1
|
Velasco-Aburto S, Llama-Palacios A, Sánchez MC, Ciudad MJ, Collado L. Nutritional Approach to Small Intestinal Bacterial Overgrowth: A Narrative Review. Nutrients 2025; 17:1410. [PMID: 40362719 PMCID: PMC12073203 DOI: 10.3390/nu17091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a functional digestive disorder whose incidence has been acknowledged by several medical associations, such as the American Gastroenterological Association. It is estimated that between 14% and 40% of patients diagnosed with irritable bowel syndrome also have SIBO, highlighting the importance of accurate diagnosis to enable effective treatment plans. Nutrition and diet therapy play a pivotal role in SIBO management, not only in alleviating symptoms but also in preventing relapses. The objective of this review is to gather updated information on dietary management for SIBO to define the role of the dietitian and determine the most suitable nutritional therapy based on scientific evidence. The review will encompass various strategies, ranging from specific diets to dietary supplements, as well as the potential contribution of dietary treatment to improving SIBO.
Collapse
Affiliation(s)
- Sol Velasco-Aburto
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (S.V.-A.); (A.L.-P.); (M.C.S.)
| | - Arancha Llama-Palacios
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (S.V.-A.); (A.L.-P.); (M.C.S.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - María Carmen Sánchez
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (S.V.-A.); (A.L.-P.); (M.C.S.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - María José Ciudad
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (S.V.-A.); (A.L.-P.); (M.C.S.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Luis Collado
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (S.V.-A.); (A.L.-P.); (M.C.S.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| |
Collapse
|
2
|
Rezaie A, Chang BW, de Freitas Germano J, Leite G, Mathur R, Houser K, Hosseini A, Brimberry D, Rashid M, Mehravar S, Villanueva-Millan MJ, Sanchez M, Weitsman S, Fajardo CM, Rivera IG, Joo L, Chan Y, Barlow GM, Pimentel M. Effect, Tolerability, and Safety of Exclusive Palatable Elemental Diet in Patients with Intestinal Microbial Overgrowth. Clin Gastroenterol Hepatol 2025:S1542-3565(25)00241-1. [PMID: 40189034 DOI: 10.1016/j.cgh.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND & AIMS Elemental diets (EDs) have desirable safety and efficacy profiles in several clinical settings partly because of modulation of gut microbiome. Palatability of EDs remains the main barrier to compliance/adherence, and their effect has not been prospectively explored in microbiome-driven disorders, such as small intestinal bacterial overgrowth (SIBO) and intestinal methanogen overgrowth (IMO). We aimed to assess the effect, tolerance, and safety of a novel palatable ED (PED) in subjects with IMO and/or SIBO. METHODS Adult subjects with positive lactulose breath tests for SIBO and/or IMO completed 1 week of screening, 2 weeks of exclusive oral PED, and 2 weeks of follow-up during reintroduction of regular diet. Primary end point was changes in stool microbiome after PED and reintroduction of regular diet. Secondary end points included tolerability, rate of normalization of lactulose breath tests, change in stool form based on daily diary and artificial intelligence-analyzed images, symptomatic response, and adverse events. RESULTS All 30 enrolled subjects tolerated the PED and completed the trial. Several taxonomic differences were detected including decreased relative abundance of Prevotella_9 and Fusobacterium. Abundance of Methanobrevibacter smithii decreased at the end of the trial and correlated with average daily methane levels (P = .024; r = 0.489). Maximum methane levels (41 ± 35 to 12 ± 15 ppm; P < .001) and hydrogen rise (43 ± 42 to 12 ± 11 ppm; P < .001) dropped significantly, with 73% normalizing their lactulose breath tests. Adequate global relief of symptoms was reported in 83% of subjects. No serious or severe adverse events were observed. CONCLUSIONS PED significantly impacts the gut microbiome. Tolerance to EDs improves with enhanced palatability. Larger studies with longer follow-up are needed to assess response durability. (ClinicalTrials.gov ID: NCT05978973).
Collapse
Affiliation(s)
- Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California.
| | - Bianca W Chang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California
| | | | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | - Ruchi Mathur
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, California
| | | | - Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | - Daniel Brimberry
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | - Mohamad Rashid
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | - Sepideh Mehravar
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | | | - Maritza Sanchez
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | - Cristina M Fajardo
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | - Ignacio G Rivera
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | - Lijin Joo
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | - Yin Chan
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California
| |
Collapse
|
3
|
Wang X, Zhao D, Bi D, Li L, Tian H, Yin F, Zuo T, Ianiro G, Li N, Chen Q, Qin H. Fecal microbiota transplantation: transitioning from chaos and controversial realm to scientific precision era. Sci Bull (Beijing) 2025; 70:970-985. [PMID: 39855927 DOI: 10.1016/j.scib.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025]
Abstract
With the popularization of modern lifestyles, the spectrum of intestinal diseases has become increasingly diverse, presenting significant challenges in its management. Traditional pharmaceutical interventions have struggled to keep pace with these changes, leaving many patients refractory to conventional pharmaceutical treatments. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for enterogenic diseases. Still, controversies persist regarding its active constituents, mechanism of action, scheme of treatment evaluation, indications, and contraindications. In this review, we investigated the efficacy of FMT in addressing gastrointestinal and extraintestinal conditions, drawing from follow-up data on over 8000 patients. We systematically addressed the controversies surrounding FMT's clinical application. We delved into key issues such as its technical nature, evaluation methods, microbial restoration mechanisms, and impact on the host-microbiota interactions. Additionally, we explored the potential colonization patterns of FMT-engrafted new microbiota throughout the entire intestine and elucidated the specific pathways through which the new microbiota modulates host immunity, metabolism, and genome.
Collapse
Affiliation(s)
- Xinjun Wang
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China.
| | - Di Zhao
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Dexi Bi
- Department of Pathology, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Long Li
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongliang Tian
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Fang Yin
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510655, China
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato, Rome, 00168, Italy
| | - Ning Li
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiyi Chen
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China.
| | - Huanlong Qin
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
4
|
Westmark CJ. Soy-based purified ingredient diet affects mouse gut permeability and the microbiome in fragile X mice. Front Mol Neurosci 2025; 18:1520211. [PMID: 40190341 PMCID: PMC11968763 DOI: 10.3389/fnmol.2025.1520211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Gastrointestinal problems including vomiting, reflux, flatulence, diarrhea, constipation and colic are common comorbidities in fragile X syndrome. There is accumulating evidence suggesting that leaky gut syndrome causes neurological phenotypes. Although fragile X messenger ribonucleoprotein is ubiquitously expressed, there is a dearth of knowledge regarding its role outside of the brain including effects on gut dysfunction in fragile X. The aim of this study was to generate novel data on gastrointestinal barrier function and the gut microbiome in response to Fmr1 genotype, sex and diet in mice. Methods Fmr1KO male mice and littermate controls in an FVB background were maintained on two purified ingredient diets (AIN-93G with casein protein versus soy protein isolate) versus two standard chows (Teklad 2019 with wheat, corn and yeast protein versus Purina 5015 with wheat, soy, corn, yeast and whey protein sources). Gut permeability was quantified by FITC-dextran levels in blood plasma. The cecal microbiome was identified by 16S rRNA sequencing. In addition, gut permeability was tested in Fmr1KO mice in the C57BL/6 J background maintained on casein- and soy protein isolate-based AIN-93G versus Teklad 2019. Results Knockout of the Fmr1 gene in FVB mice did not affect gut permeability. Soy protein isolate-based AIN-93G increased gut permeability. Beta-diversity of the cecal microbiome was significantly altered as a function of the four test diets. Akkermansia_muciniphila was increased in Fmr1KO mice fed AIN-93G while unnamed species within the genus Anaerovorax and family Ruminococcaceae were increased and the order Clostridales decreased in Fmr1KO mice fed AIN-93G/soy. Fmr1KO mice in the C57BL/6 J background exhibited increased gut permeability in response to soy protein. Discussion These findings regarding the effects of diet on gut permeability and the microbiome have important implications for experimental design. Single-source diets are ubiquitously used to maintain laboratory animals for medical research and feed details are frequently not reported in publications. Diet/phenotype interactions could have a large impact on inter-laboratory replicability in premedical research. For infants with fragile X, early-life diet could impact the severity of disease outcomes.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
5
|
Saeed H, Díaz LA, Gil-Gómez A, Burton J, Bajaj JS, Romero-Gomez M, Arrese M, Arab JP, Khan MQ. Microbiome-centered therapies for the management of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2025; 31:S94-S111. [PMID: 39604327 PMCID: PMC11925441 DOI: 10.3350/cmh.2024.0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant global health issue, affecting over 30% of the population worldwide due to the rising prevalence of metabolic risk factors such as obesity and type 2 diabetes mellitus. This spectrum of liver disease ranges from isolated steatosis to more severe forms such as steatohepatitis, fibrosis, and cirrhosis. Recent studies highlight the role of gut microbiota in MASLD pathogenesis, showing that dysbiosis significantly impacts metabolic health and the progression of liver disease. This review critically evaluates current microbiome-centered therapies in MASLD management, including prebiotics, probiotics, synbiotics, fecal microbiota transplantation, and emerging therapies such as engineered bacteria and bacteriophage therapy. We explore the scientific rationale, clinical evidence, and potential mechanisms by which these interventions influence MASLD. The gut-liver axis is crucial in MASLD, with notable changes in microbiome composition linked to disease progression. For instance, specific microbial profiles and reduced alpha diversity are associated with MASLD severity. Therapeutic strategies targeting the microbiome could modulate disease progression by improving gut permeability, reducing endotoxin-producing bacteria, and altering bile acid metabolism. Although promising, these therapies require further research to fully understand their mechanisms and optimize their efficacy. This review integrates findings from clinical trials and experimental studies, providing a comprehensive overview of microbiome-centered therapies' potential in managing MASLD. Future research should focus on personalized strategies, utilizing microbiome features, blood metabolites, and customized dietary interventions to enhance the effectiveness of these therapies.
Collapse
Affiliation(s)
- Huma Saeed
- Division of Infectious Diseases, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Luis Antonio Díaz
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, USA
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio Gil-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jeremy Burton
- Department of Microbiology & Immunology, Western University, London, ON, Canada
| | - Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Manuel Romero-Gomez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- UCM Digestive diseases, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Mohammad Qasim Khan
- Division of Gastroenterology, Department of Medicine, University of Western Ontario, London, ON, Canada
- Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Rodiño-Janeiro BK, Khannous-Lleiffe O, Pigrau M, Willis JR, Salvo-Romero E, Nieto A, Expósito E, Fortea M, Pardo-Camacho C, Albert-Bayo M, González-Castro AM, Guagnozzi D, Martínez C, Lobo B, Vicario M, Santos J, Gabaldón T, Alonso-Cotoner C. Acute stress triggers sex-dependent rapid alterations in the human small intestine microbiota composition. Front Microbiol 2025; 15:1441126. [PMID: 39881982 PMCID: PMC11778178 DOI: 10.3389/fmicb.2024.1441126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Background/aims Digestive disorders of gut-brain interaction (DGBI) are very common, predominant in females, and usually associated with intestinal barrier dysfunction, dysbiosis, and stress. We previously found that females have increased susceptibility to intestinal barrier dysfunction in response to acute stress. However, whether this is associated with changes in the small bowel microbiota remains unknown. We have evaluated changes in the small intestinal microbiota in response to acute stress to better understand stress-induced intestinal barrier dysfunction. Methods Jejunal biopsies were obtained at baseline and 90 min after cold pain or sham stress. Autonomic (blood pressure and heart rate), hormonal (plasma cortisol and adrenocorticotropic hormone) and psychological (Subjective Stress Rating Scale) responses to cold pain and sham stress were monitored. Microbial DNA from the biopsies was analyzed using a 16S metabarcoding approach before and after cold pain stress and sham stress. Differences in diversity and relative abundance of microbial taxa were examined. Results Cold pain stress was associated with a significant decrease in alpha diversity (P = 0.015), which was more pronounced in females, along with significant sex differences in the abundance of specific taxa and the overall microbiota composition. Microbiota alterations significantly correlated with changes in psychological responses, hormones, and gene expression in the intestinal mucosal. Cold pain stress was also associated with activation of autonomic, hormonal and psychological response, with no differences between sexes. Conclusions Acute stress elicits rapid alterations in bacterial composition in the jejunum of healthy subjects and these changes are more pronounced in females. Our results may contribute to the understanding of female predominance in DGBI.
Collapse
Affiliation(s)
- Bruno K. Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Olfat Khannous-Lleiffe
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marc Pigrau
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesse R. Willis
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eloísa Salvo-Romero
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Adoración Nieto
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marina Fortea
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mercé Albert-Bayo
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Renal Physiopathology Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - María Vicario
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Li L, Zhi M, Wang S, Deng J, Cai Q, Feng D. The effect of workplace environment on coal miners' gut microbiota in a mouse model. Front Microbiol 2024; 15:1453798. [PMID: 39723143 PMCID: PMC11668784 DOI: 10.3389/fmicb.2024.1453798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The coal mine workplace environment is a significant factor in inducing occupational health issues, such as intestinal dysfunction in coal miners. However, the mechanism by which the coal mine workplace environment induces intestinal dysfunction is still unclear. Therefore, we applied the Coal Mine Workplace Environment Biological Simulation (CEBS) model which was previously constructed to detect the intestinal pathological manifestations and changes in the gut microbiota of mice from the perspectives of intestinal function, tissue morphology, and cell molecules. CEBS mice showed increased fecal water content, shortened colon length, significant activation of MPO+ and CD11b+ numbers, and significant changes in IL-1b, IL-6, and IL-12 expression levels. In addition, we also found an imbalance in the proportions of Firmicutes, Bacteroidetes, Lactobacillus, and Parabacteroides in CEBS mice, resulting in significant changes in gut microbial diversity. After intervention with compound probiotics, the intestinal function of CEBS + Mix mice was improved and inflammation levels were reduced. Results indicated that stress in the coal mine workplace environment can lead to intestinal dysfunction and inflammatory damage of the colon and use of compound probiotics can improve intestinal dysfunction in CBES mice. In our study, we revealed that there is a correlation between coal mine workplace environment and diversity disorders of gut microbiota. This discovery has enhanced the relevant theories on the causes of intestinal dysfunction in coal miners and has suggested a new approach to intervention.
Collapse
Affiliation(s)
- Lei Li
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Mei Zhi
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Siwei Wang
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
- Safety Supervision Department, Nanhai Department of Transportation, Foshan, China
| | - Jun Deng
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Qing Cai
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Zhong Y, Kang X, Bai X, Pu B, Smerin D, Zhao L, Xiong X. The Oral-Gut-Brain Axis: The Influence of Microbes as a Link of Periodontitis With Ischemic Stroke. CNS Neurosci Ther 2024; 30:e70152. [PMID: 39675010 DOI: 10.1111/cns.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Periodontitis, a non-communicable chronic inflammation disease resulting from dysbiosis of the oral microbiota, has been demonstrated to have a positive association with the risk of ischemic stroke (IS). The major periodontal pathogens contribute to the progression of stroke-related risk factors such as obesity, diabetes, atherosclerosis, and hypertension. Transcriptional changes in periodontitis pathogens have been detected in oral samples from stroke patients, suggesting a new conceptual framework involving microorganisms. The bidirectional regulation between the gut and the central nervous system (CNS) is mediated by interactions between intestinal microflora and brain cells. The connection between the oral cavity and gut through microbiota indicates that the oral microbial community may play a role in mediating complex communication between the oral cavity and the CNS; however, underlying mechanisms have yet to be fully understood. In this review, we present an overview of key concepts and potential mechanisms of interaction between the oral-gut-brain axis based on previous research, focusing on how the oral microbiome (especially the periodontal pathogens) impacts IS and its risk factors, as well as the mediating role of immune system homeostasis, and providing potential preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daniel Smerin
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Wang H, Cai Y, Wu W, Zhang M, Dai Y, Wang Q. Exploring the role of gut microbiome in autoimmune diseases: A comprehensive review. Autoimmun Rev 2024; 23:103654. [PMID: 39384149 DOI: 10.1016/j.autrev.2024.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
As the industrialized society advances, there has been a gradual increase in the prevalence of autoimmune disorders. A probe into the fundamental causes has disclosed several factors in modern society that have an influence on the gut microbiome. These dramatic shifts in the gut microbiome are likely to be one of the reasons for the disarray in the immune system, and the relationship between the immune system and the gut microbiome emerging as a perennial hot topic of research. This review enumerates the findings from sequencing studies of gut microbiota on seven autoimmune diseases (ADs): Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), Ankylosing Spondylitis (AS), Systemic Sclerosis (SSc), Sjögren's Syndrome (SjS), Juvenile Idiopathic Arthritis (JIA), and Behçet's Disease (BD). It aims to identify commonalities in changes in the gut microbiome within the autoimmune disease cohort and characteristics specific to each disease. The dysregulation of the gut microbiome involves a disruption of the internal balance and the balance between the external environment and the host. This dysregulation impacts the host's immune system, potentially playing a role in the development of ADs. Damage to the gut epithelial barrier allows potential pathogens to translocate to the mucosal layer, contacting epithelial cells, disrupting tight junctions, and being recognized by antigen-presenting cells, which triggers an immune response. Primed T-cells assist B-cells in producing antibodies against pathogens; if antigen mimicry occurs, an immune response is generated in extraintestinal organs during immune cell circulation, clinically manifesting as ADs. However, current research is limited; advancements in sequencing technology, large-scale cohort studies, and fecal microbiota transplantation (FMT) research are expected to propel this field to new peaks.
Collapse
Affiliation(s)
- Hongli Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yueshu Cai
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wenqi Wu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yong Dai
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China.
| |
Collapse
|
10
|
Sharabi E, Rezaie A. Small Intestinal Bacterial Overgrowth. Curr Infect Dis Rep 2024; 26:227-233. [DOI: 10.1007/s11908-024-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 01/04/2025]
Abstract
Abstract
Purpose of review
Small intestinal bacterial overgrowth (SIBO) is a chronic gastrointestinal disorder wherein excessive and abnormal growth of bacteria in the small bowel generally causes abdominal pain, bloating, and change in bowel habits. Our understanding of the underlying pathology and microbiome changes in SIBO has advanced greatly in the last 20 years in parallel with advances in treatment methods and diagnostics. Here, we review many of the latest findings that describe the pathophysiology of SIBO as well as its risk factors, clinical behavior, diagnosis, and management.
Recent findings
Studies have begun to employ advanced molecular assays to sequence the small bowel microbiome to reveal the changes evident in SIBO. An increase in the abundance of members of the Enterobacteriaceae is the main alteration to the gut microbiome that correlates with SIBO diagnosis and symptom severity, and enhancement of specific gas-producing pathways has been demonstrated in SIBO. Diagnostic methods continue to evolve with novel methods of small bowel aspiration and changes to interpretation of hydrogen breath tests. Elemental diets are the newest treatment modality that offer an exciting alternative to antibiotic therapy.
Summary
The study of SIBO provides valuable insights into the small bowel microbiome, particularly using molecular testing. Exciting changes to our understanding and treatment of SIBO are already in progress. Future work will be able to better elucidate not only the altered microbiology, but also its gold standard of diagnosis, treatment modalities, and secondary prevention.
Collapse
|
11
|
Suárez Terán J, Guarner Aguilar F. Small Intestinal Bacterial Overgrowth (SIBO), a clinically overdiagnosed entity? GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502190. [PMID: 38719183 DOI: 10.1016/j.gastrohep.2024.502190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/27/2024]
Abstract
Small intestinal bacterial overgrowth (SIBO) is a clinical entity recognized since ancient times; it represents the consequences of bacterial overgrowth in the small intestine associated with malabsorption. Recently, SIBO as a term has been popularized due to its high prevalence reported in various pathologies since the moment it is indirectly diagnosed with exhaled air tests. In the present article, the results of duodenal/jejunal aspirate culture testing as a reference diagnostic method, as well as the characteristics of the small intestinal microbiota described by culture-dependent and culture-independent techniques in SIBO, and their comparison with exhaled air testing are presented to argue about its overdiagnosis.
Collapse
|
12
|
Zhou Y, Komnick MR, Sepulveda F, Liu G, Nieves-Ortiz E, Meador K, Ndatabaye O, Fatkhullina A, Wu-Woods NJ, Naydenkov PM, Kent J, Christiansen N, Madariaga ML, Witkowski P, Ismagilov RF, Esterházy D. Inducible, but not constitutive, pancreatic REG/Reg isoforms are regulated by intestinal microbiota and pancreatic diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619139. [PMID: 39484594 PMCID: PMC11526982 DOI: 10.1101/2024.10.18.619139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The REG / Reg gene locus encodes for a conserved family of potent antimicrobial but also pancreatitis-associated proteins. Here we investigated whether REG/Reg family members differ in their baseline expression levels and abilities to be regulated in the pancreas and gut upon perturbations. We found, in human and mouse, pancreas and gut differed in REG / Reg isoform levels and preferences, with duodenum most resembling the pancreas. Pancreatic acinar cells and intestinal enterocytes were the dominant REG producers. Intestinal symbiotic microbes regulated the expression of the same, select Reg members in gut and pancreas. These Reg members had the most STAT3-binding sites close to the transcription start sites and were partially IL-22 dependent. We thus categorized them as "inducible" and others as "constitutive". Indeed, also in models of pancreatic-ductal adenocarcinoma and pancreatitis, only inducible Reg members were upregulated in pancreas. While intestinal Reg expression remained unchanged upon pancreatic perturbation, pancreatitis altered the microbial composition of the duodenum and feces shortly after disease onset. Our study reveals differential usage and regulation of REG / Reg isoforms as a mechanism for tissue-specific innate immunity, highlights the intimate connection of pancreas and duodenum, and implies a gut-to-pancreas communication axis resulting in a coordinated Reg response.
Collapse
|
13
|
Yersin S, Vonaesch P. Small intestinal microbiota: from taxonomic composition to metabolism. Trends Microbiol 2024; 32:970-983. [PMID: 38503579 DOI: 10.1016/j.tim.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
The small intestinal microbiota (SIM) is essential for gastrointestinal health, influencing digestion, immune modulation, and nutrient metabolism. Unlike the colonic microbiota, the SIM has been poorly characterized due to sampling challenges and ethical considerations. Current evidence suggests that the SIM consists of five core genera and additional segment-specific taxa. These bacteria closely interact with the human host, regulating nutrient absorption and metabolism. Recent work suggests the presence of two forms of small intestinal bacterial overgrowth, one dominated by oral bacteria (SIOBO) and a second dominated by coliform bacteria. Less invasive sampling techniques, omics approaches, and mechanistic studies will allow a more comprehensive understanding of the SIM, paving the way for interventions engineering the SIM towards better health.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Li F, Liu J, Maldonado-Gómez MX, Frese SA, Gänzle MG, Walter J. Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples. MICROBIOME 2024; 12:168. [PMID: 39244633 PMCID: PMC11380787 DOI: 10.1186/s40168-024-01881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/26/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples. RESULTS Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing). CONCLUSIONS Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | - Junhong Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | | | - Steven A Frese
- Department of Nutrition, University of Nevada, Reno, NV, 89557, USA
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- School of Microbiology, Department of Medicine, and APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
15
|
Sellge G, Ockenga J. [Small intestinal bacterial overgrowth (SIBO) - Therapy, nutrition, microbiome]. Dtsch Med Wochenschr 2024; 149:1071-1079. [PMID: 39208859 DOI: 10.1055/a-2205-5794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
SIBO (small intestinal bacterial overgrowth) is defined by bacterial overgrowth or colonization of the small intestine in combination with gastrointestinal symptoms such as bloating, nausea, pain, diarrhoea, malabsorption and food intolerance. SIBO can be caused by various mechanisms such as reduced intestinal motility, altered gastrointestinal anatomy, reduced gastric acid or pancreatic enzyme production, altered bile acid metabolism, or immune defects. Accordingly, SIBO often develops secondary to different underlying diseases.Diet has a fundamental influence on the composition of the intestinal microbiome and is therefore also a potential pathomechanism in SIBO. Furthermore, food intolerances are common in SIBO patients. However, both aspects have so far been insufficiently investigated. Nevertheless, elemental diets, carbohydrate-reduced diets, as well as pre- and probiotics are potential therapy options.This article provides a summary of current knowledge on the pathophysiology, diagnosis and treatment of SIBO, with particular emphasis on the role of nutrition and the microbiome.
Collapse
|
16
|
Leite G, Barlow GM, Rashid M, Hosseini A, Cohrs D, Parodi G, Morales W, Weitsman S, Rezaie A, Pimentel M, Mathur R. Characterization of the Small Bowel Microbiome Reveals Different Profiles in Human Subjects Who Are Overweight or Have Obesity. Am J Gastroenterol 2024; 119:1141-1153. [PMID: 38578969 PMCID: PMC11142649 DOI: 10.14309/ajg.0000000000002790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
INTRODUCTION Gut microbiome changes are linked to obesity, but findings are based on stool data. In this article, we analyzed the duodenal microbiome and serum biomarkers in subjects with normal weight, overweight, and obesity. METHODS Duodenal aspirates and serum samples were obtained from subjects undergoing standard-of-care esophagogastroduodenoscopy without colon preparation. Aspirate DNAs were analyzed by 16S rRNA and shotgun sequencing. Predicted microbial metabolic functions and serum levels of metabolic and inflammatory biomarkers were also assessed. RESULTS Subjects with normal weight (N = 105), overweight (N = 67), and obesity (N = 42) were identified. Overweight-specific duodenal microbial features include lower relative abundance (RA) of Bifidobacterium species and Escherichia coli strain K-12 and higher Lactobacillus intestinalis , L. johnsonii , and Prevotella loescheii RA. Obesity-specific features include higher Lactobacillus gasseri RA and lower L. reuteri (subspecies rodentium ), Alloprevotella rava , and Leptotrichia spp RA. Escalation features (progressive changes from normal weight through obesity) include decreasing Bacteroides pyogenes , Staphylococcus hominis , and unknown Faecalibacterium species RA, increasing RA of unknown Lactobacillus and Mycobacterium species, and decreasing microbial potential for biogenic amines metabolism. De-escalation features (direction of change altered in normal to overweight and overweight to obesity) include Lactobacillus acidophilus , L. hominis , L. iners , and Bifidobacterium dentium . An unknown Lactobacillus species is associated with type IIa dyslipidemia and overweight, whereas Alloprevotella rava is associated with type IIb and IV dyslipidemias. DISCUSSION Direct analysis of the duodenal microbiome has identified key genera associated with overweight and obesity, including some previously identified in stool, e.g., Bifidobacterium and Lactobacillus . Specific species and strains exhibit differing associations with overweight and obesity, including escalation and de-escalation features that may represent targets for future study and therapeutics.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Gillian M. Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Mohamad Rashid
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Daniel Cohrs
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, California, USA
| |
Collapse
|
17
|
Guo H, Chen Y, Dong W, Lu S, Du Y, Duan L. Fecal Coprococcus, hidden behind abdominal symptoms in patients with small intestinal bacterial overgrowth. J Transl Med 2024; 22:496. [PMID: 38796441 PMCID: PMC11128122 DOI: 10.1186/s12967-024-05316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Small intestinal bacterial overgrowth (SIBO) is the presence of an abnormally excessive amount of bacterial colonization in the small bowel. Hydrogen and methane breath test has been widely applied as a non-invasive method for SIBO. However, the positive breath test representative of bacterial overgrowth could also be detected in asymptomatic individuals. METHODS To explore the relationship between clinical symptoms and gut dysbiosis, and find potential fecal biomarkers for SIBO, we compared the microbial profiles between SIBO subjects with positive breath test but without abdominal symptoms (PBT) and healthy controls (HC) using 16S rRNA amplicon sequencing. RESULTS Fecal samples were collected from 63 SIBO who complained of diarrhea, distension, constipation, or abdominal pain, 36 PBT, and 55 HC. For alpha diversity, the Shannon index of community diversity on the genus level showed a tendency for a slight increase in SIBO, while the Shannon index on the predicted function was significantly decreased in SIBO. On the genus level, significantly decreased Bacteroides, increased Coprococcus_2, and unique Butyrivibrio were observed in SIBO. There was a significant positive correlation between saccharolytic Coprococcus_2 and the severity of abdominal symptoms. Differently, the unique Veillonella in the PBT group was related to amino acid fermentation. Interestingly, the co-occurrence network density of PBT was larger than SIBO, which indicates a complicated interaction of genera. Coprococcus_2 showed one of the largest betweenness centrality in both SIBO and PBT microbiota networks. Pathway analysis based on the Kyoto Encyclopedia of Genes and Genome (KEGG) database reflected that one carbon pool by folate and multiple amino acid metabolism were significantly down in SIBO. CONCLUSIONS This study provides valuable insights into the fecal microbiota composition and predicted metabolic functional changes in patients with SIBO. Butyrivibrio and Coprococcus_2, both renowned for their role in carbohydrate fermenters and gas production, contributed significantly to the symptoms of the patients. Coprococcus's abundance hints at its use as a SIBO marker. Asymptomatic PBT individuals show a different microbiome, rich in Veillonella. PBT's complex microbial interactions might stabilize the intestinal ecosystem, but further study is needed due to the core microbiota similarities with SIBO. Predicted folate and amino acid metabolism reductions in SIBO merit additional validation.
Collapse
Affiliation(s)
- Huaizhu Guo
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yuzhu Chen
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Wenxin Dong
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Siqi Lu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanlin Du
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.
- International Institute of Population Health, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
18
|
Shtossel O, Finkelstein S, Louzoun Y. mi-Mic: a novel multi-layer statistical test for microbiota-disease associations. Genome Biol 2024; 25:113. [PMID: 38693546 PMCID: PMC11064322 DOI: 10.1186/s13059-024-03256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
mi-Mic, a novel approach for microbiome differential abundance analysis, tackles the key challenges of such statistical tests: a large number of tests, sparsity, varying abundance scales, and taxonomic relationships. mi-Mic first converts microbial counts to a cladogram of means. It then applies a priori tests on the upper levels of the cladogram to detect overall relationships. Finally, it performs a Mann-Whitney test on paths that are consistently significant along the cladogram or on the leaves. mi-Mic has much higher true to false positives ratios than existing tests, as measured by a new real-to-shuffle positive score.
Collapse
Affiliation(s)
- Oshrit Shtossel
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Shani Finkelstein
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel.
| |
Collapse
|
19
|
Sellge G. Bakterielle Fehlbesiedlung des Dünndarms. AKTUELLE ERNÄHRUNGSMEDIZIN 2024; 49:156-172. [DOI: 10.1055/a-2258-8105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
SIBO (Small Intestinal Bacterial Overgrowth) ist durch eine bakterielle
Überwucherung oder Fehlbesiedlung des Dünndarms in Kombination mit intestinalen
Symptomen definiert. Intestinale Stase, Hypochlorhydrie, Immundefizienz, Alter
u.a. sind auslösende Faktoren. Die Therapie beinhaltet die Behandlung der
auslösenden Grunderkrankung, den Ausgleich einer Mangelernährung, den Einsatz
von Antibiotika und Probiotika sowie diätetische Maßnahmen.
Collapse
|
20
|
Leite G, Rezaie A, Mathur R, Barlow GM, Rashid M, Hosseini A, Wang J, Parodi G, Villanueva-Millan MJ, Sanchez M, Morales W, Weitsman S, Pimentel M. Defining Small Intestinal Bacterial Overgrowth by Culture and High Throughput Sequencing. Clin Gastroenterol Hepatol 2024; 22:259-270. [PMID: 37315761 DOI: 10.1016/j.cgh.2023.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND& AIMS Despite accelerated research in small intestinal bacterial overgrowth (SIBO), questions remain regarding optimal diagnostic approaches and definitions. Here, we aim to define SIBO using small bowel culture and sequencing, identifying specific contributory microbes, in the context of gastrointestinal symptoms. METHODS Subjects undergoing esophagogastroduodenoscopy (without colonoscopy) were recruited and completed symptom severity questionnaires. Duodenal aspirates were plated on MacConkey and blood agar. Aspirate DNA was analyzed by 16S ribosomal RNA and shotgun sequencing. Microbial network connectivity for different SIBO thresholds and predicted microbial metabolic functions were also assessed. RESULTS A total of 385 subjects with <103 colony forming units (CFU)/mL on MacConkey agar and 98 subjects with ≥103 CFU/mL, including ≥103 to <105 CFU/mL (N = 66) and ≥105 CFU/mL (N = 32), were identified. Duodenal microbial α-diversity progressively decreased, and relative abundance of Escherichia/Shigella and Klebsiella increased, in subjects with ≥103 to <105 CFU/mL and ≥105 CFU/mL. Microbial network connectivity also progressively decreased in these subjects, driven by the increased relative abundance of Escherichia (P < .0001) and Klebsiella (P = .0018). Microbial metabolic pathways for carbohydrate fermentation, hydrogen production, and hydrogen sulfide production were enhanced in subjects with ≥103 CFU/mL and correlated with symptoms. Shotgun sequencing (N = 38) identified 2 main Escherichia coli strains and 2 Klebsiella species representing 40.24% of all duodenal bacteria in subjects with ≥103 CFU/mL. CONCLUSIONS Our findings confirm ≥103 CFU/mL is the optimal SIBO threshold, associated with gastrointestinal symptoms, significantly decreased microbial diversity, and network disruption. Microbial hydrogen- and hydrogen sulfide-related pathways were enhanced in SIBO subjects, supporting past studies. Remarkably few specific E coli and Klebsiella strains/species appear to dominate the microbiome in SIBO, and correlate with abdominal pain, diarrhea, and bloating severities.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Ali Rezaie
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California
| | - Ruchi Mathur
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California; Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai, Los Angeles, California
| | - Gillian M Barlow
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Mohamad Rashid
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Ava Hosseini
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Jiajing Wang
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Gonzalo Parodi
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | | | - Maritza Sanchez
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Walter Morales
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Stacy Weitsman
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California
| | - Mark Pimentel
- Medically Associated Science and Technology Program, Cedars-Sinai, Los Angeles, California; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California.
| |
Collapse
|
21
|
Takakura W, Rezaie A, Chey WD, Wang J, Pimentel M. Symptomatic Response to Antibiotics in Patients With Small Intestinal Bacterial Overgrowth: A Systematic Review and Meta-analysis. J Neurogastroenterol Motil 2024; 30:7-16. [PMID: 38173154 PMCID: PMC10774808 DOI: 10.5056/jnm22187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Background/Aims We performed a systematic review and meta-analysis evaluating the symptomatic response rate to antibiotics in patients with small intestinal bacterial overgrowth (SIBO). Similarly, we performed a meta-analysis on the symptomatic response to antibiotics in irritable bowel syndrome (IBS) patients with and without SIBO. Methods MEDLINE, EMBASE, Web of Science, and Cochrane databases were searched from inception to March 2021. Randomized controlled trials and prospective studies reporting dichotomous outcomes were included. Results There were 6 studies included in the first meta-analysis comparing the efficacy of antibiotics to placebo or no antibiotic. This included 196 patients, of whom 101 received antibiotics and 95 received placebo or no antibiotics. Significantly more patients improved with antibiotics (relative risk [95% CI] = 2.46 [1.33-4.55], P = 0.004). There were 4 studies included in the analysis comparing symptomatic response rates in IBS patients with or without SIBO with 266 IBS patients, of whom 172 had SIBO and 94 did not. The pooled response rate for symptomatic response was 51.2% in the SIBO group vs 23.4% in the no SIBO group, respectively. Significantly more IBS patients with SIBO responded to antibiotics compared to those without SIBO (relative risk [95% CI] = 2.07 [1.40-3.08], P = 0.0003). Conclusions Antibiotics appear to be efficacious in treating SIBO, although small sample sizes and poor data quality limit this interpretation. Symptomatic response rates also appear to be higher in IBS patients with SIBO. This may be the first example of precision medicine in IBS as opposed to our current empiric treatment approach. Large-multicenter studies are needed to verify the results.
Collapse
Affiliation(s)
- Will Takakura
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - William D Chey
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jiajing Wang
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| |
Collapse
|
22
|
Steinbach E, Belda E, Alili R, Adriouch S, Dauriat CJG, Donatelli G, Dumont JL, Pacini F, Tuszynski T, Pelloux V, Jacques F, Creusot L, Coles E, Taillandier P, Vazquez Gomez M, Masi D, Mateo V, André S, Kordahi M, Rouault C, Zucker JD, Sokol H, Genser L, Chassaing B, Le Roy T, Clément K. Comparative analysis of the duodenojejunal microbiome with the oral and fecal microbiomes reveals its stronger association with obesity and nutrition. Gut Microbes 2024; 16:2405547. [PMID: 39679619 DOI: 10.1080/19490976.2024.2405547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 12/17/2024] Open
Abstract
The intestinal microbiota is increasingly recognized as a crucial player in the development and maintenance of various chronic conditions, including obesity and associated metabolic diseases. While most research focuses on the fecal microbiota due to its easier accessibility, the small intestine, as a major site for nutrient sensing and absorption, warrants further investigation to determine its microbiota composition and functions. Here, we conducted a clinical research project in 30 age- and sex-matched participants with (n = 15) and without (n = 15) obesity. Duodenojejunal fluid was obtained by aspiration during endoscopy. Phenotyping included clinical variables related to metabolic status, lifestyle, and psychosocial factors using validated questionnaires. We performed metagenomic analyses of the oral, duodenojejunal, and fecal microbiome, alongside metabolomic data from duodenojejunal fluid and feces, integrating these data with clinical and lifestyle information. Our results highlight significant associations between duodenojejunal microbiota composition and usual dietary intake, as well as clinical phenotypes, with larger effect sizes than the associations between these variables and fecal microbiota. Notably, we found that the duodenojejunal microbiota of patients with obesity exhibited higher diversity and showed distinct differences in the abundance of several duodenojejunal microbiota species compared with individuals without obesity. Our findings support the relevance of studying the role of the small intestinal microbiota in the pathogenesis of nutrition-related diseases.
Collapse
Affiliation(s)
- Emilie Steinbach
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Eugeni Belda
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Rohia Alili
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Solia Adriouch
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Charlène J G Dauriat
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Gianfranco Donatelli
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Jean-Loup Dumont
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Filippo Pacini
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Thierry Tuszynski
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Véronique Pelloux
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Flavien Jacques
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Laura Creusot
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Emavieve Coles
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Paul Taillandier
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Marta Vazquez Gomez
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Davide Masi
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Véronique Mateo
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Sébastien André
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Melissa Kordahi
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Christine Rouault
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Jean-Daniel Zucker
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- INRAE, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France
| | - Laurent Genser
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Sorbonne Université, Department of Hepato-Biliary and Pancreatic Surgery, Assistance Publique-Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Tiphaine Le Roy
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
23
|
Hosseini A, Barlow GM, Leite G, Rashid M, Parodi G, Wang J, Morales W, Weitsman S, Rezaie A, Pimentel M, Mathur R. Consuming artificial sweeteners may alter the structure and function of duodenal microbial communities. iScience 2023; 26:108530. [PMID: 38125028 PMCID: PMC10730370 DOI: 10.1016/j.isci.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Studies using stool samples suggest that non-sugar sweetener (NSS) consumption affects gut microbiome composition. However, stool does not represent the entire gut. We analyzed the duodenal luminal microbiome in subjects consuming non-aspartame non-sugar sweeteners (NANS, N = 35), aspartame only (ASP, N = 9), and controls (CON, N = 55) and the stool microbiome in a subset (N = 40). Duodenal alpha diversity was decreased in NANS vs. CON. Duodenal relative abundance (RA) of Escherichia, Klebsiella, and Salmonella (all phylum Proteobacteria) was lower in both NANS and ASP vs. CON, whereas stool RA of Escherichia, Klebsiella, and Salmonella was increased in both NANS and ASP vs. CON. Predicted duodenal microbial metabolic pathways altered in NANS vs. CON included polysaccharides biosynthesis and D-galactose degradation, whereas cylindrospermopsin biosynthesis was significantly enriched in ASP vs. CON. These findings suggest that consuming non-sugar sweeteners may significantly alter microbiome composition and function in the metabolically active small bowel, with different alterations seen in stool.
Collapse
Affiliation(s)
- Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gillian M. Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Mohamad Rashid
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Jiajing Wang
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| |
Collapse
|
24
|
Hosseini A, Rashid M, Leite G, Barlow GM, Parodi G, Sanchez M, Ayyad S, Pimentel ML, Morales W, Weitsman S, Pimentel M, Mathur R. Coronavirus Disease 2019 (COVID-19) Pandemic Lifestyle Changes May Have Influenced Small Bowel Microbial Composition and Microbial Resistance. Dig Dis Sci 2023; 68:3902-3912. [PMID: 37578565 PMCID: PMC10516792 DOI: 10.1007/s10620-023-08061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) global pandemic necessitated many severe lifestyle changes, including lockdowns, social distancing, altered food consumption and exercise patterns, and extensive hygiene practices. These extensive changes may have affected the human gut microbiome, which is highly influenced by lifestyle. AIMS To examine the potential effects of pandemic-related lifestyle changes on the metabolically relevant small bowel microbiome. METHODS Adult subjects presenting for upper endoscopy without colonoscopy were identified and divided into two matched groups: pre-pandemic (February 2019-March 2020) and intra-pandemic (April 2021-September 2021, all COVID-19 negative). Duodenal aspirates and blood samples were collected. Duodenal microbiomes were analyzed by 16S rRNA sequencing. Serum cytokine levels were analyzed by Luminex FlexMap3D. RESULTS Fifty-six pre-pandemic and 38 COVID-negative intra-pandemic subjects were included. There were no significant changes in duodenal microbial alpha diversity in the intra-pandemic vs. pre-pandemic group, but beta diversity was significantly different. The relative abundance (RA) of phylum Deinococcus-Thermus and family Thermaceae, which are resistant extremophiles, was significantly higher in the intra-pandemic vs. pre-pandemic group. The RA of several Gram-negative taxa including Bacteroidaceae (phylum Bacteroidetes) and the Proteobacteria families Enterobacteriaceae and Pseudomonadaceae, and the RA of potential disruptor genera Escherichia-Shigella and Rothia, were significantly lower in the intra-pandemic vs. pre-pandemic group. Circulating levels of interleukin-18 were also lower in the intra-pandemic group. CONCLUSIONS These findings suggest the small bowel microbiome underwent significant changes during the pandemic, in COVID-19-negative individuals. Given the key roles of the small bowel microbiota in host physiology, this may have implications for human health.
Collapse
Affiliation(s)
- Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Mohamad Rashid
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Maritza Sanchez
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Sarah Ayyad
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Maya L Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Poceviciute R, Bogatyrev SR, Romano AE, Dilmore AH, Mondragón-Palomino O, Takko H, Pradhan O, Ismagilov RF. Quantitative whole-tissue 3D imaging reveals bacteria in close association with mouse jejunum mucosa. NPJ Biofilms Microbiomes 2023; 9:64. [PMID: 37679412 PMCID: PMC10485000 DOI: 10.1038/s41522-023-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Because the small intestine (SI) epithelium lacks a thick protective mucus layer, microbes that colonize the thin SI mucosa may exert a substantial effect on the host. For example, bacterial colonization of the human SI may contribute to environmental enteropathy dysfunction (EED) in malnourished children. Thus far, potential bacterial colonization of the mucosal surface of the SI has only been documented in disease states, suggesting mucosal colonization is rare, likely requiring multiple perturbations. Furthermore, conclusive proof of bacterial colonization of the SI mucosal surface is challenging, and the three-dimensional (3D) spatial structure of mucosal colonies remains unknown. Here, we tested whether we could induce dense bacterial association with jejunum mucosa by subjecting mice to a combination of malnutrition and oral co-gavage with a bacterial cocktail (E. coli and Bacteroides spp.) known to induce EED. To visualize these events, we optimized our previously developed whole-tissue 3D imaging tools with third-generation hybridization chain reaction (HCR v3.0) probes. Only in mice that were malnourished and gavaged with the bacterial cocktail did we detect dense bacterial clusters surrounding intestinal villi suggestive of colonization. Furthermore, in these mice we detected villus loss, which may represent one possible consequence that bacterial colonization of the SI mucosa has on the host. Our results suggest that dense bacterial colonization of jejunum mucosa is possible in the presence of multiple perturbations and that whole-tissue 3D imaging tools can enable the study of these rare events.
Collapse
Affiliation(s)
- Roberta Poceviciute
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Said R Bogatyrev
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Medically Associated Science and Technology Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anna E Romano
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Amanda H Dilmore
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Biomedical Sciences Program, University of California San Diego, San Diego, CA, USA
| | - Octavio Mondragón-Palomino
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Heli Takko
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ojas Pradhan
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rustem F Ismagilov
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
26
|
Nichols DP, Morgan SJ, Skalland M, Vo AT, Van Dalfsen JM, Singh SB, Ni W, Hoffman LR, McGeer K, Heltshe SL, Clancy JP, Rowe SM, Jorth P, Singh PK. Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J Clin Invest 2023; 133:e167957. [PMID: 36976651 PMCID: PMC10178839 DOI: 10.1172/jci167957] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundLung infections are among the most consequential manifestations of cystic fibrosis (CF) and are associated with reduced lung function and shortened survival. Drugs called CF transmembrane conductance regulator (CFTR) modulators improve activity of dysfunctional CFTR channels, which is the physiological defect causing CF. However, it is unclear how improved CFTR activity affects CF lung infections.MethodsWe performed a prospective, multicenter, observational study to measure the effect of the newest and most effective CFTR modulator, elexacaftor/tezacaftor/ivacaftor (ETI), on CF lung infections. We studied sputum from 236 people with CF during their first 6 months of ETI using bacterial cultures, PCR, and sequencing.ResultsMean sputum densities of Staphylococcus aureus, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp., and Burkholderia spp. decreased by 2-3 log10 CFU/mL after 1 month of ETI. However, most participants remained culture positive for the pathogens cultured from their sputum before starting ETI. In those becoming culture negative after ETI, the pathogens present before treatment were often still detectable by PCR months after sputum converted to culture negative. Sequence-based analyses confirmed large reductions in CF pathogen genera, but other bacteria detected in sputum were largely unchanged. ETI treatment increased average sputum bacterial diversity and produced consistent shifts in sputum bacterial composition. However, these changes were caused by ETI-mediated decreases in CF pathogen abundance rather than changes in other bacteria.ConclusionsTreatment with the most effective CFTR modulator currently available produced large and rapid reductions in traditional CF pathogens in sputum, but most participants remain infected with the pathogens present before modulator treatment.Trial RegistrationClinicalTrials.gov NCT04038047.FundingThe Cystic Fibrosis Foundation and the NIH.
Collapse
Affiliation(s)
| | - Sarah J. Morgan
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Michelle Skalland
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Anh T. Vo
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Jill M. Van Dalfsen
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Wendy Ni
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | | | - Kailee McGeer
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Sonya L. Heltshe
- Department of Pediatrics and
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - John P. Clancy
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Steven M. Rowe
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Peter Jorth
- Departments of Pathology and Laboratory Medicine, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pradeep K. Singh
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
27
|
Chen X, Mendes BG, Alves BS, Duan Y. Phage therapy in gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:93-118. [PMID: 37770177 DOI: 10.1016/bs.pmbts.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phage therapy, the use of bacteriophage viruses for bacterial infection treatment, has been around for almost a century, but with the increase in antibiotic use, its importance has declined rapidly. There has been renewed interest in revisiting this practice due to the general decline in the effectiveness of antibiotics, combined with improved understanding of human microbiota and advances in sequencing technologies. Phage therapy has been proposed as a clinical alternative to restore the gut microbiota in the absence of an effective treatment. That is due to its immunomodulatory and bactericidal effects against its target bacteria. In the gastrointestinal diseases field, phage therapy has been studied mainly as a promising tool in infectious diseases treatment, such as cholera and diarrhea. However, many studies have been conducted in non-communicable diseases, such as the targeting of adherent invasive Escherichia coli in Crohn's disease, the treatment of Clostridioides difficile in ulcerative colitis, the eradication of Fusobacterium nucleatum in colorectal cancer, the targeting of alcohol-producing Klebsiella pneumoniae in non-alcoholic fatty liver disease, or Enterococcus faecalis in alcohol-associated hepatitis. This review will summarize the changes in the gut microbiota and the phageome in association with some gastrointestinal and liver diseases and highlight the recent scientific advances in phage therapy as a therapeutic tool for their treatment.
Collapse
Affiliation(s)
- Xingyao Chen
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Beatriz G Mendes
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Bruno Secchi Alves
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Yi Duan
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
28
|
Shah A, Ghoshal UC, Holtmann GJ. Unravelling the controversy with small intestinal bacterial overgrowth. Curr Opin Gastroenterol 2023; 39:211-218. [PMID: 37144539 DOI: 10.1097/mog.0000000000000928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize the current and emergent approaches to characterize the small intestinal microbiota and discuss the treatment options for management of small intestinal bacterial overgrowth (SIBO). RECENT FINDINGS This review captures the growing body of evidence for the role of SIBO, a type of small intestinal dysbiosis in the pathophysiology various gastrointestinal and extraintestinal disorders. We have highlighted the drawbacks of the available methods for characterizing the small intestinal microbiota and focus on the new culture-independent techniques to diagnose SIBO. Although recurrence is common, targeted modulation of the gut microbiome as a therapeutic option for management of SIBO is associated with improvement in symptoms and quality of life. SUMMARY As a first step to precisely characterize the potential link between SIBO and various disorders, we need to address the methodological limitations of the available traditional tests for diagnosing SIBO. There is an urgency to develop culture independent techniques that can be routinely used in clinical setting, that will enable characterization of the gastrointestinal microbiome and explore the response to antimicrobial therapy including the links between long-lasting symptom resolution and the microbiome.
Collapse
Affiliation(s)
- Ayesha Shah
- The University of Queensland, Faculty of Medicine and Faculty of Health and Behavioural Sciences
- Princess Alexandra Hospital, Department of Gastroenterology & Hepatology, Brisbane, QLD, Australia
| | - Uday C Ghoshal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Gerald J Holtmann
- The University of Queensland, Faculty of Medicine and Faculty of Health and Behavioural Sciences
- Princess Alexandra Hospital, Department of Gastroenterology & Hepatology, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Rashidi A, Koyama M, Dey N, McLean JS, Hill GR. Colonization resistance is dispensable for segregation of oral and gut microbiota. BMC Med Genomics 2023; 16:31. [PMID: 36814251 PMCID: PMC9948407 DOI: 10.1186/s12920-023-01449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The oral and colonic microbiota are distinct in healthy individuals. However, this distinction is diminished in common diseases such as colon cancer and inflammatory bowel disease, suggesting a potential pathogenic role for oral bacteria when ectopically colonized in the gut. A key mechanism for the segregation of oral and colonic microbiota niches is thought to be microbiota-mediated colonization resistance whereby the commensal gut microbiota outcompete and eliminate the ingested oral bacteria. METHODS We tested this theory by analyzing exact amplicon sequence variants generated from concurrent fecal and oral samples from healthy volunteers exposed to a brief course of a single antibiotic (cohort 1), acute leukemia patients (cohort 2), and stem cell transplant recipients (cohort 3). Cohorts 2 and 3 represent extreme clinical scenarios with respect to antibiotic pressure and severity of gut microbiota injury. RESULTS While mild antibiotic exposure in cohort 1 was not sufficient for colonization of any oral bacteria in the gut, even with extreme antibiotic pressure and severe gut microbiota disruptions in cohorts 2 and 3, only one oral species in each cohort colonized the gut. CONCLUSIONS Colonization resistance is dispensable for segregation of oral and colonic microbiota in humans. This finding implies that the presence of oral bacteria in the distal gut in diseases such as colon cancer and inflammatory bowel disease is not driven by impaired colonization resistance.
Collapse
Affiliation(s)
- Armin Rashidi
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D1-100, Seattle, WA, 98109, USA. .,Division of Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Motoko Koyama
- grid.270240.30000 0001 2180 1622Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D1-100, Seattle, WA 98109 USA
| | - Neelendu Dey
- grid.270240.30000 0001 2180 1622Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D1-100, Seattle, WA 98109 USA ,grid.34477.330000000122986657Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA USA
| | - Jeffrey S. McLean
- grid.34477.330000000122986657School of Dentistry, University of Washington, Seattle, WA USA
| | - Geoffrey R. Hill
- grid.270240.30000 0001 2180 1622Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D1-100, Seattle, WA 98109 USA ,grid.34477.330000000122986657Division of Oncology, Department of Medicine, University of Washington, Seattle, WA USA
| |
Collapse
|
30
|
Kwakman JA, Vos MC, Bruno MJ. Higher yield in duodenoscope cultures collected with addition of neutralizing agent. J Hosp Infect 2023; 132:28-35. [PMID: 36414167 DOI: 10.1016/j.jhin.2022.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
AIM Microbiological cultures are the gold standard in the monitoring of duodenoscope reprocessing. However, many different sampling and culturing techniques are used, making it difficult to compare results. The latest Centers for Disease Control and Prevention protocol advises the use of a neutralizer to deactivate any remaining disinfectants in the samples. This study compared culturing results of duodenoscope samples collected with and without addition of a neutralizer. METHODS Six duodenoscopes were soiled with gut bacteria in a non-clinical experimental setting and reprocessed afterwards. Samples of the tip and working channel were collected immediately after decontamination or after drying. Dey-Engley (DE) broth was added as a neutralizer to the samples of four duodenoscopes; samples for the other two duodenoscopes were collected without the addition of DE broth. RESULTS Post-decontamination cultures were significantly more likely to be positive for growth of the applied micro-organisms in the group of samples with DE broth (88.1% vs 20.2%; P<0.0001). Post-drying samples were significantly more likely to be positive in the group of samples without DE broth (75.7% vs 33.4%; P<0.001). CONCLUSION The addition of DE broth to samples collected from wet duodenoscopes increases the yield of those cultures. Remaining disinfectants in wet duodenoscopes can lead to false-negative results. This can be overcome by adding a neutralizer, such as DE broth, to the samples. The higher yield after drying in the group without neutralizer could be due to biofilm formation in these two duodenoscopes, but this was not investigated. Standardization of the sampling method can help to compare both clinical and study results regarding duodenoscope contamination.
Collapse
Affiliation(s)
- J A Kwakman
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands; Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, the Netherlands.
| | - M C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - M J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
31
|
Lu Y, Li Z, Peng X. Regulatory effects of oral microbe on intestinal microbiota and the illness. Front Cell Infect Microbiol 2023; 13:1093967. [PMID: 36816583 PMCID: PMC9928999 DOI: 10.3389/fcimb.2023.1093967] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Over the past decade, the association between oral health, intestinal microbiota, and systemic diseases has been further validated. Some oral microbial species have been isolated from pathological intestine mucosa or feces and identified as biomarkers for intestinal diseases. A small proportion of oral microbiome passes through or colonizes the lower gastrointestinal tract, even in healthy individuals. Opportunistic pathogens from the oral cavity may expand and participate in the occurrence and progression of intestinal diseases when the anatomical barrier is disrupted. These disruptors interact with the intestinal microbiota, disturbing indigenous microorganisms, and mucosal barriers through direct colonization, blood circulation, or derived metabolite pathways. While interacting with the host's immune system, oral-derived pathogens stimulate inflammation responses and guide the transition of the intestinal microenvironment from a healthy state to a pre-disease state. Therefore, the oral-gut microbiome axis sheds light on new clinical therapy options, and gastrointestinal tract ecology balance necessitates simultaneous consideration of both oral and gut microbiomes. This review summarizes possible routes of oral microbes entering the intestine and the effects of certain oral bacteria on intestinal microbiota and the host's immune responses.
Collapse
|
32
|
Earley ZM, Lisicka W, Sifakis JJ, Aguirre-Gamboa R, Kowalczyk A, Barlow JT, Shaw DG, Discepolo V, Tan IL, Gona S, Ernest JD, Matzinger P, Barreiro LB, Morgun A, Bendelac A, Ismagilov RF, Shulzhenko N, Riesenfeld SJ, Jabri B. GATA4 controls regionalization of tissue immunity and commensal-driven immunopathology. Immunity 2023; 56:43-57.e10. [PMID: 36630917 PMCID: PMC10262782 DOI: 10.1016/j.immuni.2022.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023]
Abstract
There is growing recognition that regionalization of bacterial colonization and immunity along the intestinal tract has an important role in health and disease. Yet, the mechanisms underlying intestinal regionalization and its dysregulation in disease are not well understood. This study found that regional epithelial expression of the transcription factor GATA4 controls bacterial colonization and inflammatory tissue immunity in the proximal small intestine by regulating retinol metabolism and luminal IgA. Furthermore, in mice without jejunal GATA4 expression, the commensal segmented filamentous bacteria promoted pathogenic inflammatory immune responses that disrupted barrier function and increased mortality upon Citrobacter rodentium infection. In celiac disease patients, low GATA4 expression was associated with metabolic alterations, mucosal Actinobacillus, and increased IL-17 immunity. Taken together, these results reveal broad impacts of GATA4-regulated intestinal regionalization on bacterial colonization and tissue immunity, highlighting an elaborate interdependence of intestinal metabolism, immunity, and microbiota in homeostasis and disease.
Collapse
Affiliation(s)
- Zachary M Earley
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Wioletta Lisicka
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Joseph J Sifakis
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | - Anita Kowalczyk
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jacob T Barlow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dustin G Shaw
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Valentina Discepolo
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food Induced Diseases, University of Federico II, Naples, Italy
| | - Ineke L Tan
- Department of Gastroenterology and Hepatology, University of Groningen and University of Medical Center Groningen, Groningen, the Netherlands
| | - Saideep Gona
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Jordan D Ernest
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Polly Matzinger
- Ghost Lab, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Rustem F Ismagilov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Natalia Shulzhenko
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Samantha J Riesenfeld
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA; Department of Pediatrics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
33
|
Bahuguna M, Hooda S, Mohan L, Gupta RK, Diwan P. Identifying oral microbiome alterations in adult betel quid chewing population of Delhi, India. PLoS One 2023; 18:e0278221. [PMID: 36598926 DOI: 10.1371/journal.pone.0278221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/11/2022] [Indexed: 01/05/2023] Open
Abstract
The study targets to establish a factorial association of oral microbiome alterations (oral dysbiosis) with betel quid chewing habits through a comparison of the oral microbiome of Betel quid chewers and non-chewing individuals. Oral microbiome analysis of 22 adult individuals in the Delhi region of India through the 16S sequencing approach was carried out to observe the differences in taxonomic abundance and diversity. A significant difference in diversity and richness among Betel Quid Chewers (BQC) and Betel Quid Non-Chewers (BQNC) groups was observed. There were significant differences in alpha diversity among the BQC in comparison to BQNC. However, in the age group of 21-30 years old young BQC and BQNC there was no significant difference in alpha diversity. Similar result was obtained while comparing BQC and Smoker-alcoholic BQC. BQ smoker-chewers expressed significant variance in comparison to BQC, based on cluster pattern analysis. The OTU-based Venn Diagram Analysis revealed an altered microbiota, for BQ chewing group with 0-10 years exposure in comparison to those with 10 years and above. The change in the microbial niche in early chewers may be due to abrupt chemical component exposure affecting the oral cavity, and thereafter establishing a unique microenvironment in the long-term BQC. Linear discriminant analysis revealed, 55 significant features among BQC and Alcoholic-Smoker BQC; and 20 significant features among BQC and Smoker BQC respectively. The study shows the abundance of novel bacterial genera in the BQC oral cavity in addition to the commonly found ones. Since the oral microbiome plays a significant role in maintaining local homeostasis, investigating the link between its imbalance in such conditions that are known to have an association with oral diseases including cancers may lead to the identification of specific microbiome-based signatures for its early diagnosis.
Collapse
Affiliation(s)
- Mayank Bahuguna
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, India
| | - Sunila Hooda
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, India
| | - Lalit Mohan
- Department of Biotechnology, Delhi Technological University, Rohini, Delhi, India
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, India
| | - Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, India
| |
Collapse
|
34
|
Ruigrok RAAA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023; 15:2201155. [PMID: 37074215 PMCID: PMC10120449 DOI: 10.1080/19490976.2023.2201155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renate A. A. A. Ruigrok
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Abstract
Diabetes represents one of the most significant, and rapidly escalating, global healthcare crises we face today. Diabetes already affects one-tenth of the world's adults-more than 537 million people, numbers that have tripled since 2000 and are estimated to reach 643 million by 2030. Type 2 diabetes (T2D), the most prevalent form, is a complex disease with numerous contributing factors, including genetics, epigenetics, diet, lifestyle, medication use, and socioeconomic factors. In addition, the gut microbiome has emerged as a significant potential contributing factor in T2D development and progression. Gut microbes and their metabolites strongly influence host metabolism and immune function, and are now known to contribute to vitamin biosynthesis, gut hormone production, satiety, maintenance of gut barrier integrity, and protection against pathogens, as well as digestion and nutrient absorption. In turn, gut microbes are influenced by diet and lifestyle factors such as alcohol and medication use, including antibiotic use and the consumption of probiotics and prebiotics. Here we review current evidence regarding changes in microbial populations in T2D and the mechanisms by which gut microbes influence glucose metabolism and insulin resistance, including inflammation, gut permeability, and bile acid production. We also explore the interrelationships between gut microbes and different T2D medications and other interventions, including prebiotics, probiotics, and bariatric surgery. Lastly, we explore the particular role of the small bowel in digestion and metabolism and the importance of studying small bowel microbes directly in our search to find metabolically relevant biomarkers and therapeutic targets for T2D.
Collapse
Affiliation(s)
- Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Correspondence: Ruchi Mathur, MD, FRCPC, Director, Clinical Diabetes, Cedars-Sinai, 700 N San Vicente, Ste G271, West Hollywood, CA 90069, USA.
| |
Collapse
|
36
|
Huang J, Tong J, Zhang P, Zhou Y, Li Y, Tan S, Wang Z, Yang F, Kochunov P, Chiappelli J, Tian B, Tian L, Hong LE, Tan Y. Elevated salivary kynurenic acid levels related to enlarged choroid plexus and severity of clinical phenotypes in treatment-resistant schizophrenia. Brain Behav Immun 2022; 106:32-39. [PMID: 35940451 DOI: 10.1016/j.bbi.2022.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 01/10/2023] Open
Abstract
Patients with treatment-resistant schizophrenia (TRS) suffer severe, long-term psychotic symptoms and chronic stress. Salivary kynurenic acid (KYNA) and choroid plexus were evidenced to relate to psychological stress. We hypothesized that TRS patients would have higher salivary KYNA levels than patients who respond to antipsychotics (NTRS) and healthy controls (HC), and increased salivary KYNA levels are associated with clinical phenotypes and choroid plexus volume. A total of 66 HC participants, 53 patients with TRS and 46 with NTRS were enrolled. Salivary KYNA levels were measured by liquid chromatography-tandem mass spectrometry, choroid plexus volume by magnetic resonance imaging, and cognitive functions with the MATRICS Consensus Cognitive Battery. The TRS group had significantly higher salivary KYNA levels than the NTRS group (p = 0.003), who in turn had higher salivary KYNA than HC (p = 0.02). Higher salivary KYNA levels were associated with larger choroid plexus volume (r = 0.48, p = 0.004); lower attention/vigilance (r = -0.44, p = 0.004), verbal learning (r = -0.44, p = 0.004), total MCCB score (r = -0.42, p = 0.005); and a higher total PANSS score (r = 0.48, p = 0.004) in TRS patients. An enlarged choroid plexus also related to worse attention/vigilance (r = -0.39, p = 0.03), verbal learning (r = -0.55, p = 0.001), total MCCB score (r = -0.41, p = 0.02) and clinical symptoms (r = 0.48, p = 0.004) in TRS patients only. We conclude that elevated salivary KYNA levels and associated choroid plexus enlargement are clinically relevant indicators of TRS, with salivary KYNA being particularly valuable as a peripheral marker. Our findings should benefit TRS research and benefit the improvement of personalized treatment.
Collapse
Affiliation(s)
- Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China.
| |
Collapse
|
37
|
Hitch TCA, Hall LJ, Walsh SK, Leventhal GE, Slack E, de Wouters T, Walter J, Clavel T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol 2022; 15:1095-1113. [PMID: 36180583 PMCID: PMC9705255 DOI: 10.1038/s41385-022-00564-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
The gut microbiome lies at the intersection between the environment and the host, with the ability to modify host responses to disease-relevant exposures and stimuli. This is evident in how enteric microbes interact with the immune system, e.g., supporting immune maturation in early life, affecting drug efficacy via modulation of immune responses, or influencing development of immune cell populations and their mediators. Many factors modulate gut ecosystem dynamics during daily life and we are just beginning to realise the therapeutic and prophylactic potential of microbiome-based interventions. These approaches vary in application, goal, and mechanisms of action. Some modify the entire community, such as nutritional approaches or faecal microbiota transplantation, while others, such as phage therapy, probiotics, and prebiotics, target specific taxa or strains. In this review, we assessed the experimental evidence for microbiome-based interventions, with a particular focus on their clinical relevance, ecological effects, and modulation of the immune system.
Collapse
Affiliation(s)
- Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Sarah Kate Walsh
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | | | - Emma Slack
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Jens Walter
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
38
|
Chen YL, Bai L, Dilimulati D, Shao S, Qiu C, Liu T, Xu S, Bai XB, Du LJ, Zhou LJ, Lin WZ, Meng XQ, Jin YC, Liu Y, Zhang XH, Duan SZ, Jia F. Periodontitis Salivary Microbiota Aggravates Ischemic Stroke Through IL-17A. Front Neurosci 2022; 16:876582. [PMID: 35663549 PMCID: PMC9160974 DOI: 10.3389/fnins.2022.876582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Although epidemiological studies suggest that periodontitis is tightly associated with ischemic stroke, its impact on ischemic stroke and the underlysing mechanisms are poorly understood. Recent studies have shown that alteration in gut microbiota composition influences the outcomes of ischemic stroke. In the state of periodontitis, many oral pathogenic bacteria in the saliva are swallowed and transmitted to the gut. However, the role of periodontitis microbiota in the pathogenesis and progression of ischemic stroke is unclear. Therefore, we hypothesized that the periodontitis salivary microbiota influences the gut immune system and aggravates ischemic stroke. Mice receiving gavage of periodontitis salivary microbiota showed significantly worse stroke outcomes. And these mice also manifested more severe neuroinflammation, with higher infiltration of inflammatory cells and expression of inflammatory cytokines in the ischemic brain. More accumulation of Th17 cells and IL-17+ γδ T cells were observed in the ileum. And in Kaede transgenic mice after photoconversion. Migration of CD4+ T cells and γδ T cells from the ileum to the brain was observed after ischemic stroke in photoconverted Kaede transgenic mice. Furthermore, the worse stroke outcome was abolished in the IL-17A knockout mice. These findings suggest that periodontitis salivary microbiota increased IL-17A-producing immune cells in the gut, likely promoted the migration of these cells from the gut to the brain, and subsequently provoked neuroinflammation after ischemic stroke. These findings have revealed the role of periodontitis in ischemic stroke through the gut and provided new insights into the worse outcome of ischemic stroke coexisting with periodontitis in clinical trials.
Collapse
Affiliation(s)
- Yan-Lin Chen
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Dilirebati Dilimulati
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xue-Bing Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xiao-Qian Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Yi-Chao Jin
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiao-Hua Zhang,
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Sheng-Zhong Duan,
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Nantong First People’s Hospital, The Second Affiliated Hospital of Nantong University, Nantong, China
- Feng Jia,
| |
Collapse
|
39
|
Shah A, Talley NJ, Holtmann G. Current and Future Approaches for Diagnosing Small Intestinal Dysbiosis in Patients With Symptoms of Functional Dyspepsia. Front Neurosci 2022; 16:830356. [PMID: 35600619 PMCID: PMC9121133 DOI: 10.3389/fnins.2022.830356] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The development and application of next generation sequencing technologies for clinical gastroenterology research has provided evidence that microbial dysbiosis is of relevance for the pathogenesis of gastrointestinal and extra-intestinal diseases. Microbial dysbiosis is characterized as alterations of diversity, function, and density of the intestinal microbes. Emerging evidence suggests that alterations of the gastrointestinal microbiome are important for the pathophysiology of a variety of functional gastrointestinal conditions, e.g., irritable bowel syndrome (IBS) and functional dyspepsia (FD), also known as disorders of brain-gut axis interaction. Clinicians have for many years recognized that small intestinal bacterial overgrowth (SIBO) is typified by a microbial dysbiosis that is underpinned by abnormal bacterial loads in these sites. SIBO presents with symptoms which overlap with symptoms of FD and IBS, point toward the possibility that SIBO is either the cause or the consequence of functional gastrointestinal disorders (FGIDs). More recently, new terms including "intestinal methanogen overgrowth" and "small intestinal fungal overgrowth" have been introduced to emphasize the contribution of methane production by archea and fungi in small intestinal dysbiosis. There is emerging data that targeted antimicrobial treatment of SIBO in patients with FD who simultaneously may or may not have IBS, results in symptom improvement and normalization of positive breath tests. However, the association between SIBO and FGIDs remains controversial, since widely accepted diagnostic tests for SIBO are lacking. Culture of jejunal fluid aspirate has been proposed as the "traditional gold standard" for establishing the diagnosis of SIBO. Utilizing jejunal fluid culture, the results can potentially be affected by cross contamination from oropharyngeal and luminal microbes, and there is controversy regarding the best cut off values for SIBO diagnosis. Thus, it is rarely used in routine clinical settings. These limitations have led to the development of breath tests, which when compared with the "traditional gold standard," have sub-optimal sensitivity and specificity for SIBO diagnosis. With newer diagnostic approaches-based upon applications of the molecular techniques there is an opportunity to characterize the duodenal and colonic mucosa associated microbiome and associated gut microbiota dysbiosis in patients with various gastrointestinal and extraintestinal diseases. Furthermore, the role of confounders like psychological co-morbidities, medications, dietary practices, and environmental factors on the gastrointestinal microbiome in health and disease also needs to be explored.
Collapse
Affiliation(s)
- Ayesha Shah
- Faculty of Medicine and Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- AGIRA (Australian Gastrointestinal Research Alliance) and the NHMRC Centre of Research Excellence in Digestive Health, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- AGIRA (Australian Gastrointestinal Research Alliance) and the NHMRC Centre of Research Excellence in Digestive Health, Newcastle, NSW, Australia
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Gerald Holtmann
- Faculty of Medicine and Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- AGIRA (Australian Gastrointestinal Research Alliance) and the NHMRC Centre of Research Excellence in Digestive Health, Newcastle, NSW, Australia
| |
Collapse
|
40
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
41
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
42
|
Smoking has disruptive effects on the small bowel luminal microbiome. Sci Rep 2022; 12:6231. [PMID: 35422064 PMCID: PMC9010470 DOI: 10.1038/s41598-022-10132-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Tobacco use is the leading preventable cause of cancer, and affects the respiratory, oral, fecal, and duodenal mucosa-associated microbiota. However, the effects of smoking on the duodenal luminal microbiome have not been studied directly. We aimed to compare the duodenal luminal microbiome in never-smokers, current smokers, and ex-smokers who quit ≥ 10 years ago. In a cross-sectional study, current smokers (CS, n = 24) were identified and matched to never-smokers (NS, n = 27) and ex-smokers (XS, n = 27) by age (± 5 years), body mass index (BMI, ± 3 kg/m2), and sex. Current antibiotic users were excluded. The duodenal luminal microbiome was analysed in 1 aspirate sample per subject by 16S rRNA gene sequencing. Relative abundances (RA) of families associated with increased duodenal microbial diversity, Prevotellaceae, Neisseriaceae, and Porphyromonadaceae, were significantly lower in CS vs. NS. This was driven by lower RA of unknown Prevotella and Porphyromonas species, and Neisseria subflava and N. cinerea, in CS. In contrast, RA of Enterobacteriaceae and Lactobacillaceae (associated with decreased diversity), were significantly higher in CS, due to higher RA of Escherichia-Shigella, Klebsiella and Lactobacillus species. Many of these changes were absent or less pronounced in XS, who exhibited a duodenal luminal microbiome more similar to NS. RA of taxa previously found to be increased in the oral and respiratory microbiota of smokers were also higher in the duodenal luminal microbiome, including Bulledia extructa and an unknown Filifactor species. In conclusion, smoking is associated with an altered duodenal luminal microbiome. However, ex-smokers have a duodenal luminal microbiome that is similar to never-smokers.
Collapse
|
43
|
Martínez M, Postolache TT, García-Bueno B, Leza JC, Figuero E, Lowry CA, Malan-Müller S. The Role of the Oral Microbiota Related to Periodontal Diseases in Anxiety, Mood and Trauma- and Stress-Related Disorders. Front Psychiatry 2021; 12:814177. [PMID: 35153869 PMCID: PMC8833739 DOI: 10.3389/fpsyt.2021.814177] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of anxiety, mood and trauma- and stress-related disorders are on the rise; however, efforts to develop new and effective treatment strategies have had limited success. To identify novel therapeutic targets, a comprehensive understanding of the disease etiology is needed, especially in the context of the holobiont, i.e., the superorganism consisting of a human and its microbiotas. Much emphasis has been placed on the role of the gut microbiota in the development, exacerbation, and persistence of psychiatric disorders; however, data for the oral microbiota are limited. The oral cavity houses the second most diverse microbial community in the body, with over 700 bacterial species that colonize the soft and hard tissues. Periodontal diseases encompass a group of infectious and inflammatory diseases that affect the periodontium. Among them, periodontitis is defined as a chronic, multi-bacterial infection that elicits low-grade systemic inflammation via the release of pro-inflammatory cytokines, as well as local invasion and long-distance translocation of periodontal pathogens. Periodontitis can also induce or exacerbate other chronic systemic inflammatory diseases such as atherosclerosis and diabetes and can lead to adverse pregnancy outcomes. Recently, periodontal pathogens have been implicated in the etiology and pathophysiology of neuropsychiatric disorders (such as depression and schizophrenia), especially as dysregulation of the immune system also plays an integral role in the etiology and pathophysiology of these disorders. This review will discuss the role of the oral microbiota associated with periodontal diseases in anxiety, mood and trauma- and stress-related disorders. Epidemiological data of periodontal diseases in individuals with these disorders will be presented, followed by a discussion of the microbiological and immunological links between the oral microbiota and the central nervous system. Pre-clinical and clinical findings on the oral microbiota related to periodontal diseases in anxiety, mood and trauma- and stress-related phenotypes will be reviewed, followed by a discussion on the bi-directionality of the oral-brain axis. Lastly, we will focus on the oral microbiota associated with periodontal diseases as a target for future therapeutic interventions to alleviate symptoms of these debilitating psychiatric disorders.
Collapse
Affiliation(s)
- María Martínez
- Etiology and Therapy of Periodontal and Peri-Implant Diseases Research Group, University Complutense Madrid, Madrid, Spain.,Department of Dental Clinical Specialties, Faculty of Dentistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Teodor T Postolache
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States.,Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute, Universidad Complutense de Madrid, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute, Universidad Complutense de Madrid, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- Etiology and Therapy of Periodontal and Peri-Implant Diseases Research Group, University Complutense Madrid, Madrid, Spain.,Department of Dental Clinical Specialties, Faculty of Dentistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Christopher A Lowry
- Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States.,Department of Integrative Physiology, Center for Neuroscience, Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States.,Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,inVIVO Planetary Health of the Worldwide Universities Network, New York, NY, United States
| | - Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|