1
|
Zhao P, Li Y, Yang Y, Xiao Q, Zhang Z, Hong X, Ni H, Xia Z, Zhan K, Yang S, Zhang Y. Probiotic efficacy and mechanism of a pigeon derived Ligilactobacillus salivarius strain in promoting growth and intestinal development of pigeons. Front Microbiol 2025; 16:1584380. [PMID: 40415945 PMCID: PMC12098536 DOI: 10.3389/fmicb.2025.1584380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/21/2025] [Indexed: 05/27/2025] Open
Abstract
Background With the gradual rise of antibiotic-free farming practices, the exploration of novel, green, and low-pollution alternatives to antibiotics has become one of the key research focus in the field of agricultural science. In the development of antibiotic alternatives, probiotics, particularly host-associated probiotics, have been found to play a significant role in enhancing the production performance of livestock and poultry. However, research on and application of probiotics specifically for meat pigeons remain relatively underdeveloped. Objective To assess and investigate the probiotic efficacy and mechanisms during homologous lactic acid bacteria (LAB) transplant to host-pigeons, LAB strains with good probiotic properties were isolated from the intestinal contents of 28-day-old Mimas pigeons. And then measured the production indexes, intestinal flora, and intestinal transcriptomics of the hosts after instillation of LAB strains. Methods A total of 360 at 1-day-old pigeons were randomly divided into four groups and gavaged 0.4 mL Ligilactobacillus salivarius S10 with concentration of 0, 108, 109, and 1010 CFU/mL, designated as the control group (CG), the low concentration group (LG), the medium concentration group (MG), and the high concentration group (HG), respectively. Results The findings revealed that an optimal concentration of 109 CFU/mL L. salivarius S10, a dominant strain isolated and screened, enhanced the growth performance and intestinal development of young pigeons. 16S rRNA gene sequencing analysis demonstrated a significant increase in the abundance of Lactobacillus, Pantoea_A and Enterococcus_H and a significant reduction in the abundance of Clostridium_T in the pigeon ileum (p < 0.05) under selected concentration treatment. Transcriptomic profiling of the ileum revealed 1828 differentially expressed genes (DEGs) between CG and MG. Notably, DEGs involved in the MAPK signaling pathway, such as RAF1, PDGFRB, and ELK4, were significantly correlated with differential ileal bacteria, suggesting that modulation of intestinal flora can influence the expression of genes related to cell proliferation and differentiation in the ileum, which is potentially important in promoting the growth and development of pigeons. Conclusion Ligilactobacillus salivarius S10 possesses the potential to be used as a probiotic for pigeons, which can influence the expression of gut development-related DEGs by regulating the intestinal flora, and further improve the growth performance of pigeons. This research provides a scientific foundation for developing pigeon-specific probiotics and promotes healthy farming practices for meat pigeons. Furthermore, it opens new avenues for improving the economic efficiency of pigeon farming.
Collapse
Affiliation(s)
- Puze Zhao
- College of Animal Science, Jilin University, Changchun, China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun, China
| | - Yuwei Yang
- College of Animal Science, Jilin University, Changchun, China
| | - Qingxing Xiao
- College of Animal Science, Jilin University, Changchun, China
| | - Ziyi Zhang
- College of Animal Science, Jilin University, Changchun, China
| | - Xiaoqing Hong
- College of Animal Science, Jilin University, Changchun, China
| | - Hongyu Ni
- College of Animal Science, Jilin University, Changchun, China
| | - Zhuxuan Xia
- College of Animal Science, Jilin University, Changchun, China
| | - Kun Zhan
- College of Animal Science, Jilin University, Changchun, China
| | - Sibao Yang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
2
|
Meng F, Yang L, Ji M, Zhu S, Tao H, Wang G. Nanomaterials: A Prospective Strategy for Biofilm-Forming Helicobacter pylori Treatment. Int J Nanomedicine 2025; 20:5209-5229. [PMID: 40292401 PMCID: PMC12034278 DOI: 10.2147/ijn.s512066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Helicobacter pylori (H. pylori) is prevalent in over 50% of the global population and is recognized as the primary etiological agent for the development of gastric cancer. With the increasing incidence of antibiotic resistance, clinical treatment of H. pylori is a significant challenge. The formation of H. pylori biofilm is an important reason for antibiotic resistance and chronic infection, and it is also one of the key obstacles to eradicating H. pylori. H. pylori biofilm acts as a physical barrier, preventing the penetration of antibiotics and increasing the expression of efflux pump genes and drug-resistant gene mutations. Therefore, the treatment of H. pylori biofilm is extremely challenging. Nanomaterials, such as inorganic nanoparticles, lipid-based nanoparticles, and polymeric nanoparticles, which have properties including disrupting bacterial cell membranes, controlling drug release, and overcoming antibiotic resistance, have attracted significant interest. Furthermore, nanomaterials have the ability to treat H. pylori biofilm owing to their unique size, structure, and physical properties, including the inhibition of biofilm formation, enhancement of biofilm permeability, and disruption of mature biofilm. Moreover, nanomaterials have targeting functions and can carry antimicrobial drugs that play a synergistic role, thus providing a prospective strategy for treating H. pylori biofilm. In this review, we summarize the formation and antibiotic-resistance mechanisms of H. pylori biofilm and outline the latest progress in nanomaterials against H. pylori biofilm with the aim of laying the foundation for the development and clinical application of nanomaterials for anti-H. pylori biofilm.
Collapse
Affiliation(s)
- Fansen Meng
- Department of Gastroenterology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Lyukun Yang
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Mingzhong Ji
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Siying Zhu
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Hongjin Tao
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Gangshi Wang
- Department of Gastroenterology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| |
Collapse
|
3
|
Chambial P, Thakur N, Bhukya PL, Subbaiyan A, Kumar U. Frontiers in superbug management: innovating approaches to combat antimicrobial resistance. Arch Microbiol 2025; 207:60. [PMID: 39953143 DOI: 10.1007/s00203-025-04262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Anti-microbial resistance (AMR) is a global health issue causing significant mortality and economic burden. Pharmaceutical companies' discontinuation of research hinders new agents, while MDR pathogens or "superbugs" worsen the problem. Superbugs pose a threat to common infections and medical procedures, exacerbated by limited antibiotic development and rapid antibiotic resistance. The rising tide of antimicrobial resistance threatens to undermine progress in controlling infectious diseases. This review examines the global proliferation of AMR, its underlying mechanisms, and contributing factors. The study explores various methodologies, emphasizing the significance of precise and timely identification of resistant strains. We discuss recent advancements in CRISPR/Cas9, nanoparticle technology, light-based techniques, and AI-powered antibiogram analysis for combating AMR. Traditional methods often fail to effectively combat multidrug-resistant bacteria, as CRISPR-Cas9 technology offers a more effective approach by cutting specific DNA sequences, precision targeting and genome editing. AI-based smartphone applications for antibiogram analysis in resource-limited settings face challenges like internet connectivity, device compatibility, data quality, energy consumption, and algorithmic limitations. Additionally, light-based antimicrobial techniques are increasingly being used to effectively kill antibiotic-resistant microbial species and treat localized infections. This review provides an in-depth overview of AMR covering epidemiology, evolution, mechanisms, infection prevention, control measures, antibiotic access, stewardship, surveillance, challenges and emerging non-antibiotic therapeutic approaches.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab, 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh, 175001, India.
| | - Prudhvi Lal Bhukya
- Rodent Experimentation Facility, ICMR-National Animal Facility Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana, 500101, India
| | - Anbazhagan Subbaiyan
- Rodent Experimentation Facility, ICMR-National Animal Facility Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana, 500101, India
| | - Umesh Kumar
- Department of Biosciences, IMS Ghaziabad University Courses Campus, NH-09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India.
| |
Collapse
|
4
|
Kwon J, Kim SG, Kim SW, Kim HJ, Kang JW, Jo SJ, Giri SS, Jeong WJ, Bin Lee S, Kim JH, Park SC. Tailoring formulation for enhanced phage therapy in canine otitis externa: a cocktail approach targeting Pseudomonas aeruginosa and Staphylococcus pseudintermedius. Vet Microbiol 2025; 301:110354. [PMID: 39740318 DOI: 10.1016/j.vetmic.2024.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Canine otitis externa, characterized by the involvement of diverse bacterial species, notably Pseudomonas aeruginosa and Staphylococcus pseudintermedius, necessitates antibiotic administration as the primary therapeutic approach; however, prolonged treatment often precipitates antibiotic resistance. Therefore, the application of bacteriophages as antimicrobial agents has been of interest recently. However, phage therapy has limitations; its efficacy depends on the lytic capacity of the phage and the emergence of phage resistance, which can be overcome by using phage cocktails. This study aimed to enhance the therapeutic potential of bacteriophages by supplementing additional materials to hinder the pathogens and combining different viruses to broaden the lytic spectrum. The therapeutic potential of the phage cocktail, consisting of Pseudomonas phage pPa_SNUABM_DT01 and Staphylococcus phage pSp_SNUABM-J, was evaluated using an in vitro planktonic bacterial cell lysis assay and a biofilm degradation assay. Additionally, its efficacy was assessed using an in vivo mouse otitis externa model and clinical administration in five dogs with chronic Pseudomonas aeruginosa and Staphylococcus pseudintermedius otitis externa. The phage cocktail with formulation, including glycerol, glycine, and Tween 20, as additional components resulted in a significant reduction in bacterial counts and clinical improvements, including odor, discharge type and amount, and inflammatory symptoms. The results suggest that administering a phage cocktail solution with additional components could make phage therapy a more efficient treatment for otitis externa in dogs. This offers a practical alternative to traditional antibiotic treatments and could help mitigate antibiotic resistance in veterinary medicine.
Collapse
Affiliation(s)
- Jun Kwon
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Sang Guen Kim
- Department of Biological Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sang Wha Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Hyoun Joong Kim
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehak-ro, Gunsan, Jeollabuk-do 54150, Republic of Korea
| | - Jung Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea
| | - Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea
| | - Won Jun Jeong
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam 13120, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
6
|
Paul S, Parvez SS, Goswami A, Banik A. Exopolysaccharides from agriculturally important microorganisms: Conferring soil nutrient status and plant health. Int J Biol Macromol 2024; 262:129954. [PMID: 38336329 DOI: 10.1016/j.ijbiomac.2024.129954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
A wide variety of microorganisms secretes extracellular polymeric substances or commonly known as exopolysaccharides (EPS), which have been studied to influence plant growth via various mechanisms. EPS-producing microorganisms have been found to have positive effects on plant health such as by facilitating nutrient entrapment in the soil, or by improving soil quality, especially by helping in mitigating various abiotic stress conditions. The various types of microbial polysaccharides allow for the compartmentalization of the microbial community enabling them to endure undressing stress conditions. With the growing population, there is a constant need for developing sustainable agriculture where we could use various PGPR to help the plant cope with various stress conditions and simultaneously enhance the crop yield. These polysaccharides have also found application in various sectors, especially in the biomedical fields, manifesting their potential to act as antitumor drugs, play a significant role in immune evasion, and reveal various therapeutic potentials. These constitute high levels of bioactive polysaccharides which possess a wide range of implementation starting from industrial applications to novel food applications. In this current review, we aim at presenting a comprehensive study of how these microbial extracellular polymeric substances influence agricultural productivity along with their other commercial applications.
Collapse
Affiliation(s)
- Sushreeta Paul
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Sk Soyal Parvez
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Anusree Goswami
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
7
|
Keshri J, Smith KM, Svendsen MK, Keillor HR, Moss ML, Jordan HJ, Larkin AM, Garrish JK, Line JE, Ball PN, Oakley BB, Seal BS. Phenotypic Characterization and Draft Genome Sequence Analyses of Two Novel Endospore-Forming Sporosarcina spp. Isolated from Canada Goose ( Branta canadensis) Feces. Microorganisms 2023; 12:70. [PMID: 38257897 PMCID: PMC10818898 DOI: 10.3390/microorganisms12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
In an attempt to isolate new probiotic bacteria, two Gram-variable, spore-forming, rod-shaped aerobic bacteria designated as strain A4 and A15 were isolated from the feces of Canada geese (Branta canadensis). Strain A4 was able to grow in high salt levels and exhibited lipase activity, while A15 did not propagate under these conditions. Both were positive for starch hydrolysis, and they inhibited the growth of Staphylococcus aureus. The strains of the 16S rRNA sequence shared only 94% similarity to previously identified Sporosarcina spp. The ANI (78.08%) and AAI (82.35%) between the two strains were less than the species threshold. Searches for the most similar genomes using the Mash/Minhash algorithm showed the nearest genome to strain A4 and A15 as Sporosarcina sp. P13 (distance of 21%) and S. newyorkensis (distance of 17%), respectively. Sporosarcina spp. strains A4 and A15 contain urease genes, and a fibronectin-binding protein gene indicates that these bacteria may bind to eukaryotic cells in host gastrointestinal tracts. Phenotypic and phylogenetic data, along with low dDDH, ANI, and AAI values for strains A4 and A15, indicate these bacteria are two novel isolates of the Sporosarcina genus: Sporosarcina sp. A4 sp. nov., type strain as Sporosarcina cascadiensis and Sporosarcina sp. A15 sp. nov., type strain Sporosarcina obsidiansis.
Collapse
Affiliation(s)
- Jitendra Keshri
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kristina M. Smith
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Molly K. Svendsen
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Haley R. Keillor
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Madeline L. Moss
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Haley J. Jordan
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Abigail M. Larkin
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Johnna K. Garrish
- Poultry Microbiological Safety & Processing Research Unit, U.S. National Poultry Research Center, Athens, GA 30605, USA; (J.K.G.); (J.E.L.)
| | - John Eric Line
- Poultry Microbiological Safety & Processing Research Unit, U.S. National Poultry Research Center, Athens, GA 30605, USA; (J.K.G.); (J.E.L.)
| | - Patrick N. Ball
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| | - Brian B. Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Bruce S. Seal
- Biology Program, Oregon State University Cascades, Bend, OR 97702, USA; (K.M.S.); (M.K.S.); (H.R.K.); (M.L.M.); (H.J.J.); (A.M.L.); (P.N.B.)
| |
Collapse
|
8
|
Mörschbächer AP, Berghahn E, Shibuya FY, Cardoso ML, Ulguim GK, de Freitas Michelon N, Torgeski N, Vivian TP, Wissmann D, de Camargo FCDLS, de Andrade GM, Sturza DAF, Dos Santos HF, Dilkin P, Timmers LFSM, Granada CE. Feeding laying hens with lactobacilli improves internal egg quality and animal health. World J Microbiol Biotechnol 2023; 40:5. [PMID: 37925366 DOI: 10.1007/s11274-023-03820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Feeding animals with lactobacilli strains is a biotechnological strategy to improve production, food quality, and animal health. Thus, this study aimed to select new lactic acid bacteria (LAB) able to improve laying hens health and egg production. Forty Bovans White layers (two days old) were randomly divided into four experimental groups that receive an oral gavage with saline solution (control group) or with one of the three lactobacilli selected (KEG3, TBB10, and KMG127) by their antagonistic activity against the foodborne pathogen Bacillus cereus GGD_EGG01. 16 S rRNA sequencing identified KEG3 as Lentilactobacillus sp., and TBB10 and KMG127 as Lactiplantibacillus sp. The data showed that feeding birds with LAB increased weight uniformity and improved the internal quality of the eggs (high yolk index and Haugh unit) compared with the control group (p < 0.05). Beta-diversity analysis showed that LAB supplementation modifies the cecal microbiota of laying hens. The prokaryotic families Bacteroidaceae, Ruminococcaceae, Rikenellaceae, and Lactobacillaceae were most important to the total dissimilarity of the cecal microbial community (calculated by SIMPER test). At end of in vivo experiments, it was possible to conclude that the feed of laying hens with Lentilactobacillus sp. TBB10 and Lentilactobacillus sp. KEG3 can be an important biotechnological tool for improving food quality and animal health.
Collapse
Affiliation(s)
- Ana Paula Mörschbächer
- Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil
| | - Emílio Berghahn
- Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil
| | - Fabio Yuji Shibuya
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria - UFSM, Santa Maria, Brazil
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Mateus Luis Cardoso
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gustavo Kutscher Ulguim
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Nathalia de Freitas Michelon
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Natália Torgeski
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tamiris Prussiano Vivian
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daiani Wissmann
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Flávia Constância de Los Santos de Camargo
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gabriela Monteiro de Andrade
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Uniprofessional Residency Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Helton Fernandes Dos Santos
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Paulo Dilkin
- Laboratory of Diagnosis of Avian Pathologies, Department of Preventive Veterinary Medicine, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | |
Collapse
|
9
|
Icer MA, Özbay S, Ağagündüz D, Kelle B, Bartkiene E, Rocha JMF, Ozogul F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023; 12:2965. [PMID: 37569234 PMCID: PMC10418883 DOI: 10.3390/foods12152965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The need to improve the safety/quality of food and the health of the hosts has resulted in increasing worldwide interest in acidophilic lactic acid bacteria (LAB) for the food, livestock as well as health industries. In addition to the use of acidophilic LAB with probiotic potential for food fermentation and preservation, their application in the natural disposal of acidic wastes polluting the environment is also being investigated. Considering this new benefit that has been assigned to probiotic microorganisms in recent years, the acceleration in efforts to identify new, efficient, promising probiotic acidophilic LAB is not surprising. One of these effots is to determine both the beneficial and harmful compounds synthesized by acidophilic LAB. Moreover, microorganisms are of concern due to their possible hemolytic, DNase, gelatinase and mucinolytic activities, and the presence of virulence/antibiotic genes. Hence, it is argued that acidophilic LAB should be evaluated for these parameters before their use in the health/food/livestock industry. However, this issue has not yet been fully discussed in the literature. Thus, this review pays attention to the less-known aspects of acidophilic LAB and the compounds they release, clarifying critical unanswered questions, and discussing their health benefits and safety.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Sena Özbay
- Department of Food Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kırşehir 40360, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Bayram Kelle
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences Tilzes 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - João Miguel F. Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Cukurova University, Balcalı, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
10
|
Shleeva MO, Kondratieva DA, Kaprelyants AS. Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics 2023; 15:1893. [PMID: 37514078 PMCID: PMC10383908 DOI: 10.3390/pharmaceutics15071893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Bacillus licheniformis produces several classes of antimicrobial substances, including bacteriocins, which are peptides or proteins with different structural composition and molecular mass: ribosomally synthesized by bacteria (1.4-20 kDa), non-ribosomally synthesized peptides and cyclic lipopeptides (0.8-42 kDa) and exopolysaccharides (>1000 kDa). Different bacteriocins act against Gram-positive or Gram-negative bacteria, fungal pathogens and amoeba cells. The main mechanisms of bacteriocin lytic activity include interaction of peptides with membranes of target cells resulting in structural alterations, pore-forming, and inhibition of cell wall biosynthesis. DNase and RNase activity for some bacteriocines are also postulated. Non-ribosomal peptides are synthesized by special non-ribosomal multimodular peptide synthetases and contain unnatural amino acids or fatty acids. Their harmful effect is due to their ability to form pores in biological membranes, destabilize lipid packaging, and disrupt the peptidoglycan layer. Lipopeptides, as biosurfactants, are able to destroy bacterial biofilms. Secreted polysaccharides are high molecular weight compounds, composed of repeated units of sugar moieties attached to a carrier lipid. Their antagonistic action was revealed in relation to bacteria, viruses, and fungi. Exopolysaccharides also inhibit the formation of biofilms by pathogenic bacteria and prevent their colonization on various surfaces. However, mechanism of the harmful effect for many secreted antibacterial substances remains unknown. The antimicrobial activity for most substances has been studied in vitro only, but some substances have been characterized in vivo and they have found practical applications in medicine and veterinary. The cyclic lipopeptides that have surfactant properties are used in some industries. In this review, special attention is paid to the antimycobacterials produced by B. licheniformis as a possible approach to combat multidrug-resistant and latent tuberculosis. In particular, licheniformins and bacitracins have shown strong antimycobacterial activity. However, the medical application of some antibacterials with promising in vitro antimycobacterial activity has been limited by their toxicity to animals and humans. As such, similar to the enhancement in the antimycobacterial activity of natural bacteriocins achieved using genetic engineering, the reduction in toxicity using the same approach appears feasible. The unique capability of B. licheniformis to synthesize and produce a range of different antibacterial compounds means that this organism can act as a natural universal vehicle for antibiotic substances in the form of probiotic cultures and strains to combat various types of pathogens, including mycobacteria.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria A Kondratieva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
11
|
Suvvari TK, Kandula VDK, Kandi V, Thomas V. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas13a: Future Hope to Tackle Anti-Microbial Resistance. Microbiol Insights 2023; 16:11786361231178623. [PMID: 37346051 PMCID: PMC10280507 DOI: 10.1177/11786361231178623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
| | | | - Venkataramana Kandi
- Department of Microbiology, Prathima
Institute of Medical Sciences, Karimnagar, Telangana, India
| | - Vimal Thomas
- Tbilisi State Medical University, Tbilisi,
Georgia
| |
Collapse
|
12
|
Ichinose R, Yamasaki-Yashiki S, Katakura Y. Analysis of the effects of specific growth rate of Lactococcus lactis MG1363 on aerobic metabolism and its application to high-density culture. J Biosci Bioeng 2023:S1389-1723(23)00138-X. [PMID: 37301698 DOI: 10.1016/j.jbiosc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Lactic acid bacteria (LAB) are known to produce a large amount of lactate when cultured under non-aerated conditions, which inhibits their growth at high concentrations. Our previous studies have shown that LAB can be cultured without lactate production under aerated conditions at a low specific growth rate. In this study, we investigated the effects of specific growth rate on cell yield and the specific production rates of metabolites in aerated fed-batch cultures of Lactococcus lactis MG1363. The results showed that lactate and acetoin production could be suppressed at specific growth rates below 0.2 h-1, whereas acetate production was the highest at a specific growth rate of 0.2 h-1. When LAB was cultured at a specific growth rate of 0.25 h-1 with the addition of 5 mg/L heme to assist ATP production by respiration, lactate and acetate production was suppressed, and cell concentration reached 19 g-dry-cell/L (5.6 × 10ˆ10 cfu/mL) with a high cell yield of 0.42 ± 0.02 g-dry-cell/g-glucose.
Collapse
Affiliation(s)
- Ryo Ichinose
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
13
|
Barbour A, Smith L, Oveisi M, Williams M, Huang RC, Marks C, Fine N, Sun C, Younesi F, Zargaran S, Orugunty R, Horvath TD, Haidacher SJ, Haag AM, Sabharwal A, Hinz B, Glogauer M. Discovery of phosphorylated lantibiotics with proimmune activity that regulate the oral microbiome. Proc Natl Acad Sci U S A 2023; 120:e2219392120. [PMID: 37216534 PMCID: PMC10235938 DOI: 10.1073/pnas.2219392120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Lantibiotics are ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are produced by bacteria. Interest in this group of natural products is increasing rapidly as alternatives to conventional antibiotics. Some human microbiome-derived commensals produce lantibiotics to impair pathogens' colonization and promote healthy microbiomes. Streptococcus salivarius is one of the first commensal microbes to colonize the human oral cavity and gastrointestinal tract, and its biosynthesis of RiPPs, called salivaricins, has been shown to inhibit the growth of oral pathogens. Herein, we report on a phosphorylated class of three related RiPPs, collectively referred to as salivaricin 10, that exhibit proimmune activity and targeted antimicrobial properties against known oral pathogens and multispecies biofilms. Strikingly, the immunomodulatory activities observed include upregulation of neutrophil-mediated phagocytosis, promotion of antiinflammatory M2 macrophage polarization, and stimulation of neutrophil chemotaxis-these activities have been attributed to the phosphorylation site identified on the N-terminal region of the peptides. Salivaricin 10 peptides were determined to be produced by S. salivarius strains found in healthy human subjects, and their dual bactericidal/antibiofilm and immunoregulatory activity may provide new means to effectively target infectious pathogens while maintaining important oral microbiota.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Leif Smith
- Department of Biology, College of Science, Texas A&M University, College Station, TX 77843
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - McKinley Williams
- Department of Biology, College of Science, Texas A&M University, College Station, TX 77843
| | - Ruo Chen Huang
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Cara Marks
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Sina Zargaran
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | | | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Amarpreet Sabharwal
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
14
|
Nandi SK, Suma AY, Rashid A, Kabir MA, Goh KW, Abdul Kari Z, Van Doan H, Zakaria NNA, Khoo MI, Seong Wei L. The Potential of Fermented Water Spinach Meal as a Fish Meal Replacement and the Impacts on Growth Performance, Reproduction, Blood Biochemistry and Gut Morphology of Female Stinging Catfish ( Heteropneustes fossilis). Life (Basel) 2023; 13:life13010176. [PMID: 36676125 PMCID: PMC9863030 DOI: 10.3390/life13010176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
The identification and development of a new plant-based feed ingredient as an alternative protein source to FM have gained the interest of the aquafeed industrial players. Therefore, this study aimed to investigate the physical, biochemical, and bacteriological properties of dietary FWM and the impacts on the growth and reproductive performances of farmed female stinging catfish, H. fossilis broodstock. Five experimental diets were formulated with different FWM inclusion (0, 25, 50, 75, and 100%). Fatty acid profiles such as 4:0, 10:0, 20:0, 21:0, 22:0, 24:0, 20:1n9, 18:3n6, 20:3n6, 20:4n6, and 22:6n3 were found in higher levels in FWM compared to the water spinach meal (WM). Meanwhile, there were no significant differences in the physical properties of the FWM experimental diets (p > 0.05). Furthermore, the experimental feed with 0%, 25%, 50%, and 75% FWM were more palatable to the broodstock than 100% FWM. The number of total bacteria (TB) and lactic acid bacteria (LAB) in catfish diets exhibited a rising trend with an increase in FWM, while 50% of FWM-fed fish intestines had a significantly (p < 0.05) higher TB and LAB than other treatment groups. The growth, feed utilization, and reproductive variables of H. fossilis were significantly (p < 0.05) influenced by FWM inclusion at various levels. Moreover, the significantly (p < 0.05) highest oocytes weight, fertilization, egg ripeness, and ovipositor diameter were observed in the treatment of 50% FWM diet treatment group. In addition, the spawning response was 100% in all treatments except for the control group (66.67%). Significant differences (p < 0.05) were found in the hematological and serum biochemical indices in most treatment groups. In addition, the histological analysis of H. fossilis midintestinal tissue indicated that the fish fed with a 50% FWM diet had an unbroken epithelial barrier with more goblet cell arrangements and a well-organized villi structure and tunica muscularis compared to other treatment groups. These outcomes suggested that FWM at 50% inclusion is an adequate protein supplement for fish feed, resulting in better growth, reproductive performance, and health of H. fossilis broodstock development.
Collapse
Affiliation(s)
- Shishir Kumar Nandi
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Afrina Yeasmin Suma
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Aminur Rashid
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Muhammad Anamul Kabir
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Correspondence: (M.A.K.); (K.W.G.); (Z.A.K.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
- Correspondence: (M.A.K.); (K.W.G.); (Z.A.K.)
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Correspondence: (M.A.K.); (K.W.G.); (Z.A.K.)
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, 239 HuayKeaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand
| | - Nik Nur Azwanida Zakaria
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Department of Agro-Based Industry, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| |
Collapse
|
15
|
Khoo SC, Goh MS, Alias A, Luang-In V, Chin KW, Ling Michelle TH, Sonne C, Ma NL. Application of antimicrobial, potential hazard and mitigation plans. ENVIRONMENTAL RESEARCH 2022; 215:114218. [PMID: 36049514 PMCID: PMC9422339 DOI: 10.1016/j.envres.2022.114218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The tremendous rise in the consumption of antimicrobial products had aroused global concerns, especially in the midst of pandemic COVID-19. Antimicrobial resistance has been accelerated by widespread usage of antimicrobial products in response to the COVID-19 pandemic. Furthermore, the widespread use of antimicrobial products releases biohazardous substances into the environment, endangering the ecology and ecosystem. Therefore, several strategies or measurements are needed to tackle this problem. In this review, types of antimicrobial available, emerging nanotechnology in antimicrobial production and their advanced application have been discussed. The problem of antimicrobial resistance (AMR) due to antibiotic-resistant bacteria (ARB)and antimicrobial resistance genes (AMG) had become the biggest threat to public health. To deal with this problem, an in-depth discussion of the challenges faced in antimicrobial mitigations and potential alternatives was reviewed.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Meng Shien Goh
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Amirah Alias
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Kah Wei Chin
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Tiong Hui Ling Michelle
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| | - Nyuk Ling Ma
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
16
|
Effects of a farm-specific fecal microbial transplant (FMT) product on clinical outcomes and fecal microbiome composition in preweaned dairy calves. PLoS One 2022; 17:e0276638. [PMID: 36269743 PMCID: PMC9586405 DOI: 10.1371/journal.pone.0276638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Gastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Therefore, effective strategies to manipulate the microbiome of dairy calves under commercial dairy operations are of great importance to improve animal health and reduce antimicrobial usage. The objective of this study was to develop a farm-specific FMT product and to investigate its effects on clinical outcomes and fecal microbial composition of dairy calves. The FMT product was derived from feces from healthy donors (5–24 days of age) raised in the same calf ranch facility as the FMT recipients. Healthy and diarrheic calves were randomly enrolled to a control (n = 115) or FMT (n = 112) treatment group (~36 g of processed fecal matter once daily for 3 days). Fecal samples were collected at enrollment and again 9 days later after the first FMT dose. Although the FMT product was rich in organisms typically known for their beneficial probiotic properties, the FMT therapy did not prevent or ameliorate GI disease in dairy calves. In fact, calves that received FMT were less likely to recover from GI disease, and more likely to die due to GI disease complications. Fecal microbial community analysis revealed an increase in the alpha-diversity in FMT calves; however, no major differences across treatment groups were observed in the beta-diversity analysis. Calves that received FMT had higher relative abundance of an uncultured organism of the genus Lactobacillus and Lactobacillus reuteri on day 10. Moreover, FMT calves had lower relative abundance of Clostridium nexile and Bacteroides vulgatus on day 10. Our results indicate the need to have an established protocol when developing FMT products, based on rigorous inclusion and exclusion criteria for the selection of FMT donors free of potential pathogens, no history of disease or antibiotic treatment.
Collapse
|
17
|
Wu M, Dong Q, Ma Y, Yang S, Zohaib Aslam M, Liu Y, Li Z. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: A review. Food Res Int 2022; 160:111733. [DOI: 10.1016/j.foodres.2022.111733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
|
18
|
Salazar CB, Spencer P, Mohamad K, Jabeen A, Abdulmonem WA, Fernández N. Future pandemics might be caused by bacteria and not viruses: Recent advances in medical preventive practice. Int J Health Sci (Qassim) 2022; 16:1-3. [PMID: 35599938 PMCID: PMC9092534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Carla Bieg Salazar
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO43SQ, England
| | - Patrick Spencer
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO43SQ, England
| | - Kamaran Mohamad
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO43SQ, England
| | - Asma Jabeen
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO43SQ, England
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Nelson Fernández
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO43SQ, England
| |
Collapse
|
19
|
Fermentative production of alternative antimicrobial peptides and enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Aslam B, Arshad MI, Aslam MA, Muzammil S, Siddique AB, Yasmeen N, Khurshid M, Rasool M, Ahmad M, Rasool MH, Fahim M, Hussain R, Xia X, Baloch Z. Bacteriophage Proteome: Insights and Potentials of an Alternate to Antibiotics. Infect Dis Ther 2021; 10:1171-1193. [PMID: 34170506 PMCID: PMC8322358 DOI: 10.1007/s40121-021-00446-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION The mounting incidence of multidrug-resistant bacterial strains and the dearth of novel antibiotics demand alternate therapies to manage the infections caused by resistant superbugs. Bacteriophages and phage=derived proteins are considered as potential alternates to treat such infections, and have several applications in health care systems. The aim of this review is to explore the hidden potential of bacteriophage proteins which may be a practical alternative approach to manage the threat of antibiotic resistance. RESULTS Clinical trials are in progress for the use of phage therapy as a tool for routine medical use; however, the existing regulations may hamper their development of routine antimicrobial agents. The advancement of molecular techniques and the advent of sequencing have opened new potentials for the design of engineered bacteriophages as well as recombinant bacteriophage proteins. The phage enzymes and proteins encoded by the lysis cassette genes, especially endolysins, holins, and spanins, have shown plausible potentials as therapeutic candidates. CONCLUSION This review offers an integrated viewpoint that aims to decipher the insights and abilities of bacteriophages and their derived proteins as potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Maria Rasool
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Moeed Ahmad
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Mohammad Fahim
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Riaz Hussain
- University College of Veterinary and Animal Sciences, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China.
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China.
| |
Collapse
|
21
|
Bier E, Nizet V. Driving to Safety: CRISPR-Based Genetic Approaches to Reducing Antibiotic Resistance. Trends Genet 2021; 37:745-757. [PMID: 33745750 DOI: 10.1016/j.tig.2021.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Bacterial resistance to antibiotics has reached critical levels, skyrocketing in hospitals and the environment and posing a major threat to global public health. The complex and challenging problem of reducing antibiotic resistance (AR) requires a network of both societal and science-based solutions to preserve the most lifesaving pharmaceutical intervention known to medicine. In addition to developing new classes of antibiotics, it is essential to safeguard the clinical efficacy of existing drugs. In this review, we examine the potential application of novel CRISPR-based genetic approaches to reducing AR in both environmental and clinical settings and prolonging the utility of vital antibiotics.
Collapse
Affiliation(s)
- Ethan Bier
- Tata Institute for Genetics and Society, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA; Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA.
| | - Victor Nizet
- Tata Institute for Genetics and Society, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA; Collaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA; Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA
| |
Collapse
|
22
|
Zommiti M, Chikindas ML, Ferchichi M. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans. Probiotics Antimicrob Proteins 2021; 12:1266-1289. [PMID: 31376026 DOI: 10.1007/s12602-019-09570-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In livestock production, lactic acid bacteria (LAB) represent the most widespread microorganisms used as probiotics. For such critical use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. Recently, probiotics have become highly recognized as supplements for humans and in particular for animals because of their beneficial outcome on health improvement and well-being maintenance. Various factors, encompassing dietary and management constraints, have been demonstrated to tremendously influence the structure, composition, and activities of gut microbial communities in farm animals. Previous investigations reported the potential of probiotics in animal diets and nutrition. But a high rate of inconsistency in the efficiency of probiotics has been reported. This may be due, in a major part, to the dynamics of the gastrointestinal microbial communities. Under stressing surroundings, the direct-fed microbials may play a key role as the salient limiting factor of the severity of the dysbiosis caused by disruption of the normal intestinal balance. Probiotics are live microorganisms, which confer health benefits on the host by positively modifying the intestinal microflora. Thus, the aim of this review is to summarize and to highlight the positive influence of probiotics and potential probiotic microbe supplementation in animal feed with mention of several limitations.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ, USA
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia.
| |
Collapse
|
23
|
Hudson LK, Orellana LAG, Bryan DW, Moore A, Munafo JP, den Bakker HC, Denes TG. Phylogeny of the Bacillus altitudinis Complex and Characterization of a Newly Isolated Strain with Antilisterial Activity. J Food Prot 2021; 84:1321-1332. [PMID: 33793813 DOI: 10.4315/jfp-20-498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/27/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Bacillus strain UTK D1-0055 was isolated from a laboratory environment and appeared to have antilisterial activity. The genome was sequenced, the strain was identified as Bacillus altitudinis, and a high-quality complete annotated genome was produced. The taxonomy was evaluated for this and related Bacillus species (B. aerophilus, B. pumilus, B. safensis, B. stratosphericus, and B. xiamenensis) because the taxonomy is unclear and contains errors in public databases such as NCBI. The included strains grouped into seven clusters based on average nucleotide identity. Strains designated as B. aerophilus, B. altitudinis, and B. stratosphericus grouped together in the cluster containing the B. altitudinis type strain, suggesting that these three species should be considered a single species, B. altitudinis. The antimicrobial activity of UTK D1-0055 was evaluated against a panel of 15 Listeria strains (nine Listeria monocytogenes serotypes, Listeria innocua, and Listeria marthii), other foodborne pathogens (six Salmonella enterica serotypes and Escherichia coli), and three representative fungi (Saccharomyces cerevisiae, Botrytis cinerea, and Hyperdermium pulvinatum). Antibacterial activity was observed against all Listeria strains, but no antibacterial effects were found against the other tested bacterial and fungal strains. Biosynthetic gene clusters were identified in silico that may be related to the observed antibacterial activity, and these clusters included genes that putatively encode bacteriocins and nonribosomally synthesized peptides. The B. altitudinis strain identified in this investigation had a broad range of antilisterial activity, suggesting that it and other related strains may be useful for biocontrol in the food industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Leticia A G Orellana
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA.,Zamorano Pan-American Agricultural School, San Antonio de Oriente, Francisco Morazán, Honduras
| | - Daniel W Bryan
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Andrew Moore
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - John P Munafo
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Henk C den Bakker
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, Georgia 30602, USA
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
24
|
Zhang G, Wang H, Zhang J, Tang X, Raheem A, Wang M, Lin W, Liang L, Qi Y, Zhu Y, Jia Y, Cui S, Qin T. Modulatory Effects of Bacillus subtilis on the Performance, Morphology, Cecal Microbiota and Gut Barrier Function of Laying Hens. Animals (Basel) 2021; 11:1523. [PMID: 34073794 PMCID: PMC8225007 DOI: 10.3390/ani11061523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
We investigated the efficacy of a single bacterium strain, Bacillus subtilis (B. subtilis) YW1, on the performance, morphology, cecal microbiota, and intestinal barrier function of laying hens. A total of 216 28-week-old Hy-line Brown laying hens were divided into three dietary treatment groups, with six replicates of 12 birds each for 4 weeks. The control group (Ctr) was fed a basal diet and the treatment groups, T1 and T2, were fed a basal diet supplemented with B. subtilis at a dose rate of 5 × 108 CFU/kg and 2.5 × 109 CFU/kg, respectively. Dietary supplementation with B. subtilis did not significantly affect overall egg production in both groups, with no obvious changes in average egg weight and intestine morphology. B. subtilis administration also improved the physical barrier function of the intestine by inducing significantly greater expression levels of the tight junction protein occludin in T1 (p = 0.07) and T2 (p < 0.05). Further, supplementation with B. subtilis effectively modulated the cecal microbiota, increasing the relative level of beneficial bacteria at the genus level (e.g., Bifidobacterium p < 0.05, Lactobacillus p = 0.298, Bacillus p = 0.550) and decreasing the level of potential pathogens (e.g., Fusobacterium p < 0.05, Staphylococcus p < 0.05, Campylobacter p = 0.298). Overall, B. subtilis YW1 supplementation cannot significantly improve the egg production; however, it modulated the cecal microbiota towards a healthier pattern and promoted the mRNA expression of the tight junction protein occludin in laying hens, making B. subtilis YW1 a good probiotic candidate for application in the poultry industry, and further expanding the resources of strains of animal probiotics.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Hao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
| | - Jianwei Zhang
- Beijing General Station of Animal Husbandry, Beijing 100107, China;
| | - Xinming Tang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Mingyan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Weidong Lin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yuzhuo Qi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yali Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Tong Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
25
|
Zhang S, Liang X, Gadd GM, Zhao Q. Marine Microbial-Derived Antibiotics and Biosurfactants as Potential New Agents against Catheter-Associated Urinary Tract Infections. Mar Drugs 2021; 19:255. [PMID: 33946845 PMCID: PMC8145997 DOI: 10.3390/md19050255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are among the leading nosocomial infections in the world and have led to the extensive study of various strategies to prevent infection. However, despite an abundance of anti-infection materials having been studied over the last forty-five years, only a few types have come into clinical use, providing an insignificant reduction in CAUTIs. In recent decades, marine resources have emerged as an unexplored area of opportunity offering huge potential in discovering novel bioactive materials to combat human diseases. Some of these materials, such as antimicrobial compounds and biosurfactants synthesized by marine microorganisms, exhibit potent antimicrobial, antiadhesive and antibiofilm activity against a broad spectrum of uropathogens (including multidrug-resistant pathogens) that could be potentially used in urinary catheters to eradicate CAUTIs. This paper summarizes information on the most relevant materials that have been obtained from marine-derived microorganisms over the last decade and discusses their potential as new agents against CAUTIs, providing a prospective proposal for researchers.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK;
| | - Xinjin Liang
- The Bryden Center, School of Chemical and Chemistry Engineering, Queen’s University Belfast, Belfast BT7 1NN, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | | | - Qi Zhao
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
26
|
Alternatives to Antibiotics: A Symposium on the Challenges and Solutions for Animal Health and Production. Antibiotics (Basel) 2021; 10:antibiotics10050471. [PMID: 33918995 PMCID: PMC8142984 DOI: 10.3390/antibiotics10050471] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Antibiotics have improved the length and quality of life of people worldwide and have had an immeasurable influence on agricultural animal health and the efficiency of animal production over the last 60 years. The increased affordability of animal protein for a greater proportion of the global population, in which antibiotic use has played a crucial part, has resulted in a substantial improvement in human quality of life. However, these benefits have come with major unintended consequences, including antibiotic resistance. Despite the inherent benefits of restricting antibiotic use in animal production, antibiotics remain essential to ensuring animal health, necessitating the development of novel approaches to replace the prophylactic and growth-promoting benefits of antibiotics. The third International Symposium on “Alternatives to Antibiotics: Challenges and Solutions in Animal Health and Production” in Bangkok, Thailand was organized by the USDA Agricultural Research Service, Faculty of Veterinary Science, Chulalongkorn University and Department of Livestock Development-Thailand Ministry of Agriculture and Cooperative; supported by OIE World Organization for Animal Health; and attended by more than 500 scientists from academia, industry, and government from 32 nations across 6 continents. The focus of the symposium was on ensuring human and animal health, food safety, and improving food animal production efficiency as well as quality. Attendees explored six subject areas in detail through scientific presentations and panel discussions with experts, and the major conclusions were as follows: (1) defining the mechanisms of action of antibiotic alternatives is paramount to enable their effective use, whether they are used for prevention, treatment, or to enhance health and production; (2) there is a need to integrate nutrition, health, and disease research, and host genetics needs to be considered in this regard; (3) a combination of alternatives to antibiotics may need to be considered to achieve optimum health and disease management in different animal production systems; (4) hypothesis-driven field trials with proper controls are needed to validate the safety, efficacy, and return of investment (ROI) of antibiotic alternatives.
Collapse
|
27
|
Sallam EA, Mohammed LS, Elbasuni SS, Azam AE, Soliman MM. Impacts of Microbial based Therapy on Growth Performance, Intestinal Health, Carcass Traits and Economic Efficiency of Clostridium perfringens-Infected Cobb and Arbor Acres Broilers. Vet Med Sci 2021; 7:773-791. [PMID: 33720539 PMCID: PMC8136931 DOI: 10.1002/vms3.412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
The poultry farms need a safe and effective alternative for antibiotics that can counteract the negative impacts of necrotic enteritis (NE), which causes severe mortalities and economic losses. The current study was aimed to examine the influence of antibiotic (Flagymox) and the microbial‐based administration on carcass traits in Clostridium(C.)perfringens‐infected Cobb and Arbor Acres broilers. A total number of 360 Cobb and Arbor Acres broiler chicks (180 numbers per breed) were allocated to four groups; negative control group (without any treatments); positive control group (administration of C. perfringens at the rate of 1 × 109cfu/bird via crop gavage twice daily from day 16 to 18 post‐hatch); C. perfringens challenge plus antibiotic (Flagymox®) group, and Clostridiumperfringens challenge plus microbial‐based treatment (Big‐lactoα®) group. The results indicated that the Flagymox and Big‐lactoα treated Cobb breed group achieved a significant increase in their body weight (BW) than the positive control group at the third week post‐infection. Also, the Arbor Acres breed gained significantly higher weight compared to the Cobb breed at the third week. Total weight gain (TWG) from 0 to the fifth week in the Cobb and Arbor Acres breeds were higher in the groups treated with Flagymox and Big‐lactoα compared to the birds challenged with C. perfringens without any treatment, thus, increasing the total return (TR) in the treated groups. Economic efficiency showed no significant differences (p < .05) between the treatment groups of both the breeds. Although the treatment cost of Flagymox is higher than the microbial‐based treatment (0.86 versus 0.35 LE), there were no mortalities reported in the microbial‐based groups in both the breeds resulting in significantly low losses compared to the Flagymox treated groups. The groups treated with the microbial‐based products in both breeds were superior in dressing percentage (75.16 and 77.06% for Cobb and Arbor Acres, respectively) compared to that of the other groups. In conclusion, microbial‐based therapy improved the growth rate, carcass traits, survival rate, and economic efficiency in necrotic enteritis induced in Cobb and Arbor Acres broilers.
Collapse
Affiliation(s)
- Eman A Sallam
- Animal and Poultry Production, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Liza S Mohammed
- Veterinary Economics and Farm Management, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sawsan S Elbasuni
- Avian and Rabbit diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Aya E Azam
- Animal Hygiene and Veterinary Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
28
|
The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Ruiz Sella SRB, Bueno T, de Oliveira AAB, Karp SG, Soccol CR. Bacillus subtilis natto as a potential probiotic in animal nutrition. Crit Rev Biotechnol 2021; 41:355-369. [PMID: 33563053 DOI: 10.1080/07388551.2020.1858019] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The growing global demand for animal products and processed meat has created a challenge for the livestock sector to enhance animal productivity without compromising product quality. The restriction of antibiotics in animal feeds as growth promoters makes the use of probiotics a natural and safe alternative to obtain functional foods that provide animal health and quality and to maintain food safety for consumers. To incorporate these additives into the diet, detailed studies are required, in which in vitro and in vivo assays are used to prove the efficacy and to ensure the safety of probiotic candidate strains. Studies on the use of Bacillus subtilis natto as a spore-forming probiotic bacterium in animal nutrition have shown no hazardous effects and have demonstrated the effectiveness of its use as a probiotic, mainly due to its proven antimicrobial, anti-inflammatory, antioxidant, enzymatic, and immunomodulatory activity. This review summarizes the recent scientific background on the probiotic effects of B. subtilis natto in animal nutrition. It focuses on its safety assessment, host-associated efficacy, and industrial requirements.
Collapse
Affiliation(s)
- Sandra R B Ruiz Sella
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Departament of Research and Development, Production and Research Centre of Immunobiological Products, Secretaria de Estado da Saúde, Piraquara, Brazil
| | - Tarcila Bueno
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Biotechnology Coordination, Federal Institute of Paraná, Curitiba, Brazil
| | - Angelo A B de Oliveira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
30
|
Zgheib H, Belguesmia Y, Boukherroub R, Drider D. Alginate Nanoparticles Enhance Anti-Clostridium perfringens Activity of the Leaderless Two-Peptide Enterocin DD14 and Affect Expression of Some Virulence Factors. Probiotics Antimicrob Proteins 2021; 13:1213-1227. [PMID: 33481224 DOI: 10.1007/s12602-020-09730-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Here, we report a novel approach to improve the anti-Clostridium perfringens activity of the leaderless two-peptide enterocin 14 (EntDD14), produced by Enterococcus faecalis 14. This strategy consists of loading EntDD14 onto alginate nanoparticles (Alg NPs), which are made of a safe polymer. The resulting formulation (EntDD14/Alg NPs) was able to reduce up to four times the minimum inhibitory concentration (MIC) of EntDD14 against C. perfringens pathogenic strains isolated from a chicken affected by necrotic enteritis (NE). Interestingly, this formulation remained active under conditions mimicking the human and chicken gastric tract. Assays conducted to establish the impact of this formulation on the intestinal epithelial cell line Caco-2 and the human colorectal adenocarcinoma cell line HT29 revealed the absence of cytotoxicity of both free-EntDD14 and EntDD14 loaded onto the alginate nanoparticles (EntDD14/Alg NPs) against the aforementioned eukaryotic cells, after 24 h of contact. Notably, EntDD14 and EntDD14/Alg NPs, both at a sub-inhibitory concentration, affected the expression of genes coding for clostridial toxins such as toxin α, enteritis B-like toxin, collagen adhesion protein and thiol-activated cytolysin. Further, expression of these genes was significantly down-regulated following the addition of EntDD14/Alg NPs, but not affected upon addition of EntDD14 alone. This study revealed that adsorption of EntDD14 onto Alg NPs leads to a safe and active formulation (EntDD14/Alg NPs) capable of affecting the pathogenicity of C. perfringens. This formulation could therefore be used in the poultry industry as a novel approach to tackle NE.
Collapse
Affiliation(s)
- Hassan Zgheib
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France. UMR, 8520 - IEMN, 59000, Lille, France
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France. UMR, 8520 - IEMN, 59000, Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| |
Collapse
|
31
|
Lakshmanan R, Kalaimurugan D, Sivasankar P, Arokiyaraj S, Venkatesan S. Identification and characterization of Pseudomonas aeruginosa derived bacteriocin for industrial applications. Int J Biol Macromol 2020; 165:2412-2418. [PMID: 33132130 DOI: 10.1016/j.ijbiomac.2020.10.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 11/19/2022]
Abstract
Drug resistance has become a major threat due to the frequent use of commercial antibiotics and there is an urgent need to combat this problem. Having this in mind, the present research was aimed at developing a novel P. aeruginosa puBac bacteriocin molecule. The bacteriocin was purified by ammonium sulfate precipitation followed by Sepharose FF and Sephadex G15 column purification and the purified bacteriocin has been reported to have the molar mass of 43 kDa. The findings of the optimization showed that 3500 AU/mL of bacteriocin was obtained at 37 °C, 3410 AU/mL of bacteriocin at 6.5 pH and 3780 AU/mL of bacteriocin at 48 h of incubation time. In addition, 3863 AU/mL of bacteriocin activity was obtained with Tween-80 followed by 3789 AU/mL with a concentration of 2% NaCl and 4200 AU/mL for Fe2+. PuBac bacteriocin has been shown to have a significant effect on test pathogens. For example, E. coli was found to have 3.6 μM of MIC, followed by Staphylococcus sp. with 6.15 μM of MIC and Bacillus sp. with a 7.5 μM of MIC. The remarkable properties of bacteriocin suggest that it could be used in various pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ramasamy Lakshmanan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Dharman Kalaimurugan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Palaniappan Sivasankar
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Republic of Korea
| | - Srinivasan Venkatesan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India.
| |
Collapse
|
32
|
Nowakiewicz A, Zięba P, Gnat S, Matuszewski Ł. Last Call for Replacement of Antimicrobials in Animal Production: Modern Challenges, Opportunities, and Potential Solutions. Antibiotics (Basel) 2020; 9:antibiotics9120883. [PMID: 33317032 PMCID: PMC7762978 DOI: 10.3390/antibiotics9120883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
The constant market demand for easily available and cheap food of animal origin necessitates an increasing use of antibiotics in animal production. The alarming data provided by organizations monitoring drug resistance in indicator and pathogenic bacteria isolated from humans and animals indicate a possible risk of a return to the preantibiotic era. For this reason, it seems that both preventive and therapeutic measures, taken as an alternative to antimicrobials, seem not only advisable but also necessary. Nevertheless, the results of various studies and market analyses, as well as difficulties in the implementation of alternative substances into veterinary medicine, do not guarantee that the selected alternatives will completely replace antimicrobials in veterinary medicine and animal production on a global scale. This publication is a brief overview of the drug resistance phenomenon and its determinants, the steps taken to solve the problem, including the introduction of alternatives to antimicrobials, and the evaluation of some factors influencing the potential implementation of alternatives in animal production. The review also presents two groups of alternatives, which, given their mechanism of action and spectrum, are most comparable to the effectiveness of antibiotics, as emphasized by the authors.
Collapse
Affiliation(s)
- Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland;
- Correspondence: or
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland;
| | - Sebastian Gnat
- Sub-Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland;
| | - Łukasz Matuszewski
- Department of Pediatric Orthopedics and Rehabilitation, Faculty of Medicine, Medical University, Gębali 6, 20-093 Lublin, Poland;
| |
Collapse
|
33
|
New Bacteriocins from Lacticaseibacillus paracasei CNCM I-5369 Adsorbed on Alginate Nanoparticles Are Very Active against Escherichia coli. Int J Mol Sci 2020; 21:ijms21228654. [PMID: 33212803 PMCID: PMC7697949 DOI: 10.3390/ijms21228654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022] Open
Abstract
Lacticaseibacillus paracasei CNCM I-5369, formerly Lactobacillus paracasei CNCM I-5369, produces bacteriocins that are remarkably active against Gram-negative bacteria, among which is the Escherichia coli-carrying mcr-1 gene that is involved in resistance to colistin. These bacteriocins present in the culture supernatant of the producing strain were extracted and semi-purified. The fraction containing these active bacteriocins was designated as E20. Further, E20 was loaded onto alginate nanoparticles (Alg NPs), leading to a highly active nano-antibiotics formulation named hereafter Alg NPs/E20. The amount of E20 adsorbed on the alginate nanoparticles was 12 wt.%, according to high-performance liquid chromatography (HPLC) analysis. The minimal inhibitory concentration (MIC) values obtained with E20 ranged from 250 to 2000 μg/mL, whilst those recorded for Alg NPs/E20 were comprised between 2 and 4 μg/mL, which allowed them to gain up to 500-fold in the anti-E. coli activity. The damages caused by E20 and/or Alg NPs/E20 on the cytology of the target bacteria were characterized by transmission electron microscopy (TEM) imaging and the quantification of intracellular proteins released following treatment of the target bacteria with these antimicrobials. Thus, loading these bacteriocins on Alg NPs appeared to improve their activity, and the resulting nano-antibiotics stand as a promising drug delivery system.
Collapse
|
34
|
Vrancianu CO, Popa LI, Bleotu C, Chifiriuc MC. Targeting Plasmids to Limit Acquisition and Transmission of Antimicrobial Resistance. Front Microbiol 2020; 11:761. [PMID: 32435238 PMCID: PMC7219019 DOI: 10.3389/fmicb.2020.00761] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant global threat to both public health and the environment. The emergence and expansion of AMR is sustained by the enormous diversity and mobility of antimicrobial resistance genes (ARGs). Different mechanisms of horizontal gene transfer (HGT), including conjugation, transduction, and transformation, have facilitated the accumulation and dissemination of ARGs in Gram-negative and Gram-positive bacteria. This has resulted in the development of multidrug resistance in some bacteria. The most clinically significant ARGs are usually located on different mobile genetic elements (MGEs) that can move intracellularly (between the bacterial chromosome and plasmids) or intercellularly (within the same species or between different species or genera). Resistance plasmids play a central role both in HGT and as support elements for other MGEs, in which ARGs are assembled by transposition and recombination mechanisms. Considering the crucial role of MGEs in the acquisition and transmission of ARGs, a potential strategy to control AMR is to eliminate MGEs. This review discusses current progress on the development of chemical and biological approaches for the elimination of ARG carriers.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Laura Ioana Popa
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Coralia Bleotu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
35
|
Paenibacillus alvei MP1 as a Producer of the Proteinaceous Compound with Activity against Important Human Pathogens, Including Staphylococcus aureus and Listeria monocytogenes. Pathogens 2020; 9:pathogens9050319. [PMID: 32344843 PMCID: PMC7281493 DOI: 10.3390/pathogens9050319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023] Open
Abstract
An emerging need for new classes of antibiotics is, on the one hand, evident as antimicrobial resistance continues to rise. On the other hand, the awareness of the pros and cons of chemically synthesized compounds’ extensive use leads to a search for new metabolites in already known reservoirs. Previous research showed that Paenibacillus strain (P. alvei MP1) recovered from a buckwheat honey sample presented a wide spectrum of antimicrobial activity against both Gram-positive and Gram-negative pathogens. Recent investigation has confirmed that P. alvei MP1 (deposited at DDBJ/ENA/GenBank under the accession WSQB00000000) produces a proteinaceous, heat-stable compound(s) with the maximum antimicrobial production obtained after 18 h of P. alvei MP1 growth in LB medium at 37 °C with continuous shaking at 200 RPM. The highest activity was found in the 40% ammonium sulfate precipitate, with high activity also remaining in the 50% and 60% ammonium sulfate precipitates. Moderate to high antimicrobial activity that is insensitive to proteases or heat treatment, was confirmed against pathogenic bacteria that included L. monocytogenes FSL – X1-0001 (strain 10403S), S. aureus L1 – 0030 and E. coli O157: H7. Further studies, including de novo sequencing of peptides by mass spectrometry, are in progress.
Collapse
|
36
|
Richter A, Feßler AT, Böttner A, Köper LM, Wallmann J, Schwarz S. Reasons for antimicrobial treatment failures and predictive value of in-vitro susceptibility testing in veterinary practice: An overview. Vet Microbiol 2020; 245:108694. [PMID: 32456814 DOI: 10.1016/j.vetmic.2020.108694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
The choice of the most suitable antimicrobial agent for the treatment of an animal suffering from a bacterial infection is a complex issue. The results of bacteriological diagnostics and the in-vitro antimicrobial susceptibility testing (AST) provide guidance of potentially suitable antimicrobials. However, harmonized AST methods, veterinary-specific interpretive criteria and quality control ranges, which are essential to conduct AST in-vitro and to evaluate the corresponding results lege artis, are not available for all antimicrobial compounds, bacterial pathogens, animal species and sites of infection of veterinary relevance. Moreover, the clinical benefit of an antimicrobial agent (defined as its in vivo efficacy) is not exclusively dependent on the in-vitro susceptibility of the target pathogen. Apart from the right choice of an antibacterial drug with suitable pharmacokinetic properties and an appropriate pharmaceutical formulation, the success of treatment depends substantially on its adequate use. Even if this is ensured and in-vitro susceptibility confirmed, an insufficient improvement of clinical signs might be caused by biofilm-forming bacteria, persisters, or specific physicochemical conditions at the site of infection, such as pH value, oxygen partial pressure and perfusion rate. This review summarizes relevant aspects that have an impact on the predictive value of in-vitro AST and points out factors, potentially leading to an ineffective outcome of antibacterial treatment in veterinary practice. Knowing the reasons of inadequate beneficial effects can help to understand possible discrepancies between in-vitro susceptibility and in vivo efficacy and aid in undertaking strategies for an avoidance of treatment failures.
Collapse
Affiliation(s)
- Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | - Jürgen Wallmann
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
37
|
Nweze JA, Mbaoji FN, Huang G, Li Y, Yang L, Zhang Y, Huang S, Pan L, Yang D. Antibiotics Development and the Potentials of Marine-Derived Compounds to Stem the Tide of Multidrug-Resistant Pathogenic Bacteria, Fungi, and Protozoa. Mar Drugs 2020; 18:E145. [PMID: 32121196 PMCID: PMC7142797 DOI: 10.3390/md18030145] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
As the search for new antibiotics continues, the resistance to known antimicrobial compounds continues to increase. Many researchers around the world, in response to antibiotics resistance, have continued to search for new antimicrobial compounds in different ecological niches such as the marine environment. Marine habitats are one of the known and promising sources for bioactive compounds with antimicrobial potentials against currently drug-resistant strains of pathogenic microorganisms. For more than a decade, numerous antimicrobial compounds have been discovered from marine environments, with many more antimicrobials still being discovered every year. So far, only very few compounds are in preclinical and clinical trials. Research in marine natural products has resulted in the isolation and identification of numerous diverse and novel chemical compounds with potency against even drug-resistant pathogens. Some of these compounds, which mainly came from marine bacteria and fungi, have been classified into alkaloids, lactones, phenols, quinones, tannins, terpenes, glycosides, halogenated, polyketides, xanthones, macrocycles, peptides, and fatty acids. All these are geared towards discovering and isolating unique compounds with therapeutic potential, especially against multidrug-resistant pathogenic microorganisms. In this review, we tried to summarize published articles from 2015 to 2019 on antimicrobial compounds isolated from marine sources, including some of their chemical structures and tests performed against drug-resistant pathogens.
Collapse
Affiliation(s)
- Justus Amuche Nweze
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka PMB 410001, Nigeria
| | - Florence N. Mbaoji
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka PMB 410001, Enugu State, Nigeria
| | - Gang Huang
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Yanming Li
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Liyan Yang
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Yunkai Zhang
- College of Life Science and Technology of Guangxi University, Nanning 530004, China;
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
| | - Lixia Pan
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China; (G.H.); (Y.L.); (L.Y.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (J.A.N.); (F.N.M.); (S.H.)
| |
Collapse
|
38
|
Vieco-Saiz N, Belguesmia Y, Vachée A, Le Maréchal C, Salvat G, Drider D. Antibiotic resistance, genome analysis and further safe traits of Clostridium perfringens ICVB082; a strain capable of producing an inhibitory compound directed only against a closely related pathogenic strain. Anaerobe 2020; 62:102177. [PMID: 32097777 DOI: 10.1016/j.anaerobe.2020.102177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/28/2022]
Abstract
Eleven strains of clostridia were isolated from chickens suffering from necrotic enteritis (NE) disease, and were identified by 16S rDNA sequencing as C. perfringens (Clin1, ICVB079, ICVB080, ICVB081, ICVB082, ICVB083, ICVB085, ICVB088, ICVB089, ICVB090), C. sporogenes (ICVB086) and C. cadaveris (ICVB087). These novel strains were then characterized for their pathoproperties including their sensitivity to different antibiotics, hemolytic activities and abilities to carry netB gene, which encodes the necrotic enteritis B-Like toxin (NetB); a key virulence factor involved in the NE. Whilst, no antibiotic resistance was detected for all these strains, C. perfringens ICVB081 and C. perfringens Clin1 have β-hemolytic activities and carry DNA coding for the netB gene. Remarkably, cross-resistant assays performed between these Clostridium strains underpinned the capability of C. perfringens ICVB082 to inhibit the pathogenic C. perfringens DSM756, used as reference strain. This inhibition was exerted through production of an extracellular compound, which was sensitive to heat treatment, lipase and active at pH values ranging from 4 to 7. This report deals with the isolation of novel Clostridium strains from chicken origin and underlines the safety and inhibitory capability of C. perfringens ICVB082 through an extracellular metabolite.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, F-59000, Lille, France.
| | - Yanath Belguesmia
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, F-59000, Lille, France.
| | - Anne Vachée
- Laboratoire de Biologie, Centre Hospitalier de Roubaix, Boulevard Lacordaire, 59100, Roubaix, France.
| | | | - Gilles Salvat
- ANSES, 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France.
| | - Djamel Drider
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, F-59000, Lille, France.
| |
Collapse
|
39
|
Probiotics in Animal Husbandry: Applicability and Associated Risk Factors. SUSTAINABILITY 2020. [DOI: 10.3390/su12031087] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probiotics have been emerging as a safe and viable alternative to antibiotics for increasing performance in livestock. Literature was collated via retrieved information from online databases, viz, PubMed, MEDLINE, ScienceDirect, Scopus, Web of Science and Google Scholar. Besides improved immunomodulation and nutrient digestibility, in-feed probiotics have shown drastic reductions in gastrointestinal tract-invading pathogens. However, every novel probiotic strain cannot be assumed to share historical safety with conventional strains. Any strain not belonging to the wild-type distributions of relevant antimicrobials, or found to be harbouring virulence determinants, should not be developed further. Modes of identification and the transmigration potential of the strains across the gastrointestinal barrier must be scrutinized. Other potential risk factors include the possibility of promoting deleterious metabolic effects, excessive immune stimulation and genetic stability of the strains over time. Adverse effects of probiotics could be strain specific, depending on the prevailing immunological and physiological condition of the host. The most crucial concern is the stability of the strain. Probiotics stand a good chance of replacing antibiotics in animal husbandry. The possibility of the probiotics used in animal feed cross-contaminating the human food chain cannot be downplayed. Thus, the established safety measures in probiotic development must be adhered to for a successful global campaign on food safety and security.
Collapse
|
40
|
An BC, Hong S, Park HJ, Kim BK, Ahn JY, Ryu Y, An JH, Chung MJ. Anti-Colorectal Cancer Effects of Probiotic-Derived p8 Protein. Genes (Basel) 2019; 10:E624. [PMID: 31430963 PMCID: PMC6723380 DOI: 10.3390/genes10080624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023] Open
Abstract
Recently, we reported a novel therapeutic probiotic-derived protein, p8, which has anti-colorectal cancer (anti-CRC) properties. In vitro experiments using a CRC cell line (DLD-1), anti-proliferation activity (about 20%) did not improve after increasing the dose of recombinant-p8 (r-p8) to >10 μM. Here, we show that this was due to the low penetrative efficiency of r-p8 exogenous treatment. Furthermore, we found that r-p8 entered the cytosol through endocytosis, which might be a reason for the low penetration efficiency. Therefore, to improve the therapeutic efficacy of p8, we tried to improve delivery to CRC cells. This resulted in endogenous expression of p8 and increased the anti-proliferative effects by up to 2-fold compared with the exogenous treatment (40 μM). Anti-migration activity also increased markedly. Furthermore, we found that the anti-proliferation activity of p8 was mediated by inhibition of the p53-p21-Cyclin B1/Cdk1 signal pathway, resulting in growth arrest at the G2 phase of the cell cycle. Taken together, these results suggest that p8 is toxic to cancer cells, shows stable expression within cells, and shows strong cancer suppressive activity by inducing cell cycle arrest. Therefore, p8 is a strong candidate for gene therapy if it can be loaded onto cancer-specific viruses.
Collapse
Affiliation(s)
- Byung Chull An
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Sunwoong Hong
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Ho Jin Park
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Bong-Kyu Kim
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Jun Young Ahn
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Yongku Ryu
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Jae Hyung An
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Myung Jun Chung
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea.
| |
Collapse
|
41
|
Biofilms: Novel Strategies Based on Antimicrobial Peptides. Pharmaceutics 2019; 11:pharmaceutics11070322. [PMID: 31295834 PMCID: PMC6680976 DOI: 10.3390/pharmaceutics11070322] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Accepted: 07/06/2019] [Indexed: 01/11/2023] Open
Abstract
The problem of drug resistance is very worrying and ever increasing. Resistance is due not only to the reckless use of antibiotics but also to the fact that pathogens are able to adapt to different conditions and develop self-defense mechanisms such as living in biofilms; altogether these issues make the search for alternative drugs a real challenge. Antimicrobial peptides appear as promising alternatives but they have disadvantages that do not make them easily applicable in the medical field; thus many researches look for solutions to overcome the disadvantages and ensure that the advantages can be exploited. This review describes the biofilm characteristics and identifies the key features that antimicrobial peptides should have. Recalcitrant bacterial infections caused by the most obstinate bacterial species should be treated with a strategy to combine conventional peptides functionalized with nano-tools. This approach could effectively disrupt high density infections caused by biofilms. Moreover, the importance of using in vivo non mammalian models for biofilm studies is described. In particular, here we analyze the use of amphibians as a model to substitute the rodent model.
Collapse
|
42
|
Verma R, Sahu R, Singh DD, Egbo TE. A CRISPR/Cas9 based polymeric nanoparticles to treat/inhibit microbial infections. Semin Cell Dev Biol 2019; 96:44-52. [PMID: 30986568 DOI: 10.1016/j.semcdb.2019.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
The latest breakthrough towards the adequate and decisive methods of gene editing tools provided by CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR Associated System), has been repurposed into a tool for genetically engineering eukaryotic cells and now considered as the major innovation in gene-related disorders. Nanotechnology has provided an alternate way to overcome the conventional problems where methods to deliver therapeutic agents have failed. The use of nanotechnology has the potential to safe-side the CRISPR/Cas9 components delivery by using customized polymeric nanoparticles for safety and efficacy. The pairing of two (CRISPR/Cas9 and nanotechnology) has the potential for opening new avenues in therapeutic use. In this review, we will discuss the most recent advances in developing nanoparticle-based CRISPR/Cas9 gene editing cargo delivery with a focus on several polymeric nanoparticles including fabrication proposals to combat microbial infections.
Collapse
Affiliation(s)
- Richa Verma
- Center for Nanobiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Rajnish Sahu
- Center for Nanobiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, 303002, India
| | - Timothy E Egbo
- Department of Biological Sciences, College of Science Technology Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
| |
Collapse
|
43
|
Chernov VM, Chernova OA, Mouzykantov AA, Lopukhov LL, Aminov RI. Omics of antimicrobials and antimicrobial resistance. Expert Opin Drug Discov 2019; 14:455-468. [DOI: 10.1080/17460441.2019.1588880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vladislav M. Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Olga A. Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Alexey A. Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Leonid L. Lopukhov
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - Rustam I. Aminov
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russian Federation
- Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
44
|
Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front Microbiol 2019; 10:57. [PMID: 30804896 PMCID: PMC6378274 DOI: 10.3389/fmicb.2019.00057] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Resistance to antibiotics is escalating and threatening humans and animals worldwide. Different countries have legislated or promoted the ban of antibiotics as growth promoters in livestock and aquaculture to reduce this phenomenon. Therefore, to improve animal growth and reproduction performance and to control multiple bacterial infections, there is a potential to use probiotics as non-antibiotic growth promoters. Lactic acid bacteria (LAB) offer various advantages as potential probiotics and can be considered as alternatives to antibiotics during food-animal production. LAB are safe microorganisms with abilities to produce different inhibitory compounds such as bacteriocins, organic acids as lactic acid, hydrogen peroxide, diacetyl, and carbon dioxide. LAB can inhibit harmful microorganisms with their arsenal, or through competitive exclusion mechanism based on competition for binding sites and nutrients. LAB endowed with specific enzymatic functions (amylase, protease…) can improve nutrients acquisition as well as animal immune system stimulation. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to antibiotics in poultry, pigs, ruminants, and aquaculture production.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Yanath Belguesmia
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Ruth Raspoet
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Eric Auclair
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Frédérique Gancel
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Isabelle Kempf
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Djamel Drider
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| |
Collapse
|
45
|
Yang JM, Moon GS. Isolation of a Lactococcus lactis Strain Producing Anti-staphylococcal Bacteriocin. Korean J Food Sci Anim Resour 2019; 38:1315-1321. [PMID: 30675124 PMCID: PMC6335131 DOI: 10.5851/kosfa.2018.e67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 01/24/2023] Open
Abstract
Bacteriocin is ribosomally synthesized by bacteria and inhibits closely related
species. In this study we aimed at isolating lactic acid bacteria producing
bacteriocin presenting anti-staphylococcal activity. A Lactococcus
lactis strain was isolated from kimchi for the purpose and
identified by 16S rRNA gene sequencing. As preliminary tests, optimal culture
conditions, stabilities against heat, solvents, and enzymes treatments, and type
of action (bacteriostatic or bactericidal) of the bacteriocin were investigated.
The optimal culture conditions for production of the bacteriocin were MRS broth
medium and 25℃ and 30℃ culture temperatures. The bacteriocin was
acidic and the activity was abolished by a protease treatment. Its stability was
maintained at 100℃ for 15 min and under treatments of various organic
solvents such as methanol, ethanol, acetone, acetonitrile, and chloroform.
Finally, the bacteriocin showed bactericidal action against
Staphylococcus aureus where 200 AU/mL of the bacteriocin
decreased the viable cell count (CFU/mL) of S. aureus by 2.5
log scale, compared with a control (no bacteriocin added) after 4-h
incubation.
Collapse
Affiliation(s)
- Jung-Mo Yang
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Gi-Seong Moon
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| |
Collapse
|