1
|
Cerna-Chavez R, Ortega-Gasco A, Baig HMA, Ehrenreich N, Metais T, Scandura MJ, Bujakowska K, Pierce EA, Garita-Hernandez M. Optimized Prime Editing of Human Induced Pluripotent Stem Cells to Efficiently Generate Isogenic Models of Mendelian Diseases. Int J Mol Sci 2024; 26:114. [PMID: 39795970 PMCID: PMC11719581 DOI: 10.3390/ijms26010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs). PE leads to minimal off-targets or indels when introducing single-strand breaks (SSB) in the DNA. Low efficiency can be an obstacle to its use in hiPSCs, especially when the genetic context precludes the screening of multiple pegRNAs, and other strategies must be employed to achieve the desired edit. We developed a PE platform to efficiently generate isogenic models of Mendelian disorders. We introduced the c.25G>A (p.V9M) mutation in the NMNAT1 gene with over 25% efficiency by optimizing the PE workflow. Using our optimized system, we generated other isogenic models of inherited retinal diseases (IRDs), including the c.1481C>T (p.T494M) mutation in PRPF3 and the c.6926A>C (p.H2309P) mutation in PRPF8. We modified several determinants of the hiPSC PE procedure, such as plasmid concentrations, PE component ratios, and delivery method settings, showing that our improved workflow increased the hiPSC editing efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marcela Garita-Hernandez
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (R.C.-C.); (A.O.-G.); (H.M.A.B.); (N.E.); (T.M.); (M.J.S.); (K.B.); (E.A.P.)
| |
Collapse
|
2
|
Yang HS, Zheng YX, Bai X, He XY, Wang TH. Application prospects of urine-derived stem cells in neurological and musculoskeletal diseases. World J Orthop 2024; 15:918-931. [PMID: 39473520 DOI: 10.5312/wjo.v15.i10.918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Urine-derived stem cells (USCs) are derived from urine and harbor the potential of proliferation and multidirectional differentiation. Moreover, USCs could be reprogrammed into pluripotent stem cells [namely urine-derived induced pluripotent stem cells (UiPSCs)] through transcription factors, such as octamer binding transcription factor 4, sex determining region Y-box 2, kruppel-like factor 4, myelocytomatosis oncogene, and Nanog homeobox and protein lin-28, in which the first four are known as Yamanaka factors. Mounting evidence supports that USCs and UiPSCs possess high potential of neurogenic, myogenic, and osteogenic differentiation, indicating that they may play a crucial role in the treatment of neurological and musculoskeletal diseases. Therefore, we summarized the origin and physiological characteristics of USCs and UiPSCs and their therapeutic application in neurological and musculoskeletal disorders in this review, which not only contributes to deepen our understanding of hallmarks of USCs and UiPSCs but also provides the theoretical basis for the treatment of neurological and musculoskeletal disorders with USCs and UiPSCs.
Collapse
Affiliation(s)
- Hui-Si Yang
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yue-Xiang Zheng
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xue Bai
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiu-Ying He
- Department of Anesthesiology, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ting-Hua Wang
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
3
|
Nicolas-Martinez EC, Robinson O, Pflueger C, Gardner A, Corbett MA, Ritchie T, Kroes T, van Eyk CL, Scheffer IE, Hildebrand MS, Barnier JV, Rousseau V, Genevieve D, Haushalter V, Piton A, Denommé-Pichon AS, Bruel AL, Nambot S, Isidor B, Grigg J, Gonzalez T, Ghedia S, Marchant RG, Bournazos A, Wong WK, Webster RI, Evesson FJ, Jones KJ, Cooper ST, Lister R, Gecz J, Jolly LA. RNA variant assessment using transactivation and transdifferentiation. Am J Hum Genet 2024; 111:1673-1699. [PMID: 39084224 PMCID: PMC11339655 DOI: 10.1016/j.ajhg.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.
Collapse
Affiliation(s)
- Emmylou C Nicolas-Martinez
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Olivia Robinson
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alison Gardner
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mark A Corbett
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tarin Ritchie
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Thessa Kroes
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Clare L van Eyk
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - David Genevieve
- Montpellier University, Inserm U1183, Reference Center for Rare Diseases Developmental Anomaly and Malformative Syndromes, Genetics Department, Montpellier Hospital, Montpellier, France
| | - Virginie Haushalter
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Amélie Piton
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Anne-Sophie Denommé-Pichon
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Ange-Line Bruel
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Sophie Nambot
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Bertrand Isidor
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - John Grigg
- Speciality of Ophthalmology, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| | - Tina Gonzalez
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Sondhya Ghedia
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Rhett G Marchant
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| | - Adam Bournazos
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Wui-Kwan Wong
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia; Department of Paediatric Neurology, Children's Hospital at Westmead, Sydney, NSW 2000, Australia
| | - Richard I Webster
- Department of Paediatric Neurology, Children's Hospital at Westmead, Sydney, NSW 2000, Australia
| | - Frances J Evesson
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Kristi J Jones
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia; Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW 2000, Australia
| | - Sandra T Cooper
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jozef Gecz
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| | - Lachlan A Jolly
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
4
|
Ohiri JC, Dellefave‐Castillo L, Tomar G, Wilsbacher L, Choudhury L, Barefield DY, Fullenkamp D, Gacita AM, Monroe TO, Pesce L, Blancard M, Vaught L, George AL, Demonbreun AR, Puckelwartz MJ, McNally EM. Reduction of Filamin C Results in Altered Proteostasis, Cardiomyopathy, and Arrhythmias. J Am Heart Assoc 2024; 13:e030467. [PMID: 38761081 PMCID: PMC11179814 DOI: 10.1161/jaha.123.030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/17/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Many cardiomyopathy-associated FLNC pathogenic variants are heterozygous truncations, and FLNC pathogenic variants are associated with arrhythmias. Arrhythmia triggers in filaminopathy are incompletely understood. METHODS AND RESULTS We describe an individual with biallelic FLNC pathogenic variants, p.Arg650X and c.970-4A>G, with peripartum cardiomyopathy and ventricular arrhythmias. We also describe clinical findings in probands with FLNC variants including Val2715fs87X, Glu2458Serfs71X, Phe106Leu, and c.970-4A>G with hypertrophic and dilated cardiomyopathy, atrial fibrillation, and ventricular tachycardia. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated. The FLNC truncation, Arg650X/c.970-4A>G, showed a marked reduction in filamin C protein consistent with biallelic loss of function mutations. To assess loss of filamin C, gene editing of a healthy control iPSC line was used to generate a homozygous FLNC disruption in the actin binding domain. Because filamin C has been linked to protein quality control, we assessed the necessity of filamin C in iPSC-CMs for response to the proteasome inhibitor bortezomib. After exposure to low-dose bortezomib, FLNC-null iPSC-CMs showed an increase in the chaperone proteins BAG3, HSP70 (heat shock protein 70), and HSPB8 (small heat shock protein B8) and in the autophagy marker LC3I/II. FLNC null iPSC-CMs had prolonged electric field potential, which was further prolonged in the presence of low-dose bortezomib. FLNC null engineered heart tissues had impaired function after low-dose bortezomib. CONCLUSIONS FLNC pathogenic variants associate with a predisposition to arrhythmias, which can be modeled in iPSC-CMs. Reduction of filamin C prolonged field potential, a surrogate for action potential, and with bortezomib-induced proteasome inhibition, reduced filamin C led to greater arrhythmia potential and impaired function.
Collapse
Affiliation(s)
- Joyce C. Ohiri
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | | | - Garima Tomar
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lisa Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lubna Choudhury
- Bluhm Cardiovascular InstituteNorthwestern MedicineChicagoILUSA
| | - David Y. Barefield
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Cell and Molecular PhysiologyLoyola University Stritch School of MedicineMaywoodILUSA
| | - Dominic Fullenkamp
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Anthony M. Gacita
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Tanner O. Monroe
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lorenzo Pesce
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Malorie Blancard
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lauren Vaught
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Alfred L. George
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| |
Collapse
|
5
|
Yin X, Li Q, Shu Y, Wang H, Thomas B, Maxwell JT, Zhang Y. Exploiting urine-derived induced pluripotent stem cells for advancing precision medicine in cell therapy, disease modeling, and drug testing. J Biomed Sci 2024; 31:47. [PMID: 38724973 PMCID: PMC11084032 DOI: 10.1186/s12929-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.
Collapse
Affiliation(s)
- Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Biju Thomas
- Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joshua T Maxwell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Astro V, Adamo A. Generation of iPSC Cell Lines from Patients with Sex Chromosome Aneuploidies. Methods Mol Biol 2024; 2770:185-200. [PMID: 38351455 DOI: 10.1007/978-1-0716-3698-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Somatic cell reprogramming allows the generation of human induced pluripotent stem cells (iPSCs) from patient's cells. The derived iPSCs provide an unlimited source of patient-specific cells that can be virtually differentiated in any cell of the human body. The generation of iPSCs has important implications for all human medicine fields, as they can be used for drug discovery, regenerative medicine, and developmental studies. Klinefelter Syndrome (KS) is the most common chromosome aneuploidy in males. KS is typically characterized by a 47,XXY karyotype, representing 80-90% of KS patients. In rare cases, high-grade sex chromosome aneuploidies (SCAs), 48,XXXY; 48,XXYY; 49,XXXXY, are also observed in males. Since the advent of the reprogramming technique, a few KS-iPSCs have been described. Here, we detail the methodology for generating primary fibroblasts from patients' skin biopsies and the subsequent derivation of iPSCs using an efficient integrative-free mRNA-based somatic reprogramming approach.
Collapse
Affiliation(s)
- Veronica Astro
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Antonio Adamo
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
7
|
Rossi R, Torelli S, Ala P, Weston W, Morgan J, Malhotra J, Muntoni F. MyoD-induced reprogramming of human fibroblasts and urinary stem cells in vitro: protocols and their applications. Front Physiol 2023; 14:1145047. [PMID: 37265839 PMCID: PMC10229783 DOI: 10.3389/fphys.2023.1145047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
The conversion of fibroblasts into myogenic cells is a powerful tool to both develop and test therapeutic strategies and to perform in-depth investigations of neuromuscular disorders, avoiding the need for muscle biopsies. We developed an easy, reproducible, and high-efficiency lentivirus-mediated transdifferentiation protocol, that can be used to convert healthy donor fibroblasts and a promising new cellular model, urinary stem cells (USCs), into myoblasts, that can be further differentiated into multinucleated myotubes in vitro. Transcriptome and proteome profiling of specific muscle markers (desmin, myosin, dystrophin) was performed to characterize both the myoblasts and myotubes derived from each cell type and to test the transdifferentiation-inducing capacity of MYOD1 in fibroblasts and USCs. Specifically, the Duchenne muscular dystrophy (DMD) transcripts and proteins, including both the full-length Dp427 and the short Dp71 isoform, were evaluated. The protocol was firstly developed in healthy donor fibroblasts and USCs and then used to convert DMD patients' fibroblasts, with the aim of testing the efficacy of an antisense drug in vitro. Technical issues, limitations, and problems are explained and discussed. We demonstrate that MyoD-induced-fibroblasts and USCs are a useful in vitro model of myogenic cells to investigate possible therapies for neuromuscular diseases.
Collapse
Affiliation(s)
- Rachele Rossi
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Silvia Torelli
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - William Weston
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | | | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
8
|
Kunitake K, Sathyaprakash C, Motohashi N, Aoki Y. Quantitative Evaluation of Exon Skipping in Urine-Derived Cells for Duchenne Muscular Dystrophy. Methods Mol Biol 2023; 2587:153-164. [PMID: 36401029 DOI: 10.1007/978-1-0716-2772-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antisense oligonucleotide (ASO)-based exon skipping therapy is thought to be promising for Duchenne muscular dystrophy (DMD). For the screening or assessing patient eligibility before administering ASO to patients, in vitro testing using myoblasts derived from each DMD patient is considered crucial. We previously reported state-of-the-art technology to obtain patient primary myoblasts from MYOD1-induced urine-derived cells (UDCs) as a model of DMD. We hypothesize that the myoblasts may potentially reflect specific pathological phenotypes, leading to a path for precision medicine in DMD patients. Here, we describe a detailed protocol for both acquiring MYOD1-induced myoblasts from UDCs and evaluating the correction of DMD mRNA and protein levels after exon-skipping in the cells.
Collapse
Affiliation(s)
- Katsuhiko Kunitake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Chaitra Sathyaprakash
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.
| |
Collapse
|
9
|
Jung C, Oh JE, Lee S, Yoon YS. Generation and Application of Directly Reprogrammed Endothelial Cells. Korean Circ J 2022; 52:643-658. [PMID: 36097834 PMCID: PMC9470489 DOI: 10.4070/kcj.2022.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
Cell-based therapy has emerged as a promising option for treating advanced ischemic cardiovascular disease by inducing vascular regeneration. However, clinical trials with adult cells turned out disappointing in general. As a newer approach, direct reprogramming has emerged to efficiently generate endothelial cells (ECs), which can promote neovascularization and vascular regeneration. This review provides recent updates on the direct endothelial reprogramming. In general, directly reprogrammed ECs can be generated by two approaches: one by transitioning through a plastic intermediate state and the other in a one-step transition without any intermediate states toward pluripotency. Moreover, the methods to deliver reprogramming factors and chemicals for the fate conversion are highlighted. Next, the therapeutic effects of the directly reprogrammed ECs on animal models are reviewed in detail. Other applications using directly reprogrammed ECs, such as tissue engineering and disease modeling, are also discussed. Lastly, the remaining questions and foremost challenges are addressed.
Collapse
Affiliation(s)
- Cholomi Jung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Eun Oh
- Research and Development Center, KarisBio Inc., Seoul, Korea
| | - Sangho Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Research and Development Center, KarisBio Inc., Seoul, Korea
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Ng N, Newbery M, Maksour S, Dottori M, Sluyter R, Ooi L. Transgene and Chemical Transdifferentiation of Somatic Cells for Rapid and Efficient Neurological Disease Cell Models. Front Cell Neurosci 2022; 16:858432. [PMID: 35634469 PMCID: PMC9130549 DOI: 10.3389/fncel.2022.858432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
For neurological diseases, molecular and cellular research relies on the use of model systems to investigate disease processes and test potential therapeutics. The last decade has witnessed an increase in the number of studies using induced pluripotent stem cells to generate disease relevant cell types from patients. The reprogramming process permits the generation of a large number of cells but is potentially disadvantaged by introducing variability in clonal lines and the removal of phenotypes of aging, which are critical to understand neurodegenerative diseases. An under-utilized approach to disease modeling involves the transdifferentiation of aged cells from patients, such as fibroblasts or blood cells, into various neural cell types. In this review we discuss techniques used for rapid and efficient direct conversion to neural cell types. We examine the limitations and future perspectives of this rapidly advancing field that could improve neurological disease modeling and drug discovery.
Collapse
Affiliation(s)
- Neville Ng
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Neville Ng,
| | - Michelle Newbery
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- Lezanne Ooi,
| |
Collapse
|
11
|
Barthélémy F, Santoso JW, Rabichow L, Jin R, Little I, Nelson SF, McCain ML, Miceli MC. Modeling Patient-Specific Muscular Dystrophy Phenotypes and Therapeutic Responses in Reprogrammed Myotubes Engineered on Micromolded Gelatin Hydrogels. Front Cell Dev Biol 2022; 10:830415. [PMID: 35465312 PMCID: PMC9020228 DOI: 10.3389/fcell.2022.830415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
In vitro models of patient-derived muscle allow for more efficient development of genetic medicines for the muscular dystrophies, which often present mutation-specific pathologies. One popular strategy to generate patient-specific myotubes involves reprogramming dermal fibroblasts to a muscle lineage through MyoD induction. However, creating physiologically relevant, reproducible tissues exhibiting multinucleated, aligned myotubes with organized striations is dependent on the introduction of physicochemical cues that mimic the native muscle microenvironment. Here, we engineered patient-specific control and dystrophic muscle tissues in vitro by culturing and differentiating MyoD–directly reprogrammed fibroblasts isolated from one healthy control subject, three patients with Duchenne muscular dystrophy (DMD), and two Limb Girdle 2A/R1 (LGMD2A/R1) patients on micromolded gelatin hydrogels. Engineered DMD and LGMD2A/R1 tissues demonstrated varying levels of defects in α-actinin expression and organization relative to control, depending on the mutation. In genetically relevant DMD tissues amenable to mRNA reframing by targeting exon 44 or 45 exclusion, exposure to exon skipping antisense oligonucleotides modestly increased myotube coverage and alignment and rescued dystrophin protein expression. These findings highlight the value of engineered culture substrates in guiding the organization of reprogrammed patient fibroblasts into aligned muscle tissues, thereby extending their value as tools for exploration and dissection of the cellular and molecular basis of genetic muscle defects, rescue, and repair.
Collapse
Affiliation(s)
- Florian Barthélémy
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey W. Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Laura Rabichow
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rongcheng Jin
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Isaiah Little
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stanley F. Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
- *Correspondence: M. Carrie Miceli, ; Megan L. McCain,
| | - M. Carrie Miceli
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: M. Carrie Miceli, ; Megan L. McCain,
| |
Collapse
|
12
|
Jiang Y, Torun T, Maffioletti SM, Serio A, Tedesco FS. Bioengineering human skeletal muscle models: Recent advances, current challenges and future perspectives. Exp Cell Res 2022; 416:113133. [DOI: 10.1016/j.yexcr.2022.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/30/2021] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
|
13
|
Talmon M, Massara E, Pruonto G, Quaregna M, Boccafoschi F, Riva B, Fresu LG. Characterization of a functional Ca2+ toolkit in urine-derived stem cells and derived skeletal muscle cells. Cell Calcium 2022; 103:102548. [DOI: 10.1016/j.ceca.2022.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
|
14
|
Falzarano MS, Rossi R, Grilli A, Fang M, Osman H, Sabatelli P, Antoniel M, Lu Z, Li W, Selvatici R, Al-Khalili C, Gualandi F, Bicciato S, Torelli S, Ferlini A. Urine-Derived Stem Cells Express 571 Neuromuscular Disorders Causing Genes, Making Them a Potential in vitro Model for Rare Genetic Diseases. Front Physiol 2021; 12:716471. [PMID: 34744760 PMCID: PMC8565768 DOI: 10.3389/fphys.2021.716471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Neuromuscular disorders (NMDs) are a heterogeneous group of genetic diseases, caused by mutations in genes involved in spinal cord, peripheral nerve, neuromuscular junction, and muscle functions. To advance the knowledge of the pathological mechanisms underlying NMDs and to eventually identify new potential drugs paving the way for personalized medicine, limitations regarding the availability of neuromuscular disease-related biological samples, rarely accessible from patients, are a major challenge. Aim: We characterized urinary stem cells (USCs) by in-depth transcriptome and protein profiling to evaluate whether this easily accessible source of patient-derived cells is suitable to study neuromuscular genetic diseases, focusing especially on those currently involved in clinical trials. Methods: The global transcriptomics of either native or MyoD transformed USCs obtained from control individuals was performed by RNA-seq. The expression of 610 genes belonging to 16 groups of disorders (http://www.musclegenetable.fr/) whose mutations cause neuromuscular diseases, was investigated on the RNA-seq output. In addition, protein expression of 11 genes related to NMDs including COL6A, EMD, LMNA, SMN, UBA1, DYNC1H1, SOD1, C9orf72, DYSF, DAG1, and HTT was analyzed in native USCs by immunofluorescence and/or Western blot (WB). Results: RNA-seq profile of control USCs shows that 571 out of 610 genes known to be involved in NMDs, are expressed in USCs. Interestingly, the expression levels of the majority of NMD genes remain unmodified following USCs MyoD transformation. Most genes involved in the pathogenesis of all 16 groups of NMDs are well represented except for channelopathies and malignant hyperthermia related genes. All tested proteins showed high expression values, suggesting consistency between transcription and protein representation in USCs. Conclusion: Our data suggest that USCs are human cells, obtainable by non-invasive means, which might be used as a patient-specific cell model to study neuromuscular disease-causing genes and that they can be likely adopted for a variety of in vitro functional studies such as mutation characterization, pathway identification, and drug screening.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Rachele Rossi
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mingyan Fang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Hana Osman
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy.,Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"- Unit of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Antoniel
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"- Unit of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Zhiyuan Lu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Wenyan Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Rita Selvatici
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Cristina Al-Khalili
- Department of Proteomics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Francesca Gualandi
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Torelli
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Alessandra Ferlini
- UOL (Unità Operativa Logistica) of Medical Genetics, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
15
|
Zhang Y, Nishiyama T, Olson EN, Bassel-Duby R. CRISPR/Cas correction of muscular dystrophies. Exp Cell Res 2021; 408:112844. [PMID: 34571006 PMCID: PMC8530959 DOI: 10.1016/j.yexcr.2021.112844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022]
Abstract
Muscular dystrophies are a heterogeneous group of monogenic neuromuscular disorders which lead to progressive muscle loss and degeneration of the musculoskeletal system. The genetic causes of muscular dystrophies are well characterized, but no effective treatments have been developed so far. The discovery and application of the CRISPR/Cas system for genome editing offers a new path for disease treatment with the potential to permanently correct genetic mutations. The post-mitotic and multinucleated features of skeletal muscle provide an ideal target for CRISPR/Cas therapeutic genome editing because correction of a subpopulation of nuclei can provide benefit to the whole myofiber. In this review, we provide an overview of the CRISPR/Cas system and its derivatives in genome editing, proposing potential CRISPR/Cas-based therapies to correct diverse muscular dystrophies, and we discuss challenges for translating CRISPR/Cas genome editing to a viable therapy for permanent correction of muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takahiko Nishiyama
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
16
|
Takizawa H, Takeshita E, Sato M, Shimizu-Motohashi Y, Ishiyama A, Mori-Yoshimura M, Takahashi Y, Komaki H, Aoki Y. Highly sensitive screening of antisense sequences for different types of DMD mutations in patients' urine-derived cells. J Neurol Sci 2021; 423:117337. [PMID: 33610829 DOI: 10.1016/j.jns.2021.117337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/03/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
Exon skipping using short antisense oligonucleotides (AONs) is a promising treatment for Duchenne muscular dystrophy (DMD). Several exon-skipping drugs, including viltolarsen (NS-065/NCNP-01), have been approved worldwide. Immortalized human skeletal muscle cell lines, such as rhabdomyosarcoma cells, are frequently used to screen efficient oligonucleotide sequences. However, rhabdomyosarcoma cells do not recapitulate DMD pathophysiology as they express endogenous dystrophin. To overcome this limitation, we recently established a direct human somatic cell reprogramming technology and successfully developed a cellular skeletal muscle DMD model by using myogenic differentiation 1 (MYOD1)-transduced urine-derived cells (MYOD1-UDCs). Here, we compared in vitro drug screening systems in MYOD1-UDCs and rhabdomyosarcoma cells. We collected UDCs from patients with DMD amenable to exon 51 skipping, and obtained MYOD1-UDCs. We then compared the efficiency of exon 51 skipping induced by various morpholino-based AONs, including eteplirsen in differentiated MYOD1-UDCs (UDC-myotubes) and rhabdomyosarcoma cells. Exon skipping was induced more efficiently in UDC-myotubes than in rhabdomyosarcoma cells even at a low AON concentration (1 μM). Furthermore, exon 51 skipping efficiency was higher in UDC-myotubes with a deletion of exons 49-50 than in those with a deletion of exons 48-50, suggesting that the skipping efficiency may vary depending on the DMD mutation pattern. An essential finding of this study is that the sequence of eteplirsen consistently leads to much lower efficiency than other sequences. These findings underscore the importance of AON sequence optimization by our cellular system, which enables highly sensitive screening of exon skipping drugs that target different types of DMD mutations.
Collapse
Affiliation(s)
- Hotake Takizawa
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mitsuto Sato
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
17
|
Modelling Neuromuscular Diseases in the Age of Precision Medicine. J Pers Med 2020; 10:jpm10040178. [PMID: 33080928 PMCID: PMC7712305 DOI: 10.3390/jpm10040178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Advances in knowledge resulting from the sequencing of the human genome, coupled with technological developments and a deeper understanding of disease mechanisms of pathogenesis are paving the way for a growing role of precision medicine in the treatment of a number of human conditions. The goal of precision medicine is to identify and deliver effective therapeutic approaches based on patients’ genetic, environmental, and lifestyle factors. With the exception of cancer, neurological diseases provide the most promising opportunity to achieve treatment personalisation, mainly because of accelerated progress in gene discovery, deep clinical phenotyping, and biomarker availability. Developing reproducible, predictable and reliable disease models will be key to the rapid delivery of the anticipated benefits of precision medicine. Here we summarize the current state of the art of preclinical models for neuromuscular diseases, with particular focus on their use and limitations to predict safety and efficacy treatment outcomes in clinical trials.
Collapse
|
18
|
Urine-Derived Epithelial Cell Lines: A New Tool to Model Fragile X Syndrome (FXS). Cells 2020; 9:cells9102240. [PMID: 33027907 PMCID: PMC7600987 DOI: 10.3390/cells9102240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental condition associated with intellectual disability and behavioral problems due to the lack of the Fragile X mental retardation protein (FMRP), which plays a crucial role in synaptic plasticity and memory. A desirable in vitro cell model to study FXS would be one that can be generated by simple isolation and culture method from a collection of a non-invasive donor specimen. Currently, the various donor-specific cells can be isolated mainly from peripheral blood and skin biopsy. However, they are somewhat invasive methods for establishing cell lines from the primary subject material. In this study, we characterized a cost-effective and straightforward method to derive epithelial cell lines from urine samples collected from participants with FXS and healthy controls (TD). The urine-derived cells expressed epithelial cell surface markers via fluorescence-activated cell sorting (FACS). We observed inter, and the intra-tissue CGG mosaicism in the PBMCs and the urine-derived cells from participants with FXS potentially related to the observed variations in the phenotypic and clinical presentation FXS. We characterized these urine-derived epithelial cells for FMR1 mRNA and FMRP expression and observed some expression in the lines derived from full mutation mosaic participants. Further, FMRP expression was localized in the cytoplasm of the urine-derived epithelial cells of healthy controls. Deficient FMRP expression was also observed in mosaic males, while, as expected, no expression was observed in cells derived from participants with a hypermethylated full mutation.
Collapse
|
19
|
Urine-Derived Induced Pluripotent Stem Cells in Cardiovascular Disease. Cardiol Res Pract 2020; 2020:3563519. [PMID: 32377426 PMCID: PMC7199581 DOI: 10.1155/2020/3563519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/26/2019] [Accepted: 12/17/2019] [Indexed: 12/28/2022] Open
Abstract
Recent studies have demonstrated that stem cells are equipped with the potential to differentiate into various types of cells, including cardiomyocytes. Meanwhile, stem cells are highly promising in curing cardiovascular diseases. However, owing to the ethical challenges posed in stem cell acquisition and the complexity and invasive nature of the method, large-scale expansions and clinical applications in the laboratory have been limited. The current generation of cardiomyocytes is available from diverse sources; urine is one of the promising sources among them. Although advanced research was established in the generation of human urine cells as cardiomyocytes, the reprogramming of urine cells to cardiomyocytes remains unclear. In this context, it is necessary to develop a minimally invasive method to create induced pluripotent stem cells (iPSCs). This review focuses on the latest advances in research on urine-derived iPSCs and their application mechanisms in cardiovascular diseases.
Collapse
|
20
|
Shimizu K, Ohsumi S, Kishida T, Mazda O, Honda H. Fabrication of contractile skeletal muscle tissues using directly converted myoblasts from human fibroblasts. J Biosci Bioeng 2020; 129:632-637. [DOI: 10.1016/j.jbiosc.2019.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
|
21
|
Urine-Derived Stem Cells: Applications in Regenerative and Predictive Medicine. Cells 2020; 9:cells9030573. [PMID: 32121221 PMCID: PMC7140531 DOI: 10.3390/cells9030573] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Despite being a biological waste, human urine contains a small population of cells with self-renewal capacity and differentiation potential into several cell types. Being derived from the convoluted tubules of nephron, renal pelvis, ureters, bladder and urethra, urine-derived stem cells (UDSC) have a similar phenotype to mesenchymal stroma cells (MSC) and can be reprogrammed into iPSC (induced pluripotent stem cells). Having simple, safer, low-cost and noninvasive collection procedures, the interest in UDSC has been growing in the last decade. With great potential in regenerative medicine applications, UDSC can also be used as biological models for pharmacology and toxicology tests. This review describes UDSC biological characteristics and differentiation potential and their possible use, including the potential of UDSC-derived iPSC to be used in drug discovery and toxicology, as well as in regenerative medicine. Being a new cellular platform amenable to noninvasive collection for disease stratification and personalized therapy could be a future application for UDSC.
Collapse
|
22
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
23
|
Sato M, Takizawa H, Nakamura A, Turner BJ, Shabanpoor F, Aoki Y. Application of Urine-Derived Stem Cells to Cellular Modeling in Neuromuscular and Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:297. [PMID: 31920531 PMCID: PMC6915080 DOI: 10.3389/fnmol.2019.00297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Neuromuscular and neurodegenerative diseases are mostly modeled using genetically modified animals such as mice. However, animal models do not recapitulate all the phenotypes that are specific to human disease. This is mainly due to the genetic, anatomical and physiological difference in the neuromuscular systems of animals and humans. The emergence of direct and indirect human somatic cell reprogramming technologies may overcome this limitation because they enable the use of disease and patient-specific cellular models as enhanced platforms for drug discovery and autologous cell-based therapy. Induced pluripotent stem cells (iPSCs) and urine-derived stem cells (USCs) are increasingly employed to recapitulate the pathophysiology of various human diseases. Recent cell-based modeling approaches utilize highly complex differentiation systems that faithfully mimic human tissue- and organ-level dysfunctions. In this review, we discuss promising cellular models, such as USC- and iPSC-based approaches, that are currently being used to model human neuromuscular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mitsuto Sato
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Hotake Takizawa
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akinori Nakamura
- Department of Clinical Research, National Hospital Organization Matsumoto Medical Center, Matsumoto, Japan
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
24
|
Falzarano MS, Ferlini A. Urinary Stem Cells as Tools to Study Genetic Disease: Overview of the Literature. J Clin Med 2019; 8:jcm8050627. [PMID: 31071994 PMCID: PMC6572423 DOI: 10.3390/jcm8050627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Urine specimens represent a novel and non-invasive approach to isolate patient-specific stem cells by easy and low-cost procedures, replacing the traditional sources (muscle/skin biopsy/adipose tissue) obtained with invasive and time-consuming methods. Urine-derived stem cells (USCs) can be used in a broad field of applications, such as regenerative medicine, cell therapy, diagnostic testing, disease modelling and drug screening. USCs are a good source of cells for generating induced pluripotent stem cells (iPSCs) and importantly, they can also be directly converted into specific cell lines. In this review, we show the features of USCs and their use as a promising in vitro model to study genetic diseases.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- UOL (Unita` Operativa Logistica) of Medical Genetics, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessandra Ferlini
- UOL (Unita` Operativa Logistica) of Medical Genetics, University of Ferrara, 44121 Ferrara, Italy.
- Neuromuscular Unit, Great Ormond Street Hospital, University College London, Bloomsbury, London WC1E 6BT, UK.
| |
Collapse
|
25
|
Del Carmen Ortuño-Costela M, García-López M, Cerrada V, Gallardo ME. iPSCs: A powerful tool for skeletal muscle tissue engineering. J Cell Mol Med 2019; 23:3784-3794. [PMID: 30933431 PMCID: PMC6533516 DOI: 10.1111/jcmm.14292] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Both volumetric muscle loss (VML) and muscle degenerative diseases lead to an important decrease in skeletal muscle mass, condition that nowadays lacks an optimal treatment. This issue has driven towards an increasing interest in new strategies in tissue engineering, an emerging field that can offer very promising approaches. In addition, the discovery of induced pluripotent stem cells (iPSCs) has completely revolutionized the actual view of personalized medicine, and their utilization in skeletal muscle tissue engineering could, undoubtedly, add myriad benefits. In this review, we want to provide a general vision of the basic aspects to consider when engineering skeletal muscle tissue using iPSCs. Specifically, we will focus on the three main pillars of tissue engineering: the scaffold designing, the selection of the ideal cell source and the addition of factors that can enhance the resemblance with the native tissue.
Collapse
Affiliation(s)
- María Del Carmen Ortuño-Costela
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid, Spain, (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta García-López
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Victoria Cerrada
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Esther Gallardo
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBERER), Madrid, Spain
| |
Collapse
|
26
|
Kim EY, Barefield DY, Vo AH, Gacita AM, Schuster EJ, Wyatt EJ, Davis JL, Dong B, Sun C, Page P, Dellefave-Castillo L, Demonbreun A, Zhang HF, McNally EM. Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes. JCI Insight 2019; 4:122686. [PMID: 30730308 DOI: 10.1172/jci.insight.122686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/31/2019] [Indexed: 01/06/2023] Open
Abstract
Myotonic dystrophy (DM) is the most common autosomal dominant muscular dystrophy and encompasses both skeletal muscle and cardiac complications. DM is nucleotide repeat expansion disorder in which type 1 (DM1) is due to a trinucleotide repeat expansion on chromosome 19 and type 2 (DM2) arises from a tetranucleotide repeat expansion on chromosome 3. Developing representative models of DM in animals has been challenging due to instability of nucleotide repeat expansions, especially for DM2, which is characterized by nucleotide repeat expansions often greater than 5,000 copies. To investigate mechanisms of human DM, we generated cellular models of DM1 and DM2. We used regulated MyoD expression to reprogram urine-derived cells into myotubes. In this myogenic cell model, we found impaired dystrophin expression, in the presence of muscleblind-like 1 (MBNL1) foci, and aberrant splicing in DM1 but not in DM2 cells. We generated induced pluripotent stem cells (iPSC) from healthy controls and DM1 and DM2 subjects, and we differentiated these into cardiomyocytes. DM1 and DM2 cells displayed an increase in RNA foci concomitant with cellular differentiation. iPSC-derived cardiomyocytes from DM1 but not DM2 had aberrant splicing of known target genes and MBNL sequestration. High-resolution imaging revealed tight association between MBNL clusters and RNA foci in DM1. Ca2+ transients differed between DM1- and DM2 iPSC-derived cardiomyocytes, and each differed from healthy control cells. RNA-sequencing from DM1- and DM2 iPSC-derived cardiomyocytes revealed distinct misregulation of gene expression, as well as differential aberrant splicing patterns. Together, these data support that DM1 and DM2, despite some shared clinical and molecular features, have distinct pathological signatures.
Collapse
Affiliation(s)
- Ellis Y Kim
- Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, Illinois, USA
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andy H Vo
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Anthony M Gacita
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emma J Schuster
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Biqin Dong
- Department of Biomedical Engineering and.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Patrick Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lisa Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexis Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
27
|
Takizawa H, Hara Y, Mizobe Y, Ohno T, Suzuki S, Inoue K, Takeshita E, Shimizu-Motohashi Y, Ishiyama A, Hoshino M, Komaki H, Takeda S, Aoki Y. Modelling Duchenne muscular dystrophy in MYOD1-converted urine-derived cells treated with 3-deazaneplanocin A hydrochloride. Sci Rep 2019; 9:3807. [PMID: 30846748 PMCID: PMC6405839 DOI: 10.1038/s41598-019-40421-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/12/2019] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle disorder characterised by mutations in the DMD gene. Recently, we have completed a phase I study in Japan based on systemic administration of the morpholino antisense that is amenable to exon-53 skipping, successfully. However, to achieve the effective treatment of DMD, in vitro assays on patient muscle cells to screen drugs and patient eligibility before clinical trials are indispensable. Here, we report a novel MYOD1-converted, urine-derived cells (UDCs) as a novel DMD muscle cell model. We discovered that 3-deazaneplanocin A hydrochloride, a histone methyltransferase inhibitor, could significantly promote MYOGENIN expression and myotube differentiation. We also demonstrated that our system, based on UDCs from DMD patients, could be used successfully to evaluate exon-skipping drugs targeting DMD exons including 44, 50, 51, and 55. This new autologous UDC-based disease modelling could lead to the application of precision medicine for various muscle diseases.
Collapse
Affiliation(s)
- Hotake Takizawa
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Hara
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshitaka Mizobe
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Taisuke Ohno
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Sadafumi Suzuki
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mikio Hoshino
- Department of Biochemistry & Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan. .,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
28
|
Xing F, Liu G, Duan X, Xiang Z. [The application of urine derived stem cells in regeneration of musculoskeletal system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1477-1482. [PMID: 30417628 PMCID: PMC8414118 DOI: 10.7507/1002-1892.201804024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 10/13/2018] [Indexed: 02/05/2023]
Abstract
Objective To review the application of urine derived stem cells (USCs) in regeneration of musculoskeletal system. Methods The original literature about USCs in the regeneration of musculoskeletal system was extensively reviewed and analyzed. Results The source of USCs is noninvasive and extensive. USCs express MSCs surface markers with stable proliferative and multi-directional differentiation capabilities, and are widely used in bone, skin, nerve, and other skeletal and muscle system regeneration fields and show a certain repair capacity. Conclusion USCs from non-invasive sources have a wide application prospect in the regeneration of musculoskeletal system, but the definite biological mechanism of its repair needs further study.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Guoming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
29
|
Abstract
The ability to efficiently modify the genome using CRISPR technology has rapidly revolutionized biology and genetics and will soon transform medicine. Duchenne muscular dystrophy (DMD) represents one of the first monogenic disorders that has been investigated with respect to CRISPR-mediated correction of causal genetic mutations. DMD results from mutations in the gene encoding dystrophin, a scaffolding protein that maintains the integrity of striated muscles. Thousands of different dystrophin mutations have been identified in DMD patients, who suffer from a loss of ambulation followed by respiratory insufficiency, heart failure, and death by the third decade of life. Using CRISPR to bypass DMD mutations, dystrophin expression has been efficiently restored in human cells and mouse models of DMD. Here, we review recent progress toward the development of possible CRISPR therapies for DMD and highlight opportunities and potential obstacles in attaining this goal.
Collapse
Affiliation(s)
- Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
30
|
Specific Cell (Re-)Programming: Approaches and Perspectives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:71-115. [PMID: 29071403 DOI: 10.1007/10_2017_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.
Collapse
|
31
|
Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018; 98:1205-1240. [PMID: 29717930 PMCID: PMC6335101 DOI: 10.1152/physrev.00046.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Muscular dystrophies represent a large group of genetic disorders that significantly impair quality of life and often progress to premature death. There is no effective treatment for these debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or targeting the secondary effects, while the underlying gene mutation is still present in the human genome. The discovery and application of programmable nucleases for site-specific DNA double-stranded breaks provides a powerful tool for precise genome engineering. In particular, the CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a historical overview of genome-editing technologies, summarize the most recent advances, and discuss potential strategies and challenges for permanently correcting genetic mutations that cause muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Chengzu Long
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Eric N Olson
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
32
|
Wyatt EJ, Demonbreun AR, Kim EY, Puckelwartz MJ, Vo AH, Dellefave-Castillo LM, Gao QQ, Vainzof M, Pavanello RCM, Zatz M, McNally EM. Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers. JCI Insight 2018; 3:99357. [PMID: 29720576 DOI: 10.1172/jci.insight.99357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.
Collapse
Affiliation(s)
- Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ellis Y Kim
- Committee on Molecular Medicine and Molecular Pathogenesis and
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andy H Vo
- Committee on Developmental Biology and Regenerative Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Quan Q Gao
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mariz Vainzof
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Rita C M Pavanello
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
33
|
Rahman MS, Spitzhorn LS, Wruck W, Hagenbeck C, Balan P, Graffmann N, Bohndorf M, Ncube A, Guillot PV, Fehm T, Adjaye J. The presence of human mesenchymal stem cells of renal origin in amniotic fluid increases with gestational time. Stem Cell Res Ther 2018; 9:113. [PMID: 29695308 PMCID: PMC5918774 DOI: 10.1186/s13287-018-0864-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Established therapies for managing kidney dysfunction such as kidney dialysis and transplantation are limited due to the shortage of compatible donated organs and high costs. Stem cell-based therapies are currently under investigation as an alternative treatment option. As amniotic fluid is composed of fetal urine harboring mesenchymal stem cells (AF-MSCs), we hypothesized that third-trimester amniotic fluid could be a novel source of renal progenitor and differentiated cells. Methods Human third-trimester amniotic fluid cells (AFCs) were isolated and cultured in distinct media. These cells were characterized as renal progenitor cells with respect to cell morphology, cell surface marker expression, transcriptome and differentiation into chondrocytes, osteoblasts and adipocytes. To test for renal function, a comparative albumin endocytosis assay was performed using AF-MSCs and commercially available renal cells derived from kidney biopsies. Comparative transcriptome analyses of first, second and third trimester-derived AF-MSCs were conducted to monitor expression of renal-related genes. Results Regardless of the media used, AFCs showed expression of pluripotency-associated markers such as SSEA4, TRA-1-60, TRA-1-81 and C-Kit. They also express the mesenchymal marker Vimentin. Immunophenotyping confirmed that third-trimester AFCs are bona fide MSCs. AF-MSCs expressed the master renal progenitor markers SIX2 and CITED1, in addition to typical renal proteins such as PODXL, LHX1, BRN1 and PAX8. Albumin endocytosis assays demonstrated the functionality of AF-MSCs as renal cells. Additionally, upregulated expression of BMP7 and downregulation of WT1, CD133, SIX2 and C-Kit were observed upon activation of WNT signaling by treatment with the GSK-3 inhibitor CHIR99201. Transcriptome analysis and semiquantitative PCR revealed increasing expression levels of renal-specific genes (e.g., SALL1, HNF4B, SIX2) with gestational time. Moreover, AF-MSCs shared more genes with human kidney cells than with native MSCs and gene ontology terms revealed involvement of biological processes associated with kidney morphogenesis. Conclusions Third-trimester amniotic fluid contains AF-MSCs of renal origin and this novel source of kidney progenitors may have enormous future potentials for disease modeling, renal repair and drug screening. Electronic supplementary material The online version of this article (10.1186/s13287-018-0864-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Lucas-Sebastian Spitzhorn
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Carsten Hagenbeck
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Percy Balan
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Audrey Ncube
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Pascale V Guillot
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London, London, WC1E 6HX, UK
| | - Tanja Fehm
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
34
|
Ruiz-Babot G, Balyura M, Hadjidemetriou I, Ajodha SJ, Taylor DR, Ghataore L, Taylor NF, Schubert U, Ziegler CG, Storr HL, Druce MR, Gevers EF, Drake WM, Srirangalingam U, Conway GS, King PJ, Metherell LA, Bornstein SR, Guasti L. Modeling Congenital Adrenal Hyperplasia and Testing Interventions for Adrenal Insufficiency Using Donor-Specific Reprogrammed Cells. Cell Rep 2018; 22:1236-1249. [PMID: 29386111 PMCID: PMC5809617 DOI: 10.1016/j.celrep.2018.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/28/2017] [Accepted: 12/29/2017] [Indexed: 01/30/2023] Open
Abstract
Adrenal insufficiency is managed by hormone replacement therapy, which is far from optimal; the ability to generate functional steroidogenic cells would offer a unique opportunity for a curative approach to restoring the complex feedback regulation of the hypothalamic-pituitary-adrenal axis. Here, we generated human induced steroidogenic cells (hiSCs) from fibroblasts, blood-, and urine-derived cells through forced expression of steroidogenic factor-1 and activation of the PKA and LHRH pathways. hiSCs had ultrastructural features resembling steroid-secreting cells, expressed steroidogenic enzymes, and secreted steroid hormones in response to stimuli. hiSCs were viable when transplanted into the mouse kidney capsule and intra-adrenal. Importantly, the hypocortisolism of hiSCs derived from patients with adrenal insufficiency due to congenital adrenal hyperplasia was rescued by expressing the wild-type version of the defective disease-causing enzymes. Our study provides an effective tool with many potential applications for studying adrenal pathobiology in a personalized manner and opens venues for the development of precision therapies.
Collapse
Affiliation(s)
- Gerard Ruiz-Babot
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Mariya Balyura
- University Hospital Carl Gustav Carus, Department of Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Irene Hadjidemetriou
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Sharon J Ajodha
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - David R Taylor
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS London, UK
| | - Lea Ghataore
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS London, UK
| | - Norman F Taylor
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS London, UK
| | - Undine Schubert
- University Hospital Carl Gustav Carus, Department of Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian G Ziegler
- University Hospital Carl Gustav Carus, Department of Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Maralyn R Druce
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Evelien F Gevers
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - William M Drake
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | | | - Gerard S Conway
- Department of Endocrinology, University College London Hospitals, NW1 2PG London, UK
| | - Peter J King
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Stefan R Bornstein
- University Hospital Carl Gustav Carus, Department of Medicine III, Technische Universität Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Technische Universität Dresden, DZD-German Centre for Diabetes Research, 01307 Dresden, Germany; Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Diabetes and Nutritional Sciences Division, King's College London, WC2R 2LS London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK.
| |
Collapse
|
35
|
Urine-Derived Stem Cells: The Present and the Future. Stem Cells Int 2017; 2017:4378947. [PMID: 29250119 PMCID: PMC5698822 DOI: 10.1155/2017/4378947] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023] Open
Abstract
Stem cell research provides promising strategies in improving healthcare for human beings. As a noninvasively obtained and easy-to-culture cell resource with relatively low expense, urine-derived stem cells have special advantages. They have been extensively studied on its proliferation ability and differentiation potential and were being reprogrammed to model diseases during the last decade. In this review, we intend to summarize the latest progress on the research of urine-derived stem cells for its broad application mainly in regenerative medicine and disease modeling, as well as in what is challenging currently. This minireview will highlight the potential application of urine-derived stem cells and provides possible direction of further research in the future.
Collapse
|
36
|
226 th ENMC International Workshop:: Towards validated and qualified biomarkers for therapy development for Duchenne muscular dystrophy 20-22 January 2017, Heemskerk, The Netherlands. Neuromuscul Disord 2017; 28:77-86. [PMID: 29203356 DOI: 10.1016/j.nmd.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022]
|
37
|
Pini V, Morgan JE, Muntoni F, O’Neill HC. Genome Editing and Muscle Stem Cells as a Therapeutic Tool for Muscular Dystrophies. CURRENT STEM CELL REPORTS 2017; 3:137-148. [PMID: 28616376 PMCID: PMC5445179 DOI: 10.1007/s40778-017-0076-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose of Review Muscular dystrophies are a group of severe degenerative disorders characterized by muscle fiber degeneration and death. Therapies designed to restore muscle homeostasis and to replace dying fibers are being experimented, but none of those in clinical trials are suitable to permanently address individual gene mutation. The purpose of this review is to discuss genome editing tools such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated), which enable direct sequence alteration and could potentially be adopted to correct the genetic defect leading to muscle impairment. Recent Findings Recent findings show that advances in gene therapy, when combined with traditional viral vector-based approaches, are bringing the field of regenerative medicine closer to precision-based medicine. Summary The use of such programmable nucleases is proving beneficial for the creation of more accurate in vitro and in vivo disease models. Several gene and cell-therapy studies have been performed on satellite cells, the primary skeletal muscle stem cells involved in muscle regeneration. However, these have mainly been based on artificial replacement or augmentation of the missing protein. Satellite cells are a particularly appealing target to address these innovative technologies for the treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Veronica Pini
- Molecular and Developmental Neurosciences Program, The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Jennifer E. Morgan
- Molecular and Developmental Neurosciences Program, The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Francesco Muntoni
- Molecular and Developmental Neurosciences Program, The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Helen C. O’Neill
- Embryology, IVF and Reproductive Genetics Group, Institute for Women’s Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX UK
| |
Collapse
|
38
|
Yang B, Qiu Y, Zhou N, Ouyang H, Ding J, Cheng B, Sun J. Application of Stem Cells in Oral Disease Therapy: Progresses and Perspectives. Front Physiol 2017; 8:197. [PMID: 28421002 PMCID: PMC5376595 DOI: 10.3389/fphys.2017.00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cells are undifferentiated and pluripotent cells that can differentiate into specialized cells with a more specific function. Stem cell therapies become preferred methods for the treatment of multiple diseases. Oral and maxillofacial defect is one kind of the diseases that could be most possibly cured by stem cell therapies. Here we discussed oral diseases, oral adult stem cells, iPS cells, and the progresses/challenges/perspectives of application of stem cells for oral disease treatment.
Collapse
Affiliation(s)
- Bo Yang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Yi Qiu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Niu Zhou
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen UniversityGuangzhou, China
| | - Junjun Ding
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhou, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Jianbo Sun
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| |
Collapse
|