1
|
Li B, Chen X, Yang JY, Gao S, Bai F. Intracellular ATP concentration is a key regulator of bacterial cell fate. J Bacteriol 2024; 206:e0020824. [PMID: 39530704 PMCID: PMC11656805 DOI: 10.1128/jb.00208-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
ATP, most widely known as the primary energy source for numerous cellular processes, also exhibits the characteristics of a biological hydrotrope. The viable but nonculturable (VBNC) and persister states are two prevalent dormant phenotypes employed by bacteria to survive challenging environments, both of which are associated with low metabolic activity. Here, we investigate the intracellular ATP concentration of individual VBNC and persister cells using a sensitive ATP biosensor QUEEN-7μ and reveal that both types of cells possess a lower intracellular ATP concentration than culturable and sensitive cells, although there is a certain overlap in the intracellular ATP concentrations between antibiotic-sensitive cells and persisters. Moreover, we successfully separated VBNC cells from culturable cells using fluorescence-activated cell sorting based on the intracellular ATP concentration threshold of 12.5 µM. Using an enriched VBNC cell population, we confirm that the precipitation of proteins involved in key biological processes promotes VBNC cell formation. Notably, using green light-illuminated proteorhodopsin (PR), we demonstrate that VBNC cells can be effectively resuscitated by elevating their intracellular ATP concentration. These findings highlight the crucial role of intracellular ATP concentration in the regulation of bacterial cell fate and provide new insights into the formation of VBNC and persister cells.IMPORTANCEThe viable but nonculturable (VBNC) and persister states are two dormant phenotypes employed by bacteria to counter stressful conditions and play a crucial role in chronic and recurrent bacterial infections. However, the lack of precise detection methods poses significant threats to public health. Our study reveals lower intracellular ATP concentrations in these states and establishes an ATP threshold for distinguishing VBNC from culturable cells. Remarkably, we revive VBNC cells by elevating their intracellular ATP levels. This echoes recent eukaryotic studies where modulating metabolism impacts outcomes like osteoarthritis treatment and lifespan extension in Caenorhabditis elegans. Our findings underscore the crucial role of intracellular ATP levels in governing bacterial fate, emphasizing ATP manipulation as a potential strategy to steer bacterial behavior.
Collapse
Affiliation(s)
- Bo Li
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, China
| | - Xiao Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, China
| | - Jin-Yu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Jia M, Shao L, Jiang J, Jiang W, Xin F, Zhang W, Jiang Y, Jiang M. Mitigating toxic formaldehyde to promote efficient utilization of C1 resources. Crit Rev Biotechnol 2024:1-13. [PMID: 39647989 DOI: 10.1080/07388551.2024.2430476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/10/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
The C1 resource is widely considered because of its abundance and affordability. In the context of extensive utilization of C1 resources by methylotrophic microorganisms, especially for methanol, formaldehyde is an important intermediate metabolite that is at the crossroads of assimilation and dissimilation pathways. However, formaldehyde is an exceedingly reactive compound that can form covalent cross-linked complexes with amine and thiol groups in cells, which causes irreversible damage to the organism. Thus, it is important to balance the intensity of the assimilation and dissimilation pathways of formaldehyde, which can avoid formaldehyde toxicity and improve the full utilization of C1 resources. This review details the source of endogenous formaldehyde and its toxicity mechanism, explaining the harm of excessive accumulation of formaldehyde to metabolism. Importantly, the self-detoxification and various feasible strategies to mitigate formaldehyde toxicity are discussed and proposed. These strategies are meant to help appropriately handle formaldehyde toxicity and accelerate the effective use of C1 resources.
Collapse
Affiliation(s)
- Mengshi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Lei Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Jie Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
3
|
Park JY, Jang M, Lee SM, Woo J, Lee EJ, Kim D. Unveiling the novel regulatory roles of RpoD-family sigma factors in Salmonella Typhimurium heat shock response through systems biology approaches. PLoS Genet 2024; 20:e1011464. [PMID: 39471211 PMCID: PMC11548764 DOI: 10.1371/journal.pgen.1011464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024] Open
Abstract
Three RpoD-family sigma factors, RpoD, RpoS, and RpoH, play critical roles in transcriptional regulation in Salmonella enterica serovar Typhimurium under heat shock conditions. However, the genome-wide regulatory mechanisms of these sigma factors in response to heat stress have remained elusive. In this study, we comprehensively identified 2,319, 2,226, and 213 genome-wide binding sites for RpoD, RpoS, and RpoH, respectively, under sublethal heat shock conditions (42°C). Machine learning-based transcriptome analysis was employed to infer the relative activity of iModulons, providing valuable insights into the transcriptional impact of heat shock. Integrative data analysis enabled the reconstruction of the transcriptional regulatory network of sigma factors, revealing how they modulate gene expression to adapt to heat stress, including responses to anaerobic and oxidative stresses. Notably, we observed a significant expansion of the RpoS sigmulon from 97 to 301 genes in response to heat shock, underscoring the crucial role of RpoS in regulating various metabolic processes. Moreover, we uncovered a competition mechanism between RpoD and RpoS within RpoS sigmulons, where RpoS significantly increases its binding within promoter regions shared with RpoD under heat shock conditions. These findings illuminate how three RpoD-family sigma factors coordinate multiple cellular processes to orchestrate the overall response of S. Typhimurium to heat stress.
Collapse
Affiliation(s)
- Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Minchang Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jihoon Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
4
|
Vo KC, Sakamoto JJ, Furuta M, Tsuchido T. The impact of heat treatment on E. coli cell physiology in rich and minimal media considering oxidative secondary stress. J Appl Microbiol 2024; 135:lxae216. [PMID: 39165131 DOI: 10.1093/jambio/lxae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
AIMS This study investigates the cell physiology of thermally injured bacterial cells, with a specific focus on oxidative stress and the repair mechanisms associated with oxidative secondary stress. METHODS AND RESULTS We explored the effect of heat treatment on the activity of two protective enzymes, levels of intracellular reactive oxygen species, and redox potential. The findings reveal that enzyme activity slightly increased after heat treatment, gradually returning to baseline levels during subculture. The response of Escherichia coli cells to heat treatment, as assessed by the level of superoxide radicals generated and redox potential, varied based on growth conditions, namely minimal and rich media. Notably, the viability of injured cells improved when antioxidants were added to agar media, even in the presence of metabolic inhibitors. CONCLUSIONS These results suggest a complex system involved in repairing damage in heat-treated cells, particularly in rich media. While repairing membrane damage is crucial for cell regrowth and the electron transport system plays a critical role in the recovery process of injured cells under both tested conditions.
Collapse
Affiliation(s)
- Khanh C Vo
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Jin J Sakamoto
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- MPES-3 U and Faculty of Materials, Chemistry and Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Radiation Research Center, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tetsuaki Tsuchido
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- TriBioX Laboratories Ltd., 1-125 Takano-Tamaoka-cho, Sakyo-ku, Kyoto 606-8106, Japan
| |
Collapse
|
5
|
Cheng S, Li Z, Bai X, Feng J, Su R, Song L, Yang H, Zhan X, Xia X, Lü X, Shi C. The biochemical characteristics of viable but nonculturable state Yersinia enterocolitica induced by lactic acid stress and its presence in food systems. Food Res Int 2023; 170:113024. [PMID: 37316087 DOI: 10.1016/j.foodres.2023.113024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The viable but nonculturable (VBNC) state is adopted by many foodborne pathogenic bacteria to survive in adverse conditions. This study found that lactic acid, a widely used food preservative, can induce Yersinia enterocolitica to enter a VBNC state. Y. enterocolitica treated with 2 mg/mL lactic acid completely lost culturability within 20 min, and 10.137 ± 1.693 % of the cells entered a VBNC state. VBNC state cells could be recovered (resuscitated) in tryptic soy broth (TSB), 5 % (v/v) Tween80-TSB, and 2 mg/mL sodium pyruvate-TSB. In the VBNC state of Y. enterocolitica induced by lactic acid, the intracellular adenosine triphosphate (ATP) concentration and various enzyme activities were decreased, and the reactive oxygen species (ROS) level was elevated, compared with uninduced cells. The VBNC state cells were significantly more resistant to heat and simulated gastric fluid than uninduced cells, but their ability to survive in a high-osmotic-pressure environment was significantly less than that of uninduced cells. The VBNC state cells induced by lactic acid changed from long rod-like to short rod-like, with small vacuoles at the cell edges; the genetic material was loosened and the density of cytoplasm was increased. The VBNC state cells had decreased ability to adhere to and invade Caco-2 (human colorectal adenocarcinoma) cells. The transcription levels of genes related to adhesion, invasion, motility, and resistance to adverse environmental stress were downregulated in VBNC state cells relative to uninduced cells. In meat-based broth, all nine tested strains of Y. enterocolitica entered the VBNC state after lactic acid treatment; among these strains, only VBNC state cells of Y. enterocolitica CMCC 52207 and Isolate 36 could not be recovered. Therefore, this study is a wake-up call for food safety problems caused by VBNC state pathogens induced by lactic acid.
Collapse
Affiliation(s)
- Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingqi Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116304, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Wang F, Fu Y, Lin Z, Zhang B, Se J, Guo X, Fan J, Jia Y, Xu X, Jiang Y, Shen C. Neglected Drivers of Antibiotic Resistance: Survival of Extended-Spectrum β-Lactamase-Producing Pathogenic Escherichia coli from Livestock Waste through Dormancy and Release of Transformable Extracellular Antibiotic Resistance Genes under Heat Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37336722 DOI: 10.1021/acs.est.3c02377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has caused a global pandemic with high prevalence in livestock and poultry, which could disseminate into the environment and humans. To curb this risk, heat-based harmless treatment of livestock waste was carried out. However, some risks of the bacterial persistence have not been thoroughly assessed. This study demonstrated that antibiotic-resistant bacteria (ARB) could survive at 55 °C through dormancy, and simultaneously transformable extracellular antibiotic resistance genes (eARGs) would be released. The ESBL-producing pathogenic Escherichia coli CM1 from chicken manure could enter a dormant state at 55 °C and reactivate at 37 °C. Dormant CM1 had stronger β-lactam resistance, which was associated with high expression of β-lactamase genes and low expression of outer membrane porin genes. Resuscitated CM1 maintained its virulence expression and multidrug resistance and even had stronger cephalosporin resistance, which might be due to the ultra-low expression of the porin genes. Besides, heat at 55 °C promoted the release of eARGs, some of which possessed a certain nuclease stability and heat persistence, and even maintained their transformability to an Acinetobacter baylyi strain. Therefore, dormant multidrug-resistant pathogens from livestock waste will still pose a direct health risk to humans, while the resuscitation of dormant ARB and the transformation of released eARGs will jointly promote the proliferation of ARGs and the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Feiyu Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihao Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bingni Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Se
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoguang Guo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaojie Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunhan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| |
Collapse
|
7
|
Liu B, Zhu X, Zhang N, Zhang H, Li H, Qi Y, Mo H, Hu L. Direct ferrous sulfate exposure facilitates the VBNC state formation rather than ferroptosis in Listeria monocytogenes. Microbiol Res 2023; 269:127304. [PMID: 36701951 DOI: 10.1016/j.micres.2023.127304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Listeria monocytogenes frequently causes Listeriosis in humans and animals. In present study, we discovered that in the presence of FeSO4, L. monocytogenes became viable but non-culturable (VBNC), and remained virulent to Caenorhabditis elegans. The killing assay indicated that these VBNC cells kept sensitive to tetracycline, differing from dormant cells. Transcriptomic analysis revealed more gene transcription occurrence in the VBNC cells compared to dormant cells, involving stress response and ribosome binding. No ferroptosis hallmarks were observed in the VBNC cells, whereas the application of either intracellular Fe2+ chelator or the ferroptosis inhibitor arrested the formation of VBNC state by FeSO4, as well as by Benzakonium chloride or Haz-Tab. This implicated the universal involvement of intracellular Fe2+ and other cascades related to ferroptosis in the formation of VBNC state in L. monocytogenes. Taken together, we discovered an iron-induced VBNC state in L. monocytogenes, and provided clues to further understanding their potential risks.
Collapse
Affiliation(s)
- Banhong Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaolin Zhu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Ning Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongbo Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yonghua Qi
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangbin Hu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
8
|
Guidi C, De Wannemaeker L, De Baets J, Demeester W, Maertens J, De Paepe B, De Mey M. Dynamic feedback regulation for efficient membrane protein production using a small RNA-based genetic circuit in Escherichia coli. Microb Cell Fact 2022; 21:260. [PMID: 36522655 PMCID: PMC9753035 DOI: 10.1186/s12934-022-01983-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Membrane proteins (MPs) are an important class of molecules with a wide array of cellular functions and are part of many metabolic pathways. Despite their great potential-as therapeutic drug targets or in microbial cell factory optimization-many challenges remain for efficient and functional expression in a host such as Escherichia coli. RESULTS A dynamically regulated small RNA-based circuit was developed to counter membrane stress caused by overexpression of different MPs. The best performing small RNAs were able to enhance the maximum specific growth rate with 123%. On culture level, the total MP production was increased two-to three-fold compared to a system without dynamic control. This strategy not only improved cell growth and production of the studied MPs, it also suggested the potential use for countering metabolic burden in general. CONCLUSIONS A dynamically regulated feedback circuit was developed that can sense metabolic stress caused by, in casu, the overexpression of an MP and responds to it by balancing the metabolic state of the cell and more specifically by downregulating the expression of the MP of interest. This negative feedback mechanism was established by implementing and optimizing simple-to-use genetic control elements based on post-transcriptional regulation: small non-coding RNAs. In addition to membrane-related stress when the MP accumulated in the cytoplasm as aggregates, the sRNA-based feedback control system was still effective for improving cell growth but resulted in a decreased total protein production. This result suggests promiscuity of the MP sensor for more than solely membrane stress.
Collapse
Affiliation(s)
- Chiara Guidi
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | | | - Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Wouter Demeester
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
9
|
Centurion VB, Campanaro S, Basile A, Treu L, Oliveira VM. Microbiome structure in biofilms from a volcanic island in Maritime Antarctica investigated by genome-centric metagenomics and metatranscriptomics. Microbiol Res 2022; 265:127197. [PMID: 36174355 DOI: 10.1016/j.micres.2022.127197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Antarctica is the coldest and driest continent on Earth, characterized by polyextreme environmental conditions, where species adapted form complex networks of interactions. Microbial communities growing in these harsh environments can form biofilms that help the associated species to survive and thrive. A rich body of knowledge describes environmental biofilm communities; however, most studies have focused on dominant community members rather than functional complexity and metabolic potential. To overcome these limitations, the present study used genome-centric metagenomics to describe two biofilm samples subjected to different temperature collected in Deception Island, Maritime Antarctica. The results unraveled a complex biofilm microbiome represented by 180 metagenome-assembled genomes. The potential metabolic interactions were investigated using metabolic flux balance analysis and revealed that purple bacteria are the community members with the highest correlations with other bacteria. Due to their predicted mixotrophic behavior, they may play a crucial role in the microbiome, likely supporting the heterotrophic species in biofilms. Metatranscriptomics results revealed that the chaperone system and proteins counteracting ROS and toxic compounds have a major role in maintaining bacterial cell homeostasis in sediments of volcanic origin.
Collapse
Affiliation(s)
- V B Centurion
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Biology Institute, State University of Campinas - UNICAMP, Campinas, SP CEP 13083-862, Brazil.
| | - S Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy; CRIBI Biotechnology Center, University of Padova, 35131 Padua, Italy.
| | - A Basile
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
| | - L Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil.
| |
Collapse
|
10
|
V K, D V, E Z, K H, K N, M L, P V, T P, J H, M P, McM VL, J B, P L, Dg W. Adaptation of anammox bacteria to low temperature via gradual acclimation and cold shocks: Distinctions in protein expression, membrane composition and activities. WATER RESEARCH 2022; 209:117822. [PMID: 34915336 DOI: 10.1016/j.watres.2021.117822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Anammox bacteria enable efficient removal of nitrogen from sewage in processes involving partial nitritation and anammox (PN/A) or nitrification, partial denitrification, and anammox (N-PdN/A). In mild climates, anammox bacteria must be adapted to ≤15 °C, typically by gradual temperature decrease; however, this takes months or years. To reduce the time necessary for the adaptation, an unconventional method of 'cold shocks' is promising, involving hours-long exposure of anammox biomass to extremely low temperatures. We compared the efficacies of gradual temperature decrease and cold shocks to increase the metabolic activity of anammox (fed batch reactor, planktonic "Ca. Kuenenia"). We assessed the cold shock mechanism on the level of protein expression (quantitative shot-gun proteomics, LCHRMS/MS) and the structure of membrane lipids (UPLCHRMS/MS). The shocked culture was more active (0.66±0.06 vs 0.48±0.06 kg-N/kg-VSS/d) and maintained the relative content of N-respiration proteins at levels consistent levels with the initial state, whereas the content of these proteins decreased in gradually acclimated culture. Cold shocks also induced a more efficient expression of potential cold shock proteins (e.g. ppiD, UspA, pqqC), while putative cold shock proteins CspB and TypA were upregulated in both cultures. Ladderane lipids characteristic for anammox evolved to a similar end-point in both cultures; this confirms their role in anammox bacteria adaptation to cold and indicates a three-pronged adaptation mechanism (ladderane alkyl length, introduction of shorter non-ladderane alkyls, polar headgroup). Overall, we show the outstanding potential of cold shocks for low-temperature adaptation of anammox bacteria and provide yet unreported detailed mechanisms of anammox adaptation to low temperatures.
Collapse
Affiliation(s)
- Kouba V
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands; Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Vejmelkova D
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Zwolsman E
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hurkova K
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Navratilova K
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Laureni M
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Vodickova P
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Podzimek T
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Hajslova J
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Pabst M
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - van Loosdrecht McM
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Bartacek J
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Lipovova P
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czechia
| | - Weissbrodt Dg
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
11
|
Tardif M, Picard E, Gaude V, Jager JB, Peyrade D, Hadji E, Marcoux PR. On-Chip Optical Nano-Tweezers for Culture-Less Fast Bacterial Viability Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103765. [PMID: 34784093 DOI: 10.1002/smll.202103765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Because of antibiotics misuse, the dramatic growth of antibioresistance threatens public health. Tests are indeed culture-based, and require therefore one to two days. This long time-to-result implies the use of large-spectrum antibiotherapies as a first step, in absence of pathogen characterization. Here, a breakthrough approach for a culture-less fast assessment of bacterial response to stress is proposed. It is based on non-destructive on-chip optical tweezing. A laser loads an optical nanobeam cavity whose evanescent part of the resonant field acts as a nano-tweezer for bacteria surrounding the cavity. Once optically trapped, the bacterium-nanobeam cavity interaction induces a shift of the resonance driven by the bacterial cell wall optical index. The analysis of the wavelength shift yields an assessment of viability upon stress at the single-cell scale. As a proof of concept, bacteria are stressed by incursion, before optical trapping, at different temperatures (45, 51, and 70 °C). Optical index changes correlate with the degree of thermal stress allowing to sort viable and dead bacteria. With this disruptive diagnosis method, bacterial viability upon stress is probed much faster (typically less than 4 h) than with conventional culture-based enumeration methods (24 h).
Collapse
Affiliation(s)
- Manon Tardif
- Univ. Grenoble Alpes, Grenoble INP, CEA, IRIG, Pheliqs, SiNaPS Lab, Grenoble, F-38000, France
- Univ. Grenoble Alpes, CNRS, LTM, Grenoble, F-38000, France
| | - Emmanuel Picard
- Univ. Grenoble Alpes, Grenoble INP, CEA, IRIG, Pheliqs, SiNaPS Lab, Grenoble, F-38000, France
| | - Victor Gaude
- Univ. Grenoble Alpes, CNRS, LTM, Grenoble, F-38000, France
| | - Jean-Baptiste Jager
- Univ. Grenoble Alpes, Grenoble INP, CEA, IRIG, Pheliqs, SiNaPS Lab, Grenoble, F-38000, France
| | - David Peyrade
- Univ. Grenoble Alpes, CNRS, LTM, Grenoble, F-38000, France
| | - Emmanuel Hadji
- Univ. Grenoble Alpes, Grenoble INP, CEA, IRIG, Pheliqs, SiNaPS Lab, Grenoble, F-38000, France
| | - Pierre R Marcoux
- Univ. Grenoble Alpes, CEA, LETI, DTBS, LSIV, Grenoble, F-38000, France
| |
Collapse
|
12
|
Fu Y, Jia Y, Fan J, Yu C, Yu C, Shen C. Induction of Escherichia coli O157:H7 into a viable but non-culturable state by high temperature and its resuscitation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:568-577. [PMID: 32783384 DOI: 10.1111/1758-2229.12877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Escherichia coli O157:H7, a causative agent of haemolytic uremic syndrome, can enter into a viable but non-culturable (VBNC) state in response to harsh stress. Bacteria in this state can retain membrane integrity, metabolic activity and virulence expression, which may present health risks. However, virulence expression and resuscitation ability of the VBNC state are not well understood. Here, we induced E. coli O157:H7 into a VBNC state by high temperature, which is commonly used to prevent the proliferation of pathogens in process of soil solarization, composting and anaerobic digestion of organic wastes. The virulence genes were highly expressed in the VBNC state and resuscitated daughter cells. The resuscitation of VBNC cells occurred after the removal of heat stress in Luria-Bertani medium. In addition, E. coli O157: H7 cells can leave the VBNC state and resuscitate with the clearance of protein aggregates. Notably, with the accumulation of protein aggregation and increased levels of reactive oxygen species, cells lost their ability to resuscitate. The results of this study not only can facilitate a better understanding of the health risks associated with the VBNC state but also have the potential to provide a theoretical basis for thermal disinfection processing.
Collapse
Affiliation(s)
- Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chungui Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| |
Collapse
|
13
|
Chen FYH, Jung HW, Tsuei CY, Liao JC. Converting Escherichia coli to a Synthetic Methylotroph Growing Solely on Methanol. Cell 2020; 182:933-946.e14. [PMID: 32780992 DOI: 10.1016/j.cell.2020.07.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
Methanol, being electron rich and derivable from methane or CO2, is a potentially renewable one-carbon (C1) feedstock for microorganisms. Although the ribulose monophosphate (RuMP) cycle used by methylotrophs to assimilate methanol differs from the typical sugar metabolism by only three enzymes, turning a non-methylotrophic organism to a synthetic methylotroph that grows to a high cell density has been challenging. Here we reprogrammed E. coli using metabolic robustness criteria followed by laboratory evolution to establish a strain that can efficiently utilize methanol as the sole carbon source. This synthetic methylotroph alleviated a so far uncharacterized hurdle, DNA-protein crosslinking (DPC), by insertion sequence (IS)-mediated copy number variations (CNVs) and balanced the metabolic flux by mutations. Being capable of growing at a rate comparable with natural methylotrophs in a wide range of methanol concentrations, this synthetic methylotrophic strain illustrates genome editing and evolution for microbial tropism changes and expands the scope of biological C1 conversion.
Collapse
Affiliation(s)
- Frederic Y-H Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Hsin-Wei Jung
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chao-Yin Tsuei
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
14
|
Villamizar LF, Barrera G, Marshall SD, Richena M, Harland D, Jackson TA. Three-dimensional cellular aggregates formed by Beauveria pseudobassiana in liquid culture with potential for use as a biocontrol agent of the African black beetle ( Heteronychus arator). Mycology 2020; 12:105-118. [PMID: 34026302 PMCID: PMC8128166 DOI: 10.1080/21501203.2020.1754953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/06/2020] [Indexed: 10/25/2022] Open
Abstract
Beauveria pseudobassiana formed three-dimensional aggregates of cells (CAs) in liquid culture. CAs were formed mainly by blastospores and conidia, distinct from microsclerotia formed through adhesion of hyphae. The formation, germination and sporulation of CAs were studied, as well as the pathogenicity of conidia produced from them against adults of black beetle. After 4 days of culture, CAs were formed, becoming compact and melanised after 10 days of incubation. Electron microscopy showed three-dimensional CAs averaging 431.65 µm in length with irregular shapes and rough surfaces, where cells were trapped within an extracellular matrix. CAs germinated after 2 days of incubation on agar-plates producing hyphae and forming phialides and conidia after 4 days. Produced conidia caused 45% mortality of black beetle adults. CAs germination and sporulation on soil were directly correlated with soil moisture, reaching 80% and 100% germination on the surface of soil with 17% and 30% moisture, respectively. CAs maintained 100% germination after 2 years of storage under refrigeration. These CAs could have a similar function as microsclerotia in nature, acting as resistant structures able to protect internal cells and their ability to sporulate producing infective conidia, suggesting their potential to be used as bioinsecticides to control soil-dwelling insects.
Collapse
Affiliation(s)
| | - Gloria Barrera
- Control Biológico De Plagas Agrícolas, Colombian Corporation for Agricultural Research, Vía Mosquera, Colombia
| | | | - Marina Richena
- Lincoln Research Centre, AgResearch Ltd, Christchurch, New Zealand
| | - Duane Harland
- Lincoln Research Centre, AgResearch Ltd, Christchurch, New Zealand
| | | |
Collapse
|
15
|
Kvich L, Fritz B, Crone S, Kragh KN, Kolpen M, Sønderholm M, Andersson M, Koch A, Jensen PØ, Bjarnsholt T. Oxygen Restriction Generates Difficult-to-Culture P. aeruginosa. Front Microbiol 2019; 10:1992. [PMID: 31555231 PMCID: PMC6727857 DOI: 10.3389/fmicb.2019.01992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/13/2019] [Indexed: 11/13/2022] Open
Abstract
Induction of a non-culturable state has been demonstrated for many bacteria, e.g., Escherichia coli and various Vibrio spp. In a clinical perspective, the lack of growth due to these non-culturable bacteria can have major consequences for the treatment of patients. Here, we show how anoxic conditioning (restriction of molecular oxygen, O2) generates difficult-to-culture (DTC) bacteria during biofilm growth. A significant subpopulation of Pseudomonas aeruginosa entered a DTC state after anoxic conditioning, ranging from 5 to 90% of the total culturable population, in both planktonic and biofilm models. Anoxic conditioning also generated DTC subpopulations of Staphylococcus aureus and Staphylococcus epidermidis (89 and 42% of the total culturable population, respectively). Growth of the DTC populations were achieved by substituting O2 with 10 mM NO3– as an alternative electron acceptor for anaerobic respiration or, in the case of P. aeruginosa, by adding sodium pyruvate or catalase as scavengers against reactive oxygen species (ROS) during aerobic respiration. An increase in normoxic plating due to addition of catalase suggests the molecule hydrogen peroxide as a possible mechanism for induction of DTC P. aeruginosa. Anoxic conditioning also generated a true viable but non-culturable (VBNC) population of P. aeruginosa that was not resurrected by substituting O2 with NO3– during anaerobic respiration. These results demonstrate that habituation to an anoxic micro-environment could complicate diagnostic culturing of bacteria, especially in the case of chronic infections where oxygen is restricted due to the host immune response.
Collapse
Affiliation(s)
- Lasse Kvich
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blaine Fritz
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Crone
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper N Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Majken Sønderholm
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Andersson
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Koch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Peter Ø Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
16
|
High temperatures promote cell-to-cell plasmid transformation in Escherichia coli. Biochem Biophys Res Commun 2019; 515:196-200. [PMID: 31138439 DOI: 10.1016/j.bbrc.2019.05.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023]
Abstract
Bacteria continuously change their genetic characteristics to adapt to the changing environment by means of horizontal gene transfer. Although three conventional mechanisms of horizontal gene transfer are well known (transformation, transduction, and conjugation), new variations of these mechanisms have also been described. We previously reported that DNase-sensitive cell-to-cell transfer of non-conjugative plasmids, termed as "cell-to-cell transformation," occurs between the cells of two Escherichia coli strains in a co-culture. In this study, to further investigate the mechanism of cell-to-cell transformation, we constructed a new experimental system for cell-to-cell transformation. By using this system, we found that high temperatures of approximately 41ºC-45 °C significantly promote cell-to-cell plasmid transformation. This transfer was much more frequent in solid-air biofilms than in liquid culture, suggesting an importance of biofilm environment. Plasmid transfer frequency reached over 10-7/cell under the optimal strain-plasmid combination and conditions tested. DNase sensitivity test and plasmid isolation from the transformants confirmed the horizontal transfer of full-length plasmids via transformation. Comparative natural transformation experiments, which used similar strains and plasmids under equivalent culture conditions, revealed that cell-to-cell transformation occurs approximately 103 times more frequently than natural transformation, indicating the uniqueness and effectiveness of the cell-to-cell transformation mechanism. As temperatures of approximately 41ºC-45 °C are common in the avian intestines and under some other environmental situations, the phenomenon demonstrated here can occur efficiently in such locations. To the best of our knowledge, this is the first study to demonstrate the enhancing effect of high temperatures on cell-to-cell plasmid transformation in E. coli.
Collapse
|
17
|
|
18
|
Kumawat M, Singh PK, Rananaware SR, Ahlawat S. Comparative evaluation of structure and characteristic of peptidyl-prolyl cis-trans isomerase proteins and their function in Salmonella Typhimurium stress responses and virulence. Folia Microbiol (Praha) 2019; 65:161-171. [PMID: 31111418 DOI: 10.1007/s12223-019-00717-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/30/2019] [Indexed: 01/19/2023]
Abstract
Peptidyl-prolyl cis-trans isomerases (PPIase) exhibit chaperone activity and assist in protein folding by increasing the rate of cis-trans transition on proline-peptide bonds. The current study aimed to identify and characterize three genes, ppiA, ppiB, and ppiC, which encode proteins of the PPIase family in the bacterium Salmonella enterica serovar Typhimurium. Salmonella Typhimurium is a facultative intracellular zoonotic pathogen that causes food- and water-borne gastroenteritis in humans (leading to bacteremia in immune-compromised subjects). Recombinant clones for the three genes were constructed and sequenced and the sequences submitted to NCBI GenBank. Three-dimensional structures for the corresponding proteins were predicted by comparative modeling. A maximum-likelihood phylogenetic gene tree constructed for the three genes showed a low evolutionary mean diversity, indicating strong evolutionary conservation. Further, single-gene deletion mutant strains, generated for the respective genes, were observed to be more susceptible to the stationary phase of growth and heat stress conditions and showed reduced survival within macrophage cells line. The present study thus indicates that ppiA, ppiB, and ppiC genes are conserved among Salmonella genome, are critical for the growth of Salmonella Typhimurium in the examined stress conditions, and may play a role in its responses and virulence.
Collapse
Affiliation(s)
- Manoj Kumawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India. .,Department of Biochemistry & Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.
| | - Piyush Kumar Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, 243122, India
| | | | - Sushma Ahlawat
- Department of Biochemistry & Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.
| |
Collapse
|
19
|
Effect of temperature on Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments. Sci Rep 2018; 8:9167. [PMID: 29907803 PMCID: PMC6004011 DOI: 10.1038/s41598-018-27356-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Burkholderia pseudomallei is a flagellated, gram-negative environmental bacterium that causes melioidosis, a severe infectious disease of humans and animals in tropical areas. We hypothesised that B. pseudomallei may undergo phenotypic adaptation in response to an increase in growth temperature. We analysed the growth curves of B. pseudomallei strain 153 cultured in Luria–Bertani broth at five different temperatures (25 °C–42 °C) and compared the proteomes of bacteria cultured at 37 °C and 42 °C. B. pseudomallei exhibited the highest growth rate at 37 °C with modest reductions at 30 °C, 40 °C and 42 °C but a more marked delay at 25 °C. Proteome analysis revealed 34 differentially expressed protein spots between bacterial cultures at 42 °C versus 37 °C. These were identified as chaperones (7 spots), metabolic enzymes (12 spots), antioxidants (10 spots), motility proteins (2 spots), structural proteins (2 spots) and hypothetical proteins (1 spot). Of the 22 down-regulated proteins at 42 °C, redundancy in motility and antioxidant proteins was observed. qRT-PCR confirmed decreased expression of fliC and katE. Experiments on three B. pseudomallei strains demonstrated that these had the highest motility, greatest resistance to H2O2 and greatest tolerance to salt stress at 37 °C. Our data suggest that temperature affects B. pseudomallei motility and resistance to stress.
Collapse
|
20
|
Physiologically distinct subpopulations formed in Escherichia coli cultures in response to heat shock. Microbiol Res 2018; 209:33-42. [DOI: 10.1016/j.micres.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 11/21/2022]
|
21
|
Enhancing the Adaptability of the Deep-Sea Bacterium Shewanella piezotolerans WP3 to High Pressure and Low Temperature by Experimental Evolution under H 2O 2 Stress. Appl Environ Microbiol 2018; 84:AEM.02342-17. [PMID: 29269502 DOI: 10.1128/aem.02342-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/10/2017] [Indexed: 11/20/2022] Open
Abstract
Oxidative stresses commonly exist in natural environments, and microbes have developed a variety of defensive systems to counteract such events. Although increasing evidence has shown that high hydrostatic pressure (HHP) and low temperature (LT) induce antioxidant defense responses in cells, there is no direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT. In this study, using the wild-type (WT) strain of a deep-sea bacterium, Shewanella piezotolerans WP3, as an ancestor, we obtained a mutant, OE100, with an enhanced antioxidant defense capacity by experimental evolution under H2O2 stress. Notably, OE100 exhibited better tolerance not only to H2O2 stress but also to HHP and LT (20 MPa and 4°C, respectively). Whole-genome sequencing identified a deletion mutation in the oxyR gene, which encodes the transcription factor that controls the oxidative stress response. Comparative transcriptome analysis showed that the genes associated with oxidative stress defense, anaerobic respiration, DNA repair, and the synthesis of flagella and bacteriophage were differentially expressed in OE100 compared with the WT at 20 MPa and 4°C. Genetic analysis of oxyR and ccpA2 indicated that the OxyR-regulated cytochrome c peroxidase CcpA2 significantly contributed to the adaptation of WP3 to HHP and LT. Taken together, these results confirmed the inherent relationship between antioxidant defense mechanisms and the adaptation of a benthic microorganism to HHP and LT.IMPORTANCE Oxidative stress exists in various niches, including the deep-sea ecosystem, which is an extreme environment with conditions of HHP and predominantly LT. Although previous studies have shown that HHP and LT induce antioxidant defense responses in cells, direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT is lacking. In this work, using the deep-sea bacterium Shewanella piezotolerans WP3 as a model, we proved that enhancement of the adaptability of WP3 to HHP and LT can benefit from its antioxidant defense mechanism, which provided useful insight into the ecological roles of antioxidant genes in a benthic microorganism and contributed to an improved understanding of microbial adaptation strategies in deep-sea environments.
Collapse
|
22
|
GigA and GigB are Master Regulators of Antibiotic Resistance, Stress Responses, and Virulence in Acinetobacter baumannii. J Bacteriol 2017; 199:JB.00066-17. [PMID: 28264991 DOI: 10.1128/jb.00066-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/24/2017] [Indexed: 01/17/2023] Open
Abstract
A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii, a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTSNtr), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii, and coupling this pathway with the PTSNtr allows A. baumannii to integrate cellular metabolic status with external environmental cues.IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii, encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we investigate two previously identified virulence determinants, GigA and GigB, and report that they are required for in vitro stress resistance, likely comprising upstream elements of a global stress response pathway. Additional experiments identify a connection between GigA/GigB and a widely conserved metabolic-sensing pathway, the nitrogen phosphotransferase system. We propose that coordination of these two pathways allows A. baumannii to respond appropriately to changing environmental conditions, including those encountered during infection.
Collapse
|
23
|
Vaze ND, Park S, Brooks AD, Fridman A, Joshi SG. Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria. PLoS One 2017; 12:e0171434. [PMID: 28166240 PMCID: PMC5293192 DOI: 10.1371/journal.pone.0171434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/20/2017] [Indexed: 11/19/2022] Open
Abstract
A lab-scale, tunable, single-filament, point-to-point nonthermal dieletric-barrier discharge (DBD) plasma device was built to study the mechanisms of inactivation of aerosolized bacterial pathogens. The system inactivates airborne antibiotic-resistant pathogens efficiently. Nebulization mediated pre-optimized (4 log and 7 log) bacterial loads were challenged to plasma-charged aerosols, and lethal and sublethal doses determined using colony assay, and cell viability assay; and the loss of membrane potential and cellular respiration were determined using cell membrane potential assay and XTT assay. Using the strategies of Escherichia coli wildtype, over-expression mutant, deletion mutants, and peroxide and heat stress scavenging, we analyzed activation of intracellular reactive oxygen species (ROS) and heat shock protein (hsp) chaperons. Superoxide dismutase deletion mutants (ΔsodA, ΔsodB, ΔsodAΔsodB) and catalase mutants ΔkatG and ΔkatEΔkatG did not show significant difference from wildtype strain, and ΔkatE and ΔahpC was found significantly more susceptible to cell death than wildtype. The oxyR regulon was found to mediate plasma-charged aerosol-induced oxidative stress in bacteria. Hsp deficient E. coli (ΔhtpG, ΔgroEL, ΔclpX, ΔgrpE) showed complete inactivation of cells at ambient temperature, and the treatment at cold temperature (4°C) significantly protected hsp deletion mutants and wildtype cells, and indicate a direct involvement of hsp in plasma-charged aerosol mediated E. coli cell death.
Collapse
Affiliation(s)
- Nachiket D. Vaze
- Center for Surgical Infection and Biofilm, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sin Park
- A.J. Drexel Plasma Institute, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Ari D. Brooks
- Center for Surgical Infection and Biofilm, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alexander Fridman
- Center for Surgical Infection and Biofilm, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- A.J. Drexel Plasma Institute, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Suresh G. Joshi
- Center for Surgical Infection and Biofilm, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
- A.J. Drexel Plasma Institute, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
24
|
Mercer RG, Walker BD, Yang X, McMullen LM, Gänzle MG. The locus of heat resistance (LHR) mediates heat resistance in Salmonella enterica, Escherichia coli and Enterobacter cloacae. Food Microbiol 2016; 64:96-103. [PMID: 28213040 DOI: 10.1016/j.fm.2016.12.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 10/21/2016] [Accepted: 12/26/2016] [Indexed: 10/20/2022]
Abstract
Enterobacteriaceae comprise food spoilage organisms as well as food-borne pathogens including Escherichia coli. Heat resistance in E. coli was attributed to a genomic island called the locus of heat resistance (LHR). This genomic island is also present in several other genera of Enterobacteriaceae, but its function in the enteric pathogens Salmonella enterica and Enterobacter cloacae is unknown. This study aimed to determine the frequency of the LHR in food isolates of E. coli, and its influence on heat resistance in S. enterica and Enterobacter spp. Cell counts of LHR-positive strains of E. coli, S. enterica and E. cloacae were reduced by less than 1, 1, and 4 log (cfu/mL), respectively, after exposure to 60 °C for 5 min, while cell counts of LHR-negative strains of the same species were reduced by more than 7 log (cfu/mL). Introducing an exogenous copy of the LHR into heat-sensitive enteropathogenic E. coli and S. enterica increased heat resistance to a level that was comparable to LHR-positive wild type strains. Cell counts of LHR-positive S. enterica were reduced by less than 1 log(cfu/mL) after heating to 60 °C for 5 min. Survival of LHR-positive strains was improved by increasing the NaCl concentration from 0 to 4%. Cell counts of LHR-positive strains of E. coli and S. enterica were reduced by less than 2 log (cfu/g) in ground beef patties cooked to an internal core temperature of 71 °C. This study indicates that LHR-positive Enterobacteriaceae pose a risk to food safety.
Collapse
Affiliation(s)
- Ryan G Mercer
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Brian D Walker
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta, Canada
| | - Lynn M McMullen
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada.
| |
Collapse
|
25
|
Kethireddy V, Oey I, Jowett T, Bremer P. Critical analysis of the maximum non inhibitory concentration (MNIC) method in quantifying sub-lethal injury in Saccharomyces cerevisiae cells exposed to either thermal or pulsed electric field treatments. Int J Food Microbiol 2016; 233:73-80. [DOI: 10.1016/j.ijfoodmicro.2016.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/12/2016] [Accepted: 06/06/2016] [Indexed: 01/10/2023]
|
26
|
Liu X, Hu W, An Z, Bai Z, Dai X, Yang Y. Exploration of cell lysis in a bioreactor using Escherichia coli expressing single-chain variable-domain antibody fragments. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Sakil Munna M, Tahera J, Mohibul Hassan Afrad M, Nur IT, Noor R. Survival of Bacillus spp. SUBB01 at high temperatures and a preliminary assessment of its ability to protect heat-stressed Escherichia coli cells. BMC Res Notes 2015; 8:637. [PMID: 26526722 PMCID: PMC4630936 DOI: 10.1186/s13104-015-1631-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Background The bacterial stressed state upon temperature raise has widely been observed especially in Escherichia coli cells. The current study extended such physiological investigation on Bacillus spp. SUBB01 under aeration at 100 rpm on different culture media along with the high temperature exposure at 48, 50, 52, 53 and 54 °C. Bacterial growth was determined through the enumeration of the viable and culturable cells; i.e., cells capable of producing the colony forming units on Luria–Bertani and nutrient agar plates up to 24 h. Microscopic experiments were conducted to scrutinize the successive physiological changes. Suppression of bacterial growth due to the elevated heat was further confirmed by the observation of non-viability through spot tests. Results As expected, a quick drop in both cell turbidity and colony forming units (~104) along with spores were observed after 12–24 h of incubation period, when cells were grown at 54 °C in both Luria–Bertani and nutrient broth and agar. The critical temperature (the temperature above which it is no longer possible to survive) of Bacillus spp. SUBB01 was estimated to be 53 °C. Furthermore, a positive impact was observed on the inhibited E. coli SUBE01 growth at 45 and 47 °C, upon the supplementation of the extracellular fractions of Bacillus species into the growing culture. Conclusions Overall the present analysis revealed the conversion of the culturable cells into the viable and nonculturable (VBNC) state as a result of heat shock response in Bacillus spp. SUBB01 and the cellular adaptation at extremely high temperature.
Collapse
Affiliation(s)
- Md Sakil Munna
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Jannatun Tahera
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Md Mohibul Hassan Afrad
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Ifra Tun Nur
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Rashed Noor
- Department of Microbiology, Stamford University, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| |
Collapse
|