1
|
Abbas K, Mustafa M, Alam M, Habib S, Ahmad W, Adnan M, Hassan MI, Usmani N. Multi-target approach to Alzheimer's disease prevention and treatment: antioxidant, anti-inflammatory, and amyloid- modulating mechanisms. Neurogenetics 2025; 26:39. [PMID: 40167826 DOI: 10.1007/s10048-025-00821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaque accumulation, neurofibrillary tangles, neuroinflammation, and progressive cognitive decline, posing a significant global health challenge. Growing evidence suggests that dietary polyphenols may reduce the risk and progression of AD through multifaceted neuroprotective mechanisms. Polyphenols regulate amyloid proteostasis by inhibiting β/γ-secretase activity, preventing Aβ aggregation, and enhancing clearance pathways. Their strong antioxidant properties neutralize reactive oxygen species, chelate redox-active metals, and activate cytoprotective enzymes via Nrf2 signaling. This review examines the potential therapeutic targets, signaling pathways, and molecular mechanisms by which dietary polyphenols exert neuroprotective effects in AD, focusing on their roles in modulating amyloid proteostasis, oxidative stress, neuroinflammation, and cerebrovascular health. Polyphenols mitigate neuroinflammation by suppressing NF-κB signaling and upregulating brain-derived neurotrophic factor, supporting neuroplasticity and neurogenesis. They also enhance cerebrovascular health by improving cerebral blood flow, maintaining blood-brain barrier integrity, and modulating angiogenesis. This review examines the molecular and cellular pathways through which polyphenols exert neuroprotective effects, focusing on their antioxidant, anti-inflammatory, and amyloid-modulating roles. We also discuss their influence on key AD pathologies, including Aβ deposition, tau hyperphosphorylation, oxidative stress, and neuroinflammation. Insights from clinical and preclinical studies highlight the potential of polyphenols in preventing or slowing AD progression. Future research should explore personalized dietary strategies that integrate genetic and lifestyle factors to optimize the neuroprotective effects of polyphenols.
Collapse
Affiliation(s)
- Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'Il, Ha'il, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Nazura Usmani
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Fu J, Wang R, He J, Liu X, Wang X, Yao J, Liu Y, Ran C, Ye Q, He Y. Pathogenesis and therapeutic applications of microglia receptors in Alzheimer's disease. Front Immunol 2025; 16:1508023. [PMID: 40028337 PMCID: PMC11867950 DOI: 10.3389/fimmu.2025.1508023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system, continuously monitor the brain's microenvironment through their array of specific receptors. Once brain function is altered, microglia are recruited to specific sites to perform their immune functions, including phagocytosis of misfolded proteins, cellular debris, and apoptotic cells to maintain homeostasis. When toxic substances are overproduced, microglia are over-activated to produce large amounts of pro-inflammatory cytokines, which induce chronic inflammatory responses and lead to neurotoxicity. Additionally, microglia can also monitor and protect neuronal function through microglia-neuron crosstalk. Microglia receptors are important mediators for microglia to receive external stimuli, regulate the functional state of microglia, and transmit signals between cells. In this paper, we first review the role of microglia-expressed receptors in the pathogenesis and treatment of Alzheimer's disease; moreover, we emphasize the complexity of targeting microglia for therapeutic interventions in neurodegenerative disorders to inform the discovery of new biomarkers and the development of innovative therapeutics.
Collapse
Affiliation(s)
- Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - RuoXuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JiHui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XiaoJing Liu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JuMing Yao
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - ChongZhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - QingSong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Tiwari SK, Wong WJ, Moreira M, Pasqualini C, Ginhoux F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat Rev Immunol 2025; 25:108-124. [PMID: 39333753 DOI: 10.1038/s41577-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
Macrophages are innate immune cells that are present in essentially all tissues, where they have vital roles in tissue development, homeostasis and pathogenesis. The importance of macrophages in tissue function is reflected by their association with various human diseases, and studying macrophage functions in both homeostasis and pathological tissue settings is a promising avenue for new targeted therapies that will improve human health. The ability to generate macrophages from induced pluripotent stem (iPS) cells has revolutionized macrophage biology, with the generation of iPS cell-derived macrophages (iMacs) providing unlimited access to genotype-specific cells that can be used to model various human diseases involving macrophage dysregulation. Such disease modelling is achieved by generating iPS cells from patient-derived cells carrying disease-related mutations or by introducing mutations into iPS cells from healthy donors using CRISPR-Cas9 technology. These iMacs that carry disease-related mutations can be used to study the aetiology of the particular disease in vitro. To achieve more physiological relevance, iMacs can be co-cultured in 2D systems with iPS cell-derived cells or in 3D systems with iPS cell-derived organoids. Here, we discuss the studies that have attempted to model various human diseases using iMacs, highlighting how these have advanced our knowledge about the role of macrophages in health and disease.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marco Moreira
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Pasqualini
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Zhao Y, Guo Q, Tian J, Liu W, Wang X. TREM2 bridges microglia and extracellular microenvironment: Mechanistic landscape and therapeutical prospects on Alzheimer's disease. Ageing Res Rev 2025; 103:102596. [PMID: 39608728 DOI: 10.1016/j.arr.2024.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Neuroinflammation is closely related to the pathogenesis of Alzheimer's disease (AD). One of its prominent cellular components, microglia, is a potent coordinator of neuroinflammation in interplay with the characteristic AD pathological alterations including Aβ, tau, and neuronal defects, which constitute the AD-unique extracellular microenvironment. Mounting evidence implicates Triggering Receptors Expressed on Myeloid Cells 2 (TREM2) in the center of microglial activation, a vital event in the pathogenesis of AD. TREM2 is a pivotal microglial receptor that interacts with specific elements present in the AD microenvironment and induces microglial intracellular signallings contributing to phagocytosis, migration, cytokine production, metabolism, and survival, which shapes the microglial activation profile. It follows that TREM2 builds up a bridge between microglia and the extracellular microenvironment. This review illustrates how TREM2 modulates microglia to affect AD pathogenesis. Mainly presented facets in the review are i. the development of AD-specific microglial phenotypes (disease-associated microglia, DAM), ii. microglial interactions with major AD pathologies, and iii. the underlying intracellular signallings of microglial activation. Also, outstanding controversies regarding the nature of neuroinflammation are discussed. Through our illustration, we attempt to establish a TREM2-centered network of AD pathogenesis, in the hope as well to provide insights into the potential therapeutic strategies based on the underlying mechanisms.
Collapse
Affiliation(s)
- Yiheng Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Tian
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Pocock J, Vasilopoulou F, Svensson E, Cosker K. Microglia and TREM2. Neuropharmacology 2024; 257:110020. [PMID: 38821351 DOI: 10.1016/j.neuropharm.2024.110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
TREM2 is a membrane receptor solely expressed on microglia in normal brain. In this review we outline recent advances in TREM2 biology and its implications for microglial function, with particular emphasis on findings from iPSC-derived microglia (iMG) expressing TREM2 loss-of-function mutations. Alterations in receptor proximal and distal signalling underlie TREM2 risk variants linked to neurodegenerative disease, principally NH-linked FTD, and late-onset AD, but emerging data suggest roles for TREM2 in PD, MS and ALS. TREM2 downstream functions include phagocytosis of myelin debris, amyloid beta peptides, and phosphatidylserine-expressing cells (resulting from damage or stress). Microglial survival, migration, DAMP signalling, inflammasome activation, and intercellular signalling including tau spreading via exosomes, as well as roles for sTREM2 in protection and as a biomarker are discussed. The role of TREM2 in metabolic homeostasis, and immunometabolic switching are discussed regarding microglial responses to damage and protection. The use of iPSC models to investigate the role of TREM2 in AD, PD, MS, ALS, and other neurodegenerative diseases could prove invaluable due to their ability to recapitulate human pathology, allowing a full understanding of TREM2 and microglial involvement in the underlying disease mechanisms and progression. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Jennifer Pocock
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK.
| | - Foteini Vasilopoulou
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK
| | - Elina Svensson
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK
| | - Katharina Cosker
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK
| |
Collapse
|
6
|
Pan Q, Parra GB, Myung Y, Portelli S, Nguyen TB, Ascher DB. AlzDiscovery: A computational tool to identify Alzheimer's disease-causing missense mutations using protein structure information. Protein Sci 2024; 33:e5147. [PMID: 39276018 PMCID: PMC11401060 DOI: 10.1002/pro.5147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 09/16/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and neurodegenerative diseases, characterized by the formation of neuritic plaques and neurofibrillary tangles. Many different proteins participate in this complicated pathogenic mechanism, and missense mutations can alter the folding and functions of these proteins, significantly increasing the risk of AD. However, many methods to identify AD-causing variants did not consider the effect of mutations from the perspective of a protein three-dimensional environment. Here, we present a machine learning-based analysis to classify the AD-causing mutations from their benign counterparts in 21 AD-related proteins leveraging both sequence- and structure-based features. Using computational tools to estimate the effect of mutations on protein stability, we first observed a bias of the pathogenic mutations with significant destabilizing effects on family AD-related proteins. Combining this insight, we built a generic predictive model, and improved the performance by tuning the sample weights in the training process. Our final model achieved the performance on area under the receiver operating characteristic curve up to 0.95 in the blind test and 0.70 in an independent clinical validation, outperforming all the state-of-the-art methods. Feature interpretation indicated that the hydrophobic environment and polar interaction contacts were crucial to the decision on pathogenic phenotypes of missense mutations. Finally, we presented a user-friendly web server, AlzDiscovery, for researchers to browse the predicted phenotypes of all possible missense mutations on these 21 AD-related proteins. Our study will be a valuable resource for AD screening and the development of personalized treatment.
Collapse
Affiliation(s)
- Qisheng Pan
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Georgina Becerra Parra
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Yoochan Myung
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Stephanie Portelli
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Thanh Binh Nguyen
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - David B. Ascher
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| |
Collapse
|
7
|
Wang X, Xie Y, Fan X, Wu X, Wang D, Zhu L. Intermittent hypoxia training enhances Aβ endocytosis by plaque associated microglia via VPS35-dependent TREM2 recycling in murine Alzheimer's disease. Alzheimers Res Ther 2024; 16:121. [PMID: 38831312 PMCID: PMC11145795 DOI: 10.1186/s13195-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Beta-amyloid (Aβ) deposition in the brain parenchyma is a crucial initiating step in the amyloid cascade hypothesis of Alzheimer's disease (AD) pathology. Furthermore, dysfunction of plaque-associated microglia, also known as disease-associated microglia (DAM) has been reported to accelerate Aβ deposition and cognitive impairment. Our previous research demonstrated that intermittent hypoxia training (IHT) improved AD pathology by upregulating autophagy in DAM, thereby enhancing oligomeric Aβ (oAβ) clearance. Considering that oAβ internalization is the initial stage of oAβ clearance, this study focused on the IHT mechanism involved in upregulating Aβ uptake by DAM. METHODS IHT was administered to 8-month-old APP/PS1 mice or 6-month-old microglial vacuolar protein sorting 35 (VPS35) knockout mice in APP/PS1 background (MG VPS35 KO: APP/PS1) for 28 days. After the IHT, the spatial learning-memory capacity of the mice was assessed. Additionally, AD pathology was determined by estimating the nerve fiber and synapse density, Aβ plaque deposition, and Aβ load in the brain. A model of Aβ-exposed microglia was constructed and treated with IHT to explore the related mechanism. Finally, triggering receptor expressed on myeloid cells 2 (TREM2) intracellular recycling and Aβ internalization were measured using a fluorescence tracing technique. RESULTS Our results showed that IHT ameliorated cognitive function and Aβ pathology. In particular, IHT enhanced Aβ endocytosis by augmenting the intracellular transport function of microglial TREM2, thereby contributing to Aβ clearance. Furthermore, IHT specifically upregulated VPS35 in DAM, the primary cause for the enhanced intracellular recycling of TREM2. IHT lost ameliorative effect on Aβ pathology in MG VPS35 KO: APP/PS1 mice brain. Lastly, the IHT mechanism of VPS35 upregulation in DAM was mediated by the transcriptional regulation of VPS35 by transcription factor EB (TFEB). CONCLUSION IHT enhances Aβ endocytosis in DAM by upregulating VPS35-dependent TREM2 recycling, thereby facilitating oAβ clearance and mitigation of Aβ pathology. Moreover, the transcriptional regulation of VPS35 by TFEB demonstrates a close link between endocytosis and autophagy in microglia. Our study further elucidates the IHT mechanism in improving AD pathology and provides evidence supporting the potential application of IHT as a complementary therapy for AD.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China.
| | - Yuqi Xie
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Xiaoyang Fan
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China.
| |
Collapse
|
8
|
Ahmed H, Wang Y, Griffiths WJ, Levey AI, Pikuleva I, Liang SH, Haider A. Brain cholesterol and Alzheimer's disease: challenges and opportunities in probe and drug development. Brain 2024; 147:1622-1635. [PMID: 38301270 PMCID: PMC11068113 DOI: 10.1093/brain/awae028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
Cholesterol homeostasis is impaired in Alzheimer's disease; however, attempts to modulate brain cholesterol biology have not translated into tangible clinical benefits for patients to date. Several recent milestone developments have substantially improved our understanding of how excess neuronal cholesterol contributes to the pathophysiology of Alzheimer's disease. Indeed, neuronal cholesterol was linked to the formation of amyloid-β and neurofibrillary tangles through molecular pathways that were recently delineated in mechanistic studies. Furthermore, remarkable advances in translational molecular imaging have now made it possible to probe cholesterol metabolism in the living human brain with PET, which is an important prerequisite for future clinical trials that target the brain cholesterol machinery in Alzheimer's disease patients-with the ultimate aim being to develop disease-modifying treatments. This work summarizes current concepts of how the biosynthesis, transport and clearance of brain cholesterol are affected in Alzheimer's disease. Further, current strategies to reverse these alterations by pharmacotherapy are critically discussed in the wake of emerging translational research tools that support the assessment of brain cholesterol biology not only in animal models but also in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Hazem Ahmed
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, 8093 Zurich, Switzerland
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - William J Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Irina Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
9
|
Peshoff MM, Gupta P, Oberai S, Trivedi R, Katayama H, Chakrapani P, Dang M, Migliozzi S, Gumin J, Kadri DB, Lin JK, Milam NK, Maynard ME, Vaillant BD, Parker-Kerrigan B, Lang FF, Huse JT, Iavarone A, Wang L, Clise-Dwyer K, Bhat KP. Triggering receptor expressed on myeloid cells 2 (TREM2) regulates phagocytosis in glioblastoma. Neuro Oncol 2024; 26:826-839. [PMID: 38237157 PMCID: PMC11066944 DOI: 10.1093/neuonc/noad257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are central nervous system tumors that resist standard-of-care interventions and even immune checkpoint blockade. Myeloid cells in the tumor microenvironment can contribute to GBM progression; therefore, emerging immunotherapeutic approaches include reprogramming these cells to achieve desirable antitumor activity. Triggering receptor expressed on myeloid cells 2 (TREM2) is a myeloid signaling regulator that has been implicated in a variety of cancers and neurological diseases with contrasting functions, but its role in GBM immunopathology and progression is still under investigation. METHODS Our reverse translational investigations leveraged single-cell RNA sequencing and cytometry of human gliomas to characterize TREM2 expression across myeloid subpopulations. Using 2 distinct murine glioma models, we examined the role of Trem2 on tumor progression and immune modulation of myeloid cells. Furthermore, we designed a method of tracking phagocytosis of glioma cells in vivo and employed in vitro assays to mechanistically understand the influence of TREM2 signaling on tumor uptake. RESULTS We discovered that TREM2 expression does not correlate with immunosuppressive pathways, but rather showed strong a positive association with the canonical phagocytosis markers lysozyme (LYZ) and macrophage scavenger receptor (CD163) in gliomas. While Trem2 deficiency was found to be dispensable for gliomagenesis, Trem2+ myeloid cells display enhanced tumor uptake compared to Trem2- cells. Mechanistically, we demonstrate that TREM2 mediates phagocytosis via Syk signaling. CONCLUSIONS These results indicate that TREM2 is not associated with immunosuppression in gliomas. Instead, TREM2 is an important regulator of phagocytosis that may be exploited as a potential therapeutic strategy for brain tumors.
Collapse
Affiliation(s)
- Mekenzie M Peshoff
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Pravesh Gupta
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shivangi Oberai
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroshi Katayama
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Prashanth Chakrapani
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Minghao Dang
- Department of Genomic Medicine, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Simona Migliozzi
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joy Gumin
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Divya B Kadri
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jessica K Lin
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nancy K Milam
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark E Maynard
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Brian D Vaillant
- Departments of Translational Molecular Pathology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Brittany Parker-Kerrigan
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Linghua Wang
- Department of Genomic Medicine, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology & Malignancy, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
10
|
Zgorzynska E. TREM2 in Alzheimer's disease: Structure, function, therapeutic prospects, and activation challenges. Mol Cell Neurosci 2024; 128:103917. [PMID: 38244651 DOI: 10.1016/j.mcn.2024.103917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane glycoprotein that plays a crucial role in the regulation of microglial survival, activation, phagocytosis, as well as in the maintenance of brain homeostasis and the inflammatory response to injury or neurodegeneration. This review provides a comprehensive overview of TREM2 structure and functions, highlighting the role of its variants in the development and progression of Alzheimer's disease (AD), a devastating neurodegenerative disease that affects millions of people worldwide. Additionally, the article discusses the potential of TREM2 as a therapeutic target in AD, analyzing the current state of research and future prospects. Given the significant challenges associated with the activation of TREM2, particularly due to its diverse isoforms and the delicate balance required to modulate the immune response without triggering hyperactivation, this review aims to enhance our understanding of TREM2 in AD and inspire further research into this promising yet challenging therapeutic target.
Collapse
Affiliation(s)
- Emilia Zgorzynska
- Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
11
|
Penney J, Ralvenius WT, Loon A, Cerit O, Dileep V, Milo B, Pao PC, Woolf H, Tsai LH. iPSC-derived microglia carrying the TREM2 R47H/+ mutation are proinflammatory and promote synapse loss. Glia 2024; 72:452-469. [PMID: 37969043 PMCID: PMC10904109 DOI: 10.1002/glia.24485] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 11/17/2023]
Abstract
Genetic findings have highlighted key roles for microglia in the pathology of neurodegenerative conditions such as Alzheimer's disease (AD). A number of mutations in the microglial protein triggering receptor expressed on myeloid cells 2 (TREM2) have been associated with increased risk for developing AD, most notably the R47H/+ substitution. We employed gene editing and stem cell models to gain insight into the effects of the TREM2 R47H/+ mutation on human-induced pluripotent stem cell-derived microglia. We found transcriptional changes affecting numerous cellular processes, with R47H/+ cells exhibiting a proinflammatory gene expression signature. TREM2 R47H/+ also caused impairments in microglial movement and the uptake of multiple substrates, as well as rendering microglia hyperresponsive to inflammatory stimuli. We developed an in vitro laser-induced injury model in neuron-microglia cocultures, finding an impaired injury response by TREM2 R47H/+ microglia. Furthermore, mouse brains transplanted with TREM2 R47H/+ microglia exhibited reduced synaptic density, with upregulation of multiple complement cascade components in TREM2 R47H/+ microglia suggesting inappropriate synaptic pruning as one potential mechanism. These findings identify a number of potentially detrimental effects of the TREM2 R47H/+ mutation on microglial gene expression and function likely to underlie its association with AD.
Collapse
Affiliation(s)
- Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - William T Ralvenius
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anjanet Loon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Oyku Cerit
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Blerta Milo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hannah Woolf
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
12
|
Bull D, Matte JC, Navarron CM, McIntyre R, Whiting P, Katan M, Ducotterd F, Magno L. The hypermorphic PLCγ2 S707Y variant dysregulates microglial cell function - Insight into PLCγ2 activation in brain health and disease, and opportunities for therapeutic modulation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166978. [PMID: 38061598 DOI: 10.1016/j.bbadis.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications. Currently, nothing is known about what consequences strong PLCγ2 GOF has on CNS functionality, and more precisely on the specific biological functions of microglia. Using the PLCγ2 S707Y variant as a model of chronic activation we investigated the functional consequences of strong PLCγ2 GOF on human microglia. PLCγ2 S707Y expressing human inducible pluripotent stem cells (hiPSC)-derived microglia exhibited hypermorphic enzymatic activity under both basal and stimulated conditions, compared to PLCγ2 wild type. Despite the increase in PLCγ2 enzymatic activity, the PLCγ2 S707Y hiPSC-derived microglia display diminished functionality for key microglial processes including phagocytosis and cytokine secretion upon inflammatory challenge. RNA sequencing revealed a downregulation of genes related to innate immunity and response, providing molecular support for the phenotype observed. Our data suggests that chronic activation of PLCγ2 elicits a detrimental phenotype that is contributing to unfavourable CNS functions, and informs on the therapeutic window for targeting PLCγ2 in the CNS. Drug candidates targeting PLCγ2 will need to precisely mimic the effects of the PLCγ2 P522R variant on microglial function, but not those of the PLCγ2 S707Y variant.
Collapse
Affiliation(s)
- Daniel Bull
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Julie C Matte
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Carmen M Navarron
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Rebecca McIntyre
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Paul Whiting
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Fiona Ducotterd
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
13
|
Sullivan MA, Lane SD, McKenzie ADJ, Ball SR, Sunde M, Neely GG, Moreno CL, Maximova A, Werry EL, Kassiou M. iPSC-derived PSEN2 (N141I) astrocytes and microglia exhibit a primed inflammatory phenotype. J Neuroinflammation 2024; 21:7. [PMID: 38178159 PMCID: PMC10765839 DOI: 10.1186/s12974-023-02951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Widescale evidence points to the involvement of glia and immune pathways in the progression of Alzheimer's disease (AD). AD-associated iPSC-derived glial cells show a diverse range of AD-related phenotypic states encompassing cytokine/chemokine release, phagocytosis and morphological profiles, but to date studies are limited to cells derived from PSEN1, APOE and APP mutations or sporadic patients. The aim of the current study was to successfully differentiate iPSC-derived microglia and astrocytes from patients harbouring an AD-causative PSEN2 (N141I) mutation and characterise the inflammatory and morphological profile of these cells. METHODS iPSCs from three healthy control individuals and three familial AD patients harbouring a heterozygous PSEN2 (N141I) mutation were used to derive astrocytes and microglia-like cells and cell identity and morphology were characterised through immunofluorescent microscopy. Cellular characterisation involved the stimulation of these cells by LPS and Aβ42 and analysis of cytokine/chemokine release was conducted through ELISAs and multi-cytokine arrays. The phagocytic capacity of these cells was then indexed by the uptake of fluorescently-labelled fibrillar Aβ42. RESULTS AD-derived astrocytes and microglia-like cells exhibited an atrophied and less complex morphological appearance than healthy controls. AD-derived astrocytes showed increased basal expression of GFAP, S100β and increased secretion and phagocytosis of Aβ42 while AD-derived microglia-like cells showed decreased IL-8 secretion compared to healthy controls. Upon immunological challenge AD-derived astrocytes and microglia-like cells showed exaggerated secretion of the pro-inflammatory IL-6, CXCL1, ICAM-1 and IL-8 from astrocytes and IL-18 and MIF from microglia. CONCLUSION Our study showed, for the first time, the differentiation and characterisation of iPSC-derived astrocytes and microglia-like cells harbouring a PSEN2 (N141I) mutation. PSEN2 (N141I)-mutant astrocytes and microglia-like cells presented with a 'primed' phenotype characterised by reduced morphological complexity, exaggerated pro-inflammatory cytokine secretion and altered Aβ42 production and phagocytosis.
Collapse
Affiliation(s)
- Michael A Sullivan
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Samuel D Lane
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - André D J McKenzie
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Sarah R Ball
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Margaret Sunde
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - G Gregory Neely
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Cesar L Moreno
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Alexandra Maximova
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Eryn L Werry
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- School of Chemistry, The Faculty of Science, The University of Sydney, Camperdown, Australia.
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
| | - Michael Kassiou
- School of Chemistry, The Faculty of Science, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
14
|
Swain PS, Panda S, Pati S, Dehury B. Computational saturation mutagenesis to explore the effect of pathogenic mutations on extra-cellular domains of TREM2 associated with Alzheimer's and Nasu-Hakola disease. J Mol Model 2023; 29:360. [PMID: 37924367 DOI: 10.1007/s00894-023-05770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
CONTEXT The specialised family of triggering receptors expressed on myeloid cells (TREMs) plays a pivotal role in causing neurodegenerative disorders and activating microglial anti-inflammatory responses. Nasu-Hakola disease (NHD), a rare autosomal recessive disorder, has been associated with mutations in TREM2, which is also responsible for raising the risk of Alzheimer's disease (AD). Herein, we have made an endeavour to differentiate the confirmed pathogenic variants in TREM2 extra-cellular domain (ECD) linked with NHD and AD using mutation-induced fold stability change (∆∆G), with the computation of 12distinct structure-based methods through saturation mutagenesis. Correlation analysis between relative solvent accessibility (RSA) and ∆∆G expresses the discrete distributive behaviour of mutants associated with TREM2 in AD (R2 = 0.061) and NHD (R2 = 0.601). Our findings put an emphasis on W50 and V126 as major players in maintaining V-like domain in TREM2. Interestingly, we discern that both of them interact with a common residue Y108, which is dissolved upon mutation. This Y108 could have structural or functional role for TREM2 which can be an ideal candidate for further study. Furthermore, the residual interaction network highlights the importance of R47 and R62 in maintaining the CDR loops that are crucial for ligand binding. Future studies using biophysical characterisation of ligand interactions in TREM2-ECD would be helpful for the development of novel therapeutics for AD and NHD. METHODS ConSurf algorithm and ENDscript were used to determine the position and conservation of each residue in the wild-type ECD of TREM2. The mutation-induced fold stability change (∆∆G) of confirmed pathogenic mutants associated with NHD and AD was estimated using 12 state-of-the-art structure-based protein stability tools. Furthermore, we also computed the effect of random mutation on these sites using computational saturation mutagenesis. Linear regression analysis was performed using mutants ∆∆G and RSA through GraphPad software. In addition, a comprehensive non-bonded residual interaction network (RIN) of wild type and its mutants of TREM2-ECD was enumerated using RING3.0.
Collapse
Affiliation(s)
- Preety Sthutika Swain
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Sunita Panda
- Mycology Laboratory, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India.
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
15
|
Li Y, Xu H, Wang H, Yang K, Luan J, Wang S. TREM2: Potential therapeutic targeting of microglia for Alzheimer's disease. Biomed Pharmacother 2023; 165:115218. [PMID: 37517293 DOI: 10.1016/j.biopha.2023.115218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, resulting in the loss of cognitive ability and memory. However, there is no specific treatment to mechanistically inhibit the progression of Alzheimer's disease, and most drugs only provide symptom relief and do not fundamentally reverse AD. Current studies show that triggering receptor expressed on myeloid cells 2 (TREM2) is predominantly expressed in microglia of the central nervous system (CNS) and is involved in microglia proliferation, survival, migration and phagocytosis. The current academic view suggests that TREM2 and its ligands have CNS protective effects in AD. Specifically, TREM2 acts by regulating the function of microglia and promoting the clearance of neuronal toxic substances and abnormal proteins by microglia. In addition, TREM2 is also involved in regulating inflammatory response and cell signaling pathways, affecting the immune response and regulatory role of microglia. Although the relationship between TREM2 and Alzheimer's disease has been extensively studied, its specific mechanism of action is not fully understood. The purpose of this review is to provide a comprehensive analysis of the research of TREM2, including its regulation of the inflammatory response, lipid metabolism and phagocytosis in microglia of CNS in AD, and to explore the potential application prospects as well as limitations of targeting TREM2 for the treatment of AD.
Collapse
Affiliation(s)
- Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
16
|
Abstract
As resident immune cells of the brain, microglia serve pivotal roles in regulating neuronal function under both physiological and pathological conditions, including aging and the most prevalent neurodegenerative disease, Alzheimer's disease (AD). Instructed by neurons, microglia regulate synaptic function and guard brain homeostasis throughout life. Dysregulation of microglial function, however, can lead to dire consequences, including aggravated cognitive decline during aging and exacerbated neuropathology in diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a key regulator of microglial function. Loss-of-function variants of TREM2 are associated with an increased risk of AD. TREM2 orchestrates the switch of microglial transcriptome programming that modulates microglial chemotaxis, phagocytosis, and inflammatory responses, as well as microglial regulation of synaptic function in health and disease. Intriguingly, the outcome of microglial/TREM2 function is influenced by age and the context of neuropathology. This review summarizes the rapidly growing research on TREM2 under physiological conditions and in AD, particularly highlighting the impact of TREM2 on neuronal function.
Collapse
Affiliation(s)
- Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
17
|
Qu W, Canoll P, Hargus G. Molecular Insights into Cell Type-specific Roles in Alzheimer's Disease: Human Induced Pluripotent Stem Cell-based Disease Modelling. Neuroscience 2023; 518:10-26. [PMID: 35569647 PMCID: PMC9974106 DOI: 10.1016/j.neuroscience.2022.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia resulting in widespread degeneration of the central nervous system with severe cognitive impairment. Despite the devastating toll of AD, the incomplete understanding of the complex molecular mechanisms hinders the expeditious development of effective cures. Emerging evidence from animal studies has shown that different brain cell types play distinct roles in the pathogenesis of AD. Glutamatergic neurons are preferentially affected in AD and pronounced gliosis contributes to the progression of AD in both a cell-autonomous and a non-cell-autonomous manner. Much has been discovered through genetically modified animal models, yet frequently failed translational attempts to clinical applications call for better disease models. Emerging evidence supports the significance of human-induced pluripotent stem cell (iPSC) derived brain cells in modeling disease development and progression, opening new avenues for the discovery of molecular mechanisms. This review summarizes the function of different cell types in the pathogenesis of AD, such as neurons, microglia, and astrocytes, and recognizes the potential of utilizing the rapidly growing iPSC technology in modeling AD.
Collapse
Affiliation(s)
- Wenhui Qu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States.
| |
Collapse
|
18
|
Aylan B, Bernard EM, Pellegrino E, Botella L, Fearns A, Athanasiadi N, Bussi C, Santucci P, Gutierrez MG. ATG7 and ATG14 restrict cytosolic and phagosomal Mycobacterium tuberculosis replication in human macrophages. Nat Microbiol 2023; 8:803-818. [PMID: 36959508 PMCID: PMC10159855 DOI: 10.1038/s41564-023-01335-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/24/2023] [Indexed: 03/25/2023]
Abstract
Autophagy is a cellular innate-immune defence mechanism against intracellular microorganisms, including Mycobacterium tuberculosis (Mtb). How canonical and non-canonical autophagy function to control Mtb infection in phagosomes and the cytosol remains unresolved. Macrophages are the main host cell in humans for Mtb. Here we studied the contributions of canonical and non-canonical autophagy in the genetically tractable human induced pluripotent stem cell-derived macrophages (iPSDM), using a set of Mtb mutants generated in the same genetic background of the common lab strain H37Rv. We monitored replication of Mtb mutants that are either unable to trigger canonical autophagy (Mtb ΔesxBA) or reportedly unable to block non-canonical autophagy (Mtb ΔcpsA) in iPSDM lacking either ATG7 or ATG14 using single-cell high-content imaging. We report that deletion of ATG7 by CRISPR-Cas9 in iPSDM resulted in increased replication of wild-type Mtb but not of Mtb ΔesxBA or Mtb ΔcpsA. We show that deletion of ATG14 resulted in increased replication of both Mtb wild type and the mutant Mtb ΔesxBA. Using Mtb reporters and quantitative imaging, we identified a role for ATG14 in regulating fusion of phagosomes containing Mtb with lysosomes, thereby enabling intracellular bacteria restriction. We conclude that ATG7 and ATG14 are both required for restricting Mtb replication in human macrophages.
Collapse
Affiliation(s)
- Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Enrica Pellegrino
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Laure Botella
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Natalia Athanasiadi
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Claudio Bussi
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
- Aix-Marseille University, CNRS, LISM, Marseille, France
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
19
|
Iguchi A, Takatori S, Kimura S, Muneto H, Wang K, Etani H, Ito G, Sato H, Hori Y, Sasaki J, Saito T, Saido TC, Ikezu T, Takai T, Sasaki T, Tomita T. INPP5D modulates TREM2 loss-of-function phenotypes in a β-amyloidosis mouse model. iScience 2023; 26:106375. [PMID: 37035000 PMCID: PMC10074152 DOI: 10.1016/j.isci.2023.106375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The genetic associations of TREM2 loss-of-function variants with Alzheimer disease (AD) indicate the protective roles of microglia in AD pathogenesis. Functional deficiencies of TREM2 disrupt microglial clustering around amyloid β (Aβ) plaques, impair their transcriptional response to Aβ, and worsen neuritic dystrophy. However, the molecular mechanism underlying these phenotypes remains unclear. In this study, we investigated the pathological role of another AD risk gene, INPP5D, encoding a phosphoinositide PI(3,4,5)P3 phosphatase expressed in microglia. In a Tyrobp-deficient TREM2 loss-of-function mouse model, Inpp5d haplodeficiency restored the association of microglia with Aβ plaques, partially restored plaque compaction, and astrogliosis, and reduced phosphorylated tau+ dystrophic neurites. Mechanistic analyses suggest that TREM2/TYROBP and INPP5D exert opposing effects on PI(3,4,5)P3 signaling pathways as well as on phosphoproteins involved in the actin assembly. Our results suggest that INPP5D acts downstream of TREM2/TYROBP to regulate the microglial barrier against Aβ toxicity, thereby modulates Aβ-dependent pathological conversion of tau.
Collapse
Affiliation(s)
- Akihiro Iguchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shingo Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Muneto
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kai Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hayato Etani
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junko Sasaki
- Department of Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan
| | - Takehiko Sasaki
- Department of Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Popescu AS, Butler CA, Allendorf DH, Piers TM, Mallach A, Roewe J, Reinhardt P, Cinti A, Redaelli L, Boudesco C, Pradier L, Pocock JM, Thornton P, Brown GC. Alzheimer's disease-associated R47H TREM2 increases, but wild-type TREM2 decreases, microglial phagocytosis of synaptosomes and neuronal loss. Glia 2023; 71:974-990. [PMID: 36480007 PMCID: PMC10952257 DOI: 10.1002/glia.24318] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Triggering receptor on myeloid cells 2 (TREM2) is an innate immune receptor, upregulated on the surface of microglia associated with amyloid plaques in Alzheimer's disease (AD). Individuals heterozygous for the R47H variant of TREM2 have greatly increased risk of developing AD. We examined the effects of wild-type (WT), R47H and knock-out (KO) of human TREM2 expression in three microglial cell systems. Addition of mouse BV-2 microglia expressing R47H TREM2 to primary mouse neuronal cultures caused neuronal loss, not observed with WT TREM2. Neuronal loss was prevented by using annexin V to block exposed phosphatidylserine, an eat-me signal and ligand of TREM2, suggesting loss was mediated by microglial phagocytosis of neurons exposing phosphatidylserine. Addition of human CHME-3 microglia expressing R47H TREM2 to LUHMES neuronal-like cells also caused loss compared to WT TREM2. Expression of R47H TREM2 in BV-2 and CHME-3 microglia increased their uptake of phosphatidylserine-beads and synaptosomes versus WT TREM2. Human iPSC-derived microglia with heterozygous R47H TREM2 had increased phagocytosis of synaptosomes vs common-variant TREM2. Additionally, phosphatidylserine liposomes increased activation of human iPSC-derived microglia expressing homozygous R47H TREM2 versus common-variant TREM2. Finally, overexpression of TREM2 in CHME-3 microglia caused increased expression of cystatin F, a cysteine protease inhibitor, and knock-down of cystatin F increased CHME-3 uptake of phosphatidylserine-beads. Together, these data suggest that R47H TREM2 may increase AD risk by increasing phagocytosis of synapses and neurons via greater activation by phosphatidylserine and that WT TREM2 may decrease microglial phagocytosis of synapses and neurons via cystatin F.
Collapse
Affiliation(s)
- Alma S. Popescu
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Claire A. Butler
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Neuroscience, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | | | - Thomas M. Piers
- Department of NeuroinflammationUCL Queen Square Institute of NeurologyLondonUK
| | - Anna Mallach
- Department of NeuroinflammationUCL Queen Square Institute of NeurologyLondonUK
| | - Julian Roewe
- Neuroscience DiscoveryAbbVie Deutschland GmbH & Co. KGLudwigshafenGermany
| | - Peter Reinhardt
- Neuroscience DiscoveryAbbVie Deutschland GmbH & Co. KGLudwigshafenGermany
| | | | | | | | | | - Jennifer M. Pocock
- Department of NeuroinflammationUCL Queen Square Institute of NeurologyLondonUK
| | - Peter Thornton
- Neuroscience, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Guy C. Brown
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
21
|
Maguire E, Connor-Robson N, Shaw B, O’Donoghue R, Stöberl N, Hall-Roberts H. Assaying Microglia Functions In Vitro. Cells 2022; 11:3414. [PMID: 36359810 PMCID: PMC9654693 DOI: 10.3390/cells11213414] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Microglia, the main immune modulators of the central nervous system, have key roles in both the developing and adult brain. These functions include shaping healthy neuronal networks, carrying out immune surveillance, mediating inflammatory responses, and disposing of unwanted material. A wide variety of pathological conditions present with microglia dysregulation, highlighting the importance of these cells in both normal brain function and disease. Studies into microglial function in the context of both health and disease thus have the potential to provide tremendous insight across a broad range of research areas. In vitro culture of microglia, using primary cells, cell lines, or induced pluripotent stem cell derived microglia, allows researchers to generate reproducible, robust, and quantifiable data regarding microglia function. A broad range of assays have been successfully developed and optimised for characterizing microglial morphology, mediation of inflammation, endocytosis, phagocytosis, chemotaxis and random motility, and mediation of immunometabolism. This review describes the main functions of microglia, compares existing protocols for measuring these functions in vitro, and highlights common pitfalls and future areas for development. We aim to provide a comprehensive methodological guide for researchers planning to characterise microglial functions within a range of contexts and in vitro models.
Collapse
Affiliation(s)
- Emily Maguire
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | | | | | | |
Collapse
|
22
|
Role of Vitronectin and Its Receptors in Neuronal Function and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232012387. [PMID: 36293243 PMCID: PMC9604229 DOI: 10.3390/ijms232012387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Vitronectin (VTN), a multifunctional glycoprotein with various physiological functions, exists in plasma and the extracellular matrix. It is known to be involved in the cell attachment, spreading and migration through binding to the integrin receptor, mainly via the RGD sequence. VTN is also widely used in the maintenance and expansion of pluripotent stem cells, but its effects go beyond that. Recent evidence shows more functions of VTN in the nervous system as it participates in neural differentiation, neuronutrition and neurogenesis, as well as in regulating axon size, supporting and guiding neurite extension. Furthermore, VTN was proved to play a key role in protecting the brain as it can reduce the permeability of the blood-brain barrier by interacting with integrin receptors in vascular endothelial cells. Moreover, evidence suggests that VTN is associated with neurodegenerative diseases, such as Alzheimer's disease, but its function has not been fully understood. This review summarizes the functions of VTN and its receptors in neurons and describes the role of VTN in the blood-brain barrier and neurodegenerative diseases.
Collapse
|
23
|
Li C, Wang Y, Xing Y, Han J, Zhang Y, Zhang A, Hu J, Hua Y, Bai Y. Regulation of microglia phagocytosis and potential involvement of exercise. Front Cell Neurosci 2022; 16:953534. [PMID: 35959472 PMCID: PMC9357882 DOI: 10.3389/fncel.2022.953534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia are considered the main phagocytic cells in the central nervous system, remodeling neural circuits by pruning synapses during development. Microglial phagocytosis is also a crucial process in maintaining adult brain homeostasis and clearing potential toxic factors, which are recognized to be associated with neurodegenerative and neuroinflammatory disorders. For example, microglia can engulf amyloid-β plaques, myelin debris, apoptotic cells, and extracellular harmful substances by expressing a variety of specific receptors on the cell surface or by reprogramming intracellular glucose and lipid metabolism processes. Furthermore, physical exercise has been implicated to be one of the non-pharmaceutical treatments for various nervous system diseases, which is closely related to neuroplasticity and microglia functions including proliferation, activation, and phagocytosis. This review focuses on the central regulatory mechanisms related to microglia phagocytosis and the potential role of exercise training in this process.
Collapse
Affiliation(s)
- Congqin Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ying Xing
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Anjing Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yulong Bai
| |
Collapse
|
24
|
Essex AL, Huot JR, Deosthale P, Wagner A, Figueras J, Davis A, Damrath J, Pin F, Wallace J, Bonetto A, Plotkin LI. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) R47H Variant Causes Distinct Age- and Sex-Dependent Musculoskeletal Alterations in Mice. J Bone Miner Res 2022; 37:1366-1381. [PMID: 35575023 PMCID: PMC9307075 DOI: 10.1002/jbmr.4572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 12/05/2022]
Abstract
Previous studies proposed the Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), a receptor expressed in myeloid cells including microglia in brain and osteoclasts in bone, as a link between brain and bone disease. The TREM2 R47H variant is a known risk factor for Alzheimer's disease (AD), the most common form of dementia. To investigate whether altered TREM2 signaling could contribute to bone and skeletal muscle loss, independently of central nervous system defects, we used mice globally hemizygous for the TREM2 R47H variant (TREM2R47H/+ ), which do not exhibit AD pathology, and wild-type (WT) littermate control mice. Dxa/Piximus showed bone loss in female TREM2R47H/+ animals between 4 and 13 months of age and reduced cancellous and cortical bone (measured by micro-computed tomography [μCT]) at 13 months, which stalled out by 20 months of age. In addition, they exhibited decreased femoral biomechanical properties measured by three-point bending at 13 months of age, but not at 4 or 20 months. Male TREM2R47H/+ animals had decreased trabecular bone geometry but increased ultimate strain and failure force at 20 months of age versus WT. Only male TREM2R47H/+ osteoclasts differentiated more ex vivo after 7 days with receptor activator of nuclear factor κB ligand (RANKL)/macrophage colony-stimulating factor (M-CSF) compared to WT littermates. Yet, estrogen receptor alpha expression was higher in female and male TREM2R47H/+ osteoclasts compared to WT mice. However, female TREM2R47H/+ osteoclasts expressed less complement 3 (C3), an estrogen responsive element, and increased protein kinase B (Akt) activity, suggesting altered estrogen signaling in TREM2R47H/+ cells. Despite lower bone volume/strength in TREM2R47H/+ mice, skeletal muscle function measured by plantar flexion and muscle contractility was increased in 13-month-old female mutant mice. Overall, these data demonstrate that an AD-associated TREM2 variant can alter bone and skeletal muscle strength in a sex-dimorphic manner independent of central neuropathology, potentially mediated through changes in osteoclastic intracellular signaling. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alyson L. Essex
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Roudebush Veterans Administration Medical CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndianapolisINUSA
| | - Joshua R. Huot
- Indiana Center for Musculoskeletal HealthIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Padmini Deosthale
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Roudebush Veterans Administration Medical CenterIndianapolisINUSA
| | - Alison Wagner
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Jorge Figueras
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Azaria Davis
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - John Damrath
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
| | - Fabrizio Pin
- Indiana Center for Musculoskeletal HealthIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Simon Comprehensive Cancer CenterIndiana UniversityIndianapolisINUSA
| | - Joseph Wallace
- Roudebush Veterans Administration Medical CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndianapolisINUSA
- Department of Biomechanical EngineeringIndiana University‐Purdue University IndianapolisIndianapolisINUSA
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Simon Comprehensive Cancer CenterIndiana UniversityIndianapolisINUSA
| | - Lilian I. Plotkin
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Roudebush Veterans Administration Medical CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndianapolisINUSA
| |
Collapse
|
25
|
Lyadova I, Vasiliev A. Macrophages derived from pluripotent stem cells: prospective applications and research gaps. Cell Biosci 2022; 12:96. [PMID: 35725499 PMCID: PMC9207879 DOI: 10.1186/s13578-022-00824-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent a valuable cell source able to give rise to different cell types of the body. Among the various pathways of iPSC differentiation, the differentiation into macrophages is a recently developed and rapidly growing technique. Macrophages play a key role in the control of host homeostasis. Their dysfunction underlies many diseases, including hereditary, infectious, oncological, metabolic and other disorders. Targeting macrophage activity and developing macrophage-based cell therapy represent promising tools for the treatment of many pathological conditions. Macrophages generated from human iPSCs (iMphs) provide great opportunities in these areas. The generation of iMphs is based on a step-wise differentiation of iPSCs into mesoderm, hematopoietic progenitors, myeloid monocyte-like cells and macrophages. The technique allows to obtain standardizable populations of human macrophages from any individual, scale up macrophage production and introduce genetic modifications, which gives significant advantages over the standard source of human macrophages, monocyte-derived macrophages. The spectrum of iMph applications is rapidly growing. iMphs have been successfully used to model hereditary diseases and macrophage-pathogen interactions, as well as to test drugs. iMph use for cell therapy is another promising and rapidly developing area of research. The principles and the details of iMph generation have recently been reviewed. This review systemizes current and prospective iMph applications and discusses the problem of iMph safety and other issues that need to be explored before iMphs become clinically applicable.
Collapse
Affiliation(s)
- Irina Lyadova
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russian Federation.
| | - Andrei Vasiliev
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russian Federation
| |
Collapse
|
26
|
Li T, Lu L, Pember E, Li X, Zhang B, Zhu Z. New Insights into Neuroinflammation Involved in Pathogenic Mechanism of Alzheimer's Disease and Its Potential for Therapeutic Intervention. Cells 2022; 11:cells11121925. [PMID: 35741054 PMCID: PMC9221885 DOI: 10.3390/cells11121925] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting more than 50 million people worldwide with an estimated increase to 139 million people by 2050. The exact pathogenic mechanisms of AD remain elusive, resulting in the fact that the current therapeutics solely focus on symptomatic management instead of preventative or curative strategies. The two most widely accepted pathogenic mechanisms of AD include the amyloid and tau hypotheses. However, it is evident that these hypotheses cannot fully explain neuronal degeneration shown in AD. Substantial evidence is growing for the vital role of neuroinflammation in AD pathology. The neuroinflammatory hypothesis provides a new, exciting lead in uncovering the underlying mechanisms contributing to AD. This review aims to highlight new insights into the role of neuroinflammation in the pathogenesis of AD, mainly including the involvement of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3)/caspase-1 axis, triggering receptor expressed on myeloid cells 2 (TREM2) and cGAS-STING as key influencers in augmenting AD development. The inflammasomes related to the pathways of NF-κB, NLRP3, TREM2, and cGAS-STING as biomarkers of the neuroinflammation associated with AD, as well as an overview of novel AD treatments based on these biomarkers as potential drug targets reported in the literature or under clinical trials, are explored.
Collapse
Affiliation(s)
- Tiantian Li
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Li Lu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Eloise Pember
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Xinuo Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211112, China;
| | - Bocheng Zhang
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (T.L.); (L.L.); (E.P.); (B.Z.)
- Correspondence:
| |
Collapse
|
27
|
Dash R, Munni YA, Mitra S, Choi HJ, Jahan SI, Chowdhury A, Jang TJ, Moon IS. Dynamic insights into the effects of nonsynonymous polymorphisms (nsSNPs) on loss of TREM2 function. Sci Rep 2022; 12:9378. [PMID: 35672339 PMCID: PMC9174165 DOI: 10.1038/s41598-022-13120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
Single nucleotide variations in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) are associated with many neurodegenerative diseases, including Nasu-Hakola disease (NHD), frontotemporal dementia (FTD), and late-onset Alzheimer's disease because they disrupt ligand binding to the extracellular domain of TREM2. However, the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) in TREM2 on disease progression remain unknown. In this study, we identified several high-risk nsSNPs in the TREM2 gene using various deleterious SNP predicting algorithms and analyzed their destabilizing effects on the ligand recognizing region of the TREM2 immunoglobulin (Ig) domain by molecular dynamics (MD) simulation. Cumulative prediction by all tools employed suggested the three most deleterious nsSNPs involved in loss of TREM2 function are rs549402254 (W50S), rs749358844 (R52C), and rs1409131974 (D104G). MD simulation showed that these three variants cause substantial structural alterations and conformational remodeling of the apical loops of the TREM2 Ig domain, which is responsible for ligand recognition. Detailed analysis revealed that these variants substantially increased distances between apical loops and induced conformation remodeling by changing inter-loop nonbonded contacts. Moreover, all nsSNPs changed the electrostatic potentials near the putative ligand-interacting region (PLIR), which suggested they might reduce specificity or loss of binding affinity for TREM2 ligands. Overall, this study identifies three potential high-risk nsSNPs in the TREM2 gene. We propose further studies on the molecular mechanisms responsible for loss of TREM2 function and the associations between TREM2 nsSNPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Sultana Israt Jahan
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka, 1229, Bangladesh
| | - Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
28
|
Pharmacological Inhibition of Spleen Tyrosine Kinase Suppressed Neuroinflammation and Cognitive Dysfunction in LPS-Induced Neurodegeneration Model. Cells 2022; 11:cells11111777. [PMID: 35681471 PMCID: PMC9179326 DOI: 10.3390/cells11111777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Tyrosine-protein kinase (Syk) plays a potential role in neuroinflammation and adaptive immune responses in several neurodegenerative conditions. Seeing the significant role of Syk in the pathophysiology of neurodegeneration, several pharmacological inhibitors have been developed. One of the known inhibitors of Syk is BAY61-3606, which has shown efficacies in Alzheimer’s disease (AD) through regulating amyloid production. However, little is known about its efficacies in neuroinflammation and neurodegeneration. Our finding showed that Syk expression was up-regulated by lipopolysaccharide (LPS)-dependent manner, and BAY61-3606 significantly suppressed the activated microglia (ionized calcium-binding adaptor molecule 1 [Iba-1]) and the inflammatory cytokines (tumor necrosis factor-alpha [TNF-α], interleukin 1-beta [IL-1β], IL-6) and other inflammatory mediators (nuclear factor kappa B [NF-κB], cyclooxygenase-2 [Cox-2], and inducible nitric axide synthase [iNOS]) in the lipopolysaccharide (LPS)-treated in vivo and in vitro models. Moreover, BAY61-3606 significantly reduced microglia-mediated neuronal cell death by regulating the expression of Cytochrome C and Bim (B-cell lymphoma 2 [BCL-2] interacting mediator of cell death) in the LPS-treated mice brain and HT22 cells. Furthermore, the expression of synaptic markers, synaptosomal-associated protein, 25 kDa (SNAP25), synaptophysin (Syp), and postsynaptic density protein-95 (PSD95) in LPS-challenged mice showed that BAY61-3606 significantly recovered the synaptic markers. Finally, we have analyzed the effects of BAY61-3606 against memory and cognitive dysfunctions in the LPS injected mice. The Y-maze test and Passive avoidance test suggested that BAY61-3606 significantly protected against LPS-induced cognitive and memory dysfunctions. The current findings not only highlight the mechanisms of Syk in the pathophysiology of neuro-inflammation, but also support the therapeutic efficacy of BAY61-3606 in the management of neurodegeneration.
Collapse
|
29
|
Generation of an hiPSC-Derived Co-Culture System to Assess the Effects of Neuroinflammation on Blood-Brain Barrier Integrity. Cells 2022; 11:cells11030419. [PMID: 35159229 PMCID: PMC8834542 DOI: 10.3390/cells11030419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier (BBB) regulates the interaction between the highly vulnerable central nervous system (CNS) and the peripheral parts of the body. Disruption of the BBB has been associated with multiple neurological disorders, in which immune pathways in microglia are suggested to play a key role. Currently, many in vitro BBB model systems lack a physiologically relevant microglia component in order to address questions related to the mechanism of BBB integrity or the transport of molecules between the periphery and the CNS. To bridge this gap, we redefined a serum-free medium in order to allow for the successful co-culturing of human inducible pluripotent stem cell (hiPSC)-derived microglia and hiPSC-derived brain microvascular endothelial-like cells (BMECs) without influencing barrier properties as assessed by electrical resistance. We demonstrate that hiPSC-derived microglia exposed to lipopolysaccharide (LPS) weaken the barrier integrity, which is associated with the secretion of several cytokines relevant in neuroinflammation. Consequently, here we provide a simplistic humanised BBB model of neuroinflammation that can be further extended (e.g., by addition of other cell types in a more complex 3D architecture) and applied for mechanistic studies and therapeutic compound profiling.
Collapse
|
30
|
PLCγ2 regulates TREM2 signalling and integrin-mediated adhesion and migration of human iPSC-derived macrophages. Sci Rep 2021; 11:19842. [PMID: 34615897 PMCID: PMC8494732 DOI: 10.1038/s41598-021-96144-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023] Open
Abstract
Human genetic studies have linked rare coding variants in microglial genes, such as TREM2, and more recently PLCG2 to Alzheimer's disease (AD) pathology. The P522R variant in PLCG2 has been shown to confer protection for AD and to result in a subtle increase in enzymatic activity. PLCγ2 is a key component of intracellular signal transduction networks and induces Ca2+ signals downstream of many myeloid cell surface receptors, including TREM2. To explore the relationship between PLCγ2 and TREM2 and the role of PLCγ2 in regulating immune cell function, we generated human induced pluripotent stem cell (iPSC)- derived macrophages from isogenic lines with homozygous PLCG2 knockout (Ko). Stimulating TREM2 signalling using a polyclonal antibody revealed a complete lack of calcium flux and IP1 accumulation in PLCγ2 Ko cells, demonstrating a non-redundant role of PLCγ2 in calcium release downstream of TREM2. Loss of PLCγ2 led to broad changes in expression of several macrophage surface markers and phenotype, including reduced phagocytic activity and survival, while LPS-induced secretion of the inflammatory cytokines TNFα and IL-6 was unaffected. We identified additional deficits in PLCγ2- deficient cells that compromised cellular adhesion and migration. Thus, PLCγ2 is key in enabling divergent cellular functions and might be a promising target to increase beneficial microglial functions.
Collapse
|
31
|
Blank N, Mayer M, Mass E. The development and physiological and pathophysiological functions of resident macrophages and glial cells. Adv Immunol 2021; 151:1-47. [PMID: 34656287 DOI: 10.1016/bs.ai.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the past, brain function and the onset and progression of neurological diseases have been studied in a neuron-centric manner. However, in recent years the focus of many neuroscientists has shifted to other cell types that promote neurodevelopment and contribute to the functionality of neuronal networks in health and disease. Particularly microglia and astrocytes have been implicated in actively contributing to and controlling neuronal development, neuroinflammation, and neurodegeneration. Here, we summarize the development of brain-resident macrophages and astrocytes and their core functions in the developing brain. We discuss their contribution and intercellular crosstalk during tissue homeostasis and pathophysiology. We argue that in-depth knowledge of non-neuronal cells in the brain could provide novel therapeutic targets to reverse or contain neurological diseases.
Collapse
Affiliation(s)
- Nelli Blank
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Marina Mayer
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
32
|
Lyadova I, Gerasimova T, Nenasheva T. Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions. Front Cell Dev Biol 2021; 9:640703. [PMID: 34150747 PMCID: PMC8207294 DOI: 10.3389/fcell.2021.640703] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophages (Mφ) derived from induced pluripotent stem cells (iMphs) represent a novel and promising model for studying human Mφ function and differentiation and developing new therapeutic strategies based on or oriented at Mφs. iMphs have several advantages over the traditionally used human Mφ models, such as immortalized cell lines and monocyte-derived Mφs. The advantages include the possibility of obtaining genetically identical and editable cells in a potentially scalable way. Various applications of iMphs are being developed, and their number is rapidly growing. However, the protocols of iMph differentiation that are currently used vary substantially, which may lead to differences in iMph differentiation trajectories and properties. Standardization of the protocols and identification of minimum required conditions that would allow obtaining iMphs in a large-scale, inexpensive, and clinically suitable mode are needed for future iMph applications. As a first step in this direction, the current review discusses the fundamental basis for the generation of human iMphs, performs a detailed analysis of the generalities and the differences between iMph differentiation protocols currently employed, and discusses the prospects of iMph applications.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
33
|
Magno L, Bunney TD, Mead E, Svensson F, Bictash MN. TREM2/PLCγ2 signalling in immune cells: function, structural insight, and potential therapeutic modulation. Mol Neurodegener 2021; 16:22. [PMID: 33823896 PMCID: PMC8022522 DOI: 10.1186/s13024-021-00436-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
The central role of the resident innate immune cells of the brain (microglia) in neurodegeneration has become clear over the past few years largely through genome-wide association studies (GWAS), and has rapidly become an active area of research. However, a mechanistic understanding (gene to function) has lagged behind. That is now beginning to change, as exemplified by a number of recent exciting and important reports that provide insight into the function of two key gene products – TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) and PLCγ2 (Phospholipase C gamma2) – in microglia, and their role in neurodegenerative disorders. In this review we explore and discuss these recent advances and the opportunities that they may provide for the development of new therapies.
Collapse
Affiliation(s)
- Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Emma Mead
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7FZ, UK
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Magda N Bictash
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
34
|
Sokolova D, Childs T, Hong S. Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer's disease. Fac Rev 2021; 10:19. [PMID: 33718936 PMCID: PMC7946395 DOI: 10.12703/r/10-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The innate immune system plays an integral role in the brain. Synaptic pruning, a fundamental process in developmental circuit refinement, is partially mediated by neuroimmune signalling at the synapse. In particular, microglia, the major tissue-resident macrophages of the brain, and the classical complement cascade, an innate immune pathway that aids in the clearance of unwanted material, have been implicated in mediating synapse elimination. Emerging data suggest that improper signalling of the innate immune pathway at the synapse leads to pathological synapse loss in age-related neurodegenerative diseases, including Alzheimer's disease. Now the key questions are whether synapses are targeted by complement and, if so, which synapses are vulnerable to elimination. Here, we review recent work implicating C1q, the initiator of the classical complement cascade, and surrounding glia as mediators of synapse loss. We examine how synapses could undergo apoptosis-like pathways in the Alzheimer brain, which may lead to the externalisation of phosphatidylserine on synapses. Finally, we discuss potential roles for microglia and astrocytes in this 'synaptic apoptosis'. Critical insight into neuroimmune regulatory pathways on synapses will be key to developing effective targets against pathological synapse loss in dementia.
Collapse
Affiliation(s)
- Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London WC1E 6BT, UK
| | - Thomas Childs
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London WC1E 6BT, UK
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
35
|
Franklin H, Clarke BE, Patani R. Astrocytes and microglia in neurodegenerative diseases: Lessons from human in vitro models. Prog Neurobiol 2020; 200:101973. [PMID: 33309801 PMCID: PMC8052192 DOI: 10.1016/j.pneurobio.2020.101973] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 12/16/2022]
Abstract
Astrocytes and microglia key fulfil homeostatic and immune functions in the CNS. Dysfunction of these cell types is implicated in neurodegenerative diseases. Understanding cellular autonomy and early pathogenic changes is a key goal. New human iPSC models will inform on disease mechanisms and therapy development.
Both astrocytes and microglia fulfil homeostatic and immune functions in the healthy CNS. Dysfunction of these cell types have been implicated in the pathomechanisms of several neurodegenerative diseases. Understanding the cellular autonomy and early pathological changes in these cell types may inform drug screening and therapy development. While animal models and post-mortem tissue have been invaluable in understanding disease processes, the advent of human in vitro models provides a unique insight into disease biology as a manipulable model system obtained directly from patients. Here, we discuss the different human in vitro models of astrocytes and microglia and outline the phenotypes that have been recapitulated in these systems.
Collapse
Affiliation(s)
- Hannah Franklin
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Benjamin E Clarke
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|