1
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
2
|
Xing H, Yue S, Qin R, Du X, Wu Y, Zhangsun D, Luo S. Recent Advances in Drug Development for Alzheimer's Disease: A Comprehensive Review. Int J Mol Sci 2025; 26:3905. [PMID: 40332804 PMCID: PMC12028297 DOI: 10.3390/ijms26083905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by cognitive impairments such as memory loss and executive dysfunction. The primary pathological features of AD include the deposition of amyloid-beta (Aβ) plaques, the hyperphosphorylation of tau proteins leading to neurofibrillary tangles, disruptions of neuronal and synaptic functions, and chronic inflammatory responses. These multifactorial interactions drive disease progression. To date, various therapeutic agents targeting these pathological mechanisms have been developed. This article provides a comprehensive review of the pathogenesis of AD, recent advances in drug development targeting different pathways, current challenges, and future directions, aiming to offer valuable insights for clinical treatment and research.
Collapse
Affiliation(s)
- Haonan Xing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Song Yue
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Runtian Qin
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Xiaoxue Du
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
| | - Yili Wu
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Health, School of Mental Health, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China;
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.X.); (S.Y.); (R.Q.); (X.D.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Lange LM, Cerquera-Cleves C, Schipper M, Panagiotaropoulou G, Braun A, Kraft J, Awasthi S, Bell N, Posthuma D, Ripke S, Blauwendraat C, Heilbron K. Prioritizing Parkinson's disease risk genes in genome-wide association loci. NPJ Parkinsons Dis 2025; 11:77. [PMID: 40240380 PMCID: PMC12003903 DOI: 10.1038/s41531-025-00933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Many drug targets in ongoing Parkinson's disease (PD) clinical trials have strong genetic links. While genome-wide association studies (GWAS) nominate regions associated with disease, pinpointing causal genes is challenging. Our aim was to prioritize additional druggable genes underlying PD GWAS signals. The polygenic priority score (PoPS) integrates genome-wide information from MAGMA gene-level associations and over 57,000 gene-level features. We applied PoPS to East Asian and European PD GWAS data and prioritized genes based on PoPS, distance to the GWAS signal, and non-synonymous credible set variants. We prioritized 46 genes, including well-established PD genes (SNCA, LRRK2, GBA1, TMEM175, VPS13C), genes with strong literature evidence supporting a mechanistic link to PD (RIT2, BAG3, SCARB2, FYN, DYRK1A, NOD2, CTSB, SV2C, ITPKB), and genes relatively unexplored in PD. Many hold potential for drug repurposing or development. We prioritized high-confidence genes with strong links to PD pathogenesis that may represent our next-best candidates for developing disease-modifying therapeutics.
Collapse
Affiliation(s)
- Lara M Lange
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Catalina Cerquera-Cleves
- Neurology Unit, Department of Neurosciences, Hospital Universitario San Ignacio, Bogotá, Colombia
- Centre de recherche du Centre Hospitalier Universitaire de Québec, Axe Neurosciences, Département de Psychiatrie et Neurosciences, Laval University, Québec, QC, Canada
| | | | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany.
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany.
| |
Collapse
|
4
|
Islam R, Choudhary HH, Zhang F, Mehta H, Yoshida J, Thomas AJ, Hanafy K. Microglial TLR4-Lyn kinase is a critical regulator of neuroinflammation, Aβ phagocytosis, neuronal damage, and cell survival in Alzheimer's disease. Sci Rep 2025; 15:11368. [PMID: 40175501 PMCID: PMC11965285 DOI: 10.1038/s41598-025-96456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025] Open
Abstract
Disease-Associated Microglia (DAM) are a focus in Alzheimer's disease (AD) research due to their central involvement in the response to amyloid-beta plaques. Microglial Toll-like receptor 4 (TLR4) is instrumental in the binding of fibrillary amyloid proteins, while Lyn kinase (Lyn) is a member of the Src family of non-receptor tyrosine kinases involved in immune signaling. Lyn is a novel, non-canonical, intracellular adaptor with diverse roles in cell-specific signaling which directly binds to TLR4 to modify its function. Lyn can be activated in response to TLR4 stimulation, leading to phosphorylation of various substrates and modulation of inflammatory and phagocytosis signaling pathways. Here, we investigated the TLR4-Lyn interaction in neuroinflammation using WT, 5XFAD, and 5XFAD x Lyn-/- mouse models by western blotting (WB), co-immunoprecipitation (co-IP), immunohistochemistry (IHC) and flow cytometric (FC) analysis. A spatial transcriptomic analysis of microglia in WT, 5XFAD, and 5XFAD x Lyn-/- mice revealed essential genes involved in neuroinflammation, Aβ phagocytosis, and neuronal damage. Finally, we explored the effects of a synthetic, TLR4-Lyn modulator protein (TLIM) through an in vitro AD model using primary murine microglia. Our WB, co-IP, IHC, and FC data show an increased, novel, direct protein-protein interaction between TLR4 and Lyn kinase in the brains of 5XFAD mice compared to WT. Furthermore, in the absence of Lyn (5XFAD x Lyn-/- mice); increased expression of protective Syk kinase was observed, enhanced microglial Aβ phagocytosis, increased astrocyte activity, decreased neuronal dystrophy, and a further increase in the cell survival signaling and protective DAM population was noted. The DAM population in 5XFAD mice which produce more inflammatory cytokines and phagocytose more Aβ were observed to express greater levels of TLR4 and Lyn. Pathway analysis comparison between WT, 5XFAD, and 5XFAD x Lyn-/- mice supported these findings via our microglial spatial transcriptomic analysis. Finally, we created an in vitro co-culture system with primary murine microglial and primary murine hippocampal cells exposed to Aβ as a model of AD. When these co-cultures were treated with our TLR4-Lyn Interaction Modulators (TLIMs), an increase in Aβ phagocytosis and a decrease in neuronal dystrophy was seen. Lyn kinase has a central role in modulating TLR4-induced inflammation and Syk-induced protection in a 5XFAD mouse model. Our TLIMs ameliorate AD sequalae in an in vitro model of AD and could be a promising therapeutic strategy to treat AD.
Collapse
Affiliation(s)
- Rezwanul Islam
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA
| | - Hadi Hasan Choudhary
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA
| | - Feng Zhang
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA
| | - Hritik Mehta
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA
| | - Jun Yoshida
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Ajith J Thomas
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Neurosurgery, Cooper University Health Care, Camden, NJ, USA
| | - Khalid Hanafy
- Cooper Medical School of Rowan University, Camden, NJ, USA.
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA.
- Center for Neuroinflammation at Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
5
|
Bruge C, Bourg N, Pellier E, Tournois J, Polentes J, Benabides M, Grossi N, Bigot A, Brureau A, Richard I, Nissan X. High-throughput screening identifies bazedoxifene as a potential therapeutic for dysferlin-deficient limb girdle muscular dystrophy. Br J Pharmacol 2025. [PMID: 40108832 DOI: 10.1111/bph.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Limb-girdle muscular dystrophy R2 (LGMD R2) is a rare genetic disorder characterised by progressive weakness and wasting of proximal muscles. LGMD R2 is caused by the loss of function of dysferlin, a transmembrane protein crucial for plasma membrane repair in skeletal muscles. This study aimed to identify drugs that could improve the localisation and restore the function of an aggregated mutant form of dysferlin (DYSFL1341P). EXPERIMENTAL APPROACH We developed an in vitro high-throughput assay to monitor the expression and reallocation of aggregated mutant dysferlin (DYSFL1341P) in immortalised myoblasts. After screening 2239 clinically approved drugs and bioactive compounds, the ability of the more promising candidates to improve cell survival following hypo-osmotic shock was assessed. Their protective effects were evaluated on immortalised myoblasts carrying other dysferlin mutations and on dysferlin-deficient muscle fibres from Bla/J mice. KEY RESULTS We identified two compounds, saracatinib and bazedoxifene, that increase dysferlin content in cells carrying the DYSFL1341P mutation. Both drugs improved cell survival and plasma membrane resistance following osmotic shock. Whereas saracatinib acts specifically on misfolded L1341P dysferlin, bazedoxifene shows an additional protective effect on dysferlin KO immortalised myoblasts and mice muscle fibres. Further analysis revealed that bazedoxifene induces autophagy flux, which may enhance the survival of LGMD R2 myofibres. CONCLUSION AND IMPLICATIONS Our drug screening identified saracatinib and bazedoxifene as potential treatments for LGMD R2, especially for patients with the L1341P mutation. The widespread protective effect of bazedoxifene reveals a new avenue toward genotype-independent treatment of LGMD R2 patients.
Collapse
Affiliation(s)
- Celine Bruge
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Nathalie Bourg
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Emilie Pellier
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Johana Tournois
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Jerome Polentes
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Manon Benabides
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Noella Grossi
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Anthony Brureau
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Isabelle Richard
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Xavier Nissan
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| |
Collapse
|
6
|
Uliassi E, Bolognesi ML, Milelli A. Targeting Tau Protein with Proximity Inducing Modulators: A New Frontier to Combat Tauopathies. ACS Pharmacol Transl Sci 2025; 8:654-672. [PMID: 40109749 PMCID: PMC11915046 DOI: 10.1021/acsptsci.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Abstract
Dysregulation of correct protein tau homeostasis represents the seed for the development of several devastating central nervous system disorders, known as tauopathies, that affect millions of people worldwide. Despite massive public and private support to research funding, these diseases still represent unmet medical needs. In fact, the tau-targeting tools developed to date have failed to translate into the clinic. Recently, taking advantage of the modes that nature uses to mediate the flow of information in cells, researchers have developed a new class of molecules, called proximity-inducing modulators, which exploit spatial proximity to modulate protein function(s) and redirect cellular processes. In this perspective, after a brief discussion about tau protein and the classic tau-targeting approaches, we will discuss the different classes of proximity-inducing modulators developed so far and highlight the applications to modulate tau protein's function and tau-induced toxicity.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, Rimini 47921, Italy
| |
Collapse
|
7
|
Meur S, Karati D. Fyn Kinase in Alzheimer's Disease: Unraveling Molecular Mechanisms and Therapeutic Implications. Mol Neurobiol 2025; 62:643-660. [PMID: 38890236 DOI: 10.1007/s12035-024-04286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease, characterized by the accumulation of abnormal protein aggregates and neuronal damage in the brain, leads to a gradual decline in cognitive function and memory. As a complex neurodegenerative disorder, it involves disruptions in various biochemical pathways and neurotransmitter systems, contributing to the progressive loss of neurons and synaptic connections. The complexity of Alzheimer's signaling pathways complicates treatment, presenting a formidable challenge in the quest for effective therapeutic interventions. A member of the Src family of kinases (SFKs), Fyn, is a type of non-receptor tyrosine kinase that has been linked to multiple essential CNS processes, such as myelination and synaptic transmission. Fyn is an appealing target for AD treatments because it is uniquely linked to the two major pathologies in AD by its interaction with tau, in addition to being activated by amyloid-beta (Aβ) through PrPC. Fyn mediates neurotoxicity and synaptic impairments caused by Aβ and is involved in regulating the process of Aβ synthesis.Additionally, the tau protein's tyrosine phosphorylation is induced by Fyn. Fyn is also a challenging target because of its widespread body expression and strong homology with other kinases of the Src family, which could cause unintentional off-target effects. This review emphasizes signaling pathways mediated by Fyn that govern neuronal development and plasticity while also summarizing the most noteworthy recent research relevant to Fyn kinase's function in the brain. Additionally, the therapeutic inhibition of Fyn kinase has been discussed, with a focus on the Fyn kinase inhibitors that are in clinical trials, which presents a fascinating opportunity for targeting Fyn kinase in the creation of possible therapeutic approaches for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
8
|
Hubal A, Vendhoti A, Shaffer CN, Vos S, Corcino YL, Subauste CS. Inhibition of Src signaling induces autophagic killing of Toxoplasma gondii via PTEN-mediated deactivation of Akt. PLoS Pathog 2025; 21:e1012907. [PMID: 39869638 PMCID: PMC11801697 DOI: 10.1371/journal.ppat.1012907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 02/06/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis. This raises the possibility that T. gondii activates a signaling mechanism independently of EGFR to avoid autophagic targeting. We report T. gondii activates Src to promote parasite survival even in cells that lack EGFR. Blockade of Src triggered LC3 and LAMP-1 recruitment around the parasitophorous vacuole (PV) and parasite killing dependent on the autophagy protein, ULK1, and lysosomal enzymes. Src promoted PI3K activation and recruitment of activated Akt to the PV membrane. T. gondii promoted Src association with PTEN, and PTEN phosphorylation at Y240, S380, T382, and T383, hallmarks of an inactive PTEN conformation known to maintain Akt activation. Blockade of parasite killing was dependent of activated Akt. Src knockdown or treatment with the Src family kinase inhibitor, Saracatinib, impaired these events, leading to PTEN accumulation around the PV and a reduction in activated Akt recruitment at this site. Saracatinib treatment in mice with pre-established cerebral and ocular toxoplasmosis promoted PTEN recruitment around tachyzoites in neural tissue impairing recruitment of activated Akt, profoundly reducing parasite load and neural histopathology that were dependent of the autophagy protein, Beclin 1. Our studies uncovered an EGFR-independent pathway activated by T. gondii that enables its survival and is central to the development of neural toxoplasmosis.
Collapse
Affiliation(s)
- Alyssa Hubal
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Anusha Vendhoti
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Charles N. Shaffer
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sarah Vos
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yalitza Lopez Corcino
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Carlos S. Subauste
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
9
|
Lange LM, Cerquera-Cleves C, Schipper M, Panagiotaropoulou G, Braun A, Kraft J, Awasthi S, Bell N, Posthuma D, Ripke S, Blauwendraat C, Heilbron K. Prioritizing Parkinson's disease risk genes in genome-wide association loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.13.24318996. [PMID: 39711693 PMCID: PMC11661345 DOI: 10.1101/2024.12.13.24318996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging. Our aim was to prioritize genes underlying PD GWAS signals. The polygenic priority score (PoPS) is a similarity-based gene prioritization method that integrates genome-wide information from MAGMA gene-level association tests and more than 57,000 gene-level features, including gene expression, biological pathways, and protein-protein interactions. We applied PoPS to data from the largest published PD GWAS in East Asian- and European-ancestries. We identified 120 independent associations with P < 5×10-8 and prioritized 46 PD genes across these loci based on their PoPS scores, distance to the GWAS signal, and presence of non-synonymous variants in the credible set. Alongside well-established PD genes (e.g., TMEM175 and VPS13C), some of which are targeted in ongoing clinical trials (i.e., SNCA, LRRK2, and GBA1), we prioritized genes with a plausible mechanistic link to PD pathogenesis (e.g., RIT2, BAG3, and SCARB2). Many of these genes hold potential for drug repurposing or novel therapeutic developments for PD (i.e., FYN, DYRK1A, NOD2, CTSB, SV2C, and ITPKB). Additionally, we prioritized potentially druggable genes that are relatively unexplored in PD (XPO1, PIK3CA, EP300, MAP4K4, CAMK2D, NCOR1, and WDR43). We prioritized a high-confidence list of genes with strong links to PD pathogenesis that may represent our next-best candidates for disease-modifying therapeutics. We hope our findings stimulate further investigations and preclinical work to facilitate PD drug development programs.
Collapse
Affiliation(s)
- Lara M. Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Catalina Cerquera-Cleves
- Neurology Unit, Department of Neurosciences, Hospital Universitario San Ignacio, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University, Quebec City, Quebec, Canada
| | | | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
- Current address: Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
10
|
Zhou F, Zhao Y, Sun Y, Chen W. Molecular Insights into Tau Pathology and its Therapeutic Strategies in Alzheimer's Disease. J Integr Neurosci 2024; 23:197. [PMID: 39613463 DOI: 10.31083/j.jin2311197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 12/01/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. The two major hallmarks of this disease are extracellular amyloid plaques and intracellular neurofibrillary tangles in the brain, accompanied by loss of neurons and synapses. The plaques and tangles mainly consist of amyloid-β (Aβ) and tau protein, respectively. Most of the therapeutic strategies for AD to date have focused on Aβ. However, there is still no effective therapy available. In recent years, the clinical therapeutic failure of targeting Aβ pathology has resulted in increased interest towards tau-based therapeutics. In the current review, we focus on the research progress regarding the pathological mechanisms of tau protein in this disease and discuss tau-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Wanjiao Chen
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| |
Collapse
|
11
|
Huang Z, Yao J, Nie L, Nie X, Xiong X, Kõks S, Quinn JP, Kanhere A, Wang M. Gender-different effect of Src family kinases antagonism on photophobia and trigeminal ganglion activity. J Headache Pain 2024; 25:175. [PMID: 39390364 PMCID: PMC11468534 DOI: 10.1186/s10194-024-01875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Src family kinases (SFKs) contribute to migraine pathogenesis, yet its role in regulating photophobia behaviour, one of the most common forms of migraine, remains unknown. Here, we addressed whether SFKs antagonism alleviates photophobia behavior and explored the underlying mechanism involving hypothalamus and trigeminal ganglion activity, as measured by the alteration of neuropeptide levels and transcriptome respectively. METHODS A rapid-onset and injury-free mouse model of photophobia was developed following intranasal injection of the TRPA1 activator, umbellulone. The role of SFKs antagonism on light aversion was assessed by the total time the mouse stays in the light and transition times between the dark and light compartments. To gain insight to the preventive mechanism of SFKs antagonism, hypothalamic neuropeptides levels were assessed using enzyme linked immunofluorescent assay and trigeminal ganglion activity were assessed using RNA-sequencing and qPCR analysis. RESULTS SFKs antagonism by a clinically relevant SFKs inhibitor saracatinib reduced the total time in light and transition times in male mice, but not in females, suggesting SFKs play a crucial role in photophobia progressing and exhibit a male-only effect. SFKs antagonism had no effect on hypothalamic calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide levels of all mice investigated, suggesting the gender-different effect of saracatinib on light aversion appears to be independent of these hypothalamic neuropeptide levels. In trigeminal ganglion of male mice, photophobia is associated with profound alteration of differentially expressed genes, part of which were reversed by SFKs antagonism. Subsequent qPCR analysis showed SFKs antagonism displayed gender-different modulation of expression in some candidate genes, particularly noteworthy those encoding ion channels (trpm3, Scn8a), ATPase signaling (crebbp, Atp5α1) and kinase receptors (Zmynd8, Akt1). CONCLUSIONS In conclusion, our data revealed that SFKs antagonism reduced photophobia processing in male mice and exhibited gender-different modulation of trigeminal ganglion activity, primarily manifesting as alterations in the transcriptome profile. These findings underscore the potential of SFKs antagonism for allieving photophobia in males, highlighting its value in the emerging field of precision medicine.
Collapse
Affiliation(s)
- Zhuoan Huang
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Junyu Yao
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lingdi Nie
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Xinchen Nie
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xuechunhui Xiong
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Perron Institute for Neurological and Translational Science, Murdoch University, Perth, WA, Australia
| | - John P Quinn
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Minyan Wang
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
12
|
Ramos R, Vale N. Dual Drug Repurposing: The Example of Saracatinib. Int J Mol Sci 2024; 25:4565. [PMID: 38674150 PMCID: PMC11050334 DOI: 10.3390/ijms25084565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Saracatinib (AZD0530) is a dual Src/Abl inhibitor initially developed by AstraZeneca for cancer treatment; however, data from 2006 to 2024 reveal that this drug has been tested not only for cancer treatment, but also for the treatment of other diseases. Despite the promising pre-clinical results and the tolerability shown in phase I trials, where a maximum tolerated dose of 175 mg was defined, phase II clinical data demonstrated a low therapeutic action against several cancers and an elevated rate of adverse effects. Recently, pre-clinical research aimed at reducing the toxic effects and enhancing the therapeutic performance of saracatinib using nanoparticles and different pharmacological combinations has shown promising results. Concomitantly, saracatinib was repurposed to treat Alzheimer's disease, targeting Fyn. It showed great clinical results and required a lower daily dose than that defined for cancer treatment, 125 mg and 175 mg, respectively. In addition to Alzheimer's disease, this Src inhibitor has also been studied in relation to other health conditions such as pulmonary and liver fibrosis and even for analgesic and anti-allergic functions. Although saracatinib is still not approved by the Food and Drug Administration (FDA), the large number of alternative uses for saracatinib and the elevated number of pre-clinical and clinical trials performed suggest the huge potential of this drug for the treatment of different kinds of diseases.
Collapse
Affiliation(s)
- Raquel Ramos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
14
|
Li J, Liu X, Liu Y, Huang F, Liang J, Lin Y, Hu F, Feng J, Han Z, Chen Y, Chen X, Lin Q, Wu L, Li L. Saracatinib inhibits necroptosis and ameliorates psoriatic inflammation by targeting MLKL. Cell Death Dis 2024; 15:122. [PMID: 38331847 PMCID: PMC10853205 DOI: 10.1038/s41419-024-06514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Necroptosis is a kind of programmed cell death that causes the release of damage-associated molecular patterns and inflammatory disease including skin inflammation. Activation of receptor-interacting serine/threonine kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) is the hallmark of tumour necrosis factor α (TNF)-induced necroptosis. Here, we screened a small-molecule compound library and found that saracatinib inhibited TNF-induced necroptosis. By targeting MLKL, Saracatinib interfered with the phosphorylation, translocation, and oligomerization of MLKL induced by TNF. Consistently, mutation of the saracatinib-binding site of MLKL reduced the inhibitory effect of saracatinib on TNF-induced necroptosis. In an imiquimod (IMQ)-induced psoriasis mouse model, saracatinib effectively blocked MLKL phosphorylation and inflammatory responses in vivo. Taken together, these findings indicate that saracatinib inhibits necroptosis by targeting MLKL, providing a potential therapeutic approach for skin inflammation-related diseases such as psoriasis.
Collapse
Affiliation(s)
- Jingyi Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xingfeng Liu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuanyuan Liu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fangmin Huang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiankun Liang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yingying Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fen Hu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jianting Feng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeteng Han
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yushi Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xuan Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiaofa Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lanqin Wu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Lisheng Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, China.
| |
Collapse
|
15
|
van Dyck CH, Mecca AP, O'Dell RS, Bartlett HH, Diepenbrock NG, Huang Y, Hamby ME, Grundman M, Catalano SM, Caggiano AO, Carson RE. A pilot study to evaluate the effect of CT1812 treatment on synaptic density and other biomarkers in Alzheimer's disease. Alzheimers Res Ther 2024; 16:20. [PMID: 38273408 PMCID: PMC10809445 DOI: 10.1186/s13195-024-01382-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/01/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Effective, disease-modifying therapeutics for the treatment of Alzheimer's disease (AD) remain a large unmet need. Extensive evidence suggests that amyloid beta (Aβ) is central to AD pathophysiology, and Aβ oligomers are among the most toxic forms of Aβ. CT1812 is a novel brain penetrant sigma-2 receptor ligand that interferes with the binding of Aβ oligomers to neurons. Preclinical studies of CT1812 have demonstrated its ability to displace Aβ oligomers from neurons, restore synapses in cell cultures, and improve cognitive measures in mouse models of AD. CT1812 was found to be generally safe and well tolerated in a placebo-controlled phase 1 clinical trial in healthy volunteers and phase 1a/2 clinical trials in patients with mild to moderate dementia due to AD. The unique objective of this study was to incorporate synaptic positron emission tomography (PET) imaging as an outcome measure for CT1812 in AD patients. METHODS The present phase 1/2 study was a randomized, double-blind, placebo-controlled, parallel-group trial conducted in 23 participants with mild to moderate dementia due to AD to primarily evaluate the safety of CT1812 and secondarily its pharmacodynamic effects. Participants received either placebo or 100 mg or 300 mg per day of oral CT1812 for 24 weeks. Pharmacodynamic effects were assessed using the exploratory efficacy endpoints synaptic vesicle glycoprotein 2A (SV2A) PET, fluorodeoxyglucose (FDG) PET, volumetric MRI, cognitive clinical measures, as well as cerebrospinal fluid (CSF) biomarkers of AD pathology and synaptic degeneration. RESULTS No treatment differences relative to placebo were observed in the change from baseline at 24 weeks in either SV2A or FDG PET signal, the cognitive clinical rating scales, or in CSF biomarkers. Composite region volumetric MRI revealed a trend towards tissue preservation in participants treated with either dose of CT1812, and nominally significant differences with both doses of CT1812 compared to placebo were found in the pericentral, prefrontal, and hippocampal cortices. CT1812 was safe and well tolerated. CONCLUSIONS The safety findings of this 24-week study and the observed changes on volumetric MRI with CT1812 support its further clinical development. TRIAL REGISTRATION The clinical trial described in this manuscript is registered at clinicaltrials.gov (NCT03493282).
Collapse
Affiliation(s)
- Christopher H van Dyck
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Hugh H Bartlett
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nina G Diepenbrock
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, PA, USA
| | - Michael Grundman
- Global R&D Partners, LLC, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, USA
| | | | | | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Triumbari EKA, Chiaravalloti A, Schillaci O, Mercuri NB, Liguori C. Positron Emission Tomography/Computed Tomography Imaging in Therapeutic Clinical Trials in Alzheimer's Disease: An Overview of the Current State of the Art of Research. J Alzheimers Dis 2024; 101:S603-S628. [PMID: 39422956 DOI: 10.3233/jad-240349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The integration of positron emission tomography/computed tomography (PET/CT) has revolutionized the landscape of Alzheimer's disease (AD) research and therapeutic interventions. By combining structural and functional imaging, PET/CT provides a comprehensive understanding of disease pathology and response to treatment assessment. PET/CT, particularly with 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG), facilitates the visualization of glucose metabolism in the brain, enabling early diagnosis, staging, and monitoring of neurodegenerative disease progression. The advent of amyloid and tau PET imaging has further propelled the field forward, offering invaluable tools for tracking pathological hallmarks, assessing treatment response, and predicting clinical outcomes. While some therapeutic interventions targeting amyloid plaque load showed promising results with the reduction of cerebral amyloid accumulation over time, others failed to demonstrate a significant impact of anti-amyloid agents for reducing the amyloid plaques burden in AD brains. Tau PET imaging has conversely fueled the advent of disease-modifying therapeutic strategies in AD by supporting the assessment of neurofibrillary tangles of tau pathology deposition over time. Looking ahead, PET imaging holds immense promise for studying additional targets such as neuroinflammation, cholinergic deficit, and synaptic dysfunction. Advances in radiotracer development, dedicated brain PET/CT scanners, and Artificial Intelligence-powered software are poised to enhance the quality, sensitivity, and diagnostic power of molecular neuroimaging. Consequently, PET/CT remains at the forefront of AD research, offering unparalleled opportunities for unravelling the complexities of the disease and advancing therapeutic interventions, although it is not yet enough alone to allow patients' recruitment in therapeutic clinical trials.
Collapse
Affiliation(s)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
17
|
Majeed J, Sabbagh MN, Kang MH, Lawrence JJ, Pruitt K, Bacus S, Reyna E, Brown M, Decourt B. Cancer drugs with high repositioning potential for Alzheimer's disease. Expert Opin Emerg Drugs 2023; 28:311-332. [PMID: 38100555 PMCID: PMC10877737 DOI: 10.1080/14728214.2023.2296079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Despite the recent full FDA approval of lecanemab, there is currently no disease modifying therapy (DMT) that can efficiently slow down the progression of Alzheimer's disease (AD) in the general population. This statement emphasizes the need to identify novel DMTs in the shortest time possible to prevent a global epidemic of AD cases as the world population experiences an increase in lifespan. AREAS COVERED Here, we review several classes of anti-cancer drugs that have been or are being investigated in Phase II/III clinical trials for AD, including immunomodulatory drugs, RXR agonists, sex hormone therapies, tyrosine kinase inhibitors, and monoclonal antibodies. EXPERT OPINION Given the overall course of brain pathologies during the progression of AD, we express a great enthusiasm for the repositioning of anti-cancer drugs as possible AD DMTs. We anticipate an increasing number of combinatorial therapy strategies to tackle AD symptoms and their underlying pathologies. However, we strongly encourage improvements in clinical trial study designs to better assess target engagement and possible efficacy over sufficient periods of drug exposure.
Collapse
Affiliation(s)
- Jad Majeed
- University of Arizona Honors College, Tucson, Arizona, USA
| | - Marwan N. Sabbagh
- Alzheimer’s and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Min H. Kang
- Department of Pediatrics, Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Ellie Reyna
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Maddy Brown
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
- Roseman University of Health Sciences, Las Vegas, Nevada, USA
| |
Collapse
|
18
|
Khan T, Waseem R, Shahid M, Ansari J, Ahanger IA, Hassan I, Islam A. Recent advancement in therapeutic strategies for Alzheimer's disease: Insights from clinical trials. Ageing Res Rev 2023; 92:102113. [PMID: 37918760 DOI: 10.1016/j.arr.2023.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by the presence of plaques of amyloid beta and Tau proteins. There is currently no permanent cure for AD; the only medications approved by the FDA for mild to moderate AD are cholinesterase inhibitors, NMDA receptor antagonists, and immunotherapies against core pathophysiology, that provide temporary relief only. Researchers worldwide have made significant attempts to find new targets and develop innovative therapeutic molecules to treat AD. The FDA-approved drugs are palliative and couldn't restore the damaged neuron cells of AD. Stem cells have self-differentiation properties, making them prospective therapeutics to treat AD. The promising results in pre-clinical studies of stem cell therapy for AD seek attention worldwide. Various stem cells, mainly mesenchymal stem cells, are currently in different phases of clinical trials and need more advancements to take this therapy to the translational level. Here, we review research from the past decade that has identified several hypotheses related to AD pathology. Moreover, this article also focuses on the recent advancement in therapeutic strategies for AD treatment including immunotherapy and stem cell therapy detailing the clinical trials that are currently undergoing development.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Clinical Biochemistry, University of Kashmir,190006, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
19
|
Rao NS, Putra M, Meyer C, Almanza A, Thippeswamy T. The effects of Src tyrosine kinase inhibitor, saracatinib, on the markers of epileptogenesis in a mixed-sex cohort of adult rats in the kainic acid model of epilepsy. Front Mol Neurosci 2023; 16:1294514. [PMID: 38025259 PMCID: PMC10665569 DOI: 10.3389/fnmol.2023.1294514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegeneration and neuroinflammation are key processes of epileptogenesis in temporal lobe epilepsy (TLE). A considerable number (∼30%) of patients with epilepsy are resistant to currently available antiseizure drugs and thus there is a need to develop adjunct therapies to modify disease progression. A vast majority of interventional strategies to treat TLE have utilized males which limits the translational nature of the studies. In this study, we investigated the effects of repeated low-dose kainic acid (KA) injection on the initial status epilepticus (SE) and the effects of Src kinase inhibitor, saracatinib (SAR/AZD0530; 20 mg/kg, oral, daily for 7 days), in a mixed-sex cohort of adult Sprague Dawley rats during early epileptogenesis. There were no sex differences in response to KA-induced SE, and neither did the stage of estrus influence SE severity. KA-induced SE caused significant astrogliosis and microgliosis across the hippocampus, piriform cortex, and amygdala. SAR treatment resulted in a significant reduction of microgliosis across brain regions. Microglial morphometrics such as branch length and the endpoints strongly correlated with CD68 expression in the vehicle-treated group but not in the SAR-treated group, indicating mitigation by SAR. KA-induced SE caused significant neuronal loss, including parvalbumin-positive inhibitory neurons, in both vehicle (VEH) and SAR-treated groups. SAR treatment significantly mitigated FJB-positive neuronal counts as compared to the VEH group. There was an increase in C3-positive reactive astrocytes in the VEH-treated group, and SAR treatment significantly reduced the increase in the piriform cortex. C3-positive astrogliosis significantly correlated with CD68 expression in the amygdala (AMY) of VEH-treated rats, and SAR treatment mitigated this relationship. There was a significant increase of pSrc(Y419)-positive microglia in both KA-treated groups with a statistically insignificant reduction by SAR. KA-induced SE caused the development of classical glial scars in the piriform cortex (PIR) in both KA-treated groups, while SAR treatment led to a 42.17% reduction in the size of glial scars. We did not observe sex differences in any of the parameters in this study. SAR, at the dose tested in the rat kainate model for a week in this study mitigated some of the markers of epileptogenesis in both sexes.
Collapse
Affiliation(s)
| | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
20
|
Vasanthi SS, Massey N, Nair SN, Mochel JP, Showman L, Thippeswamy T. Exploring the benefits of in-diet versus repeated oral dosing of saracatinib (AZD0530) in chronic studies: insights into pharmacokinetics and animal welfare. Front Vet Sci 2023; 10:1297221. [PMID: 38026620 PMCID: PMC10666625 DOI: 10.3389/fvets.2023.1297221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Saracatinib/AZD0530 (SAR), a Src tyrosine kinase inhibitor, mitigates seizure-induced brain pathology in epilepsy models upon repeated oral dosing. However, repeated dosing is stressful and can be challenging in some seizing animals. To overcome this issue, we have incorporated SAR-in-Diet and compared serum pharmacokinetics (PK) and brain concentrations with conventional repeated oral dosing. Saracatinib in solution or in-diet was stable at room temperature for >4 weeks (97 ± 1.56%). Adult Sprague Dawley rats on SAR-in-Diet consumed ~1.7 g/day less compared to regular diet (16.82 ± 0.6 vs. 18.50 ± 0.5 g/day), but the weight gain/day was unaffected (2.63 ± 0.5 g/day vs. 2.83 ± 0.2 g/day). Importantly, we achieved the anticipated SAR dose range from 2.5-18.7 mg/kg of rat in response to varying concentrations of SAR-in-Diet from 54 to 260 ppm of feed, respectively. There was a strong and significant correlation between SAR-in-Diet dose (mg/kg) and serum saracatinib concentrations (ng/ml). Serum concentrations also did not vary significantly between SAR-in-Diet and repeated oral dosing. The hippocampal saracatinib concentrations derived from SAR-in-Diet treatment were higher than those derived after repeated oral dosing (day 3, 546.8 ± 219.7 ng/g vs. 238.6 ± 143 ng/g; day 7, 300.7 ± 43.4 ng/g vs. 271.1 ± 62.33 ng/g). Saracatinib stability at room temperature and high serum and hippocampal concentrations in animals fed on SAR-in-Diet are useful to titer the saracatinib dose for future animal disease models. Overall, test drugs in the diet is an experimental approach that addresses issues related to handling stress-induced variables in animal experiments.
Collapse
Affiliation(s)
- Suraj S. Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Nyzil Massey
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Suresh N. Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | - Jonathan P. Mochel
- Precision One Health, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Lucas Showman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
21
|
Mota SI, Fão L, Coelho P, Rego AC. Uncovering the Early Events Associated with Oligomeric Aβ-Induced Src Activation. Antioxidants (Basel) 2023; 12:1770. [PMID: 37760073 PMCID: PMC10525724 DOI: 10.3390/antiox12091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Soluble Aβ1-42 oligomers (AβO) are formed in the early stages of Alzheimer's disease (AD) and were previously shown to trigger enhanced Ca2+ levels and mitochondrial dysfunction via the activation of N-methyl-D-aspartate receptors (NMDAR). Src kinase is a ubiquitous redox-sensitive non-receptor tyrosine kinase involved in the regulation of several cellular processes, which was demonstrated to have a reciprocal interaction towards NMDAR activation. However, little is known about the early-stage mechanisms associated with AβO-induced neurodysfunction involving Src. Thus, in this work, we analysed the influence of brief exposure to oligomeric Aβ1-42 on Src activation and related mechanisms involving mitochondria and redox changes in mature primary rat hippocampal neurons. Data show that brief exposure to AβO induce H2O2-dependent Src activation involving different cellular events, including NMDAR activation and mediated intracellular Ca2+ rise, enhanced cytosolic and subsequent mitochondrial H2O2 levels, accompanied by mild mitochondrial fragmentation. Interestingly, these effects were prevented by Src inhibition, suggesting a feedforward modulation. The current study supports a relevant role for Src kinase activation in promoting the loss of postsynaptic glutamatergic synapse homeostasis involving cytosolic and mitochondrial ROS generation after brief exposure to AβO. Therefore, restoring Src activity can constitute a protective strategy for mitochondria and related hippocampal glutamatergic synapses.
Collapse
Affiliation(s)
- Sandra I. Mota
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Lígia Fão
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Patrícia Coelho
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - A. Cristina Rego
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
22
|
Amadori L, Calcagno C, Fernandez DM, Koplev S, Fernandez N, Kaur R, Mury P, Khan NS, Sajja S, Shamailova R, Cyr Y, Jeon M, Hill CA, Chong PS, Naidu S, Sakurai K, Ghotbi AA, Soler R, Eberhardt N, Rahman A, Faries P, Moore KJ, Fayad ZA, Ma’ayan A, Giannarelli C. Systems immunology-based drug repurposing framework to target inflammation in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2023; 2:550-571. [PMID: 37771373 PMCID: PMC10538622 DOI: 10.1038/s44161-023-00278-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/28/2023] [Indexed: 09/30/2023]
Abstract
The development of new immunotherapies to treat the inflammatory mechanisms that sustain atherosclerotic cardiovascular disease (ASCVD) is urgently needed. Herein, we present a path to drug repurposing to identify immunotherapies for ASCVD. The integration of time-of-flight mass cytometry and RNA sequencing identified unique inflammatory signatures in peripheral blood mononuclear cells stimulated with ASCVD plasma. By comparing these inflammatory signatures to large-scale gene expression data from the LINCS L1000 dataset, we identified drugs that could reverse this inflammatory response. Ex vivo screens, using human samples, showed that saracatinib-a phase 2a-ready SRC and ABL inhibitor-reversed the inflammatory responses induced by ASCVD plasma. In Apoe-/- mice, saracatinib reduced atherosclerosis progression by reprogramming reparative macrophages. In a rabbit model of advanced atherosclerosis, saracatinib reduced plaque inflammation measured by [18F] fluorodeoxyglucose positron emission tomography-magnetic resonance imaging. Here we show a systems immunology-driven drug repurposing with a preclinical validation strategy to aid the development of cardiovascular immunotherapies.
Collapse
Affiliation(s)
- Letizia Amadori
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
- The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Dawn M. Fernandez
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Simon Koplev
- Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Nicolas Fernandez
- Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ravneet Kaur
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Pauline Mury
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Nayaab S Khan
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Swathy Sajja
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Roza Shamailova
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Yannick Cyr
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Minji Jeon
- Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Christopher A. Hill
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Peik Sean Chong
- The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sonum Naidu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ken Sakurai
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Adam Ali Ghotbi
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Raphael Soler
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Natalia Eberhardt
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Adeeb Rahman
- The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Peter Faries
- Department of Surgery, Vascular Division, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Kathryn J. Moore
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
| | - Zahi A. Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Avi Ma’ayan
- Mount Sinai Center for Bioinformatics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Chiara Giannarelli
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York, NY USA
- Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Pathology; NYU Grossman School of Medicine, NYU Langone Health, New York, NY USA
| |
Collapse
|
23
|
Basheer N, Smolek T, Hassan I, Liu F, Iqbal K, Zilka N, Novak P. Does modulation of tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer's disease? From preclinical studies to the clinical trials. Mol Psychiatry 2023; 28:2197-2214. [PMID: 37264120 PMCID: PMC10611587 DOI: 10.1038/s41380-023-02113-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
Protein kinases (PKs) have emerged as one of the most intensively investigated drug targets in current pharmacological research, with indications ranging from oncology to neurodegeneration. Tau protein hyperphosphorylation was the first pathological post-translational modification of tau protein described in Alzheimer's disease (AD), highlighting the role of PKs in neurodegeneration. The therapeutic potential of protein kinase inhibitors (PKIs)) and protein phosphatase 2 A (PP2A) activators in AD has recently been explored in several preclinical and clinical studies with variable outcomes. Where a number of preclinical studies demonstrate a visible reduction in the levels of phospho-tau in transgenic tauopathy models, no reduction in neurofibrillary lesions is observed. Amongst the few PKIs and PP2A activators that progressed to clinical trials, most failed on the efficacy front, with only a few still unconfirmed and potential positive trends. This suggests that robust preclinical and clinical data is needed to unequivocally evaluate their efficacy. To this end, we take a systematic look at the results of preclinical and clinical studies of PKIs and PP2A activators, and the evidence they provide regarding the utility of this approach to evaluate the potential of targeting tau hyperphosphorylation as a disease modifying therapy.
Collapse
Affiliation(s)
- Neha Basheer
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia
| | - Tomáš Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia.
- AXON Neuroscience R&D Services SE, Bratislava, 811 02, Slovakia.
| | - Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia.
- AXON Neuroscience CRM Services SE, Bratislava, 811 02, Slovakia.
| |
Collapse
|
24
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Nie L, Sun K, Gong Z, Li H, Quinn JP, Wang M. Src Family Kinases Facilitate the Crosstalk between CGRP and Cytokines in Sensitizing Trigeminal Ganglion via Transmitting CGRP Receptor/PKA Pathway. Cells 2022; 11:cells11213498. [PMID: 36359895 PMCID: PMC9655983 DOI: 10.3390/cells11213498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The communication between calcitonin gene-related peptide (CGRP) and cytokines plays a prominent role in maintaining trigeminal ganglion (TG) and trigeminovascular sensitization. However, the underlying regulatory mechanism is elusive. In this study, we explored the hypothesis that Src family kinases (SFKs) activity facilitates the crosstalk between CGRP and cytokines in sensitizing TG. Mouse TG tissue culture was performed to study CGRP release by enzyme-linked immunosorbent assay, cytokine release by multiplex assay, cytokine gene expression by quantitative polymerase chain reaction, and phosphorylated SFKs level by western blot. The results demonstrated that a SFKs activator, pYEEI (YGRKKRRQRRREPQY(PO3H2)EEIPIYL) alone, did not alter CGRP release or the inflammatory cytokine interleukin-1β (IL-1β) gene expression in the mouse TG. In contrast, a SFKs inhibitor, saracatinib, restored CGRP release, the inflammatory cytokines IL-1β, C-X-C motif ligand 1, C-C motif ligand 2 (CCL2) release, and IL-1β, CCL2 gene expression when the mouse TG was pre-sensitized with hydrogen peroxide and CGRP respectively. Consistently with this, the phosphorylated SFKs level was increased by both hydrogen peroxide and CGRP in the mouse TG, which was reduced by a CGRP receptor inhibitor BIBN4096 and a protein kinase A (PKA) inhibitor PKI (14–22) Amide. The present study demonstrates that SFKs activity plays a pivotal role in facilitating the crosstalk between CGRP and cytokines by transmitting CGRP receptor/PKA signaling to potentiate TG sensitization and ultimately trigeminovascular sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Kai Sun
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Ziyang Gong
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Haoyang Li
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
- Correspondence:
| |
Collapse
|
26
|
Piscopo P, Crestini A, Carbone E, Rivabene R, Ancidoni A, Lo Giudice M, Corbo M, Vanacore N, Lacorte E. A systematic review on drugs for synaptic plasticity in the treatment of dementia. Ageing Res Rev 2022; 81:101726. [PMID: 36031056 DOI: 10.1016/j.arr.2022.101726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
The aim of the present systematic review (SR) was to provide an overview of all published and unpublished clinical trials investigating the safety and efficacy of disease-modifying drugs targeting synaptic plasticity in dementia. Searches on CT.gov and EuCT identified 27 trials (4 phase-1, 1 phase-1/2, 18 phase-2, 1 phase-2/3, 1 phase-3, 1 phase-4, and 1 not reported). Twenty of them completed, and seven are currently active or enrolling. The structured bibliographic searches yielded 3585 records. A total of 12 studies were selected on Levetiracetam, Masitinib, Saracatinib, BI 40930, Bryostatin 1, PF-04447943 and Edonerpic drugs. We used RoB tool for quality analysis of randomized studies. Efficacy was assessed as a primary outcome in all studies except one and the main scale used was ADAS-Cog (7 studies), MMSE and CDR (4 studies). Safety and tolerability were reported in eleven studies. The incidence of SAEs was similar between treatment and placebo. At the moment, only one molecule reached phase-3. This could suggest that research on these drugs is still preliminary. Of all, three studies reported promising results on Levetiracetam, Bryostatin 1 and Masitinib.
Collapse
Affiliation(s)
- P Piscopo
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy.
| | - A Crestini
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - E Carbone
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - R Rivabene
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - A Ancidoni
- National Center for Disease Prevention ad Heath Promotion, Italian National Institute of Health, Rome, Italy
| | - M Lo Giudice
- Need Institute, Foundation for Cure and Rehabilitation of Neurological Diseases, Milan, Italy
| | - M Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy.
| | - N Vanacore
- National Center for Disease Prevention ad Heath Promotion, Italian National Institute of Health, Rome, Italy
| | - E Lacorte
- National Center for Disease Prevention ad Heath Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
27
|
Kumar D, Md Ashraf G, Bilgrami AL, Imtaiyaz Hassan M. Emerging therapeutic developments in neurodegenerative diseases: A clinical investigation. Drug Discov Today 2022; 27:103305. [PMID: 35728774 DOI: 10.1016/j.drudis.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Despite a century of intensive research, there is still a lack of disease-modifying treatments for neurodegenerative diseases that pose a threat to human society. A well-documented knowledge and resource gap has impeded the translation of fundamental research into promising therapies. In addition, the analysis of extensive preclinical data to allow the improved selection of therapeutic technologies and clinical candidates for further development is challenging. To address this need, we describe technologies that have emerged over the past decade that have enabled the development of novel, high-quality, cost-effective treatments for major neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Moreover, we benchmark emerging technologies that have been adopted by top pharmaceutical companies looking to bridge the gap between drug discovery and drug development in neurodegenerative disease.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India.
| |
Collapse
|
28
|
Forloni G, La Vitola P, Balducci C. Oligomeropathies, inflammation and prion protein binding. Front Neurosci 2022; 16:822420. [PMID: 36081661 PMCID: PMC9445368 DOI: 10.3389/fnins.2022.822420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The central role of oligomers, small soluble aggregates of misfolded proteins, in the pathogenesis of neurodegenerative disorders is recognized in numerous experimental conditions and is compatible with clinical evidence. To underline this concept, some years ago we coined the term oligomeropathies to define the common mechanism of action of protein misfolding diseases like Alzheimer, Parkinson or prion diseases. Using simple experimental conditions, with direct application of synthetic β amyloid or α-synuclein oligomers intraventricularly at micromolar concentrations, we could detect differences and similarities in the biological consequences. The two oligomer species affected cognitive behavior, neuronal dysfunction and cerebral inflammatory reactions with distinct mechanisms. In these experimental conditions the proposed mediatory role of cellular prion protein in oligomer activities was not confirmed. Together with oligomers, inflammation at different levels can be important early in neurodegenerative disorders; both β amyloid and α-synuclein oligomers induce inflammation and its control strongly affects neuronal dysfunction. This review summarizes our studies with β-amyloid or α-synuclein oligomers, also considering the potential curative role of doxycycline, a well-known antibiotic with anti-amyloidogenic and anti-inflammatory activities. These actions are analyzed in terms of the therapeutic prospects.
Collapse
|
29
|
Kwan C, Huot P. An overview of the active clinical trials for Parkinson's disease psychosis. Neurodegener Dis Manag 2022; 12:165-170. [PMID: 35592949 DOI: 10.2217/nmt-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Tweetable abstract An overview of the active clinical trials for Parkinson's disease psychosis. In this article, we review the drugs currently undergoing clinical testing for Parkinson's disease psychosis and offer some perspectives on the treatment of the condition.
Collapse
Affiliation(s)
- Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, H3A 2B4, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, H3A 2B4, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neuroscience, Movement Disorder Clinic, Division of Neurology, McGill University Health Centre, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
30
|
Teng XQ, Qu J, Li GH, Zhuang HH, Qu Q. Small Interfering RNA for Gliomas Treatment: Overcoming Hurdles in Delivery. Front Cell Dev Biol 2022; 10:824299. [PMID: 35874843 PMCID: PMC9304887 DOI: 10.3389/fcell.2022.824299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are central nervous system tumors originating from glial cells, whose incidence and mortality rise in coming years. The current treatment of gliomas is surgery combined with chemotherapy or radiotherapy. However, developing therapeutic resistance is one of the significant challenges. Recent research suggested that small interfering RNA (siRNA) has excellent potential as a therapeutic to silence genes that are significantly involved in the manipulation of gliomas’ malignant phenotypes, including proliferation, invasion, metastasis, therapy resistance, and immune escape. However, it is challenging to deliver the naked siRNA to the action site in the cells of target tissues. Therefore, it is urgent to develop delivery strategies to transport siRNA to achieve the optimal silencing effect of the target gene. However, there is no systematic discussion about siRNAs’ clinical potential and delivery strategies in gliomas. This review mainly discusses siRNAs’ delivery strategies, especially nanotechnology-based delivery systems, as a potential glioma therapy. Moreover, we envisage the future orientation and challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Xin-Qi Teng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Guo-Hua Li
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qiang Qu,
| |
Collapse
|
31
|
The synapse as a treatment avenue for Alzheimer's Disease. Mol Psychiatry 2022; 27:2940-2949. [PMID: 35444256 DOI: 10.1038/s41380-022-01565-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with devastating symptoms, including memory impairments and cognitive deficits. Hallmarks of AD pathology are amyloid-beta (Aβ) deposition forming neuritic plaques and neurofibrillary tangles (NFTs). For many years, AD drug development has mainly focused on directly targeting the Aβ aggregation or the formation of tau tangles, but this disease has no cure so far. Other common characteristics of AD are synaptic abnormalities and dysfunctions such as synaptic damage, synaptic loss, and structural changes in the synapse. Those anomalies happen in the early stages of the disease before behavioural symptoms have occurred. Therefore, better understanding the mechanisms underlying the synaptic dysfunction found in AD and targeting the synapse, especially using early treatment windows, can lead to finding novel and more effective treatments that could improve the lives of AD patients. Researchers have recently started developing different disease-modifying treatments targeting the synapse to rescue and prevent synaptic dysfunction in AD. The main objectives of these new strategies are to halt synaptic loss, strengthen synaptic connections, and improve synaptic density, potentially leading to the rescue or prevention of cognitive impairments. This article aims to address the mechanisms of synaptic degeneration in AD and discuss current strategies that focus on the synapse for AD therapy. Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impairs memory and causes cognitive and behavioural deficits. Scientists worldwide have tried to find a treatment that can reverse or rescue AD symptoms, but there is no cure so far. One prominent characteristic of AD is the brain atrophy caused by significant synaptic loss and overall neuronal damage, which starts at the early stages of the disease before other AD hallmarks such as neuritic plaques and NFTs. The present review addresses the underlying mechanisms behind synaptic loss and dysfunction in AD and discusses potential strategies that target the synapse.
Collapse
|
32
|
Min JK, Park HS, Lee YB, Kim JG, Kim JI, Park JB. Cross-Talk between Wnt Signaling and Src Tyrosine Kinase. Biomedicines 2022; 10:biomedicines10051112. [PMID: 35625853 PMCID: PMC9138253 DOI: 10.3390/biomedicines10051112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Src, a non-receptor tyrosine kinase, was first discovered as a prototype oncogene and has been shown to critical for cancer progression for a variety of tissues. Src activity is regulated by a number of post-translational modifications in response to various stimuli. Phosphorylations of Src Tyr419 (human; 416 in chicken) and Src Tyr530 (human; 527 in chicken) have been known to be critical for activation and inactivation of Src, respectively. Wnt signaling regulates a variety of cellular functions including for development and cell proliferation, and has a role in certain diseases such as cancer. Wnt signaling is carried out through two pathways: β-catenin-dependent canonical and β-catenin-independent non-canonical pathways as Wnt ligands bind to their receptors, Frizzled, LRP5/6, and ROR1/2. In addition, many signaling components including Axin, APC, Damm, Dishevelled, JNK kinase and Rho GTPases contribute to these canonical and non-canonical Wnt pathways. However, the communication between Wnt signaling and Src tyrosine kinase has not been well reviewed as Src regulates Wnt signaling through LRP6 tyrosine phosphorylation. GSK-3β phosphorylated by Wnt also regulates Src activity. As Wnt signaling and Src mutually regulate each other, it is noted that aberrant regulation of these components give rise to various diseases including typically cancer, and as such, merit a closer look.
Collapse
Affiliation(s)
- Jung Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Hwee-Seon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoon-Beom Lee
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-S.P.); (J.-I.K.)
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 25242, Korea; (J.K.M.); (Y.-B.L.); (J.-G.K.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2542; Fax: +82-33-244-8425
| |
Collapse
|
33
|
Effects of the Fyn kinase inhibitor saracatinib on ventral striatal activity during performance of an fMRI monetary incentive delay task in individuals family history positive or negative for alcohol use disorder. A pilot randomised trial. Neuropsychopharmacology 2022; 47:840-846. [PMID: 34475522 PMCID: PMC8882177 DOI: 10.1038/s41386-021-01157-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Altered striatal regulation of the GluN2B subunit of N-methyl-D-aspartate (NMDA) glutamate receptors by the Fyn/Src family of protein tyrosine kinases has been implicated in animal alcohol consumption. Previously, we have described differences between individuals positive (FHP) and negative (FHN) for familial alcohol use disorder (AUD) in the ventral striatal (VS) activation associated with monetary incentive delay task (MIDT) performance during functional magnetic resonance imaging (fMRI). Here, we used AZD0530 (saracatinib), a centrally active Fyn/Src inhibitor to probe the role of Fyn/Src regulation of NMDA receptors (NMDAR) in VS activation differences between FHP and FHN individuals during fMRI MIDT performance. We studied 21 FHN and 22 FHP individuals, all without AUD. In two sessions, spaced 1 week apart, we administered 125 mg of saracatinib or placebo in a double-blind manner, prior to measuring VS signal during fMRI MIDT performance. MIDT comprises reward prospect, anticipation, and outcome phases. During the initial (prospect of reward) task phase, there was a significant group-by-condition interaction such that, relative to placebo, saracatinib reduced VS BOLD signal in FHP and increased it in FHN individuals. This study provides the first human evidence that elevated signaling in striatal protein kinase A-dependent pathways may contribute to familial AUD risk via amplifying the neural response to the prospect of reward. As Fyn kinase is responsible for NMDAR upregulation, these data are consistent with previous evidence for upregulated NMDAR function within reward circuitry in AUD risk. These findings also suggest a possible therapeutic role for Src/Fyn kinase inhibitors in AUD risk.
Collapse
|
34
|
Sanders OD, Rajagopal L, Rajagopal JA. The oxidatively damaged DNA and amyloid-β oligomer hypothesis of Alzheimer's disease. Free Radic Biol Med 2022; 179:403-412. [PMID: 34506904 DOI: 10.1016/j.freeradbiomed.2021.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
The amyloid-β (Aβ) oligomer hypothesis of Alzheimer's disease (AD) still dominates the field, yet the clinical trial evidence does not robustly support it. A falsifiable prediction of the hypothesis is that Aβ oligomer levels should be elevated in the brain regions and at the disease stages where and when neuron death and synaptic protein loss begin and are the most severe, but we review previous evidence to demonstrate that this is not consistently the case. To rescue the Aβ oligomer hypothesis from falsification, we propose the novel ad-hoc hypothesis that the exceptionally vulnerable hippocampus may normally produce Aβ peptides even in healthily aging individuals, and hippocampal oxidatively damaged DNA, pathogen DNA, and metal ions such as zinc may initiate and drive Aβ peptide aggregation into oligomers and spreading, neuron death, synaptic dysfunction, and other aspects of AD neurodegeneration. We highlight additional evidence consistent with the underwhelming efficacy of Aβ oligomer-lowering agents, such as aducanumab, and of antioxidants, such as vitamin E, versus the so far isolated case report that DNase-I treatment for 2 months resulted in a severe AD patient's Mini-Mental State Exam score increasing from 3 to 18, reversing his diagnosis to moderate AD, according to the Mini-Mental State Exam.
Collapse
Affiliation(s)
| | - Lekshmy Rajagopal
- Seven Hills Hospital, Marol Maroshi Rd, Shivaji Nagar JJC, Marol, Andheri East, Mumbai, Maharashtra, 400059, India
| | | |
Collapse
|
35
|
Wang XJ, Yu JP, An X, Jia ZW, Zhang J, Su YX. Attenuation of cartilage pathogenesis in osteoarthritis by blocking the phosphorylation of tyrosine kinase Fyn to β-catenin, AZD0530. Bone 2022; 154:116259. [PMID: 34798298 DOI: 10.1016/j.bone.2021.116259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To observe the effect of AZD0530 on the progression of knee OA after blocking β-catenin phosphorylation and then dormancy of the Wnt/β pathway by tyrosine kinase Fyn. METHODS The levels of Fyn, β-catenin, p-β-catenin (Tyr142), the chondrocyte positive marker Aggrecan, and the chondrocyte negative marker MMP13 were observed in human knee tibial plateau chondrocytes in vivo and in vitro. Different doses of AZD0530 were used to treat chondrocytes of the human OA tibial plateau chondrocytes in vitro, and the degree of chondrocyte degeneration was observed. Different doses of AZD0530 were intraarticularly injected into OA rats to observe the degree of tibial plateau cartilage degeneration. RESULTS When OA occurred in human knee, the levels of tyrosine kinase Fyn,β-catenin and p-β-catenin (Tyr142) in chondrocytes increased significantly.The level of Aggrecan decreased and MMP13 increased in chondrocytes. The levels of β-catenin, p-β-catenin (Tyr142) and MMP13 in chondrocytes decreased, while the level of Aggrecan increased after AZD0530 was used to intervene chondrocytes in vitro, which was positively correlated with the dose of AZD0530. Intra-articular injection of AZD0530 obviously attenuated the degeneration of articular cartilage, which was positively correlated with the dose of AZD0530. CONCLUSION The level of Fyn in chondrocytes of human knee tibial plateau increased significantly when OA occurred. AZD0530 can inhibit tyrosine kinase Fyn from β-catenin phosphorylation, a key Wnt/β pathway protein, and then inhibit Wnt/β pathway levels in chondrocytes. This finding also suggests that disruption of the Wnt/β pathway with AZD0530 provides chondral protection in rat posttraumatic OA.
Collapse
Affiliation(s)
- Xiao-Jian Wang
- Department of Orthopedic Surgery, Shanxi Provincial People's Hospital, Taiyuan, China.
| | - Jian-Ping Yu
- Department of Orthopedic Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xunjun An
- Department of Orthopedic Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Zhong-Wei Jia
- Department of Orthopedic Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yun-Xing Su
- Department of Orthopedic Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
36
|
Gage M, Putra M, Wachter L, Dishman K, Gard M, Gomez-Estrada C, Thippeswamy T. Saracatinib, a Src Tyrosine Kinase Inhibitor, as a Disease Modifier in the Rat DFP Model: Sex Differences, Neurobehavior, Gliosis, Neurodegeneration, and Nitro-Oxidative Stress. Antioxidants (Basel) 2021; 11:61. [PMID: 35052568 PMCID: PMC8773289 DOI: 10.3390/antiox11010061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Diisopropylfluorophosphate (DFP), an organophosphate nerve agent (OPNA), exposure causes status epilepticus (SE) and epileptogenesis. In this study, we tested the protective effects of saracatinib (AZD0530), a Src kinase inhibitor, in mixed-sex or male-only Sprague Dawley rats exposed to 4-5 mg/kg DFP followed by 2 mg/kg atropine and 25 mg/kg 2-pralidoxime. Midazolam (3 mg/kg) was given to the mixed-sex cohort (1 h post-DFP) and male-only cohort (~30 min post-DFP). Saracatinib (20 mg/kg, oral, daily for 7 days) or vehicle was given two hours later and euthanized eight days or ten weeks post-DFP. Brain immunohistochemistry (IHC) showed increased microgliosis, astrogliosis, and neurodegeneration in DFP-treated animals. In the 10-week post-DFP male-only group, there were no significant differences between groups in the novel object recognition, Morris water maze, rotarod, or forced swim test. Brain IHC revealed significant mitigation by saracatinib in contrast to vehicle-treated DFP animals in microgliosis, astrogliosis, neurodegeneration, and nitro-oxidative stressors, such as inducible nitric oxide synthase, GP91phox, and 3-Nitrotyrosine. These findings suggest the protective effects of saracatinib on brain pathology seem to depend on the initial SE severity. Further studies on dose optimization, including extended treatment regimen depending on the SE severity, are required to determine its disease-modifying potential in OPNA models.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences and Interdepartmental Neuroscience Program, Iowa State University, Ames, IA 50011, USA; (M.G.); (M.P.); (L.W.); (K.D.); (M.G.); (C.G.-E.)
| |
Collapse
|
37
|
Marotta G, Basagni F, Rosini M, Minarini A. Role of Fyn Kinase Inhibitors in Switching Neuroinflammatory Pathways. Curr Med Chem 2021; 29:4738-4755. [PMID: 34939537 DOI: 10.2174/0929867329666211221153719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
Fyn kinase is a member of the Src non-receptor tyrosine kinase family. Fyn is involved in multiple signaling pathways extending from cell proliferation and differentiation to cell adhesion and cell motility, and it has been found to be overexpressed in various types of cancers. In the central nervous system, Fyn exerts several different functions such as axon-glial signal transduction, oligodendrocyte maturation and myelination, and it is implicated in neuroinflammatory processes. Based on these premises, Fyn emerges as an attractive target in cancer and neurodegenerative disease therapy, particularly Alzheimer disease (AD), based on its activation by Aβ via cellular prion protein and its interaction with tau protein. However, Fyn is also a challenging target since the Fyn inhibitors discovered so far, due to the relevant homology of Fyn with other kinases, suffer from off-target effects. This review covers the efforts performed in the last decade to identify and optimize small molecules that effectively inhibit Fyn, both in enzymatic and in cell assays, including drug repositioning practices, as an opportunity of therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Giambattista Marotta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| |
Collapse
|
38
|
Yuen SC, Lee SMY, Leung SW. Putative Factors Interfering Cell Cycle Re-Entry in Alzheimer's Disease: An Omics Study with Differential Expression Meta-Analytics and Co-Expression Profiling. J Alzheimers Dis 2021; 85:1373-1398. [PMID: 34924393 DOI: 10.3233/jad-215349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuronal cell cycle re-entry (CCR) is a mechanism, along with amyloid-β (Aβ) oligomers and hyperphosphorylated tau proteins, contributing to toxicity in Alzheimer's disease (AD). OBJECTIVE This study aimed to examine the putative factors in CCR based on evidence corroboration by combining meta-analysis and co-expression analysis of omic data. METHODS The differentially expressed genes (DEGs) and CCR-related modules were obtained through the differential analysis and co-expression of transcriptomic data, respectively. Differentially expressed microRNAs (DEmiRNAs) were extracted from the differential miRNA expression studies. The dysregulations of DEGs and DEmiRNAs as binary outcomes were independently analyzed by meta-analysis based on a random-effects model. The CCR-related modules were mapped to human protein-protein interaction databases to construct a network. The importance score of each node within the network was determined by the PageRank algorithm, and nodes that fit the pre-defined criteria were treated as putative CCR-related factors. RESULTS The meta-analysis identified 18,261 DEGs and 36 DEmiRNAs, including genes in the ubiquitination proteasome system, mitochondrial homeostasis, and CCR, and miRNAs associated with AD pathologies. The co-expression analysis identified 156 CCR-related modules to construct a protein-protein interaction network. Five genes, UBC, ESR1, EGFR, CUL3, and KRAS, were selected as putative CCR-related factors. Their functions suggested that the combined effects of cellular dyshomeostasis and receptors mediating Aβ toxicity from impaired ubiquitination proteasome system are involved in CCR. CONCLUSION This study identified five genes as putative factors and revealed the significance of cellular dyshomeostasis in the CCR of AD.
Collapse
Affiliation(s)
- Sze Chung Yuen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu-Wai Leung
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.,Edinburgh Bayes Centre for AI Research in Shenzhen, College of Science and Engineering, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
39
|
Crestini A, Santilli F, Martellucci S, Carbone E, Sorice M, Piscopo P, Mattei V. Prions and Neurodegenerative Diseases: A Focus on Alzheimer's Disease. J Alzheimers Dis 2021; 85:503-518. [PMID: 34864675 DOI: 10.3233/jad-215171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Specific protein misfolding and aggregation are mechanisms underlying various neurodegenerative diseases such as prion disease and Alzheimer's disease (AD). The misfolded proteins are involved in prions, amyloid-β (Aβ), tau, and α-synuclein disorders; they share common structural, biological, and biochemical characteristics, as well as similar mechanisms of aggregation and self-propagation. Pathological features of AD include the appearance of plaques consisting of deposition of protein Aβ and neurofibrillary tangles formed by the hyperphosphorylated tau protein. Although it is not clear how protein aggregation leads to AD, we are learning that the cellular prion protein (PrPC) plays an important role in the pathogenesis of AD. Herein, we first examined the pathogenesis of prion and AD with a focus on the contribution of PrPC to the development of AD. We analyzed the mechanisms that lead to the formation of a high affinity bond between Aβ oligomers (AβOs) and PrPC. Also, we studied the role of PrPC as an AβO receptor that initiates an AβO-induced signal cascade involving mGluR5, Fyn, Pyk2, and eEF2K linking Aβ and tau pathologies, resulting in the death of neurons in the central nervous system. Finally, we have described how the PrPC-AβOs interaction can be used as a new potential therapeutic target for the treatment of PrPC-dependent AD.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy
| | - Elena Carbone
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| |
Collapse
|
40
|
Wu M, Zhang M, Yin X, Chen K, Hu Z, Zhou Q, Cao X, Chen Z, Liu D. The role of pathological tau in synaptic dysfunction in Alzheimer's diseases. Transl Neurodegener 2021; 10:45. [PMID: 34753506 PMCID: PMC8579533 DOI: 10.1186/s40035-021-00270-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, accompanied by amyloid-β (Aβ) overload and hyperphosphorylated tau accumulation in the brain. Synaptic dysfunction, an important pathological hallmark in AD, is recognized as the main cause of the cognitive impairments. Accumulating evidence suggests that synaptic dysfunction could be an early pathological event in AD. Pathological tau, which is detached from axonal microtubules and mislocalized into pre- and postsynaptic neuronal compartments, is suggested to induce synaptic dysfunction in several ways, including reducing mobility and release of presynaptic vesicles, decreasing glutamatergic receptors, impairing the maturation of dendritic spines at postsynaptic terminals, disrupting mitochondrial transport and function in synapses, and promoting the phagocytosis of synapses by microglia. Here, we review the current understanding of how pathological tau mediates synaptic dysfunction and contributes to cognitive decline in AD. We propose that elucidating the mechanism by which pathological tau impairs synaptic function is essential for exploring novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.,Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Manqing Zhang
- Medical College of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Kai Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhijian Hu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Xianming Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China. .,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
41
|
Gage M, Putra M, Gomez-Estrada C, Golden M, Wachter L, Gard M, Thippeswamy T. Differential Impact of Severity and Duration of Status Epilepticus, Medical Countermeasures, and a Disease-Modifier, Saracatinib, on Brain Regions in the Rat Diisopropylfluorophosphate Model. Front Cell Neurosci 2021; 15:772868. [PMID: 34720886 PMCID: PMC8555467 DOI: 10.3389/fncel.2021.772868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Acute organophosphate (OP) toxicity poses a significant threat to both military and civilian personnel as it can lead to a variety of cholinergic symptoms including the development of status epilepticus (SE). Depending on its severity, SE can lead to a spectrum of neurological changes including neuroinflammation and neurodegeneration. In this study, we determined the impact of SE severity and duration on disease promoting parameters such as gliosis and neurodegeneration and the efficacy of a disease modifier, saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor. Animals were exposed to 4 mg/kg diisopropylfluorophosphate (DFP, s.c.) followed by medical countermeasures. We had five experimental groups: controls (no DFP), animals with no continuous convulsive seizures (CS), animals with ∼20-min continuous CS, 31-60-min continuous CS, and > 60-min continuous CS. These groups were then assessed for astrogliosis, microgliosis, and neurodegeneration 8 days after DFP exposure. The 31-60-min and > 60-min groups, but not ∼20-min group, had significantly upregulated gliosis and neurodegeneration in the hippocampus compared to controls. In the piriform cortex and amygdala, however, all three continuous CS groups had significant upregulation in both gliosis and neurodegeneration. In a separate cohort of animals that had ∼20 and > 60-min of continuous CS, we administered saracatinib for 7 days beginning three hours after DFP. There was bodyweight loss and mortality irrespective of the initial SE severity and duration. However, in survived animals, saracatinib prevented spontaneous recurrent seizures (SRS) during the first week in both severity groups. In the ∼20-min CS group, compared to the vehicle, saracatinib significantly reduced neurodegeneration in the piriform cortex and amygdala. There were no significant differences in the measured parameters between the naïve control and saracatinib on its own (without DFP) groups. Overall, this study demonstrates the differential effects of the initial SE severity and duration on the localization of gliosis and neurodegeneration. We have also demonstrated the disease-modifying potential of saracatinib. However, its’ dosing regimen should be optimized based on initial severity and duration of CS during SE to maximize therapeutic effects and minimize toxicity in the DFP model as well as in other OP models such as soman.
Collapse
Affiliation(s)
- Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Crystal Gomez-Estrada
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Madison Golden
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Logan Wachter
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Megan Gard
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
42
|
Xu H, Jia J. Immune-Related Hub Genes and the Competitive Endogenous RNA Network in Alzheimer's Disease. J Alzheimers Dis 2021; 77:1255-1265. [PMID: 32925027 DOI: 10.3233/jad-200081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The pathogenesis of Alzheimer's disease (AD) involves various immune-related phenomena; however, the mechanisms underlying these immune phenomena and the potential hub genes involved therein are unclear. An understanding of AD-related immune hub genes and regulatory mechanisms would help develop new immunotherapeutic targets. OBJECTIVE The aim of this study was to explore the hub genes and the mechanisms underlying the regulation of competitive endogenous RNA (ceRNA) in immune-related phenomena in AD pathogenesis. METHODS We used the GSE48350 data set from the Gene Expression Omnibus database and identified AD immune-related differentially expressed RNAs (DERNAs). We constructed protein-protein interaction (PPI) networks for differentially expressed mRNAs and determined the degree for screening hub genes. By determining Pearson's correlation coefficient and using StarBase, DIANA-LncBase, and Human MicroRNA Disease Database (HMDD), the AD immune-related ceRNA network was generated. Furthermore, we assessed the upregulated and downregulated ceRNA subnetworks to identify key lncRNAs. RESULTS In total, 552 AD immune-related DERNAs were obtained. Twenty hub genes, including PIK3R1, B2M, HLA-DPB1, HLA-DQB1, PIK3CA, APP, CDC42, PPBP, C3AR1, HRAS, PTAFR, RAB37, FYN, PSMD1, ACTR10, HLA-E, ARRB2, GGH, ALDOA, and VAMP2 were identified on PPI network analysis. Furthermore, upon microRNAs (miRNAs) inhibition, we identified LINC00836 and DCTN1-AS1 as key lncRNAs regulating the aforementioned hub genes. CONCLUSION AD-related immune hub genes include B2M, FYN, PIK3R1, and PIK3CA, and lncRNAs LINC00836 and DCTN1-AS1 potentially contribute to AD immune-related phenomena by regulating AD-related hub genes.
Collapse
Affiliation(s)
- Hui Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
43
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
44
|
Guglietti B, Sivasankar S, Mustafa S, Corrigan F, Collins-Praino LE. Fyn Kinase Activity and Its Role in Neurodegenerative Disease Pathology: a Potential Universal Target? Mol Neurobiol 2021; 58:5986-6005. [PMID: 34432266 DOI: 10.1007/s12035-021-02518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years. Symptoms across neurodegenerative diseases are both debilitating and degenerative in nature and, concerningly, there are currently no disease-modifying therapies to prevent their progression. As such, it is important to identify potential new therapeutic targets. This review will outline the role of Fyn in normal/homeostatic processes, as well as degenerative/pathological mechanisms associated with neurodegenerative diseases, such as demyelination, pathological protein aggregation, neuroinflammation and cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca Guglietti
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Srisankavi Sivasankar
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Sanam Mustafa
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Lyndsey E Collins-Praino
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
45
|
Demuro S, Di Martino RMC, Ortega JA, Cavalli A. GSK-3β, FYN, and DYRK1A: Master Regulators in Neurodegenerative Pathways. Int J Mol Sci 2021; 22:9098. [PMID: 34445804 PMCID: PMC8396491 DOI: 10.3390/ijms22169098] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Protein kinases (PKs) have been recognized as central nervous system (CNS)-disease-relevant targets due to their master regulatory role in different signal transduction cascades in the neuroscience space. Among them, GSK-3β, FYN, and DYRK1A play a crucial role in the neurodegeneration context, and the deregulation of all three PKs has been linked to different CNS disorders with unmet medical needs, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near-decade from 2010 to 2020, several computer-assisted drug design strategies have been combined with synthetic efforts to develop potent and selective GSK-3β, FYN, and DYRK1A inhibitors as disease-modifying agents. In this review, we described both structural and functional aspects of GSK-3β, FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi-target drug design strategies applied to overcome some limitations of known PKs inhibitors and discover improved modulators with suitable blood-brain barrier (BBB) permeability and drug-like properties.
Collapse
Affiliation(s)
- Stefania Demuro
- Computational and Chemical Biology, Italian Institute of Technology, 16163 Genoa, Italy; (S.D.); (R.M.C.D.M.); (J.A.O.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Rita M. C. Di Martino
- Computational and Chemical Biology, Italian Institute of Technology, 16163 Genoa, Italy; (S.D.); (R.M.C.D.M.); (J.A.O.)
| | - Jose A. Ortega
- Computational and Chemical Biology, Italian Institute of Technology, 16163 Genoa, Italy; (S.D.); (R.M.C.D.M.); (J.A.O.)
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology, 16163 Genoa, Italy; (S.D.); (R.M.C.D.M.); (J.A.O.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
46
|
Ettcheto M, Cano A, Sanchez-López E, Verdaguer E, Folch J, Auladell C, Camins A. Masitinib for the treatment of Alzheimer's disease. Neurodegener Dis Manag 2021; 11:263-276. [PMID: 34412534 DOI: 10.2217/nmt-2021-0019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The actual standard treatment for mild-to-moderately severe Alzheimer's disease only attacks its symptoms. Masitinib is a potent and selective phenylaminothiazole-type tyrosine kinase inhibitor which is currently in Phase III studies for the treatment of Alzheimer's disease (AD) with the aim of modifying its evolution and with multiple pharmacological targets such as inhibition of mast cells activity, inhibition of microglia activation, modulation of Aβ and Tau protein signaling pathway and prevention of synaptic damage. Here, we review the preclinical and clinical studies that investigated the administration of masitinib treatment in monotherapy in AD. All research studies revealed positive effects concerning the cognitive functions in AD and generally with good safety and tolerability.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain.,Institut de Neurociències (UBNeuro), University of Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain.,Research Center & Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades - International University of Catalunya (UIC), Barcelona, Spain
| | - Elena Sanchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| | - Ester Verdaguer
- Department of Cellular Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cellular Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain.,Institut de Neurociències (UBNeuro), University of Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
47
|
Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K. Recent Updates in the Alzheimer's Disease Etiopathology and Possible Treatment Approaches: A Narrative Review of Current Clinical Trials. Curr Mol Pharmacol 2021; 13:273-294. [PMID: 32321414 DOI: 10.2174/1874467213666200422090135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. OBJECTIVE Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. METHODS We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were "Alzheimer's disease" or "dementia" and "medicine" or "drug" or "treatment" and "clinical trials" and "interventions". Manuscripts that met the objective of this study were included for further evaluations. RESULTS Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. CONCLUSION The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
48
|
Sharma S, Carlson S, Gregory-Flores A, Hinojo-Perez A, Olson A, Thippeswamy T. Mechanisms of disease-modifying effect of saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor, in the rat kainate model of temporal lobe epilepsy. Neurobiol Dis 2021; 156:105410. [PMID: 34087381 PMCID: PMC8325782 DOI: 10.1016/j.nbd.2021.105410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/16/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
We have recently demonstrated the role of the Fyn-PKCδ signaling pathway in status epilepticus (SE)-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy (TLE). In this study, we show a significant disease-modifying effect and the mechanisms of a Fyn/Src tyrosine kinase inhibitor, saracatinib (SAR, also known as AZD0530), in the rat kainate (KA) model of TLE. SAR treatment for a week, starting the first dose (25 mg/kg, oral) 4 h after the onset of SE, significantly reduced spontaneously recurring seizures and epileptiform spikes during the four months of continuous video-EEG monitoring. Immunohistochemistry of brain sections and Western blot analyses of hippocampal lysates at 8-day (8d) and 4-month post-SE revealed a significant reduction of SE-induced astrogliosis, microgliosis, neurodegeneration, phosphorylated Fyn/Src-419 and PKCδ-tyr311, in SAR-treated group when compared with the vehicle control. We also found the suppression of nitroxidative stress markers such as iNOS, 3-NT, 4-HNE, and gp91phox in the hippocampus, and nitrite and ROS levels in the serum of the SAR-treated group at 8d post-SE. The qRT-PCR (hippocampus) and ELISA (serum) revealed a significant reduction of key proinflammatory cytokines TNFα and IL-1β mRNA in the hippocampus and their protein levels in serum, in addition to IL-6 and IL-12, in the SAR-treated group at 8d in contrast to the vehicle-treated group. These findings suggest that SAR targets some of the key biomarkers of epileptogenesis and modulates neuroinflammatory and nitroxidative pathways that mediate the development of epilepsy. Therefore, SAR can be developed as a potential disease-modifying agent to prevent the development and progression of TLE.
Collapse
Affiliation(s)
- Shaunik Sharma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Steven Carlson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Adriana Gregory-Flores
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Andy Hinojo-Perez
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Ashley Olson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA.
| |
Collapse
|
49
|
The next step of neurogenesis in the context of Alzheimer's disease. Mol Biol Rep 2021; 48:5647-5660. [PMID: 34232464 DOI: 10.1007/s11033-021-06520-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Among different pathological mechanisms, neuronal loss and neurogenesis impairment in the hippocampus play important roles in cognitive decline in Alzheimer's disease (AD). AD is a progressive and complex neurodegenerative diseases, which is very debilitating. The purpose of this paper is to review recent research into neurogenesis and AD and discuss how pharmacological drugs and herbal active components have impacts on neurogenesis and consequently improve cognitive functions. To date, despite huge research, no effective treatment has been approved for AD. Therefore, an avenue for future research and drug discovery is stimulating adult hippocampal neurogenesis (AHN). Evidence suggests that neurogenesis is regulated by the pharmacological treatment that may be recommended as a part of prophylaxis and therapeutic options for AD. However, the underlying mechanisms of regulating neurogenesis in AD are not well understood. To this point, we highlight to achieve an efficient treatment in AD by manipulating neurogenesis, it's necessary to target all steps of neurogenesis.
Collapse
|
50
|
Mahdavi KD, Jordan SE, Barrows HR, Pravdic M, Habelhah B, Evans NE, Blades RB, Iovine JJ, Becerra SA, Steiner RA, Chang M, Kesari S, Bystritsky A, O'Connor E, Gross H, Pereles FS, Whitney M, Kuhn T. Treatment of Dementia With Bosutinib: An Open-Label Study of a Tyrosine Kinase Inhibitor. Neurol Clin Pract 2021; 11:e294-e302. [PMID: 34484904 PMCID: PMC8382351 DOI: 10.1212/cpj.0000000000000918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/07/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The pursuit of an effective therapeutic intervention for dementia has inspired interest in the class of medications known as tyrosine kinase inhibitors such as bosutinib. METHODS Thirty-one patients with probable Alzheimer dementia or Parkinson spectrum disorder with dementia completed 12 months of bosutinib therapy and an additional 12 months of follow-up. The Clinical Dementia Rating scale (as estimated by the Quick Dementia Rating System [QDRS]) was the primary cognitive status outcome measure. Secondary outcome measures included the Repeatable Battery Assessment of Neuropsychological Status (RBANS) and the Montreal Cognitive Assessment. Cox regression methods were used to compare results with population-based estimates of cognitive decline. RESULTS The present article reports on cognitive outcomes obtained at 12 months for 31 participants and up to 24 months for a 16-participant subset. Safety and tolerability of bosutinib were confirmed among the study population (Mage = 73.7 years, SDage = 14 years). Bosutinib was associated with less worsening in Clinical Dementia Rating (CDR) scores (hazard ratio = -0.62, p < 0.001, 95% confidence interval [CI]: -1.02 to -0.30) and less decline in RBANS performance (hazard ratio = -3.42, p < 0.001, 95% CI: -3.59 to -3.72) during the year of treatment than population-based estimates of decline. In the 24-month follow-up, wherein 16 patients were observed after 1 year postintervention, 31.2% of participants exhibited worsened CDR levels compared with their 12-month performances. CONCLUSIONS Results support an overall positive outcome after 1 year of bosutinib. Future studies should explore the relationship between tyrosine kinases and neurodegenerative pathology as well as related avenues of treatment.
Collapse
Affiliation(s)
- Kennedy D Mahdavi
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Sheldon E Jordan
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Hannah R Barrows
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Maša Pravdic
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Barshen Habelhah
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Natalie E Evans
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Robin B Blades
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Jessica J Iovine
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Sergio A Becerra
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Rachel A Steiner
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Marisa Chang
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Santosh Kesari
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Alexander Bystritsky
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Ed O'Connor
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Hyman Gross
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - F Scott Pereles
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Mike Whitney
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| | - Taylor Kuhn
- Neurological Associates - The Interventional Group (KDM, MP, BH, NEE, RBB, JJI, RAS, MC), Santa Monica, CA; Department of Neurology (SEJ), University of California, Los Angeles; Neurological Associates of West Los Angeles (HRB, EOC), Santa Monica, CA; Synaptec Network (SAB), Santa Monica, CA; Pacific Neuroscience Institute (SK), Santa Monica, CA; Department of Psychiatry and Biobehavioral Sciences (AB, TK) University of California, Los Angeles; Department of Neurology (HG), University of Southern California, Los Angeles; and Rad Alliance, Inc. (FSP, MW), Los Angeles, CA
| |
Collapse
|