman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Richard D Emes
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | | | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
28
|
Gantenbein KV, Kanaka-Gantenbein C. Highlighting the trajectory from intrauterine growth restriction to future obesity. Front Endocrinol (Lausanne) 2022; 13:1041718. [PMID: 36440208 PMCID: PMC9691665 DOI: 10.3389/fendo.2022.1041718] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
During the last decades several lines of evidence reported the association of an adverse intrauterine environment, leading to intrauterine restriction, with future disease, such as obesity and metabolic syndrome, both leading to increased cardiovascular and cancer risk. The underlying explanation for this association has firstly been expressed by the Barker's hypothesis, the "thrifty phenotype hypothesis". According to this hypothesis, a fetus facing an adverse intrauterine environment adapts to this environment through a reprogramming of its endocrine-metabolic status, during the crucial window of developmental plasticity to save energy for survival, providing less energy and nutrients to the organs that are not essential for survival. This theory evolved to the concept of the developmental origin of health and disease (DOHaD). Thus, in the setting of an adverse, f. ex. protein restricted intrauterine environment, while the energy is mainly directed to the brain, the peripheral organs, f.ex. the muscles and the liver undergo an adaptation that is expressed through insulin resistance. The adaptation at the hepatic level predisposes to future dyslipidemia, the modifications at the vascular level to endothelial damage and future hypertension and, overall, through the insulin resistance to the development of metabolic syndrome. All these adaptations are suggested to take place through epigenetic modifications of the expression of genes without change of their amino-acid sequence. The epigenetic modifications leading to future obesity and cardiovascular risk are thought to induce appetite dysregulation, promoting food intake and adipogenesis, facilitating obesity development. The epigenetic modifications may even persist into the next generation even though the subsequent generation has not been exposed to an adverse intrauterine environment, a notion defined as the "transgenerational transfer of environmental information". As a consequence, if the increased public health burden and costs of non-communicable chronic diseases such as obesity, hypertension, metabolic syndrome and type 2 diabetes have to be minimized, special attention should be laid to the healthy lifestyle habits of women of reproductive age, including healthy diet and physical activity to be established long before any pregnancy takes place in order to provide the best conditions for both somatic and mental health of future generations.
Collapse
Affiliation(s)
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece
- *Correspondence: Christina Kanaka-Gantenbein, ,
| |
Collapse
|
29
|
Palumbo S, Cirillo G, Aiello F, Papparella A, Miraglia del Giudice E, Grandone A. MKRN3 role in regulating pubertal onset: the state of art of functional studies. Front Endocrinol (Lausanne) 2022; 13:991322. [PMID: 36187104 PMCID: PMC9523110 DOI: 10.3389/fendo.2022.991322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Puberty is a critical process characterized by several physical and psychological changes that culminate in the achievement of sexual maturation and fertility. The onset of puberty depends on several incompletely understood mechanisms that certainly involve gonadotropin-releasing hormone (GnRH) and its effects on the pituitary gland. The role of makorin ring finger protein 3 (MKRN3) in the regulation of pubertal timing was revealed when loss-of-function mutations were identified in patients with central precocious puberty (CPP), which to date, represent the most commonly known genetic cause of this condition. The MKRN3 gene showed ubiquitous expression in tissues from a broad spectrum of species, suggesting an important cellular role. Its involvement in the initiation of puberty and endocrine functions has just begun to be studied. This review discusses some of the recent approaches developed to predict MKRN3 functions and its involvement in pubertal development.
Collapse
|
30
|
Alfano R, Robinson O, Handakas E, Nawrot TS, Vineis P, Plusquin M. Perspectives and challenges of epigenetic determinants of childhood obesity: A systematic review. Obes Rev 2022; 23 Suppl 1:e13389. [PMID: 34816569 DOI: 10.1111/obr.13389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
The tremendous increase in childhood obesity prevalence over the last few decades cannot merely be explained by genetics and evolutionary changes in the genome, implying that gene-environment interactions, such as epigenetic modifications, likely play a major role. This systematic review aims to summarize the evidence of the association between epigenetics and childhood obesity. A literature search was performed via PubMed and Scopus engines using a combination of terms related to epigenetics and pediatric obesity. Articles studying the association between epigenetic mechanisms (including DNA methylation and hydroxymethylation, non-coding RNAs, and chromatin and histones modification) and obesity and/or overweight (or any related anthropometric parameters) in children (0-18 years) were included. The risk of bias was assessed with a modified Newcastle-Ottawa scale for non-randomized studies. One hundred twenty-one studies explored epigenetic changes related to childhood obesity. DNA methylation was the most widely investigated mechanism (N = 101 studies), followed by non-coding RNAs (N = 19 studies) with evidence suggestive of an association with childhood obesity for DNA methylation of specific genes and microRNAs (miRNAs). One study, focusing on histones modification, was identified. Heterogeneity of findings may have hindered more insights into the epigenetic changes related to childhood obesity. Gaps and challenges that future research should face are herein described.
Collapse
Affiliation(s)
- Rossella Alfano
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Oliver Robinson
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Evangelos Handakas
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.,Unit of Molecular and Genetic Epidemiology, Human Genetic Foundation (HuGeF), Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
31
|
Abstract
Rationale Epidemiological evidence indicates that ambient exposure to particulate matter ⩽2.5 μm in aerodynamic diameter (PM2.5) has adverse effects on lung function growth in children, but it is not actually clear whether exposure to low-level PM2.5 results in long-term decrements in lung function growth in pre- to early-adolescent schoolchildren. Objectives To examine long-term effects of PM2.5 within the 4-year average concentration range of 10–19 μg/m3 on lung function growth with repeated measurements of lung function tests. Methods Longitudinal analysis of 6,233 lung function measurements in 1,466 participants aged 8–12 years from 16 school communities in 10 cities around Japan, covering a broad area of the country to represent concentration ranges of PM2.5, was done with a multilevel linear regression model. Forced expiratory volume in 1 second, forced vital capacity (FVC), and maximal expiratory flow at 50% of FVC were used as lung function indicators to examine the effects of 10-μg/m3 increases in the PM2.5 concentration on relative growth per each 10-cm increase in height. Results The overall annual mean PM2.5 level was 13.5 μg/m3 (range, 10.4–19.0 μg/m3). We found no association between any of the lung function growth indicators and increases in PM2.5 levels in children of either sex, even after controlling for potential confounders. Analysis with two-pollutant models with O3 or NO2 did not change the null results. Conclusions This nationwide longitudinal study suggests that concurrent, long-term exposure to PM2.5 at concentrations ranging from 10.4 to 19.0 μg/m3 has little effect on lung function growth in preadolescent boys or pre- to early-adolescent girls.
Collapse
|
32
|
Penova-Veselinovic B, Melton PE, Huang RC, Yovich JL, Burton P, Wijs LA, Hart RJ. DNA methylation patterns within whole blood of adolescents born from assisted reproductive technology are not different from adolescents born from natural conception. Hum Reprod 2021; 36:2035-2049. [PMID: 33890633 DOI: 10.1093/humrep/deab078] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION Do the epigenome-wide DNA methylation profiles of adolescents born from ART differ from the epigenome of naturally conceived counterparts? SUMMARY ANSWER No significant differences in the DNA methylation profiles of adolescents born from ART [IVF or ICSI] were observed when compared to their naturally conceived, similar aged counterparts. WHAT IS KNOWN ALREADY Short-term and longer-term studies have investigated the general health outcomes of children born from IVF treatment, albeit without common agreement as to the cause and underlying mechanisms of these adverse health findings. Growing evidence suggests that the reported adverse health outcomes in IVF-born offspring might have underlying epigenetic mechanisms. STUDY DESIGN, SIZE, DURATION The Growing Up Healthy Study (GUHS) is a prospective study that recruited 303 adolescents and young adults, conceived through ART, to compare various long-term health outcomes and DNA methylation profiles with similar aged counterparts from Generation 2 from the Raine Study. GUHS assessments were conducted between 2013 and 2017. The effect of ART on DNA methylation levels of 231 adolescents mean age 15.96 ± 1.59 years (52.8% male) was compared to 1188 naturally conceived counterparts, 17.25 ± 0.58 years (50.9% male) from the Raine Study. PARTICIPANTS/MATERIALS, SETTING, METHODS DNA methylation profiles from a subset of 231 adolescents (13-19.9 years) from the GUHS, generated using the Infinium Methylation Epic Bead Chip (EPIC) array were compared to 1188 profiles from the Raine Study previously measured using the Illumina 450K array. We conducted epigenome-wide association approach (EWAS) and tested for an association between the cohorts applying Firth's bias reduced logistic regression against the outcome of ART versus naturally conceived offspring. Additionally, within the GUHS cohort, we investigated differences in methylation status in fresh versus frozen embryo transfers, cause of infertility as well as IVF versus ICSI conceived offspring. Following the EWAS analysis we investigated nominally significant probes using Gene Set Enrichment Analysis (GSEA) to identify enriched biological pathways. Finally, within GUHS we compared four estimates (Horvath, Hanuum, PhenoAge [Levine], and skin Horvath) of epigenetic age and their correlation with chronological age. MAIN RESULTS AND THE ROLE OF CHANCE Between the two cohorts, we did not identify any DNA methylation probes that reached a Bonferroni corrected P-value < 1.24E-0.7. When comparing IVF versus ICSI conceived adolescents within the GUHS cohort, after adjustment for participant age, sex, maternal smoking, multiple births, and batch effect, three methylation probes (cg15016734, cg26744878 and cg20233073) reached a Bonferroni correction of 6.31E-08. After correcting for cell count heterogeneity, two of the aforementioned probes remained significant and an additional two probes (cg 0331628 and cg 20235051) were identified. A general trend towards hypomethylation in the ICSI offspring was observed. All four measures of epigenetic age were highly correlated with chronological age and showed no evidence of accelerated epigenetic aging within their whole blood. LIMITATIONS, REASONS FOR CAUTION The small sample size coupled with the use of whole blood, where epigenetic differences may occur in other tissue. This was corrected by the utilized statistical method that accounts for imbalanced sample size between groups and adjusting for cell count heterogeneity. Only a small portion of the methylome was analysed and rare individual differences may be missed. WIDER IMPLICATIONS OF THE FINDINGS Our findings provide further reassurance that the effects of the ART manipulations occurring during early embryogenesis, existing in the neonatal period are indeed of a transient nature and do not persist into adolescence. However, we have not excluded that alternative epigenetic mechanisms may be at play. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NHMRC project Grant no. 1042269 and R.J.H. received funding support from Ferring Pharmaceuticals Pty Ltd. R.J.H. is the Medical Director of Fertility Specialists of Western Australia and a shareholder in Western IVF. He has received educational sponsorship from Merck Sharp & Dohme Corp.- Australia, Merck-Serono Australia Pty Ltd and Ferring Pharmaceuticals Pty Ltd. P.B. is the Scientific Director of Concept Fertility Centre, Subiaco, Western Australia. J.L.Y. is the Medical Director of PIVET Medical Centre, Perth, Western Australia. The remaining authors have no conflicts of interest.
Collapse
Affiliation(s)
- B Penova-Veselinovic
- Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - P E Melton
- School of Population and Global Health, University of Western Australia, Perth, WA, Australia.,School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - R C Huang
- Faculty of Health and Medical Sciences, Centre for Child Health Research, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Nedlands, WA, Australia
| | - J L Yovich
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia.,PIVET Medical Centre, Perth, WA, Australia
| | - P Burton
- Concept Fertility Centre, Subiaco, WA, Australia.,School of Health and Medical Sciences, Faculty of Health Science, Edith Cowan University, Perth, WA, Australia
| | - L A Wijs
- Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - R J Hart
- Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia.,Fertility Specialists of Western Australia, Bethesda Hospital, Claremont, WA, Australia
| |
Collapse
|
33
|
Sunny SK, Zhang H, Relton CL, Ring S, Kadalayil L, Mzayek F, Ewart S, Holloway JW, Arshad SH. Sex-specific longitudinal association of DNA methylation with lung function. ERJ Open Res 2021; 7:00127-2021. [PMID: 34235211 PMCID: PMC8255542 DOI: 10.1183/23120541.00127-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
Investigating whether DNA methylation (DNA-M) at an earlier age is associated with lung function at a later age and whether this relationship differs by sex could enable prediction of future lung function deficit. A training/testing-based technique was used to screen 402 714 cytosine-phosphate-guanine dinucleotide sites (CpGs) to assess the longitudinal association of blood-based DNA-M at ages 10 and 18 years with lung function at 18 and 26 years, respectively, in the Isle of Wight birth cohort (IOWBC). Multivariable linear mixed models were applied to the CpGs that passed screening. To detect differentially methylated regions (DMRs), DMR enrichment analysis was conducted. Findings were further examined in the Avon Longitudinal Study of Parents and Children (ALSPAC). Biological relevance of the identified CpGs was assessed using gene expression data. DNA-M at eight CpGs (five CpGs with forced expiratory volume in 1 s (FEV1) and three CpGs with FEV1/forced vital capacity (FVC)) at an earlier age was associated with lung function at a later age regardless of sex, while at 13 CpGs (five CpGs with FVC, three with FEV1 and five with FEV1/FVC), the associations were sex-specific (p FDR <0.05) in IOWBC, with consistent directions of association in ALSPAC (IOWBC-ALSPAC consistent CpGs). cg16582803 (WNT10A) and cg14083603 (ZGPAT) were replicated in ALSPAC for main and sex-specific effects, respectively. Among IOWBC-ALSPAC consistent CpGs, DNA-M at cg01376079 (SSH3) and cg07557690 (TGFBR3) was associated with gene expression both longitudinally and cross-sectionally. In total, 57 and 170 DMRs were linked to lung function longitudinally in males and females, respectively. CpGs showing longitudinal associations with lung function have the potential to serve as candidate markers in future studies on lung function deficit prediction.
Collapse
Affiliation(s)
- Shadia Khan Sunny
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | | | - Susan Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Susan Ewart
- Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - S. Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| |
Collapse
|
34
|
Lafontaine N, Campbell PJ, Castillo-Fernandez JE, Mullin S, Lim EM, Kendrew P, Lewer M, Brown SJ, Huang RC, Melton PE, Mori TA, Beilin LJ, Dudbridge F, Spector TD, Wright MJ, Martin NG, McRae AF, Panicker V, Zhu G, Walsh JP, Bell JT, Wilson SG. Epigenome-Wide Association Study of Thyroid Function Traits Identifies Novel Associations of fT3 With KLF9 and DOT1L. J Clin Endocrinol Metab 2021; 106:e2191-e2202. [PMID: 33484127 PMCID: PMC8063248 DOI: 10.1210/clinem/dgaa975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Circulating concentrations of free triiodothyronine (fT3), free thyroxine (fT4), and thyrotropin (TSH) are partly heritable traits. Recent studies have advanced knowledge of their genetic architecture. Epigenetic modifications, such as DNA methylation (DNAm), may be important in pituitary-thyroid axis regulation and action, but data are limited. OBJECTIVE To identify novel associations between fT3, fT4, and TSH and differentially methylated positions (DMPs) in the genome in subjects from 2 Australian cohorts. METHOD We performed an epigenome-wide association study (EWAS) of thyroid function parameters and DNAm using participants from: Brisbane Systems Genetics Study (median age 14.2 years, n = 563) and the Raine Study (median age 17.0 years, n = 863). Plasma fT3, fT4, and TSH were measured by immunoassay. DNAm levels in blood were assessed using Illumina HumanMethylation450 BeadChip arrays. Analyses employed generalized linear mixed models to test association between DNAm and thyroid function parameters. Data from the 2 cohorts were meta-analyzed. RESULTS We identified 2 DMPs with epigenome-wide significant (P < 2.4E-7) associations with TSH and 6 with fT3, including cg00049440 in KLF9 (P = 2.88E-10) and cg04173586 in DOT1L (P = 2.09E-16), both genes known to be induced by fT3. All DMPs had a positive association between DNAm and TSH and a negative association between DNAm and fT3. There were no DMPs significantly associated with fT4. We identified 23 differentially methylated regions associated with fT3, fT4, or TSH. CONCLUSIONS This study has demonstrated associations between blood-based DNAm and both fT3 and TSH. This may provide insight into mechanisms underlying thyroid hormone action and/or pituitary-thyroid axis function.
Collapse
Affiliation(s)
- Nicole Lafontaine
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Correspondence: Nicole Lafontaine, MBBS, BMedSci, RACP, Department of Endocrinology & Diabetes, Level 1, Building C, QEII Medical Centre, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, WA 6009, Australia.
| | - Purdey J Campbell
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | | | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Ee Mun Lim
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Pathwest Laboratory Medicine, Nedlands, WA, Australia
| | | | | | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Phillip E Melton
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Lawrence J Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | | | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Vijay Panicker
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
35
|
Mallisetty Y, Mukherjee N, Jiang Y, Chen S, Ewart S, Arshad SH, Holloway JW, Zhang H, Karmaus W. Epigenome-Wide Association of Infant Feeding and Changes in DNA Methylation from Birth to 10 Years. Nutrients 2020; 13:E99. [PMID: 33396735 PMCID: PMC7824231 DOI: 10.3390/nu13010099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic factors have been suggested as mediators of early-life nutrition to future health. Prior studies focused on breastfeeding effects on DNA methylation (DNAm), ignoring other feeding modes. In this analysis of the Isle of Wight birth cohort, feeding modes were categorized as exclusive breastfeeding (EBF), exclusive formula feeding (EFF), and mixed feeding based on whether the respective feeding mode lasted for at least 3 months. In addition, in the past, infant feeding modes were assessed using DNAm at one time point in childhood, not changes of DNAm. In this paper, methylation differences (delta DNAm) were calculated by subtracting residual methylation values at birth from age 10 years (adjusting for cell types and season of blood collection at both ages). These deltas were estimated for all methylation sites where cytosine was followed by guanine (cytosine guanine dinucleotide (CpG) sites). Then, we performed an epigenome-wide association study contrasting EBF, EFF, and mixed feeding with delta DNAm that represents changes in methylation from birth to 10 years. A total of 87 CpGs (EBF: 27 CpGs, EFF: 48 CpGs, mixed: 12 CpGs) were identified using separate linear regression models adjusting for confounders and multiple testing. The sum of all changes in methylation from birth to age 10 years was significantly lower in the EFF group. Correspondingly, the number of CpGs with a methylation decline was 4.7% higher reflecting 13,683 CpGs. Lower methylation related to exclusive formula feeding and its adverse potential for the child's development needs future research to reduce adverse health effects.
Collapse
Affiliation(s)
- Yamini Mallisetty
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Robison Hall, Memphis, TN 38152, USA; (Y.M.); (N.M.); (Y.J.); (H.Z.)
| | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Robison Hall, Memphis, TN 38152, USA; (Y.M.); (N.M.); (Y.J.); (H.Z.)
| | - Yu Jiang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Robison Hall, Memphis, TN 38152, USA; (Y.M.); (N.M.); (Y.J.); (H.Z.)
| | - Su Chen
- Department of Mathematical Science, University of Memphis, Dunn Hall, Memphis, TN 38152, USA;
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - S. Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (S.H.A.); (J.W.H.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Isle of Wight PO30 5TG, UK
| | - John W. Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (S.H.A.); (J.W.H.)
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Robison Hall, Memphis, TN 38152, USA; (Y.M.); (N.M.); (Y.J.); (H.Z.)
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Robison Hall, Memphis, TN 38152, USA; (Y.M.); (N.M.); (Y.J.); (H.Z.)
| |
Collapse
|
36
|
Goodrich JM, Hector EC, Tang L, LaBarre JL, Dolinoy DC, Mercado-Garcia A, Cantoral A, Song PX, Téllez-Rojo MM, Peterson KE. Integrative Analysis of Gene-Specific DNA Methylation and Untargeted Metabolomics Data from the ELEMENT Cohort. Epigenet Insights 2020; 13:2516865720977888. [PMID: 33354655 PMCID: PMC7734565 DOI: 10.1177/2516865720977888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic modifications, such as DNA methylation, influence gene expression and cardiometabolic phenotypes that are manifest in developmental periods in later life, including adolescence. Untargeted metabolomics analysis provide a comprehensive snapshot of physiological processes and metabolism and have been related to DNA methylation in adults, offering insights into the regulatory networks that influence cellular processes. We analyzed the cross-sectional correlation of blood leukocyte DNA methylation with 3758 serum metabolite features (574 of which are identifiable) in 238 children (ages 8-14 years) from the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) study. Associations between these features and percent DNA methylation in adolescent blood leukocytes at LINE-1 repetitive elements and genes that regulate early life growth (IGF2, H19, HSD11B2) were assessed by mixed effects models, adjusting for sex, age, and puberty status. After false discovery rate correction (FDR q < 0.05), 76 metabolites were significantly associated with LINE-1 DNA methylation, 27 with HSD11B2, 103 with H19, and 4 with IGF2. The ten identifiable metabolites included dicarboxylic fatty acids (five associated with LINE-1 or H19 methylation at q < 0.05) and 1-octadecanoyl-rac-glycerol (q < 0.0001 for association with H19 and q = 0.04 for association with LINE-1). We then assessed the association between these ten known metabolites and adiposity 3 years later. Two metabolites, dicarboxylic fatty acid 17:3 and 5-oxo-7-octenoic acid, were inversely associated with measures of adiposity (P < .05) assessed approximately 3 years later in adolescence. In stratified analyses, sex-specific and puberty-stage specific (Tanner stage = 2 to 5 vs Tanner stage = 1) associations were observed. Most notably, hundreds of statistically significant associations were observed between H19 and LINE-1 DNA methylation and metabolites among children who had initiated puberty. Understanding relationships between subclinical molecular biomarkers (DNA methylation and metabolites) may increase our understanding of genes and biological pathways contributing to metabolic changes that underlie the development of adiposity during adolescence.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Deptartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Emily C Hector
- Deptartment of Biostatistics, University of Michigan, Ann Arbor, MI, USA.,Deptartment of Statistics, North Carolina State University, USA
| | - Lu Tang
- Deptartment of Biostatistics, University of Pittsburgh, USA
| | - Jennifer L LaBarre
- Deptartment of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Deptartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.,Deptartment of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Alejandra Cantoral
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Peter Xk Song
- Deptartment of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Karen E Peterson
- Deptartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.,Deptartment of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Moore SR, Humphreys KL, Colich NL, Davis EG, Lin DTS, MacIsaac JL, Kobor MS, Gotlib IH. Distinctions between sex and time in patterns of DNA methylation across puberty. BMC Genomics 2020; 21:389. [PMID: 32493224 PMCID: PMC7268482 DOI: 10.1186/s12864-020-06789-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are significant sex differences in human physiology and disease; the genomic sources of these differences, however, are not well understood. During puberty, a drastic neuroendocrine shift signals physical changes resulting in robust sex differences in human physiology. Here, we explore how shifting patterns of DNA methylation may inform these pathways of biological plasticity during the pubertal transition. In this study we analyzed DNA methylation (DNAm) in saliva at two time points across the pubertal transition within the same individuals. Our purpose was to compare two domains of DNAm patterns that may inform processes of sexual differentiation 1) sex related sites, which demonstrated differences between males from females and 2) time related sites in which DNAm shifted significantly between timepoints. We further explored the correlated network structure sex and time related DNAm networks and linked these patterns to pubertal stage, assays of salivary testosterone, a reliable diagnostic of free, unbound hormone that is available to act on target tissues, and overlap with androgen response elements. RESULTS Sites that differed by biological sex were largely independent of sites that underwent change across puberty. Time-related DNAm sites, but not sex-related sites, formed correlated networks that were associated with pubertal stage. Both time and sex DNAm networks reflected salivary testosterone levels that were enriched for androgen response elements, with sex-related DNAm networks being informative of testosterone levels above and beyond biological sex later in the pubertal transition. CONCLUSIONS These results inform our understanding of the distinction between sex- and time-related differences in DNAm during the critical period of puberty and highlight a novel linkage between correlated patterns of sex-related DNAm and levels of salivary testosterone.
Collapse
Affiliation(s)
- Sarah Rose Moore
- Department of Medical Genetics, University of British Columbia
- BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
| | - Kathryn Leigh Humphreys
- Department of Psychology and Human Development, Vanderbilt University, 230 Appleton Pl, Nashville, TN, 37203, USA
| | - Natalie Lisanne Colich
- Department of Psychology, University of Washington Seattle, Guthrie Hall (GTH), 119A 98195-1525, Seattle, WA, 98105, USA
| | - Elena Goetz Davis
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA
| | - David Tse Shen Lin
- Department of Medical Genetics, University of British Columbia
- BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Julia Lynn MacIsaac
- Department of Medical Genetics, University of British Columbia
- BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Michael Steffen Kobor
- Department of Medical Genetics, University of British Columbia
- BC Children's Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Ian Henry Gotlib
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA
| |
Collapse
|
38
|
Sunny SK, Zhang H, Rezwan FI, Relton CL, Henderson AJ, Merid SK, Melén E, Hallberg J, Arshad SH, Ewart S, Holloway JW. Changes of DNA methylation are associated with changes in lung function during adolescence. Respir Res 2020; 21:80. [PMID: 32264874 PMCID: PMC7140357 DOI: 10.1186/s12931-020-01342-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Adolescence is a significant period for the gender-dependent development of lung function. Prior studies have shown that DNA methylation (DNA-M) is associated with lung function and DNA-M at some cytosine-phosphate-guanine dinucleotide sites (CpGs) changes over time. This study examined whether changes of DNA-M at lung-function-related CpGs are associated with changes in lung function during adolescence for each gender, and if so, the biological significance of the detected CpGs. METHODS Genome-scale DNA-M was measured in peripheral blood samples at ages 10 (n = 330) and 18 years (n = 476) from the Isle of Wight (IOW) birth cohort in United Kingdom, using Illumina Infinium arrays (450 K and EPIC). Spirometry was conducted at both ages. A training and testing method was used to screen 402,714 CpGs for their potential associations with lung function. Linear regressions were applied to assess the association of changes in lung function with changes of DNA-M at those CpGs potentially related to lung function. Adolescence-related and personal and family-related confounders were included in the model. The analyses were stratified by gender. Multiple testing was adjusted by controlling false discovery rate of 0.05. Findings were further examined in two independent birth cohorts, the Avon Longitudinal Study of Children and Parents (ALSPAC) and the Children, Allergy, Milieu, Stockholm, Epidemiology (BAMSE) cohort. Pathway analyses were performed on genes to which the identified CpGs were mapped. RESULTS For females, 42 CpGs showed statistically significant associations with change in FEV1/FVC, but none for change in FEV1 or FVC. No CpGs were identified for males. In replication analyses, 16 and 21 of the 42 CpGs showed the same direction of associations among the females in the ALSPAC and BAMSE cohorts, respectively, with 11 CpGs overlapping across all the three cohorts. Through pathway analyses, significant biological processes were identified that have previously been related to lung function development. CONCLUSIONS The detected 11 CpGs in all three cohorts have the potential to serve as the candidate epigenetic markers for changes in lung function during adolescence in females.
Collapse
Affiliation(s)
- Shadia Khan Sunny
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152 USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152 USA
| | - Faisal I. Rezwan
- School of Water, Energy and Environment, Cranfield University, Cranfield Bedfordshire, MK43 0AL England
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN UK
| | - A. John Henderson
- Population Health Sciences, University of Bristol, Bristol, BS8 2BN UK
| | - Simon Kebede Merid
- Department of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children’s Hospital, Stockholm, Sweden
| | - Jenny Hallberg
- Department of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children’s Hospital, Stockholm, Sweden
| | - S. Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Parkhurst Road, Newport, Isle of Wight PO30 5TG UK
| | - Susan Ewart
- Large Animal Clinical Sciences, Michigan State University, East Lansing, MI USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
| |
Collapse
|