1
|
Cumbers GA, Harvey-Latham ED, Kassiou M, Werry EL, Danon JJ. Emerging TSPO-PET Radiotracers for Imaging Neuroinflammation: A Critical Analysis. Semin Nucl Med 2024; 54:856-874. [PMID: 39477764 DOI: 10.1053/j.semnuclmed.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
The translocator protein (TSPO) is a biomarker for imaging neuroinflammation via Positron Emission Tomography (PET) across a broad range of CNS conditions. Most clinically used PET ligands targeting TSPO have limitations, including high lipophilicity and off-target binding or poor binding to a mutated TSPO isoform present in up to 30% of the population. Research efforts over the past decade have focused on development of improved TSPO PET radiotracers that overcome these limitations. This review provides a critical analysis of the development and validation of these so-called "third-generation" radiotracers in clinical and preclinical settings. We also offer our perspective on the future directions of TSPO PET imaging, including recommendations for overcoming current challenges and capitalizing on emerging opportunities in molecular imaging for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Grace A Cumbers
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Edward D Harvey-Latham
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia.
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia; Central Clinical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Jonathan J Danon
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Bartos LM, Quach S, Zenatti V, Kirchleitner SV, Blobner J, Wind-Mark K, Kolabas ZI, Ulukaya S, Holzgreve A, Ruf VC, Kunze LH, Kunte ST, Hoermann L, Härtel M, Park HE, Groß M, Franzmeier N, Zatcepin A, Zounek A, Kaiser L, Riemenschneider MJ, Perneczky R, Rauchmann BS, Stöcklein S, Ziegler S, Herms J, Ertürk A, Tonn JC, Thon N, von Baumgarten L, Prestel M, Tahirovic S, Albert NL, Brendel M. Remote Neuroinflammation in Newly Diagnosed Glioblastoma Correlates with Unfavorable Clinical Outcome. Clin Cancer Res 2024; 30:4618-4634. [PMID: 39150564 PMCID: PMC11474166 DOI: 10.1158/1078-0432.ccr-24-1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Current therapy strategies still provide only limited success in the treatment of glioblastoma, the most frequent primary brain tumor in adults. In addition to the characterization of the tumor microenvironment, global changes in the brain of patients with glioblastoma have been described. However, the impact and molecular signature of neuroinflammation distant of the primary tumor site have not yet been thoroughly elucidated. EXPERIMENTAL DESIGN We performed translocator protein (TSPO)-PET in patients with newly diagnosed glioblastoma (n = 41), astrocytoma WHO grade 2 (n = 7), and healthy controls (n = 20) and compared TSPO-PET signals of the non-lesion (i.e., contralateral) hemisphere. Back-translation into syngeneic SB28 glioblastoma mice was used to characterize Pet alterations on a cellular level. Ultimately, multiplex gene expression analyses served to profile immune cells in remote brain. RESULTS Our study revealed elevated TSPO-PET signals in contralateral hemispheres of patients with newly diagnosed glioblastoma compared to healthy controls. Contralateral TSPO was associated with persisting epileptic seizures and shorter overall survival independent of the tumor phenotype. Back-translation into syngeneic glioblastoma mice pinpointed myeloid cells as the predominant source of contralateral TSPO-PET signal increases and identified a complex immune signature characterized by myeloid cell activation and immunosuppression in distant brain regions. CONCLUSIONS Neuroinflammation within the contralateral hemisphere can be detected with TSPO-PET imaging and associates with poor outcome in patients with newly diagnosed glioblastoma. The molecular signature of remote neuroinflammation promotes the evaluation of immunomodulatory strategies in patients with detrimental whole brain inflammation as reflected by high TSPO expression.
Collapse
Affiliation(s)
- Laura M. Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
| | - Valerio Zenatti
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | | | - Jens Blobner
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Munich, Germany.
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Munich, Germany.
- Faculty of Biology, Master of Science Program in Molecular and Cellular Biology, Ludwig-Maximilians-Universität München, Planegg, Germany.
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany.
| | - Lea H. Kunze
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Sebastian T. Kunte
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Leonie Hoermann
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Marlies Härtel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Ha Eun Park
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Mattes Groß
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | - Adrian Zounek
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | | | - Robert Perneczky
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom.
| | | | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Jochen Herms
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Munich, Germany.
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
| | - Joerg C. Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Matthias Prestel
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | - Sabina Tahirovic
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Kaiser L, Quach S, Zounek AJ, Wiestler B, Zatcepin A, Holzgreve A, Bollenbacher A, Bartos LM, Ruf VC, Böning G, Thon N, Herms J, Riemenschneider MJ, Stöcklein S, Brendel M, Rupprecht R, Tonn JC, Bartenstein P, von Baumgarten L, Ziegler S, Albert NL. Enhancing predictability of IDH mutation status in glioma patients at initial diagnosis: a comparative analysis of radiomics from MRI, [ 18F]FET PET, and TSPO PET. Eur J Nucl Med Mol Imaging 2024; 51:2371-2381. [PMID: 38396261 PMCID: PMC11178656 DOI: 10.1007/s00259-024-06654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE According to the World Health Organization classification for tumors of the central nervous system, mutation status of the isocitrate dehydrogenase (IDH) genes has become a major diagnostic discriminator for gliomas. Therefore, imaging-based prediction of IDH mutation status is of high interest for individual patient management. We compared and evaluated the diagnostic value of radiomics derived from dual positron emission tomography (PET) and magnetic resonance imaging (MRI) data to predict the IDH mutation status non-invasively. METHODS Eighty-seven glioma patients at initial diagnosis who underwent PET targeting the translocator protein (TSPO) using [18F]GE-180, dynamic amino acid PET using [18F]FET, and T1-/T2-weighted MRI scans were examined. In addition to calculating tumor-to-background ratio (TBR) images for all modalities, parametric images quantifying dynamic [18F]FET PET information were generated. Radiomic features were extracted from TBR and parametric images. The area under the receiver operating characteristic curve (AUC) was employed to assess the performance of logistic regression (LR) classifiers. To report robust estimates, nested cross-validation with five folds and 50 repeats was applied. RESULTS TBRGE-180 features extracted from TSPO-positive volumes had the highest predictive power among TBR images (AUC 0.88, with age as co-factor 0.94). Dynamic [18F]FET PET reached a similarly high performance (0.94, with age 0.96). The highest LR coefficients in multimodal analyses included TBRGE-180 features, parameters from kinetic and early static [18F]FET PET images, age, and the features from TBRT2 images such as the kurtosis (0.97). CONCLUSION The findings suggest that incorporating TBRGE-180 features along with kinetic information from dynamic [18F]FET PET, kurtosis from TBRT2, and age can yield very high predictability of IDH mutation status, thus potentially improving early patient management.
Collapse
Affiliation(s)
- Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - S Quach
- Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
| | - A J Zounek
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - B Wiestler
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - A Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - A Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - A Bollenbacher
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - L M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - V C Ruf
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - G Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - N Thon
- Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
| | - J Herms
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - M J Riemenschneider
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - S Stöcklein
- Department of Radiology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - M Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - R Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - J C Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - L von Baumgarten
- Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - S Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - N L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| |
Collapse
|
4
|
Zatcepin A, Kopczak A, Holzgreve A, Hein S, Schindler A, Duering M, Kaiser L, Lindner S, Schidlowski M, Bartenstein P, Albert N, Brendel M, Ziegler SI. Machine learning-based approach reveals essential features for simplified TSPO PET quantification in ischemic stroke patients. Z Med Phys 2024; 34:218-230. [PMID: 36682921 PMCID: PMC11156782 DOI: 10.1016/j.zemedi.2022.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Neuroinflammation evaluation after acute ischemic stroke is a promising option for selecting an appropriate post-stroke treatment strategy. To assess neuroinflammation in vivo, translocator protein PET (TSPO PET) can be used. However, the gold standard TSPO PET quantification method includes a 90 min scan and continuous arterial blood sampling, which is challenging to perform on a routine basis. In this work, we determine what information is required for a simplified quantification approach using a machine learning algorithm. MATERIALS AND METHODS We analyzed data from 18 patients with ischemic stroke who received 0-90 min [18F]GE-180 PET as well as T1-weigted (T1w), FLAIR, and arterial spin labeling (ASL) MRI scans. During PET scans, five manual venous blood samples at 5, 15, 30, 60, and 85 min post injection (p.i.) were drawn, and plasma activity concentration was measured. Total distribution volume (VT) was calculated using Logan plot with the full dynamic PET and an image-derived input function (IDIF) from the carotid arteries. IDIF was scaled by a calibration factor derived from all the measured plasma activity concentrations. The calculated VT values were used for training a random forest regressor. As input features for the model, we used three late PET frames (60-70, 70-80, and 80-90 min p.i.), the ASL image reflecting perfusion, the voxel coordinates, the lesion mask, and the five plasma activity concentrations. The algorithm was validated with the leave-one-out approach. To estimate the impact of the individual features on the algorithm's performance, we used Shapley Additive Explanations (SHAP). Having determined that the three late PET frames and the plasma activity concentrations were the most important features, we tested a simplified quantification approach consisting of dividing a late PET frame by a plasma activity concentration. All the combinations of frames/samples were compared by means of concordance correlation coefficient and Bland-Altman plots. RESULTS When using all the input features, the algorithm predicted VT values with high accuracy (87.8 ± 8.3%) for both lesion and non-lesion voxels. The SHAP values demonstrated high impact of the late PET frames (60-70, 70-80, and 80-90 min p.i.) and plasma activity concentrations on the VT prediction, while the influence of the ASL-derived perfusion, voxel coordinates, and the lesion mask was low. Among all the combinations of the late PET frames and plasma activity concentrations, the 70-80 min p.i. frame divided by the 30 min p.i. plasma sample produced the closest VT estimate in the ischemic lesion. CONCLUSION Reliable TSPO PET quantification is achievable by using a single late PET frame divided by a late blood sample activity concentration.
Collapse
Affiliation(s)
- Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Anna Kopczak
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Sandra Hein
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Andreas Schindler
- Department of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Medical Image Analysis Center (MIAC) & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Martin Schidlowski
- Department of Epileptology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Wongso H, Kurniawan A, Setiadi Y, Kusumaningrum CE, Widyasari EM, Wibawa TH, Mahendra I, Febrian MB, Sriyani ME, Halimah I, Daruwati I, Gunawan R, Achmad A, Nugraha DH, Lesmana R, Nugraha AS. Translocator Protein 18 kDa (TSPO): A Promising Molecular Target for Image-Guided Surgery of Solid Cancers. Adv Pharm Bull 2024; 14:86-104. [PMID: 38585455 PMCID: PMC10997928 DOI: 10.34172/apb.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/26/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
The translocator protein 18-kDa (TSPO) is a mitochondrial membrane protein that is previously identified as the peripheral benzodiazepine receptor (PBR). Furthermore, it plays a significant role in a diverse range of biochemical processes, including steroidogenesis, mitochondrial cholesterol transport, cell survival and death, cell proliferation, and carcinogenesis. Several investigations also reported its roles in various types of cancers, including colorectal, brain, breast, prostate, and lung cancers, as well as melanoma. According to a previous study, the expression of TSPO was upregulated in cancer cells, which corresponds to an aggressive phenotype and/or poor prognosis. Consequently, the potential for crafting diagnostic and prognostic tools with a focus on TSPO holds great potential. In this context, several radioligands designed to target this protein have been identified, and some of the candidates have advanced to clinical trials. In recent years, the use of hybrid probes with radioactive and fluorescence molecules for image-guided surgery has exhibited promising results in animal and human studies. This indicates that the approach can serve as a valuable surgical navigator during cancer surgery. The current hybrid probes are built from various molecular platforms, including small molecules, nanoparticles, and antibodies. Although several TSPO-targeted imaging probes have been developed, their development for image-guided surgery of cancers is still limited. Therefore, this review aims to highlight recent findings on the involvement of TSPO in carcinogenesis, as well as provide a new perspective on the potential application of TSPO-targeted hybrid probes for image-guided surgery.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Yanuar Setiadi
- Research Center for Environmental and Clean Technology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Puspiptek, Banten 15314, Indonesia
| | - Crhisterra E. Kusumaningrum
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Eva M. Widyasari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Teguh H.A. Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Muhamad B. Febrian
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Maula E. Sriyani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isti Daruwati
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Rudi Gunawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Arifudin Achmad
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
- Oncology and Stem Cells Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
| | | | - Ronny Lesmana
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Ari S. Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember 68121, Indonesia
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
6
|
Wang H, Li B, Wang Z, Chen X, You Z, Ng YL, Ge Q, Yuan J, Zhou Y, Zhao J. Kinetic analysis of cardiac dynamic 18F-Florbetapir PET in healthy volunteers and amyloidosis patients: A pilot study. Heliyon 2024; 10:e26021. [PMID: 38375312 PMCID: PMC10875429 DOI: 10.1016/j.heliyon.2024.e26021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Objectives This study aimed to explore the potential of full dynamic PET kinetic analysis in assessing amyloid binding and perfusion in the cardiac region using 18F-Florbetapir PET, establishing a quantitative approach in the clinical assessment of cardiac amyloidosis disease. Materials & methods The distribution volume ratios (DVRs) and the relative transport rate constant (R1), were estimated by a pseudo-simplified reference tissue model (pSRTM2) and pseudo-Logan plot (pLogan plot) with kidney reference for the region of interest-based and voxel-wise-based analyses. The parametric images generated using the pSRTM2 and linear regression with spatially constrained (LRSC) algorithm were then evaluated. Semi-quantitative analyses include standardized uptake value ratios at the early phase (SUVREP, 0.5-5 min) and late phase (SUVRLP, 50-60 min) were also calculated. Results Ten participants [7 healthy controls (HC) and 3 cardiac amyloidosis (CA) subjects] underwent a 60-min dynamic 18F-Florbetapir PET scan. The DVRs estimated from pSRTM2 and Logan plot were significantly increased (HC vs CA; DVRpSRTM2: 0.95 ± 0.11 vs 2.77 ± 0.42, t'(2.13) = 7.39, P = 0.015; DVRLogan: 0.80 ± 0.12 vs 2.90 ± 0.55, t'(2.08) = 6.56, P = 0.020), and R1 were remarkably decreased in CA groups, as compared to HCs (HC vs CA; 1.08 ± 0.37 vs 0.56 ± 0.10, t'(7.63) = 3.38, P = 0.010). The SUVREP and SUVRLP were highly correlated to R1 (r = 0.97, P < 0.001) and DVR(r = 0.99, P < 0.001), respectively. The DVRs in the total myocardium region increased slightly as the size of FWHM increased and became stable at a Gaussian filter ≥6 mm. The secular equilibrium of SUVR was reached at around 50-min p.i. time. Conclusion The DVR and R1 estimated from cardiac dynamic 18F-Florbetapir PET using pSRTM with kidney pseudo-reference tissue are suggested to quantify cardiac amyloid deposition and relative perfusion, respectively, in amyloidosis patients and healthy controls. We recommend a dual-phase scan: 0.5-5 min and 50-60 min p.i. as the appropriate time window for clinically assessing cardiac amyloidosis and perfusion measurements using 18F-Florbetapir PET.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, No. 150, Jimo Road, Shanghai, 200120, China
| | - Bolun Li
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, China
| | - Zhe Wang
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, China
| | - Xing Chen
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, No. 150, Jimo Road, Shanghai, 200120, China
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, No. 150, Jimo Road, Shanghai, 200120, China
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, China
| | - Qi Ge
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, No. 150, Jimo Road, Shanghai, 200120, China
| |
Collapse
|
7
|
Kipp M. Astrocytes: Lessons Learned from the Cuprizone Model. Int J Mol Sci 2023; 24:16420. [PMID: 38003609 PMCID: PMC10671869 DOI: 10.3390/ijms242216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A diverse array of neurological and psychiatric disorders, including multiple sclerosis, Alzheimer's disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes and alterations in myelin structure, which may be pivotal factors contributing to the disconnection of brain regions and the resulting characteristic clinical impairments observed in these conditions. Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-one ratio, play indispensable roles in the development, maintenance, and overall well-being of neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of complex human diseases in a reliable and reproducible manner. One such model is the cuprizone model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs. In this review article, we provide a historical overview of studies investigating the responses and putative functions of astrocytes in the cuprizone model. Following that, we list previously published works that illuminate various aspects of the biology and function of astrocytes in this multiple sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field, and, more importantly, to inspire fellow researchers to embark on experimental investigations to elucidate the multifaceted functions of this pivotal glial cell subpopulation.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
8
|
Kim SJW, Lupo JM, Chen Y, Pampaloni MH, VanBrocklin HF, Narvid J, Kim H, Seo Y. A feasibility study for quantitative assessment of cerebrovascular malformations using flutriciclamide ([18F]GE-180) PET/MRI. Front Med (Lausanne) 2023; 10:1091463. [PMID: 37089589 PMCID: PMC10116613 DOI: 10.3389/fmed.2023.1091463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
AimNeuroinflammation plays a key role in both the pathogenesis and the progression of cerebral cavernous malformations (CCM). Flutriciclamide ([18F]GE-180) is a translocator protein (TSPO) targeting positron emission tomography (PET) tracer, developed for imaging neuroinflammation. The objectives of this study were to describe characteristics of flutriciclamide uptake in different brain tissue regions in CCM patients compared to controls, and to evaluate flutriciclamide uptake and iron deposition within CCM lesions.Materials and methodsFive patients with CCM and six controls underwent a 60 or 90 min continuous PET/MRI scan following 315 ± 68.9 MBq flutriciclamide administration. Standardized uptake value (SUV) and standardized uptake value ratio (SUVr) were obtained using the striatum as a pseudo-reference. Quantitative susceptibility maps (QSM) were used to define the location of the vascular malformation and calculate the amount of iron deposition in each lesion.ResultsIncreased flutriciclamide uptake was observed in all CCM lesions. The temporal pole demonstrated the highest radiotracer uptake; the paracentral lobule, cuneus and hippocampus exhibited moderate uptake; while the striatum had the lowest uptake, with average SUVs of 0.66, 0.55, 0.63, 0.55, and 0.33 for patient with CCM and 0.57, 0.50, 0.48, 0.42, and 0.32 for controls, respectively. Regional SUVr showed similar trends. The average SUV and QSM values in CCM lesions were 0.58 ± 0.23 g/ml and 0.30 ± 0.10 ppm. SUVs and QSM were positively correlated in CCM lesions (r = 0.53, p = 0.03).ConclusionThe distribution of flutriciclamide ([18F]GE-180) in the human brain and CCM lesions demonstrated the potential of this TSPO PET tracer as a marker of neuroinflammation that may be relevant for characterizing CCM disease progression along with QSM.
Collapse
Affiliation(s)
- Sally Ji Who Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Sally Ji Who Kim,
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Yicheng Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Miguel H. Pampaloni
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jared Narvid
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Zounek AJ, Albert NL, Holzgreve A, Unterrainer M, Brosch-Lenz J, Lindner S, Bollenbacher A, Boening G, Rupprecht R, Brendel M, von Baumgarten L, Tonn JC, Bartenstein P, Ziegler S, Kaiser L. Feasibility of radiomic feature harmonization for pooling of [ 18F]FET or [ 18F]GE-180 PET images of gliomas. Z Med Phys 2023; 33:91-102. [PMID: 36710156 PMCID: PMC10068577 DOI: 10.1016/j.zemedi.2022.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Large datasets are required to ensure reliable non-invasive glioma assessment with radiomics-based machine learning methods. This can often only be achieved by pooling images from different centers. Moreover, trained models should perform with high accuracy when applied to data from different centers. In this study, the impact of reconstruction settings and segmentation methods on radiomic features derived from amino acid and TSPO PET images of glioma patients was examined. Additionally, the ability to model and thus reduce feature differences was investigated. METHODS [18F]FET and [18F]GE-180 PET data were acquired from 19 glioma patients. For each acquisition, 10 reconstruction settings and 9 segmentation methods were included to emulate multicentric data. Statistical robustness measures were calculated before and after ComBat harmonization. Differences between features due to setting variations were assessed using Friedman test, coefficient of variation (CV) and inter-rater reliability measures, including intraclass and Spearman's rank correlation coefficients and Fleiss' Kappa. RESULTS According to Friedman analyses, most features (>60%) showed significant differences. Yet, CV and inter-rater reliability measures indicated higher robustness. ComBat resulted in almost complete harmonization (>87%) according to Friedman test and little to no improvement according to CV and inter-rater reliability measures. [18F]GE-180 features were more sensitive to reconstruction settings than [18F]FET features. CONCLUSIONS According to Friedman test, feature distributions could be successfully aligned using ComBat. However, depending on settings, changes in patient ranks were observed for some features and could not be eliminated by harmonization. Thus, for clinical utilization it is recommended to exclude affected features.
Collapse
Affiliation(s)
- Adrian Jun Zounek
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Nathalie Lisa Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany.
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Julia Brosch-Lenz
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Andreas Bollenbacher
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany.
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| | - Louisa von Baumgarten
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany; Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Joerg-Christian Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
10
|
TSPO PET signal using [ 18F]GE180 is associated with survival in recurrent gliomas. Eur J Nucl Med Mol Imaging 2023; 50:859-869. [PMID: 36329288 PMCID: PMC9852133 DOI: 10.1007/s00259-022-06006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Glioma patients, especially recurrent glioma, suffer from a poor prognosis. While advances to classify glioma on a molecular level improved prognostication at initial diagnosis, markers to prognosticate survival in the recurrent situation are still needed. As 18 kDa translocator protein (TSPO) was previously reported to be associated with aggressive histopathological glioma features, we correlated the TSPO positron emission tomography (PET) signal using [18F]GE180 in a large cohort of recurrent glioma patients with their clinical outcome. METHODS In patients with [18F]GE180 PET at glioma recurrence, [18F]GE180 PET parameters (e.g., SUVmax) as well as other imaging features (e.g., MRI volume, [18F]FET PET parameters when available) were evaluated together with patient characteristics (age, sex, Karnofsky-Performance score) and neuropathological features (e.g. WHO 2021 grade, IDH-mutation status). Uni- and multivariate Cox regression and Kaplan-Meier survival analyses were performed to identify prognostic factors for post-recurrence survival (PRS) and time to treatment failure (TTF). RESULTS Eighty-eight consecutive patients were evaluated. TSPO tracer uptake correlated with tumor grade at recurrence (p < 0.05), with no significant differences in IDH-wild-type versus IDH-mutant tumors. Within the subgroup of IDH-mutant glioma (n = 46), patients with low SUVmax (median split, ≤ 1.60) had a significantly longer PRS (median 41.6 vs. 25.3 months, p = 0.031) and TTF (32.2 vs 8.7 months, p = 0.001). Also among IDH-wild-type glioblastoma (n = 42), patients with low SUVmax (≤ 1.89) had a significantly longer PRS (median not reached vs 8.2 months, p = 0.002). SUVmax remained an independent prognostic factor for PRS in the multivariate analysis including CNS WHO 2021 grade, IDH status, and age. Tumor volume defined by [18F]FET PET or contrast-enhanced MRI correlated weakly with TSPO tracer uptake. Treatment regimen did not differ among the median split subgroups. CONCLUSION Our data suggest that TSPO PET using [18F]GE180 can help to prognosticate recurrent glioma patients even among homogeneous molecular subgroups and may therefore serve as valuable non-invasive biomarker for individualized patient management.
Collapse
|
11
|
Shaghaghi M, Cai K. Toward In Vivo MRI of the Tissue Proton Exchange Rate in Humans. BIOSENSORS 2022; 12:bios12100815. [PMID: 36290953 PMCID: PMC9599426 DOI: 10.3390/bios12100815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
Quantification of proton exchange rate (kex) is a challenge in MR studies. Current techniques either have low resolutions or are dependent on the estimation of parameters that are not measurable. The Omega plot method, on the other hand, provides a direct way for determining kex independent of the agent concentration. However, it cannot be used for in vivo studies without some modification due to the contributions from the water signal. In vivo tissue proton exchange rate (kex) MRI, based on the direct saturation (DS) removed Omega plot, quantifies the weighted average of kex of the endogenous tissue metabolites. This technique has been successfully employed for imaging the variation in the kex of ex vivo phantoms, as well as in vivo human brains in healthy subjects, and stroke or multiple sclerosis (MS) patients. In this paper, we present a brief review of the methods used for kex imaging with a focus on the development of in vivo kex MRI technique based on the DS-removed Omega plot. We then review the recent clinical studies utilizing this technique for better characterizing brain lesions. We also outline technical challenges for the presented technique and discuss its prospects for detecting tissue microenvironmental changes under oxidative stress.
Collapse
Affiliation(s)
- Mehran Shaghaghi
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
12
|
Wongso H. Recent progress on the development of fluorescent probes targeting the translocator protein 18 kDa (TSPO). Anal Biochem 2022; 655:114854. [PMID: 35963341 DOI: 10.1016/j.ab.2022.114854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/06/2022] [Indexed: 11/01/2022]
Abstract
The translocator protein 18 kDa (TSPO) was first identified in 1997, and has now become one of the appealing subcellular targets in medicinal chemistry and its related fields. TSPO involves in a variety of diseases, covering neurodegenerative diseases, psychiatric disorders, cancers, and so on. To date, various high-affinity TSPO ligands labelled with single-photon emission computed tomography (SPECT)/positron emission tomography (PET) radionuclides have been reported, with some third-generation radioligands advanced to clinical trials. On the other hand, only a few number of TSPO ligands have been labelled with fluorophores for disease diagnosis. It is noteworthy that the majority of the TSPO fluorescent probes synthesised to date are based on visible fluorophores, suggesting that their applications are limited to in vitro studies, such as in vitro imaging of cancer cells, post-mortem analysis, and tissue biopsies examinations. In this context, the potential application of TSPO ligands can be broadened for in vivo investigations of human diseases by labelling with near-infrared (NIR)-fluorophores or substituting visible fluorophores with NIR-fluorophores on the currently developed fluorescent probes. In this review article, recent progress on fluorescent probes targeting the TSPO are summarised, with an emphasis on development trend in recent years and application prospects in the future.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia.
| |
Collapse
|
13
|
Xie F, Wei W. [ 64Cu]Cu-ATSM: an emerging theranostic agent for cancer and neuroinflammation. Eur J Nucl Med Mol Imaging 2022; 49:3964-3972. [PMID: 35918492 DOI: 10.1007/s00259-022-05887-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
14
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Unterrainer M, Mahler C, Schumacher AM, Ruf V, Blum B, Quach S, Brendel M, Rupprecht R, Bartenstein P, Kerschensteiner M, Kümpfel T, Albert NL. Amino Acid Uptake, Glucose Metabolism, and Neuroinflammation in John Cunningham Virus Associated Progressive Multifocal Leukoencephalopathy. Clin Nucl Med 2022; 47:543-544. [PMID: 35195584 DOI: 10.1097/rlu.0000000000004093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT A 69-year-old woman presented with progressive dysarthria and cognitive deficits. On MRI, a T2-hyperintense, non-contrast-enhancing lesion was found in the left precentral area. 18F-FET and 18F-FDG PET scans revealed faint amino acid uptake and glucose hypometabolism of the lesion. To assess a neuroinflammatory component, TSPO PET with 18F-GE-180 was performed, where tracer uptake markedly exceeded the T2-hyperintense areas. Histology derived from a stereotactic biopsy findings confirmed John Cunningham virus-associated progressive multifocal leukoencephalopathy. This case underlines that TSPO PET comprises distinct imaging advantages over other established radioligands such as 18F-FET and 18F-FDG in progressive multifocal leukoencephalopathy.
Collapse
Affiliation(s)
| | | | | | - Viktoria Ruf
- Department of Neuropathology and Prion Research, LMU Munich, Munich
| | | | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich
| | | | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg
| | | | | | | | | |
Collapse
|
16
|
Holzgreve A, Pötter D, Brendel M, Orth M, Weidner L, Gold L, Kirchner MA, Bartos LM, Unterrainer LM, Unterrainer M, Steiger K, von Baumgarten L, Niyazi M, Belka C, Bartenstein P, Riemenschneider MJ, Lauber K, Albert NL. Longitudinal [ 18F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model. Biomedicines 2022; 10:biomedicines10040738. [PMID: 35453488 PMCID: PMC9030822 DOI: 10.3390/biomedicines10040738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is increasingly recognized as an interesting target for the imaging of glioblastoma (GBM). Here, we investigated TSPO PET imaging and autoradiography in the frequently used GL261 glioblastoma mouse model and aimed to generate insights into the temporal evolution of TSPO radioligand uptake in glioblastoma in a preclinical setting. We performed a longitudinal [18F]GE-180 PET imaging study from day 4 to 14 post inoculation in the orthotopic syngeneic GL261 GBM mouse model (n = 21 GBM mice, n = 3 sham mice). Contrast-enhanced computed tomography (CT) was performed at the day of the final PET scan (±1 day). [18F]GE-180 autoradiography was performed on day 7, 11 and 14 (ex vivo: n = 13 GBM mice, n = 1 sham mouse; in vitro: n = 21 GBM mice; n = 2 sham mice). Brain sections were also used for hematoxylin and eosin (H&E) staining and TSPO immunohistochemistry. [18F]GE-180 uptake in PET was elevated at the site of inoculation in GBM mice as compared to sham mice at day 11 and later (at day 14, TBRmax +27% compared to sham mice, p = 0.001). In GBM mice, [18F]GE-180 uptake continuously increased over time, e.g., at day 11, mean TBRmax +16% compared to day 4, p = 0.011. [18F]GE-180 uptake as depicted by PET was in all mice co-localized with contrast-enhancement in CT and tissue-based findings. [18F]GE-180 ex vivo and in vitro autoradiography showed highly congruent tracer distribution (r = 0.99, n = 13, p < 0.001). In conclusion, [18F]GE-180 PET imaging facilitates non-invasive in vivo monitoring of TSPO expression in the GL261 GBM mouse model. [18F]GE-180 in vitro autoradiography is a convenient surrogate for ex vivo autoradiography, allowing for straightforward identification of suitable models and scan time-points on previously generated tissue sections.
Collapse
Affiliation(s)
- Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Dennis Pötter
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
| | - Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany; (L.W.); (M.J.R.)
| | - Lukas Gold
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Maximilian A. Kirchner
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Laura M. Bartos
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Lena M. Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Katja Steiger
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Louisa von Baumgarten
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
- Department of Neurosurgery, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Markus J. Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany; (L.W.); (M.J.R.)
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
- Correspondence:
| |
Collapse
|
17
|
Nylund M, Sucksdorff M, Matilainen M, Polvinen E, Tuisku J, Airas L. Phenotyping of multiple sclerosis lesions according to innate immune cell activation using 18 kDa translocator protein-PET. Brain Commun 2022; 4:fcab301. [PMID: 34993478 PMCID: PMC8727984 DOI: 10.1093/braincomms/fcab301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic active lesions are promotors of neurodegeneration and disease progression in multiple sclerosis. They harbour a dense rim of activated innate immune cells at the lesion edge, which promotes lesion growth and thereby induces damage. Conventional MRI is of limited help in identifying the chronic active lesions, so alternative imaging modalities are needed. Objectives were to develop a PET-based automated analysis method for phenotyping of chronic lesions based on lesion-associated innate immune cell activation and to comprehensively evaluate the prevalence of these lesions in the various clinical subtypes of multiple sclerosis, and their association with disability. In this work, we use 18 kDa translocator protein-PET imaging for phenotyping chronic multiple sclerosis lesions at a large scale. For this, we identified 1510 white matter T1-hypointense lesions from 91 multiple sclerosis patients (67 relapsing–remitting patients and 24 secondary progressive patients). Innate immune cell activation at the lesion rim was measured using PET imaging and the 18 kDa translocator protein-binding radioligand 11C-PK11195. A T1-hypointense lesion was classified as rim-active if the distribution volume ratio of 11C-PK11195-binding was low in the plaque core and considerably higher at the plaque edge. If no significant ligand binding was observed, the lesion was classified as inactive. Plaques that had considerable ligand binding both in the core and at the rim were classified as overall-active. Conventional MRI and disability assessment using the Expanded Disability Status Scale were performed at the time of PET imaging. In the secondary progressive cohort, an average of 19% (median, interquartile range: 11–26) of T1 lesions were rim-active in each individual patient, compared to 10% (interquartile range: 0–20) among relapsing–remitting patients (P = 0.009). Secondary progressive patients had a median of 3 (range: 0–11) rim-active lesions, versus 1 (range: 0–18) among relapsing–remitting patients (P = 0.029). Among those patients who had rim-active lesions (n = 63), the average number of active voxels at the rim was higher among secondary progressive compared to relapsing–remitting patients (median 158 versus 74; P = 0.022). The number of active voxels at the rim correlated significantly with the Expanded Disability Status Scale (R = 0.43, P < 0.001), and the volume of the rim-active lesions similarly correlated with the Expanded Disability Status Scale (R = 0.45, P < 0.001). Our study is the first to report in vivo phenotyping of chronic lesions at large scale, based on 18 kDa translocator protein-PET. Patients with higher disability displayed a higher proportion of rim-active lesions. The in vivo lesion phenotyping methodology offers a new tool for individual assessment of smouldering (rim-active) lesion burden.
Collapse
Affiliation(s)
- Marjo Nylund
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Eero Polvinen
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | | | - Laura Airas
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
18
|
Kaiser L, Holzgreve A, Quach S, Ingrisch M, Unterrainer M, Dekorsy FJ, Lindner S, Ruf V, Brosch-Lenz J, Delker A, Böning G, Suchorska B, Niyazi M, Wetzel CH, Riemenschneider MJ, Stöcklein S, Brendel M, Rupprecht R, Thon N, von Baumgarten L, Tonn JC, Bartenstein P, Ziegler S, Albert NL. Differential Spatial Distribution of TSPO or Amino Acid PET Signal and MRI Contrast Enhancement in Gliomas. Cancers (Basel) 2021; 14:cancers14010053. [PMID: 35008218 PMCID: PMC8750092 DOI: 10.3390/cancers14010053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Radiotracers targeting the translocator protein (TSPO) have recently gained substantial interest, since TSPO is overexpressed in malignant gliomas, where it correlates inversely with patient’s survival. The high-affinity TSPO PET ligand [18F]GE180 was found to depict tumor areas with a remarkably high contrast and has been shown to provide non-invasive information on histological tumor grades. Yet, its significance was questioned with the argument, that the high contrast may solely arise from nonspecific accumulation in tissue supplied by leaky vessels. This study aimed to address this question by providing a detailed evaluation of spatial associations between TSPO and amino acid PET with relative contrast enhancement in T1-weighted MRI. The results show that [18F]GE180 contrast does not reflect a disrupted blood–brain barrier (BBB) only and that multi-modal imaging generates complementary information, which may better depict spatial heterogeneity of tumor biology and may be used to individualize the therapy for each patient. Abstract In this study, dual PET and contrast enhanced MRI were combined to investigate their correlation per voxel in patients at initial diagnosis with suspected glioblastoma. Correlation with contrast enhancement (CE) as an indicator of BBB leakage was further used to evaluate whether PET signal is likely caused by BBB disruption alone, or rather attributable to specific binding after BBB passage. PET images with [18F]GE180 and the amino acid [18F]FET were acquired and normalized to healthy background (tumor-to-background ratio, TBR). Contrast enhanced images were normalized voxel by voxel with the pre-contrast T1-weighted MRI to generate relative CE values (rCE). Voxel-wise analysis revealed a high PET signal even within the sub-volumes without detectable CE. No to moderate correlation of rCE with TBR voxel-values and a small overlap as well as a larger distance of the hotspots delineated in rCE and TBR-PET images were detected. In contrast, voxel-wise correlation between both PET modalities was strong for most patients and hotspots showed a moderate overlap and distance. The high PET signal in tumor sub-volumes without CE observed in voxel-wise analysis as well as the discordant hotspots emphasize the specificity of the PET signals and the relevance of combined differential information from dual PET and MRI images.
Collapse
Affiliation(s)
- Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- Correspondence:
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.I.); (S.S.)
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.I.); (S.S.)
| | - Franziska J. Dekorsy
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, LMU Munich, 81377 Munich, Germany; (V.R.); (R.R.)
| | - Julia Brosch-Lenz
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Astrid Delker
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | | | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.I.); (S.S.)
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Zhou R, Ji B, Kong Y, Qin L, Ren W, Guan Y, Ni R. PET Imaging of Neuroinflammation in Alzheimer's Disease. Front Immunol 2021; 12:739130. [PMID: 34603323 PMCID: PMC8481830 DOI: 10.3389/fimmu.2021.739130] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation play an important role in Alzheimer's disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer's disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer's disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer's disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Limei Qin
- Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China
| | - Wuwei Ren
- School of Information Science and Technology, Shanghaitech University, Shanghai, China
| | - Yihui Guan
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
20
|
Nutma E, Gebro E, Marzin MC, van der Valk P, Matthews PM, Owen DR, Amor S. Activated microglia do not increase 18 kDa translocator protein (TSPO) expression in the multiple sclerosis brain. Glia 2021; 69:2447-2458. [PMID: 34145928 PMCID: PMC8453709 DOI: 10.1002/glia.24052] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
To monitor innate immune responses in the CNS, the 18 kDa Translocator protein (TSPO) is a frequently used target for PET imaging. The frequent assumption that increased TSPO expression in the human CNS reflects pro-inflammatory activation of microglia has been extrapolated from rodent studies. However, TSPO expression does not increase in activated human microglia in vitro. Studies of multiple sclerosis (MS) lesions reveal that TSPO is not restricted to pro-inflammatory microglia/macrophages, but also present in homeostatic or reparative microglia. Here, we investigated quantitative relationships between TSPO expression and microglia/macrophage phenotypes in white matter and lesions of brains with MS pathology. In white matter from brains with no disease pathology, normal appearing white matter (NAWM), active MS lesions and chronic active lesion rims, over 95% of TSPO+ cells are microglia/macrophages. Homeostatic microglial markers in NAWM and control tissue are lost/reduced in active lesions and chronic active lesion rims, reflecting cell activation. Nevertheless, pixel analysis of TSPO+ cells (n = 12,225) revealed that TSPO expression per cell is no higher in active lesions and chronic active lesion rims (where myeloid cells are activated) relative to NAWM and control. This data suggests that whilst almost all the TSPO signal in active lesions, chronic active lesion rims, NAWM and control is associated with microglia/macrophages, their TSPO expression predominantly reflects cell density and not activation phenotype. This finding has implications for the interpretation of TSPO PET signal in MS and other CNS diseases, and further demonstrates the limitation of extrapolating TSPO biology from rodents to humans.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, HV, Netherlands
| | - Emeline Gebro
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, HV, Netherlands
| | - Manuel C Marzin
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, HV, Netherlands
| | - Paul van der Valk
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, HV, Netherlands
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK.,UK Dementia Research Institute, Imperial College London, London, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, HV, Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
21
|
Vettermann FJ, Harris S, Schmitt J, Unterrainer M, Lindner S, Rauchmann BS, Palleis C, Weidinger E, Beyer L, Eckenweber F, Schuster S, Biechele G, Ferschmann C, Milenkovic VM, Wetzel CH, Rupprecht R, Janowitz D, Buerger K, Perneczky R, Höglinger GU, Levin J, Haass C, Tonn JC, Niyazi M, Bartenstein P, Albert NL, Brendel M. Impact of TSPO Receptor Polymorphism on [ 18F]GE-180 Binding in Healthy Brain and Pseudo-Reference Regions of Neurooncological and Neurodegenerative Disorders. Life (Basel) 2021; 11:484. [PMID: 34073557 PMCID: PMC8229996 DOI: 10.3390/life11060484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
TSPO-PET tracers are sensitive to a single-nucleotide polymorphism (rs6971-SNP), resulting in low-, medium- and high-affinity binders (LABs, MABs and HABS), but the clinical relevance of [18F]GE-180 is still unclear. We evaluated the impact of rs6971-SNP on in vivo [18F]GE-180 binding in a healthy brain and in pseudo-reference tissue in neuro-oncological and neurodegenerative diseases. Standardized uptake values (SUVs) of [18F]GE-180-PET were assessed using a manually drawn region of interest in the frontoparietal and cerebellar hemispheres. The SUVs were compared between the LABs, MABs and HABs in control, glioma, four-repeat tauopathy (4RT) and Alzheimer's disease (AD) subjects. Second, the SUVs were compared between the patients and controls within their rs6971-subgroups. After excluding patients with prior therapy, 24 LABs (7 control, 5 glioma, 6 4RT and 6 AD) were analyzed. Age- and sex-matched MABs (n = 38) and HABs (n = 50) were selected. The LABs had lower frontoparietal and cerebellar SUVs when compared with the MABs and HABs, but no significant difference was observed between the MABs and HABs. Within each rs6971 group, no SUV difference between the patients and controls was detected in the pseudo-reference tissues. The rs6971-SNP affects [18F]GE-180 quantification, revealing lower binding in the LABs when compared to the MABs and HABs. The frontoparietal and cerebellar ROIs were successfully validated as pseudo-reference regions.
Collapse
Affiliation(s)
- Franziska J Vettermann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Julia Schmitt
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Endy Weidinger
- Department of Neurology, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Sebastian Schuster
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Christian Ferschmann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London SW7 2AZ, UK
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, University Hospital of Munich, 81377 Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| |
Collapse
|
22
|
Boehm MA, Bonaventura J, Gomez JL, Solís O, Stein EA, Bradberry CW, Michaelides M. Translational PET applications for brain circuit mapping with transgenic neuromodulation tools. Pharmacol Biochem Behav 2021; 204:173147. [PMID: 33549570 PMCID: PMC8297666 DOI: 10.1016/j.pbb.2021.173147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
Transgenic neuromodulation tools have transformed the field of neuroscience over the past two decades by enabling targeted manipulation of neuronal populations and circuits with unprecedented specificity. Chemogenetic and optogenetic neuromodulation systems are among the most widely used and allow targeted control of neuronal activity through the administration of a selective compound or light, respectively. Innovative genetic targeting strategies are utilized to transduce specific cells to express transgenic receptors and opsins capable of manipulating neuronal activity. These allow mapping of neuroanatomical projection sites and link cellular manipulations with brain circuit functions and behavior. As these tools continue to expand knowledge of the nervous system in preclinical models, developing translational applications for human therapies is becoming increasingly possible. However, new strategies for implementing and monitoring transgenic tools are needed for safe and effective use in translational research and potential clinical applications. A major challenge for such applications is the need to track the location and function of chemogenetic receptors and opsins in vivo, and new developments in positron emission tomography (PET) imaging techniques offer promising solutions. The goal of this review is to summarize current research combining transgenic tools with PET for in vivo mapping and manipulation of brain circuits and to propose future directions for translational applications.
Collapse
Affiliation(s)
- Matthew A Boehm
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States; Department of Neuroscience, Brown University, Providence, RI 02906, United States.
| | - Jordi Bonaventura
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Juan L Gomez
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Oscar Solís
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Elliot A Stein
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Charles W Bradberry
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Michael Michaelides
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States; Department of Psychiatry & Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
23
|
Wongso H, Yamasaki T, Kumata K, Ono M, Higuchi M, Zhang MR, Fulham MJ, Katsifis A, Keller PA. Design, Synthesis, and Biological Evaluation of Novel Fluorescent Probes Targeting the 18-kDa Translocator Protein. ChemMedChem 2021; 16:1902-1916. [PMID: 33631047 DOI: 10.1002/cmdc.202000984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Indexed: 12/20/2022]
Abstract
A series of fluorescent probes from the 6-chloro-2-phenylimidazo[1,2-a]pyridine-3-yl acetamides ligands featuring the 7-nitro-2-oxa-1,3-diazol-4-yl (NBD) moiety has been synthesized and biologically evaluated for their fluorescence properties and for their binding affinity to the 18-kDa translocator protein (TSPO). Spectroscopic studies including UV/Vis absorption and fluorescence measurements showed that the synthesized fluorescent probes exhibit favorable spectroscopic properties, especially in nonpolar environments. In vitro fluorescence staining in brain sections from lipopolysaccharide (LPS)-injected mice revealed partial colocalization of the probes with the TSPO. The TSPO binding affinity of the probes was measured on crude mitochondrial fractions separated from rat brain homogenates in a [11 C]PK11195 radioligand binding assay. All the new fluorescent probes demonstrated moderate to high binding affinity to the TSPO, with affinity (Ki ) values ranging from 0.58 nM to 3.28 μM. Taking these data together, we propose that the new fluorescent probes could be used to visualize the TSPO.
Collapse
Affiliation(s)
- Hendris Wongso
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Center for Applied Nuclear Science and Technology, National Nuclear Energy Agency, Bandung, 40132, Indonesia
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Michael J Fulham
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Andrew Katsifis
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
24
|
Mahler C, Schumacher AM, Unterrainer M, Kaiser L, Höllbacher T, Lindner S, Havla J, Ertl-Wagner B, Patzig M, Seelos K, Neitzel J, Mäurer M, Krumbholz M, Metz I, Brück W, Stadelmann C, Merkler D, Gass A, Milenkovic V, Bartenstein P, Albert NL, Kümpfel T, Kerschensteiner M. TSPO PET imaging of natalizumab-associated progressive multifocal leukoencephalopathy. Brain 2021; 144:2683-2695. [PMID: 33757118 DOI: 10.1093/brain/awab127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a severe infection of the central nervous system caused by the polyomavirus JC (JCV) that can occur in multiple sclerosis (MS) patients treated with natalizumab. Clinical management of patients with natalizumab-associated PML is challenging not the least because current imaging tools for the early detection, longitudinal monitoring and differential diagnosis of PML lesions are limited. Here we evaluate whether TSPO positron emission tomography (PET) imaging can be applied to monitor the inflammatory activity of PML lesions over time and differentiate them from MS lesions. For this monocenter pilot study we followed 8 patients with natalizumab-associated PML with PET imaging using the TSPO radioligand [18F]GE-180 combined with frequent 3 T MRI imaging. In addition we compared TSPO PET signals in PML lesions with the signal pattern of MS lesions from 17 independent MS patients. We evaluated the standardized uptake value ratio (SUVR) as well as the morphometry of the TSPO uptake for putative PML and MS lesions areas compared to a radiologically unaffected pseudo-reference region in the cerebrum. Furthermore TSPO expression in situ was immunohistochemically verified by determining the density and cellular identity of TSPO-expressing cells in brain sections from four patients with early natalizumab-associated PML as well as five patients with other forms of PML and six patients with inflammatory demyelinating CNS lesions (clinically isolated syndrome/MS). Histological analysis revealed a reticular accumulation of TSPO expressing phagocytes in PML lesions, while such phagocytes showed a more homogenous distribution in putative MS lesions. TSPO PET imaging showed an enhanced tracer uptake in natalizumab-associated PML lesions that was present from the early to the chronic stages (up to 52 months after PML diagnosis). While gadolinium enhancement on MRI rapidly declined to baseline levels, TSPO tracer uptake followed a slow one phase decay curve. A TSPO-based 3-dimensional diagnostic matrix taking into account the uptake levels as well as the shape and texture of the TSPO signal differentiated more than 96% of PML and MS lesions. Indeed, treatment with rituximab after natalizumab-associated PML in three patients did not affect tracer uptake in the assigned PML lesions but reverted tracer uptake to baseline in the assigned active MS lesions. Taken together our study suggests that TSPO PET imaging can reveal CNS inflammation in natalizumab-associated PML. TSPO PET may facilitate longitudinal monitoring of disease activity and help to distinguish recurrent MS activity from PML progression.
Collapse
Affiliation(s)
- Christoph Mahler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Adrian-Minh Schumacher
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Thomas Höllbacher
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Birgit Ertl-Wagner
- Institute of Clinical Radiology, University Hospital Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Maximilian Patzig
- Institute of Neuroradiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Klaus Seelos
- Institute of Neuroradiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Julia Neitzel
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | | | - Markus Krumbholz
- Department of Neurology & Stroke and Hertie-Institute for Clinical Brain Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Imke Metz
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Achim Gass
- Department of Neurology, University Hospital Mannheim, Mannheim, Germany
| | - Vladimir Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
25
|
Rivière G, Jaipuria G, Andreas LB, Leonov A, Giller K, Becker S, Zweckstetter M. Membrane-embedded TSPO: an NMR view. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:173-180. [PMID: 33354729 PMCID: PMC8071791 DOI: 10.1007/s00249-020-01487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/19/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
Translocator Protein (18 kDa) (TSPO) is a mitochondrial transmembrane protein commonly used as a biomarker for neuroinflammation and is also a potential therapeutic target in neurodegenerative diseases. Despite intensive research efforts, the function of TSPO is still largely enigmatic. Deciphering TSPO structure in the native lipid environment is essential to gain insight into its cellular activities and to design improved diagnostic and therapeutic ligands. Here, we discuss the influence of lipid composition on the structure of mammalian TSPO embedded into lipid bilayers on the basis of solid-state NMR experiments. We further highlight that cholesterol can influence both the tertiary and quaternary TSPO structure and also influence TSPO localization in mitochondria-associated endoplasmic reticulum membranes.
Collapse
Affiliation(s)
- Gwladys Rivière
- Senior Research Group of Translational Structural Biology in Dementia, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Garima Jaipuria
- Senior Research Group of Translational Structural Biology in Dementia, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Andrei Leonov
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- Senior Research Group of Translational Structural Biology in Dementia, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
26
|
Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, Wang J, Xu H, Wang L, Liang SH. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 2021; 11:373-393. [PMID: 33643818 PMCID: PMC7893127 DOI: 10.1016/j.apsb.2020.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
- ANT, adenine nucleotide transporter
- Am, molar activities
- BBB, blood‒brain barrier
- BMSC, bone marrow stromal cells
- BP, binding potential
- BPND, non-displaceable binding potential
- BcTSPO, Bacillus cereus TSPO
- CBD, corticobasal degeneration
- CNS disorders
- CNS, central nervous system
- CRAC, cholesterol recognition amino acid consensus sequence
- DLB, Lewy body dementias
- EP, epilepsy
- FTD, frontotemporal dementia
- HAB, high-affinity binding
- HD, Huntington's disease
- HSE, herpes simplex encephalitis
- IMM, inner mitochondrial membrane
- KA, kainic acid
- LAB, low-affinity binding
- LPS, lipopolysaccharide
- MAB, mixed-affinity binding
- MAO-B, monoamine oxidase B
- MCI, mild cognitive impairment
- MDD, major depressive disorder
- MMSE, mini-mental state examination
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- MSA, multiple system atrophy
- Microglial activation
- NAA/Cr, N-acetylaspartate/creatine
- Neuroinflammation
- OCD, obsessive compulsive disorder
- OMM, outer mitochondrial membrane
- P2X7R, purinergic receptor P2X7
- PAP7, RIa-associated protein
- PBR, peripheral benzodiazepine receptor
- PCA, posterior cortical atrophy
- PD, Parkinson's disease
- PDD, PD dementia
- PET, positron emission tomography
- PKA, protein kinase A
- PRAX-1, PBR-associated protein 1
- PSP, progressive supranuclear palsy
- Positron emission tomography (PET)
- PpIX, protoporphyrin IX
- QA, quinolinic acid
- RCYs, radiochemical yields
- ROS, reactive oxygen species
- RRMS, relapsing remitting multiple sclerosis
- SA, specific activity
- SAH, subarachnoid hemorrhage
- SAR, structure–activity relationship
- SCIDY, spirocyclic iodonium ylide
- SNL, selective neuronal loss
- SNR, signal to noise ratio
- SUV, standard uptake volume
- SUVR, standard uptake volume ratio
- TBAH, tetrabutyl ammonium hydroxide
- TBI, traumatic brain injury
- TLE, temporal lobe epilepsy
- TSPO
- TSPO, translocator protein
- VDAC, voltage-dependent anion channel
- VT, distribution volume
- d.c. RCYs, decay-corrected radiochemical yields
- dMCAO, distal middle cerebral artery occlusion
- fP, plasma free fraction
- n.d.c. RCYs, non-decay-corrected radiochemical yields
- p.i., post-injection
Collapse
Affiliation(s)
- Lingling Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Kuan Hu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey H. Meyer
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto ON M5T 1R8, Canada
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto ON M5T 1R8, Canada
| | - Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
27
|
|
28
|
Abstract
Imaging has made an immense contribution toward supporting the diagnosis of dementias, detecting preclinical and prodromal pathology, and allowing disease progression to be objectively tracked. This has led to consensus guidelines for the use of imaging in dementias to be published and a future task will be to validate these guidelines. Additionally, there needs to be standardised approaches over the use of binary thresholds when assigning an abnormality status. Other medical unmet needs include the need for specific imaging markers of (1) linear tau tangles, TDP-43 and alpha synuclein aggregates; (2) microglial phenotypes that throw light on the activity of these inflammatory cells; (3) activity of intracellular processes which normally act to clear misfolded proteins; (4) epigenetic activity which regulates gene expression. Future imaging studies are predicted to be active in all these areas. Finally, as safer and more effective immunotherapy and other protective strategies against the pathologies of dementias are developed and trialed, imaging will play a major future role in determining the efficacy of neuroprotective treatments and their mechanism of action to be examined.
Collapse
Affiliation(s)
- David J Brooks
- Translational and Clinical Research Institute, University of Newcastle upon Tyne, UK; Department of Nuclear Medicine, PET Centre, Aarhus University, Denmark; Department of Brain Sciences, Imperial College London, UK.
| |
Collapse
|
29
|
TSPO PET With 18F-GE-180 to Differentiate Variants of Multiple Sclerosis: Relapsing-Remitting Multiple Sclerosis, Tumefactive Demyelination, and Baló's Concentric Sclerosis. Clin Nucl Med 2020; 45:e447-e448. [PMID: 32796248 DOI: 10.1097/rlu.0000000000003220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PET targeting the translocator protein (TSPO) expression is an interesting approach to detect neuroinflammation, as TSPO is upregulated in activated macrophages and microglia. Considering the variable pathophysiology of multiple sclerosis (MS) variants, we compare TSPO PET using F-GE-180 in 3 different demyelinating diseases of the central nervous system: relapsing-remitting MS, tumefactive MS, and Baló's concentric sclerosis. Visualization of neuroinflammation and its PET patterns in addition to MRI may contribute to accurate distinction and monitoring of central nervous system demyelination.
Collapse
|
30
|
Nicholas R, Brooks D, Owen D. 18F-GE180, a radioligand for the TSPO protein: not ready for clinical trials in multiple sclerosis. Eur J Nucl Med Mol Imaging 2020; 47:2242-2243. [PMID: 32383091 DOI: 10.1007/s00259-020-04844-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Richard Nicholas
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK. .,Imperial College London, Charing Cross Hospital, Room 10L18, Fulham Palace Road, London, W6 8RF, UK.
| | - David Brooks
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David Owen
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
31
|
Downer OM, Marcus RE, Zürcher NR, Hooker JM. Tracing the History of the Human Translocator Protein to Recent Neurodegenerative and Psychiatric Imaging. ACS Chem Neurosci 2020; 11:2192-2200. [PMID: 32662626 DOI: 10.1021/acschemneuro.0c00362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human 18 kDa translocator protein (TSPO) has been widely used as a measure of glial activation in health and disease. With the continuous progress of radiotracers with increased affinity and selectivity, associations between TSPO expression, disease severity, and progression have been examined, particularly in neurodegenerative disorders such as multiple sclerosis (MS), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). However, findings in psychiatric disorders have prompted reassessment of the interpretation of regional TSPO expression differences in the brain, specifically with respect to potential neuroinflammatory components. This "mini" Review aims to guide readers through the complexity of TSPO imaging research by identifying the successes, challenges, and promising new directions of the field. We will provide a brief history of how TSPO imaging has evolved over the last three decades and present lessons learned in the context of neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Olivia M. Downer
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Rachel E.G. Marcus
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Nicole R. Zürcher
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
32
|
In response to: Anatomy of 18F-GE180, a failed radioligand for the TSPO protein. Eur J Nucl Med Mol Imaging 2020; 47:2237-2241. [PMID: 32524162 PMCID: PMC7396400 DOI: 10.1007/s00259-020-04885-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 01/11/2023]
|
33
|
Sridharan S, Raffel J, Nandoskar A, Record C, Brooks DJ, Owen D, Sharp D, Muraro PA, Gunn R, Nicholas R. Confirmation of Specific Binding of the 18-kDa Translocator Protein (TSPO) Radioligand [ 18F]GE-180: a Blocking Study Using XBD173 in Multiple Sclerosis Normal Appearing White and Grey Matter. Mol Imaging Biol 2020; 21:935-944. [PMID: 30796709 DOI: 10.1007/s11307-019-01323-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Measurements of non-displaceable binding (VND) of positron emission tomography (PET) ligands are not often made in vivo in humans because they require ligands to displace binding to target receptors and there are few readily available, safe ones to use. A technique to measure VND for ligands for the 18-kDa translocator protein (TSPO) has recently been developed which compares the total volume of distribution (VT) before and after administration of the TSPO ligand XBD173. Here, we used XBD173 with an occupancy plot to quantify VND for two TSPO radiotracers, [18F]GE-180 and [11C]PBR28, in cohorts of people with multiple sclerosis (MS). Additionally, we compared plots of subjects carrying high (HAB) or mixed binding (MAB) affinity polymorphisms of TSPO to estimate VND without receptor blockade. PROCEDURES Twelve people with MS underwent baseline MRI and 90-min dynamic [18F]GE-180 PET or [11C]PBR28 PET (n = 6; three HAB, three MAB each). Arterial blood sampling was used to generate plasma input functions for the two-tissue compartment model. VND was calculated using two independent methods: the occupancy plot (by modelling the differences in signal post XBD173) and the polymorphism plot (by modelling the differences in signal across presence and absence of rs6971 genotypes). RESULTS Whole brain VT (mean ± standard deviation) was 0.29 ± 0.17 ml/cm3 for [18F]GE-180 and 5.01 ± 1.88 ml/cm3 for [11C]PBR28. Using the occupancy and polymorphism plots respectively, VND for [18F]GE-180 was 0.11 ml/cm3 (95 % CI = 0.02, 0.16) and 0.20 ml/cm3 (0.16, 0.34), accounting for, on average, 55 % of VT in the whole brain. For [11C]PBR28, these values were 3.81 ml/cm3 (3.02, 4.21) and 3.49 ml/cm3 (1.38, 4.27), accounting for 67 % of average whole brain VT. CONCLUSIONS Although VT for [18F]GE-180 is low, indicating low brain penetration, half the signal shown by MS subjects reflected specific TSPO binding. VT for [11C]PBR28 was higher and two thirds of the binding was non-specific. No brain ROIs were devoid of specific signal, further confirming that true reference tissue approaches are potentially problematic for estimating TSPO levels.
Collapse
Affiliation(s)
- Sujata Sridharan
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK.
| | - Joel Raffel
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Ashwini Nandoskar
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Chris Record
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - David J Brooks
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Institute of Neuroscience, Newcastle upon Tyne University, Newcastle upon Tyne, UK
| | - David Owen
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - David Sharp
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Paolo A Muraro
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | | | - Richard Nicholas
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
34
|
Letter to the Editor re: Confirmation of Specific Binding of the 18-kDa Translocator Protein (TSPO) Radioligand [ 18F]GE-180: a Blocking Study Using XBD173 in Multiple Sclerosis Normal Appearing White and Grey Matter. Mol Imaging Biol 2020; 22:10-12. [PMID: 31641965 DOI: 10.1007/s11307-019-01433-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Reliable quantification of 18F-GE-180 PET neuroinflammation studies using an individually scaled population-based input function or late tissue-to-blood ratio. Eur J Nucl Med Mol Imaging 2020; 47:2887-2900. [PMID: 32322915 PMCID: PMC7651670 DOI: 10.1007/s00259-020-04810-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/02/2020] [Indexed: 01/23/2023]
Abstract
Purpose Tracer kinetic modeling of tissue time activity curves and the individual input function based on arterial blood sampling and metabolite correction is the gold standard for quantitative characterization of microglia activation by PET with the translocator protein (TSPO) ligand 18F-GE-180. This study tested simplified methods for quantification of 18F-GE-180 PET. Methods Dynamic 18F-GE-180 PET with arterial blood sampling and metabolite correction was performed in five healthy volunteers and 20 liver-transplanted patients. Population-based input function templates were generated by averaging individual input functions normalized to the total area under the input function using a leave-one-out approach. Individual population-based input functions were obtained by scaling the input function template with the individual parent activity concentration of 18F-GE-180 in arterial plasma in a blood sample drawn at 27.5 min or by the individual administered tracer activity, respectively. The total 18F-GE-180 distribution volume (VT) was estimated in 12 regions-of-interest (ROIs) by the invasive Logan plot using the measured or the population-based input functions. Late ROI-to-whole-blood and ROI-to-cerebellum ratio were also computed. Results Correlation with the reference VT (with individually measured input function) was very high for VT with the population-based input function scaled with the blood sample and for the ROI-to-whole-blood ratio (Pearson correlation coefficient = 0.989 ± 0.006 and 0.970 ± 0.005). The correlation was only moderate for VT with the population-based input function scaled with tracer activity dose and for the ROI-to-cerebellum ratio (0.653 ± 0.074 and 0.384 ± 0.177). Reference VT, population-based VT with scaling by the blood sample, and ROI-to-whole-blood ratio were sensitive to the TSPO gene polymorphism. Population-based VT with scaling to the administered tracer activity and the ROI-to-cerebellum ratio failed to detect a polymorphism effect. Conclusion These results support the use of a population-based input function scaled with a single blood sample or the ROI-to-whole-blood ratio at a late time point for simplified quantitative analysis of 18F-GE-180 PET. Electronic supplementary material The online version of this article (10.1007/s00259-020-04810-1) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Werner JM, Lohmann P, Fink GR, Langen KJ, Galldiks N. Current Landscape and Emerging Fields of PET Imaging in Patients with Brain Tumors. Molecules 2020; 25:E1471. [PMID: 32213992 PMCID: PMC7146177 DOI: 10.3390/molecules25061471] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The number of positron-emission tomography (PET) tracers used to evaluate patients with brain tumors has increased substantially over the last years. For the management of patients with brain tumors, the most important indications are the delineation of tumor extent (e.g., for planning of resection or radiotherapy), the assessment of treatment response to systemic treatment options such as alkylating chemotherapy, and the differentiation of treatment-related changes (e.g., pseudoprogression or radiation necrosis) from tumor progression. Furthermore, newer PET imaging approaches aim to address the need for noninvasive assessment of tumoral immune cell infiltration and response to immunotherapies (e.g., T-cell imaging). This review summarizes the clinical value of the landscape of tracers that have been used in recent years for the above-mentioned indications and also provides an overview of promising newer tracers for this group of patients.
Collapse
Affiliation(s)
- Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| | - Gereon R. Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
- Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| |
Collapse
|
37
|
Zanotti-Fregonara P, Pascual B, Rostomily RC, Rizzo G, Veronese M, Masdeu JC, Turkheimer F. Anatomy of 18F-GE180, a failed radioligand for the TSPO protein. Eur J Nucl Med Mol Imaging 2020; 47:2233-2236. [DOI: 10.1007/s00259-020-04732-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
|
38
|
de Groot M, Patel N, Manavaki R, Janiczek RL, Bergstrom M, Östör A, Gerlag D, Roberts A, Graves MJ, Karkera Y, Fernando D, Mistry P, Walker A, Wisniacki N, Fryer TD, Jimenez-Royo P. Quantifying disease activity in rheumatoid arthritis with the TSPO PET ligand 18F-GE-180 and comparison with 18F-FDG and DCE-MRI. EJNMMI Res 2019; 9:113. [PMID: 31858293 PMCID: PMC6923307 DOI: 10.1186/s13550-019-0576-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/15/2019] [Indexed: 02/14/2023] Open
Abstract
Purpose While the aetiology of rheumatoid arthritis (RA) remains unclear, many of the inflammatory components are well characterised. For diagnosis and therapy evaluation, in vivo insight into these processes would be valuable. Various imaging probes have shown value including dynamic contrast-enhanced (DCE) MRI and PET/CT using 18F-fluorodeoxyglucose (18F-FDG) or tracers targeting the translocator protein (TSPO). To evaluate 18F-GE-180, a novel TSPO PET tracer, for detecting and quantifying disease activity in RA, we compared 18F-GE-180 uptake with that of 18F-FDG and DCE-MRI measures of inflammation. Methods Eight RA patients with moderate-to-high, stable disease activity and active disease in at least one wrist were included in this study (NCT02350426). Participants underwent PET/CT examinations with 18F-GE-180 and 18F-FDG on separate visits, covering the shoulders and from the pelvis to the feet, including hands and wrists. DCE-MRI was performed on one affected hand. Uptake was compared visually between tracers as judged by an experienced radiologist and quantitatively using the maximum standardised uptake value (SUVmax). Uptake for both tracers was correlated with DCE-MRI parameters of inflammation, including the volume transfer coefficient Ktrans using Pearson correlation (r). Results PET/CT imaging with 18F-GE-180 in RA patients showed marked extra-synovial uptake around the affected joints. Overall sensitivity for detecting clinically affected joints was low (14%). 18F-GE-180 uptake did not or only weakly correlate with DCE-MRI parameters in the wrist (r = 0.09–0.31). 18F-FDG showed higher sensitivity for detecting symptomatic joints (34%), as well as strong positive correlation with DCE-MRI parameters (SUVmax vs. Ktrans: r = 0.92 for wrist; r = 0.68 for metacarpophalangeal joints). Conclusions The correlations between DCE-MRI parameters and 18F-FDG uptake support use of this PET tracer for quantification of inflammatory burden in RA. The TSPO tracer 18F-GE-180, however, has shown limited use for the investigation of RA due to its poor sensitivity and ability to quantify disease activity in RA.
Collapse
Affiliation(s)
- Marius de Groot
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, UK.,Department of Radiology, University of Cambridge, Cambridge, UK
| | - Neel Patel
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, UK
| | - Roido Manavaki
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Robert L Janiczek
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, UK
| | - Mats Bergstrom
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, UK
| | - Andrew Östör
- Monash University, Cabrini Medical Centre, Melbourne, Australia
| | | | - Alexandra Roberts
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Disala Fernando
- Clinical Unit Cambridge (CUC), GlaxoSmithKline R&D, Addenbrooke's Hospital, Cambridge, UK
| | | | - Adam Walker
- Clinical Unit Cambridge (CUC), GlaxoSmithKline R&D, Addenbrooke's Hospital, Cambridge, UK
| | - Nicolas Wisniacki
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Pilar Jimenez-Royo
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, UK.
| |
Collapse
|
39
|
Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019; 6:268. [PMID: 31828073 PMCID: PMC6890558 DOI: 10.3389/fmed.2019.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.
Collapse
Affiliation(s)
- Marie Beaurain
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Anne-Sophie Salabert
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Philippe Damier
- Inserm U913, Neurology Department, University Hospital, Nantes, France
| | | | - Jean-François Demonet
- Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Payoux
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| |
Collapse
|
40
|
The Molecular Effects of Ionizing Radiations on Brain Cells: Radiation Necrosis vs. Tumor Recurrence. Diagnostics (Basel) 2019; 9:diagnostics9040127. [PMID: 31554255 PMCID: PMC6963489 DOI: 10.3390/diagnostics9040127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
The central nervous system (CNS) is generally resistant to the effects of radiation, but higher doses, such as those related to radiation therapy, can cause both acute and long-term brain damage. The most important results is a decline in cognitive function that follows, in most cases, cerebral radionecrosis. The essence of radio-induced brain damage is multifactorial, being linked to total administered dose, dose per fraction, tumor volume, duration of irradiation and dependent on complex interactions between multiple brain cell types. Cognitive impairment has been described following brain radiotherapy, but the mechanisms leading to this adverse event remain mostly unknown. In the event of a brain tumor, on follow-up radiological imaging often cannot clearly distinguish between recurrence and necrosis, while, especially in patients that underwent radiation therapy (RT) post-surgery, positron emission tomography (PET) functional imaging, is able to differentiate tumors from reactive phenomena. More recently, efforts have been done to combine both morphological and functional data in a single exam and acquisition thanks to the co-registration of PET/MRI. The future of PET imaging to differentiate between radionecrosis and tumor recurrence could be represented by a third-generation PET tracer already used to reveal the spatial extent of brain inflammation. The aim of the following review is to analyze the effect of ionizing radiations on CNS with specific regard to effect of radiotherapy, focusing the attention on the mechanism underling the radionecrosis and the brain damage, and show the role of nuclear medicine techniques to distinguish necrosis from recurrence and to early detect of cognitive decline after treatment.
Collapse
|
41
|
Unterrainer M, Fleischmann DF, Vettermann F, Ruf V, Kaiser L, Nelwan D, Lindner S, Brendel M, Wenter V, Stöcklein S, Herms J, Milenkovic VM, Rupprecht R, Tonn JC, Belka C, Bartenstein P, Niyazi M, Albert NL. TSPO PET, tumour grading and molecular genetics in histologically verified glioma: a correlative 18F-GE-180 PET study. Eur J Nucl Med Mol Imaging 2019; 47:1368-1380. [PMID: 31486876 DOI: 10.1007/s00259-019-04491-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The 18-kDa translocator protein (TSPO) is overexpressed in brain tumours and represents an interesting target for glioma imaging. 18F-GE-180, a novel TSPO ligand, has shown improved binding affinity and a high target-to-background contrast in patients with glioblastoma. However, the association of uptake characteristics on TSPO PET using 18F-GE-180 with the histological WHO grade and molecular genetic features so far remains unknown and was evaluated in the current study. METHODS Fifty-eight patients with histologically validated glioma at initial diagnosis or recurrence were included. All patients underwent 18F-GE-180 PET, and the maximal and mean tumour-to-background ratios (TBRmax, TBRmean) as well as the PET volume were assessed. On MRI, presence/absence of contrast enhancement was evaluated. Imaging characteristics were correlated with neuropathological parameters (i.e. WHO grade, isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and telomerase reverse transcriptase (TERT) promoter mutation). RESULTS Six of 58 patients presented with WHO grade II, 16/58 grade III and 36/58 grade IV gliomas. An (IDH) mutation was found in 19/58 cases, and 39/58 were classified as IDH-wild type. High 18F-GE-180-uptake was observed in all but 4 cases (being WHO grade II glioma, IDH-mutant). A high association of 18F-GE-180-uptake and WHO grades was seen: WHO grade IV gliomas showed the highest uptake intensity compared with grades III and II gliomas (median TBRmax 5.15 (2.59-8.95) vs. 3.63 (1.85-7.64) vs. 1.63 (1.50-3.43), p < 0.001); this association with WHO grades persisted within the IDH-wild-type and IDH-mutant subgroup analyses (p < 0.05). Uptake intensity was also associated with the IDH mutational status with a trend towards higher 18F-GE-180-uptake in IDH-wild-type gliomas in the overall group (median TBRmax 4.67 (1.56-8.95) vs. 3.60 (1.50-7.64), p = 0.083); however, within each WHO grade, no differences were found (e.g. median TBRmax in WHO grade III glioma 4.05 (1.85-5.39) vs. 3.36 (2.32-7.64), p = 1.000). No association was found between uptake intensity and MGMT or TERT (p > 0.05 each). CONCLUSION Uptake characteristics on 18F-GE-180 PET are highly associated with the histological WHO grades, with the highest 18F-GE-180 uptake in WHO grade IV glioblastomas and a PET-positive rate of 100% among the investigated high-grade gliomas. Conversely, all TSPO-negative cases were WHO grade II gliomas. The observed association of 18F-GE-180 uptake and the IDH mutational status seems to be related to the high inter-correlation of the IDH mutational status and the WHO grades.
Collapse
Affiliation(s)
- M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D F Fleischmann
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - F Vettermann
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - V Ruf
- Department of Neuropathology, LMU Munich, Munich, Germany
| | - L Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - D Nelwan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - S Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - M Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - V Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - S Stöcklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - J Herms
- Department of Neuropathology, LMU Munich, Munich, Germany
| | - V M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - R Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - J C Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - C Belka
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Niyazi
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - N L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
42
|
Chronic inflammation in multiple sclerosis - seeing what was always there. Nat Rev Neurol 2019; 15:582-593. [PMID: 31420598 DOI: 10.1038/s41582-019-0240-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
Activation of innate immune cells and other compartmentalized inflammatory cells in the brains and spinal cords of people with relapsing-remitting multiple sclerosis (MS) and progressive MS has been well described histopathologically. However, conventional clinical MRI is largely insensitive to this inflammatory activity. The past two decades have seen the introduction of quantitative dynamic MRI scanning with contrast agents that are sensitive to the reduction in blood-brain barrier integrity associated with inflammation and to the trafficking of inflammatory myeloid cells. New MRI imaging sequences provide improved contrast for better detection of grey matter lesions. Quantitative lesion volume measures and magnetic resonance susceptibility imaging are sensitive to the activity of macrophages in the rims of white matter lesions. PET and magnetic resonance spectroscopy methods can also be used to detect contributions from innate immune activation in the brain and spinal cord. Some of these advanced research imaging methods for visualization of chronic inflammation are practical for relatively routine clinical applications. Observations made with the use of these techniques suggest ways of stratifying patients with MS to improve their care. The imaging methods also provide new tools to support the development of therapies for chronic inflammation in MS.
Collapse
|
43
|
Nag S, Krasikova R, Airaksinen AJ, Arakawa R, Petukhovd M, Gulyas B. Synthesis and biological evaluation of [ 18F]fluorovinpocetine, a potential PET radioligand for TSPO imaging. Bioorg Med Chem Lett 2019; 29:2270-2274. [PMID: 31257082 DOI: 10.1016/j.bmcl.2019.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/31/2023]
Abstract
Despite of various PET radioligands targeting the translocator protein TSPO 18-KDa are used for the investigations of neuroinflammatory conditions associated with neurological disorders, development of new TSPO radiotracers is still an active area of the researches with a major focus on the 18F-labelled radiotracers. Here, we report the radiochemical synthesis of [18F]vinpocetine, fluorinated analogue of previously reported TSPO radioligand, [11C]vinpocetine. Radiolabeling was achieved by [18F]fluoroethylation of apovincaminic acid with [18F]fluoroethyl bromide. [18F]vinpocetine was obtained in quantities >2.7 GBq in RCY of 13% (non-decay corrected), and molar activity >60 GBq/µmol within 95 min synthesis time. Preliminary PET studies in a cynomolgus monkey and metabolite studies by HPLC demonstrated similar results by [18F]vinpocetine as for [11C]vinpocetine, including high blood-brain barrier permeability, regional uptake pattern and fast washout from the NHP brain. These results demonstrate that [18F]fluorovinpocetine warrants further evaluation as an easier accessible alternative to [11C]vinpocetine.
Collapse
Affiliation(s)
- S Nag
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden.
| | - R Krasikova
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden; N.P. Bechtereva Institute of Human Brain Russian Academy of Sciences, St.-Petersburg, Russia
| | - A J Airaksinen
- Department of Chemistry - Radiochemistry, University of Helsinki, Finland
| | - R Arakawa
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - M Petukhovd
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia; Peter the Great St.-Petersburg Polytechnic University, St.-Petersburg, Russia
| | - B Gulyas
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
44
|
Sucksdorff M, Tuisku J, Matilainen M, Vuorimaa A, Smith S, Keitilä J, Rokka J, Parkkola R, Nylund M, Rinne J, Rissanen E, Airas L. Natalizumab treatment reduces microglial activation in the white matter of the MS brain. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e574. [PMID: 31355310 PMCID: PMC6624093 DOI: 10.1212/nxi.0000000000000574] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/02/2019] [Indexed: 01/31/2023]
Abstract
Objective To evaluate whether natalizumab treatment reduces microglial activation in MS. Methods We measured microglial activation using the 18-kDa translocator protein (TSPO)-binding radioligand [11C]PK11195 and PET imaging in 10 patients with MS before and after 1 year treatment with natalizumab. Microglial activation was evaluated as the distribution volume ratio (DVR) of the specifically bound radioligand in brain white and gray matter regions of interest. MRI and disability measurements were performed for comparison. Evaluation was performed identically with 11 age- and sex-matched patients with MS who had no MS therapy. Results Natalizumab treatment reduced microglial activation in the normal-appearing white matter (NAWM; baseline DVR vs DVR after 1 year of treatment 1.25 vs 1.22, p = 0.014, Wilcoxon) and at the rim of chronic lesions (baseline DVR vs DVR after 1 year of treatment 1.24 vs 1.18, p = 0.014). In patients with MS with no treatment, there was an increase in microglial activation at the rim of chronic lesions (1.23 vs 1.27, p = 0.045). No alteration was observed in microglial activation in gray matter areas. In the untreated patient group, higher microglial activation at baseline was associated with more rapid disability progression during an average of 4 years of follow-up. Conclusions TSPO-PET imaging can be used as a tool to assess longitudinal changes in microglial activation in the NAWM and in the perilesional areas in the MS brain in vivo. Natalizumab treatment reduces the diffuse compartmentalized CNS inflammation related to brain resident innate immune cells.
Collapse
Affiliation(s)
- Marcus Sucksdorff
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Markus Matilainen
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Sarah Smith
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Joonas Keitilä
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Johanna Rokka
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Riitta Parkkola
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Marjo Nylund
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Juha Rinne
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Eero Rissanen
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Laura Airas
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| |
Collapse
|
45
|
Bauckneht M, Capitanio S, Raffa S, Roccatagliata L, Pardini M, Lapucci C, Marini C, Sambuceti G, Inglese M, Gallo P, Cecchin D, Nobili F, Morbelli S. Molecular imaging of multiple sclerosis: from the clinical demand to novel radiotracers. EJNMMI Radiopharm Chem 2019; 4:6. [PMID: 31659498 PMCID: PMC6453990 DOI: 10.1186/s41181-019-0058-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Brain PET imaging with different tracers is mainly clinically used in the field of neurodegenerative diseases and brain tumors. In recent years, the potential usefulness of PET has also gained attention in the field of MS. In fact, MS is a complex disease and several processes can be selected as a target for PET imaging. The use of PET with several different tracers has been mainly evaluated in the research setting to investigate disease pathophysiology (i.e. phenotypes, monitoring of progression) or to explore its use a surrogate end-point in clinical trials. RESULTS We have reviewed PET imaging studies in MS in humans and animal models. Tracers have been grouped according to their pathophysiological targets (ie. tracers for myelin kinetic, neuroinflammation, and neurodegeneration). The emerging clinical indication for brain PET imaging in the differential diagnosis of suspected tumefactive demyelinated plaques as well as the clinical potential provided by PET images in view of the recent introduction of PET/MR technology are also addressed. CONCLUSION While several preclinical and fewer clinical studies have shown results, full-scale clinical development programs are needed to translate molecular imaging technologies into a clinical reality that could ideally fit into current precision medicine perspectives.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Caterina Lapucci
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
- CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Matilde Inglese
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre of the Veneto Region, Department of Neurosciences DNS, University of Padua, Padua, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, Padova University Hospital, Padua, Italy
- Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| |
Collapse
|
46
|
Mannheim JG, Mamach M, Reder S, Traxl A, Mucha N, Disselhorst JA, Mittelhäuser M, Kuntner C, Thackeray JT, Ziegler S, Wanek T, Bankstahl JP, Pichler BJ. Reproducibility and Comparability of Preclinical PET Imaging Data: A Multicenter Small-Animal PET Study. J Nucl Med 2019; 60:1483-1491. [PMID: 30850496 DOI: 10.2967/jnumed.118.221994] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
The standardization of preclinical imaging is a key factor to ensure the reliability, reproducibility, validity, and translatability of preclinical data. Preclinical standardization has been slowly progressing in recent years and has mainly been performed within a single institution, whereas little has been done in regards to multicenter standardization between facilities. This study aimed to investigate the comparability among preclinical imaging facilities in terms of PET data acquisition and analysis. In the first step, basic PET scans were obtained in 4 different preclinical imaging facilities to compare their standard imaging protocol for 18F-FDG. In the second step, the influence of the personnel performing the experiments and the experimental equipment used in the experiment were compared. In the third step, the influence of the image analysis on the reproducibility and comparability of the acquired data was determined. Distinct differences in the uptake behavior of the 4 standard imaging protocols were determined for the investigated organs (brain, left ventricle, liver, and muscle) due to different animal handling procedures before and during the scans (e.g., fasting vs. nonfasting, glucose levels, temperature regulation vs. constant temperature warming). Significant differences in the uptake behavior in the brain were detected when the same imaging protocol was used but executed by different personnel and using different experimental animal handling equipment. An influence of the person analyzing the data was detected for most of the organs, when the volumes of interest were manually drawn by the investigators. Coregistration of the PET to an MR image and drawing the volume of interest based on anatomic information yielded reproducible results among investigators. It has been demonstrated that there is a huge demand for standardization among multiple institutions.
Collapse
Affiliation(s)
- Julia G Mannheim
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tübingen, Tübingen, Germany .,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Martin Mamach
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Sybille Reder
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Alexander Traxl
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and
| | - Natalie Mucha
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Jonathan A Disselhorst
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Markus Mittelhäuser
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Claudia Kuntner
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, München, Germany.,Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Wanek
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
47
|
In response to: The validity of 18F-GE180 as a TSPO imaging agent. Eur J Nucl Med Mol Imaging 2019; 46:1208-1211. [PMID: 30826897 DOI: 10.1007/s00259-019-04294-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
|
48
|
Parhizkar S, Arzberger T, Brendel M, Kleinberger G, Deussing M, Focke C, Nuscher B, Xiong M, Ghasemigharagoz A, Katzmarski N, Krasemann S, Lichtenthaler SF, Müller SA, Colombo A, Monasor LS, Tahirovic S, Herms J, Willem M, Pettkus N, Butovsky O, Bartenstein P, Edbauer D, Rominger A, Ertürk A, Grathwohl SA, Neher JJ, Holtzman DM, Meyer-Luehmann M, Haass C. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat Neurosci 2019; 22:191-204. [PMID: 30617257 PMCID: PMC6417433 DOI: 10.1038/s41593-018-0296-9] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023]
Abstract
Coding variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are associated with late-onset Alzheimer's disease (AD). We demonstrate that amyloid plaque seeding is increased in the absence of functional Trem2. Increased seeding is accompanied by decreased microglial clustering around newly seeded plaques and reduced plaque-associated apolipoprotein E (ApoE). Reduced ApoE deposition in plaques is also observed in brains of AD patients carrying TREM2 coding variants. Proteomic analyses and microglia depletion experiments revealed microglia as one origin of plaque-associated ApoE. Longitudinal amyloid small animal positron emission tomography demonstrates accelerated amyloidogenesis in Trem2 loss-of-function mutants at early stages, which progressed at a lower rate with aging. These findings suggest that in the absence of functional Trem2, early amyloidogenesis is accelerated due to reduced phagocytic clearance of amyloid seeds despite reduced plaque-associated ApoE.
Collapse
Affiliation(s)
- Samira Parhizkar
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Arzberger
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gernot Kleinberger
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Carola Focke
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brigitte Nuscher
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Monica Xiong
- Department of Neurology, Hope Center for Neurological Disorders, and Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Alireza Ghasemigharagoz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Natalie Katzmarski
- Department of Neurology, Medical Center University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Krasemann
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan F Lichtenthaler
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | | | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Jochen Herms
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Willem
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nadine Pettkus
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Bartenstein
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dieter Edbauer
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Axel Rominger
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Stefan A Grathwohl
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Christian Haass
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| |
Collapse
|
49
|
Nack A, Brendel M, Nedelcu J, Daerr M, Nyamoya S, Beyer C, Focke C, Deussing M, Hoornaert C, Ponsaerts P, Schmitz C, Bartenstein P, Rominger A, Kipp M. Expression of Translocator Protein and [18F]-GE180 Ligand Uptake in Multiple Sclerosis Animal Models. Cells 2019; 8:cells8020094. [PMID: 30696113 PMCID: PMC6406715 DOI: 10.3390/cells8020094] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Positron emission tomography (PET) ligands targeting the translocator protein (TSPO) represent promising tools to visualize neuroinflammation in multiple sclerosis (MS). Although it is known that TSPO is expressed in the outer mitochondria membrane, its cellular localization in the central nervous system under physiological and pathological conditions is not entirely clear. The purpose of this study was to assess the feasibility of utilizing PET imaging with the TSPO tracer, [18F]-GE180, to detect histopathological changes during experimental demyelination, and to determine which cell types express TSPO. C57BL/6 mice were fed with cuprizone for up to 5 weeks to induce demyelination. Groups of mice were investigated by [18F]-GE180 PET imaging at week 5. Recruitment of peripheral immune cells was triggered by combining cuprizone intoxication with MOG35–55 immunization (i.e., Cup/EAE). Immunofluorescence double-labelling and transgene mice were used to determine which cell types express TSPO. [18F]-GE180-PET reliably detected the cuprizone-induced pathology in various white and grey matter regions, including the corpus callosum, cortex, hippocampus, thalamus and caudoputamen. Cuprizone-induced demyelination was paralleled by an increase in TSPO expression, glia activation and axonal injury. Most of the microglia and around one-third of the astrocytes expressed TSPO. TSPO expression induction was more severe in the white matter corpus callosum compared to the grey matter cortex. Although mitochondria accumulate at sites of focal axonal injury, these mitochondria do not express TSPO. In Cup/EAE mice, both microglia and recruited monocytes contribute to the TSPO expressing cell populations. These findings support the notion that TSPO is a valuable marker for the in vivo visualization and quantification of neuropathological changes in the MS brain. The pathological substrate of an increase in TSPO-ligand binding might be diverse including microglia activation, peripheral monocyte recruitment, or astrocytosis, but not axonal injury.
Collapse
MESH Headings
- Animals
- Astrocytes/pathology
- Astrocytes/ultrastructure
- Axons/metabolism
- Axons/ultrastructure
- Biomarkers/metabolism
- Carbazoles/metabolism
- Cuprizone
- Demyelinating Diseases/diagnostic imaging
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Inflammation/pathology
- Ligands
- Mice, Inbred C57BL
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Monocytes/metabolism
- Multiple Sclerosis/diagnostic imaging
- Neuroglia/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
Collapse
Affiliation(s)
- Anne Nack
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Julia Nedelcu
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Markus Daerr
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Stella Nyamoya
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Carola Focke
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Chloé Hoornaert
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| | - Christoph Schmitz
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland.
| | - Markus Kipp
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
50
|
Zanotti-Fregonara P, Veronese M, Pascual B, Rostomily RC, Turkheimer F, Masdeu JC. The validity of 18F-GE180 as a TSPO imaging agent. Eur J Nucl Med Mol Imaging 2019; 46:1205-1207. [PMID: 30656358 DOI: 10.1007/s00259-019-4268-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Belen Pascual
- Nantz National Alzheimer Center and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Joseph C Masdeu
- Nantz National Alzheimer Center and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| |
Collapse
|