1
|
O’Sullivan J, Patel S, Leventhal GE, Fitzgerald RS, Laserna-Mendieta EJ, Huseyin CE, Konstantinidou N, Rutherford E, Lavelle A, Dabbagh K, DeSantis TZ, Shanahan F, Temko A, Iwai S, Claesson MJ. Host-microbe multi-omics and succinotype profiling have prognostic value for future relapse in patients with inflammatory bowel disease. Gut Microbes 2025; 17:2450207. [PMID: 39812341 PMCID: PMC11740686 DOI: 10.1080/19490976.2025.2450207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are chronic relapsing inflammatory bowel disorders (IBD), the pathogenesis of which is uncertain but includes genetic susceptibility factors, immune-mediated tissue injury and environmental influences, most of which appear to act via the gut microbiome. We hypothesized that host-microbe alterations could be used to prognostically stratify patients experiencing relapses up to four years after endoscopy. We therefore examined multiple omics data, including published and new datasets, generated from paired inflamed and non-inflamed mucosal biopsies from 142 patients with IBD (54 CD; 88 UC) and from 34 control (non-diseased) biopsies. The relapse-predictive potential of 16S rRNA gene and transcript amplicons (standing and active microbiota) were investigated along with host transcriptomics, epigenomics and genetics. While standard single-omics analysis could not distinguish between patients who relapsed and those that remained in remission within four years of colonoscopy, we did find an association between the number of flares and a patient's succinotype. Our multi-omics machine learning approach was also able to predict relapse when combining features from the microbiome and human host. Therefore multi-omics, rather than single omics, better predicts relapse within 4 years of colonoscopy, while a patient's succinotype is associated with a higher frequency of relapses.
Collapse
Affiliation(s)
- Jill O’Sullivan
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway, Ireland
| | - Shriram Patel
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- SeqBiome Ltd, Cork, Ireland
| | | | - Rachel S. Fitzgerald
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Emilio J. Laserna-Mendieta
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Chloe E. Huseyin
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nina Konstantinidou
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Informatics, Second Genome Inc, South San Francisco, California, USA
| | - Erica Rutherford
- Department of Informatics, Second Genome Inc, South San Francisco, California, USA
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, County Cork, Ireland
| | - Karim Dabbagh
- Department of Informatics, Second Genome Inc, South San Francisco, California, USA
| | - Todd Z. DeSantis
- Department of Informatics, Second Genome Inc, South San Francisco, California, USA
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Andriy Temko
- Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland
| | - Shoko Iwai
- Department of Informatics, Second Genome Inc, South San Francisco, California, USA
| | - Marcus J. Claesson
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Yu RL, Weber HC. Irritable bowel syndrome, the gut microbiome, and diet. Curr Opin Endocrinol Diabetes Obes 2025; 32:102-107. [PMID: 39968682 DOI: 10.1097/med.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
PURPOSE OF REVIEW To provide an update of recent studies exploring the role of the gut microbiota and diet in the pathogenesis and treatment of irritable bowel syndrome (IBS). RECENT FINDINGS The human gut microbiome has been recognized as an important, active source of signaling molecules that explain in part the disorder of the gut brain interaction (DGBI) in IBS. Subsequent changes in the metabolome such as the production of short-chain fatty acids (SCFA) and serotonin are associated with IBS symptoms. Dietary components are recognized as important triggers of IBS symptoms and a diet low in fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) has been shown effective and safe, even when used long-term. Fecal microbiota transplantation (FMT) in IBS has not shown sustained and effective IBS symptom reduction in controlled clinical trials. SUMMARY This update elucidates recent developments in IBS as it relates to clinical trial results targeting dietary and gut microbiota interventions. The gut microbiome is metabolically active and affects the bi-directional signaling of the gut-brain axis.
Collapse
Affiliation(s)
- Rosa Lu Yu
- Boston University Chobanian & Avedisian School of Medicine
| | - H Christian Weber
- Boston University Chobanian & Avedisian School of Medicine
- VA Boston Healthcare System, Section of Gastroenterology and Hepatology, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Quigley EMM. Microbial Influences on Irritable Bowel Syndrome. Gastroenterol Clin North Am 2025; 54:351-365. [PMID: 40348492 DOI: 10.1016/j.gtc.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Since the description of postinfection irritable bowel syndrome (IBS), a role for gut microbes in the pathogenesis of IBS has been proposed. Molecular microbiological tools have now been applied to IBS, though data are largely derived from fecal samples with attendant limitations. Metagenomics, metabolomics, and other 'omics facilitate a comprehensive picture of the microbiome and its metabolic activity. Has a microbial signature characteristic of IBS been identified? The answer is no; this should not be a surprise given the heterogeneity of the phenotype and each individual's microbiome profile.
Collapse
Affiliation(s)
- Eamonn M M Quigley
- Lynda K and David M Underwood Center for Digestive Health, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA.
| |
Collapse
|
4
|
Horn JA, Delgadillo DR, Mayer EA. Understanding Microbial Mediation of the Brain-Gut Axis. Gastroenterol Clin North Am 2025; 54:367-381. [PMID: 40348493 DOI: 10.1016/j.gtc.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Bidirectional communications between the gut and the brain play an important role in the regulation of food intake, pain perception, mood, and cognitive function. The involved communication pathways are modulated by signals generated by the gut microbiome. Alterations in these communications have been implicated in several chronic brain and gut disorders, including food addiction, mood disorders, neurodevelopmental and neurodegenerative disorders, and functional and inflammatory bowel disorders. The gut microbiome holds great promise for the development of novel therapies normalizing altered brain-gut interactions.
Collapse
Affiliation(s)
- Jill A Horn
- Department of Population and Public Health Sciences, Keck School of Medicine at USC, 1845 N Soto Street, Los Angeles, CA 90032, USA
| | - Desiree R Delgadillo
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 42-210, MC737818, Los Angeles, CA 90095-73787, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress & Resilience; UCLA Vatche & Tamar Manoukian Division of Digestive Diseases, Goodman Luskin Microbiome Center, UCLA.
| |
Collapse
|
5
|
Ohara TE, Hsiao EY. Microbiota-neuroepithelial signalling across the gut-brain axis. Nat Rev Microbiol 2025; 23:371-384. [PMID: 39743581 DOI: 10.1038/s41579-024-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Research over the past two decades has established a remarkable ability of the gut microbiota to modulate brain activity and behaviour. Conversely, signals from the brain can influence the composition and function of the gut microbiota. This bidirectional communication across the gut microbiota-brain axis, involving multiple biochemical and cellular mediators, is recognized as a major brain-body network that integrates cues from the environment and the body's internal state. Central to this network is the gut sensory system, formed by intimate connections between chemosensory epithelial cells and sensory nerve fibres, that conveys interoceptive signals to the central nervous system. In this Review, we provide a broad overview of the pathways that connect the gut and the brain, and explore the complex dialogue between microorganisms and neurons at this emerging intestinal neuroepithelial interface. We highlight relevant microbial factors, endocrine cells and neural mechanisms that govern gut microbiota-brain interactions and their implications for gastrointestinal and neuropsychiatric health.
Collapse
Affiliation(s)
- Takahiro E Ohara
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Chi L, Niu H, Niu Y, Yao R, Shi D, Lu B, Pang Z. Trigonella foenum-graecum L. ameliorates metabolism-associated fatty liver disease in type 2 diabetic mice: a multi-omics mechanism analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119862. [PMID: 40274034 DOI: 10.1016/j.jep.2025.119862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trigonella foenum-graecum L. (HLB), a widely recognized traditional Chinese medicine, has been historically used for the treatment of diabetes mellitus and its complications. However, the efficacy and mechanism of HLB in the treatment of type 2 diabetes mellitus (T2DM) combined with metabolic-associated fatty liver disease (MAFLD) remain poorly understood. AIM OF THE STUDY To investigate the therapeutic effects of HLB on T2DM combined with MAFLD in mice and elucidate its underlying mechanisms. MATERIALS AND METHODS The indices of glucose and lipid metabolism, along with oxidative stress markers, were measured using commercially available assay kits. Histopathological analyses of liver and colon tissues were conducted. Additionally, the mRNA expression levels of genes related to fatty acid metabolism, inflammatory factors, and intestinal tight junction proteins were quantified using reverse transcription polymerase chain reaction (RT-PCR). Microbiome, metabolomic, and transcriptomic analyses were employed to evaluate gut microbiota composition, metabolic profiles, and liver differential genes, respectively. RESULTS After a 4-week treatment period, HLB effectively ameliorated abnormalities of glucose-lipid metabolism, hepatic oxidative stress, and inflammatory responses. Furthermore, HLB modulated hepatic function and intestinal damage. Through comprehensive multi-omics analysis, the observed improvements were attributed to the remodeling of the gut microbiota and its metabolic alterations, including an increased abundance of beneficial bacteria, regulation of bile acid metabolism. CONCLUSIONS These findings not only provide a theoretical foundation for the broader application of HLB in traditional Chinese medicine but also offer novel insights into the potential pharmacological mechanisms underlying HLB's efficacy in T2DM and MAFLD treatment.
Collapse
Affiliation(s)
- Luxuan Chi
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Hongjuan Niu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yang Niu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Rongfei Yao
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Dongxu Shi
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
7
|
Goldhawk DE, Al KF, Donnelly SC, Varela-Mattatall GE, Dassanayake P, Gelman N, Prato FS, Burton JP. Assessing microbiota in vivo: debugging with medical imaging. Trends Microbiol 2025; 33:408-420. [PMID: 39746827 DOI: 10.1016/j.tim.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
The microbiota is integral to human health and has been mostly characterized through various ex vivo 'omic'-based approaches. To better understand the real-time function and impact of the microbiota, in vivo molecular imaging is required. With technologies such as positron emission tomography (PET), magnetic resonance imaging (MRI), and computed tomography (CT), insight into microbiological processes may be coupled to in vivo information. Noninvasive imaging enables longitudinal tracking of microbes and their components in real time; mapping of microbiota biodistribution, persistence and migration; and simultaneous monitoring of host physiological responses. The development of molecular imaging for clinical translation is an interdisciplinary science, with broad implications for deeper understanding of host-microbe interactions and the role(s) of the microbiome in health and disease.
Collapse
Affiliation(s)
- Donna E Goldhawk
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada
| | - Kait F Al
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotic Research, Lawson Research Institute, London, Ontario, Canada
| | | | - Gabriel E Varela-Mattatall
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Praveen Dassanayake
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Neil Gelman
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Frank S Prato
- Imaging, Lawson Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Collaborative Graduate Program in Molecular Imaging, Western University, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotic Research, Lawson Research Institute, London, Ontario, Canada; Department of Surgery, Division of Urology, Western University, London, Ontario, Canada.
| |
Collapse
|
8
|
Liu Y, Li X, Chen Y, Yao Q, Zhou J, Wang X, Meng Q, Ji J, Yu Z, Chen X. Fecal microbiota transplantation: application scenarios, efficacy prediction, and factors impacting donor-recipient interplay. Front Microbiol 2025; 16:1556827. [PMID: 40201444 PMCID: PMC11975908 DOI: 10.3389/fmicb.2025.1556827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Fecal microbiota transplantation (FMT) represents a therapeutic approach that directly regulates the gut microbiota of recipients, normalizes its composition and reaping therapeutic rewards. Currently, in addition to its general application in treating Clostridium difficile (C. difficile) infection (CDI), FMT treatment has also been extended to the fields of other gastrointestinal diseases, infections, gut-liver or gut-brain axis disorders, metabolic diseases and cancer, etc. Prior to FMT, rigorous donor screening is essential to reduce the occurrence of adverse events. In addition, it is imperative to evaluate whether the recipient can safely and effectively undergo FMT treatment. However, the efficacy of FMT is influenced by the complex interactions between the gut microbiota of donor and recipient, the degree of donor microbiota engraftment is not necessarily positively related with the success rate of FMT. Furthermore, an increasing number of novel factors affecting FMT outcomes are being identified in recent clinical trials and animal experiments, broadening our understanding of FMT treatment. This article provides a comprehensive review of the application scenarios of FMT, the factors influencing the safety and efficacy of FMT from the aspects of both the donors and the recipients, and summarizes how these emerging novel regulatory factors can be combined to predict the clinical outcomes of patients undergoing FMT.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinru Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchao Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxuan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaxuan Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Toma R, Hu L, Banavar G, Vuyisich M. Preparation of robust synthetic control samples and their use in a metatranscriptomic clinical test. Sci Rep 2025; 15:10101. [PMID: 40128554 PMCID: PMC11933260 DOI: 10.1038/s41598-025-95020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
Metatranscriptomics (MT) has the potential to revolutionize the field of molecular diagnostics. Due to the complexity of MT diagnostic models, positive and negative control materials for specific disease indications can be difficult to obtain. Controls must often be sourced directly from patients. This introduces logistical burdens, assay variability, and limits high throughput clinical laboratory operations. To overcome this limitation, we developed a method for generating Synthetic Control (SC) samples, which duplicate the nucleic acid signature of complex clinical specimens and produce the desired test outcome. SCs can be easily and cost-effectively produced in large quantities (> 100,000 SCs per amplification cycle), enabling high throughput diagnostic testing. Here, we report the generation of Synthetic Positive Control (SPC) samples. SPCs were validated and implemented in a clinical laboratory. The SPCs produced robust positive signals (average OC risk score of 0.996) and high levels of reproducibility (%CV of 0.29%) in a high throughput automated CLIA laboratory. SCs are a novel and useful method for the generation of high quality controls for MT-based diagnostic tests, and their adoption could herald the widespread use of MT tests in molecular diagnostics.
Collapse
Affiliation(s)
- Ryan Toma
- Viome Research Institute, Viome Life Sciences, Inc., Seattle, WA, USA.
- Viome Research Institute, Viome Life Sciences, Inc., New York, NY, USA.
| | - Lan Hu
- Viome Research Institute, Viome Life Sciences, Inc., Seattle, WA, USA
- Viome Research Institute, Viome Life Sciences, Inc., New York, NY, USA
| | - Guru Banavar
- Viome Research Institute, Viome Life Sciences, Inc., Seattle, WA, USA
- Viome Research Institute, Viome Life Sciences, Inc., New York, NY, USA
| | - Momchilo Vuyisich
- Viome Research Institute, Viome Life Sciences, Inc., Seattle, WA, USA.
- Viome Research Institute, Viome Life Sciences, Inc., New York, NY, USA.
| |
Collapse
|
10
|
Sun X, Zhai J. Research Status and Trends of Gut Microbiota and Intestinal Diseases Based on Bibliometrics. Microorganisms 2025; 13:673. [PMID: 40142565 PMCID: PMC11946491 DOI: 10.3390/microorganisms13030673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Gut microbiota plays an important role in gut health, and its dysbiosis is closely related to the pathogenesis of various intestinal diseases. The field of gut microbiota and intestinal diseases has not yet been systematically quantified through bibliometric methods. This study conducted bibliometric analysis to delineate the evolution of research on gut microbiota and intestinal diseases. Data were sourced from the Web of Science Core Collection database from 2009 to 2023 and were scientometrically analyzed using CiteSpace. We have found that the number of annual publications has been steadily increasing and showing an upward trend. China and the Chinese Academy of Sciences are the country and institution with the most contributions, respectively. Frontiers in Microbiology and Nutrients are the journals with the most publications, while Plos One and Nature are the journals with the most citations. The field has shifted from focusing on traditional descriptive analysis of gut microbiota composition to exploring the causal relationship between gut microbiota and intestinal diseases. The research hotspots and trends mainly include the correlation between specific intestinal diseases and gut microbiota diversity, the mechanism of gut microbiota involvement in intestinal diseases, the exploration of important gut microbiota related to intestinal diseases, and the relationship between gut microbiota and human gut health. This study provides a comprehensive knowledge map of gut microbiota and intestinal diseases, highlights key research areas, and outlines potential future directions.
Collapse
Affiliation(s)
- Xiao Sun
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, China
| | - Jiancheng Zhai
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
11
|
Butowski CF, Dixit Y, Reis MM, Mu C. Metatranscriptomics for Understanding the Microbiome in Food and Nutrition Science. Metabolites 2025; 15:185. [PMID: 40137150 PMCID: PMC11943699 DOI: 10.3390/metabo15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Microbiome science has greatly expanded our understanding of the diverse composition and function of gut microorganisms over the past decades. With its rich microbial composition, the microbiome hosts numerous functionalities essential for metabolizing food ingredients and nutrients, resulting in the production of active metabolites that affect food fermentation or gut health. Most of these processes are mediated by microbial enzymes such as carbohydrate-active enzymes and amino acid metabolism enzymes. Metatranscriptomics enables the capture of active transcripts within the microbiome, providing invaluable functional insights into metabolic activities. Given the inter-kingdom complexity of the microbiome, metatranscriptomics could further elucidate the activities of fungi, archaea, and bacteriophages in the microbial ecosystem. Despite its potential, the application of metatranscriptomics in food and nutrition sciences remains limited but is growing. This review highlights the latest advances in food science (e.g., flavour formation and food enzymology) and nutrition science (e.g., dietary fibres, proteins, minerals, and probiotics), emphasizing the integration of metatranscriptomics with other technologies to address key research questions. Ultimately, metatranscriptomics represents a powerful tool for uncovering the microbiome activity, particularly in relation to active metabolic processes.
Collapse
|
12
|
Kirk D, Louca P, Attaye I, Zhang X, Wong KE, Michelotti GA, Falchi M, Valdes AM, Williams FMK, Menni C. Multifluid Metabolomics Identifies Novel Biomarkers for Irritable Bowel Syndrome. Metabolites 2025; 15:121. [PMID: 39997746 PMCID: PMC11857683 DOI: 10.3390/metabo15020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Irritable bowel syndrome (IBS) is a complex disorder affecting 10% of the global population, but the underlying mechanisms remain poorly understood. By integrating multifluid metabolomics, we aimed to identify metabolite markers of IBS in a large population-based cohort. Methods: We included individuals from TwinsUK with and without IBS, ascertained using the Rome III criteria, and analysed serum (232 cases, 1707 controls), urine (185 cases, 1341 controls), and stool (186 cases, 1284 controls) metabolites (Metabolon Inc.). Results: After adjusting for covariates, and multiple testing, 44 unique metabolites (25 novel) were associated with IBS, including lipids, amino acids, and xenobiotics. Androsterone sulphate, a sulfated steroid hormone precursor, was associated with lower odds of IBS in both urine (0.69 [95% confidence interval = 0.56-0.85], p = 2.34 × 10-4) and serum (0.75 [0.63-0.90], p = 1.54 × 10-3. Moreover, suberate (C8-DC) was associated with higher odds of IBS in serum (1.36 [1.15-1.61]; p = 1.84 × 10-4) and lower odds of IBS in stool (0.76 [0.63-0.91]; p = 2.30 × 10-3). On the contrary, 32 metabolites appeared to be fluid-specific, including indole, 13-HODE + 9-HODE, pterin, bilirubin (E,Z or Z,Z), and urolithin. The remaining 10 metabolites were associated with IBS in one fluid with suggestive evidence (p < 0.05) in another fluid. Finally, we identified androgenic signalling, dicarboxylates, haemoglobin, and porphyrin metabolism to be significantly over-represented in individuals with IBS compared to controls. Conclusions: Our results highlight the utility of a multi-fluid approach in IBS research, revealing distinct metabolic signatures across biofluids.
Collapse
Affiliation(s)
- Daniel Kirk
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Panayiotis Louca
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Ilias Attaye
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Xinyuan Zhang
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Kari E. Wong
- Metabolon Inc., Research Triangle Park, Morrisville, NC 27560, USA; (K.E.W.); (G.A.M.)
| | - Gregory A. Michelotti
- Metabolon Inc., Research Triangle Park, Morrisville, NC 27560, USA; (K.E.W.); (G.A.M.)
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Ana M. Valdes
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
- Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
- Inflammation, Recovery and Injury Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Frances M. K. Williams
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
13
|
Rexwinkel R, Vermeijden NK, Zeevenhooven J, Kelder J, Groeneweg M, Hummel T, Goede J, van Wering H, Stapelbroek J, Benninga M, Vlieger A. The low FODMAP diet in adolescents functional abdominal in a non-guided setting: a prospective multicenter cohort study. Eur J Pediatr 2025; 184:189. [PMID: 39934502 PMCID: PMC11814023 DOI: 10.1007/s00431-025-05999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
The purpose of this study is to evaluate the efficacy of a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) in adolescents with irritable bowel syndrome (IBS) and functional abdominal pain-not otherwise specified (FAP-NOS) in a non-guided setting, resembling clinical practice. This prospective multicenter cohort study conducted in 13 centers included patients aged 12-18 years diagnosed with IBS or FAP-NOS. Patients received educational material on FODMAPs, including extensive lists of high and low FODMAP foods and additional online information. They were instructed to replace high FODMAP foods with low FODMAP alternatives for the duration of 4 weeks. No dietician was consulted. The primary end point was the proportion of patients with treatment success (≥ 30% reduction of abdominal pain intensity) at 4 weeks. The key secondary outcome was adequate relief of IBS/FAP-NOS symptoms. Of the 325 included patients, 81 patients (24.9%) achieved treatment success (≥ 30% reduction of abdominal pain intensity) after 4 weeks, with higher rates in patients with IBS (29.3%) than FAP-NOS (16.8%, OR 2.16 (1.04-4.48)). Adequate relief was reported in 51 patients (15.7%). There was a significant decrease in abdominal pain intensity (2.2 (1.1) vs. 2.5 (1.0), P < 0.001), daily bloating (2.4 (2.1) vs. 2.8 (2.3), P < 0.001), and flatulence (2.4 (2.1) vs. 2.8 (2.3), P = 0.001). Adverse events were mild and infrequent. CONCLUSION The low FODMAP diet in a non-guided setting, mimicking clinical practice, yielded treatment success in almost 30% adolescents with IBS and 17% in FAP-NOS, suggesting it may not be the first treatment option for these patients. TRIAL REGISTRATION EUCTR2015-003293-32-NL. WHAT IS KNOWN • Irritable bowel syndrome (IBS) and functional abdominal pain-not otherwise specified (FAP-NOS) are common disorders in children which negatively impact quality of life. • While a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) has demonstrated effectiveness in adult IBS, its efficacy in pediatric IBS and FAP-NOS remains uncertain. • Clinical application of the low FODMAP diet often occurs without dietician consultation, contrary to controlled trial settings. WHAT IS NEW • The low FODMAP diet, without dietician guidance, resulted in treatment success in almost 30% of adolescents with IBS and only 17% with FAP-NOS. • With only 15.7% of participants achieving adequate relief of IBS/FAP-NOS symptoms, the non-guided low FODMAP diet may not be the first treatment option for pediatric IBS and FAP-NOS.
Collapse
Affiliation(s)
- Robyn Rexwinkel
- Emma's Children Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Pediatric Gastroenterology, Hepatology and Nutrition, Room C2-312, PO Box 22700, 1100 DD, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Location Academic Medical Center/Emma Children's Hospital, Amsterdam, The Netherlands
- Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute,, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas Koen Vermeijden
- Emma's Children Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Pediatric Gastroenterology, Hepatology and Nutrition, Room C2-312, PO Box 22700, 1100 DD, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Location Academic Medical Center/Emma Children's Hospital, Amsterdam, The Netherlands.
- Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute,, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Pediatrics, St Antonius Hospital, Nieuwegein, The Netherlands.
| | - Judith Zeevenhooven
- Emma's Children Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Pediatric Gastroenterology, Hepatology and Nutrition, Room C2-312, PO Box 22700, 1100 DD, Amsterdam, The Netherlands
| | - Johannes Kelder
- Department of Cardiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Michael Groeneweg
- Department of Pediatrics, Maasstad Hospital, Rotterdam, The Netherlands
| | - Thalia Hummel
- Department of Pediatrics, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Joery Goede
- Department of Pediatrics, Spaarne Gasthuis, Haarlem, The Netherlands
| | | | | | - Marc Benninga
- Emma's Children Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Pediatric Gastroenterology, Hepatology and Nutrition, Room C2-312, PO Box 22700, 1100 DD, Amsterdam, The Netherlands
| | - Arine Vlieger
- Department of Pediatrics, St Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
14
|
García Mansilla MJ, Rodríguez Sojo MJ, Lista AR, Ayala Mosqueda CV, Ruiz Malagón AJ, Gálvez J, Rodríguez Nogales A, Rodríguez Sánchez MJ. Exploring Gut Microbiota Imbalance in Irritable Bowel Syndrome: Potential Therapeutic Effects of Probiotics and Their Metabolites. Nutrients 2024; 17:155. [PMID: 39796588 PMCID: PMC11723002 DOI: 10.3390/nu17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis. Therefore, the use of probiotics and probiotic-derived metabolites may be helpful in balancing the gut microbiota and alleviating irritable bowel syndrome symptoms. This review aimed to report and consolidate recent progress in understanding the role of gut dysbiosis in the pathophysiology of IBS, as well as the current studies that have focused on the use of probiotics and their metabolites, providing a foundation for their potential beneficial effects as a complementary and alternative therapeutic strategy for this condition due to the current absence of effective and safe treatments.
Collapse
Affiliation(s)
- María José García Mansilla
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
| | - María Jesús Rodríguez Sojo
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Andrea Roxana Lista
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | | | - Antonio Jesús Ruiz Malagón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Julio Gálvez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez Nogales
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - María José Rodríguez Sánchez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| |
Collapse
|
15
|
Li X, Li X, Xiao H, Xu J, He J, Xiao C, Zhang B, Cao M, Hong W. Meta-analysis of gut microbiota alterations in patients with irritable bowel syndrome. Front Microbiol 2024; 15:1492349. [PMID: 39777150 PMCID: PMC11703917 DOI: 10.3389/fmicb.2024.1492349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Irritable bowel syndrome (IBS) is a common chronic disorder of gastrointestinal function with a high prevalence worldwide. Due to its complex pathogenesis and heterogeneity, there is urrently no consensus in IBS research. Methods We collected and uniformly reanalyzed 1167 fecal 16S rRNA gene sequencing samples (623 from IBS patients and 544 from healthy subjects) from 9 studies. Using both a random effects (RE) model and a fixed effects (FE) model, we calculated the odds ratios for metrics including bacterial alpha diversity, beta diversity, common genera and pathways between the IBS and control groups. Results Significantly lower alpha-diversity indexes were observed in IBS patients by random effects model. Twenty-six bacterial genera and twelve predicted pathways were identified with significant odds ratios and classification potentials for IBS patients. Based on these feature, we used transfer learning to enhance the predictive capabilities of our model, which improved model performance by approximately 10%. Moreover, through correlation network analysis, we found that Ruminococcaceae and Christensenellaceae were negatively correlated with vitamin B6 metabolism, which was decreased in the patients with IBS. Ruminococcaceae was also negatively correlated with tyrosine metabolism, which was decreased in the patients with IBS. Discussion This study revealed the dysbiosis of fecal bacterial diversity, composition, and predicted pathways of patients with IBS by meta-analysis and identified universal biomarkers for IBS prediction and therapeutic targets.
Collapse
Affiliation(s)
- Xiaxi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaoling Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haowei Xiao
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jiaying Xu
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- Department of Rehabilitation, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chuanxing Xiao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bangzhou Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Man Cao
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenxin Hong
- Department of Rehabilitation, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Fraser K, James SC, Young W, Gearry RB, Heenan PE, Keenan JI, Talley NJ, McNabb WC, Roy NC. Characterisation of the Plasma and Faecal Metabolomes in Participants with Functional Gastrointestinal Disorders. Int J Mol Sci 2024; 25:13465. [PMID: 39769229 PMCID: PMC11677738 DOI: 10.3390/ijms252413465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
There is evidence of perturbed microbial and host processes in the gastrointestinal tract of individuals with functional gastrointestinal disorders (FGID) compared to healthy controls. The faecal metabolome provides insight into the metabolic processes localised to the intestinal tract, while the plasma metabolome highlights the overall perturbances of host and/or microbial responses. This study profiled the faecal (n = 221) and plasma (n = 206) metabolomes of individuals with functional constipation (FC), constipation-predominant irritable bowel syndrome (IBS-C), functional diarrhoea (FD), diarrhoea-predominant IBS (IBS-D) and healthy controls (identified using the Rome Criteria IV) using multimodal LC-MS technologies. Discriminant analysis separated patients with the 'all constipation' group (FC and IBS-C) from the healthy control group and 'all diarrhoea' group (FD and IBS-D) from the healthy control group in both sample types. In plasma, almost all multimodal metabolite analyses separated the 'all constipation' or 'all diarrhoea' group from the healthy controls, and the IBS-C or IBS-D group from the healthy control group. Plasma phospholipids and metabolites linked to several amino acid and nucleoside pathways differed (p < 0.05) between healthy controls and IBS-C. In contrast, metabolites involved in bile acid and amino acid metabolism were the key differentiating classes in the plasma of subjects with IBS-D from healthy controls. Faecal lipids, particularly ceramides, diglycerides, and triglycerides, varied (p < 0.05) between healthy controls and the 'all constipation' group and between healthy controls and 'all diarrhoea' group. The faecal and plasma metabolomes showed perturbations between constipation, diarrhoea and healthy control groups that may reflect processes and mechanisms linked to FGIDs.
Collapse
Affiliation(s)
- Karl Fraser
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Shanalee C. James
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North 4472, New Zealand
| | - Wayne Young
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Richard B. Gearry
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Phoebe E. Heenan
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | | | - Nicholas J. Talley
- School of Medicine and Public Health, The University of Newcastle, Callaghan, Newcastle 2308, Australia
| | - Warren C. McNabb
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Nicole C. Roy
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
17
|
Marasco G, Cremon C, Barbaro MR, Bianco F, Stanghellini V, Barbara G. Microbiota modulation in disorders of gut-brain interaction. Dig Liver Dis 2024; 56:1971-1979. [PMID: 38772789 DOI: 10.1016/j.dld.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Disorders of gut-brain interaction (DGBI) are common chronic conditions characterized by persistent and recurring gastrointestinal symptoms triggered by several pathophysiological factors, including an altered gut microbiota. The most common DGBI are irritable bowel syndrome (IBS), functional constipation (FC) and functional dyspepsia (FD). Recently, a deep understanding of the role of the gut microbiota in these diseases was possible due to multi-omics methods capable to provide a comprehensive assessment. Most of the therapies recommended for these patients, can modulate the gut microbiota such as diet, prebiotics, probiotics and non-absorbable antibiotics, which were shown to be safe and effective. Since patients complain symptoms after food ingestion, diet represents the first line therapeutic approach. Avoiding dietary fat and fermentable oligosaccharides, disaccharides, monosaccharides, and polyols, and increasing the number of soluble fibers represent the therapeutic choices for FD, IBS and FC respectively. Probiotics, as a category, have been employed with good results in all the abovementioned DGBI. Rifaximin has been shown to be useful in the context of bowel related disorders, although a recent trial showed positive results for FD. Fecal microbiota transplantation has been tested for IBS and FC with promising results. In this review, we will briefly summarize the current understanding on dysbiosis and discuss microbiota modulation strategies to treat patients with DGBI.
Collapse
Affiliation(s)
- Giovanni Marasco
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | | | - Francesca Bianco
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy.
| |
Collapse
|
18
|
Aggeletopoulou I, Triantos C. Microbiome Shifts and Their Impact on Gut Physiology in Irritable Bowel Syndrome. Int J Mol Sci 2024; 25:12395. [PMID: 39596460 PMCID: PMC11594715 DOI: 10.3390/ijms252212395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most prevalent functional gastrointestinal disorders characterized by recurrent abdominal pain and altered bowel habits. The exact pathophysiological mechanisms for IBS development are not completely understood. Several factors, including genetic predisposition, environmental and psychological influences, low-grade inflammation, alterations in gastrointestinal motility, and dietary habits, have been implicated in the pathophysiology of the disorder. Additionally, emerging evidence highlights the role of gut microbiota in the pathophysiology of IBS. This review aims to thoroughly investigate how alterations in the gut microbiota impact physiological functions such as the brain-gut axis, immune system activation, mucosal inflammation, gut permeability, and intestinal motility. Our research focuses on the dynamic "microbiome shifts", emphasizing the enrichment or depletion of specific bacterial taxa in IBS and their profound impact on disease progression and pathology. The data indicated that specific bacterial populations are implicated in IBS, including reductions in beneficial species such as Lactobacillus and Bifidobacterium, along with increases in potentially harmful bacteria like Firmicutes and Proteobacteria. Emphasis is placed on the imperative need for further research to delineate the role of specific microbiome alterations and their potential as therapeutic targets, providing new insights into personalized treatments for IBS.
Collapse
Affiliation(s)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
19
|
Zheludev IN, Edgar RC, Lopez-Galiano MJ, de la Peña M, Babaian A, Bhatt AS, Fire AZ. Viroid-like colonists of human microbiomes. Cell 2024; 187:6521-6536.e18. [PMID: 39481381 PMCID: PMC11949080 DOI: 10.1016/j.cell.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/03/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024]
Abstract
Here, we describe "obelisks," a class of heritable RNA elements sharing several properties: (1) apparently circular RNA ∼1 kb genome assemblies, (2) predicted rod-like genome-wide secondary structures, and (3) open reading frames encoding a novel "Oblin" protein superfamily. A subset of obelisks includes a variant hammerhead self-cleaving ribozyme. Obelisks form their own phylogenetic group without detectable similarity to known biological agents. Surveying globally, we identified 29,959 distinct obelisks (clustered at 90% sequence identity) from diverse ecological niches. Obelisks are prevalent in human microbiomes, with detection in ∼7% (29/440) and ∼50% (17/32) of queried stool and oral metatranscriptomes, respectively. We establish Streptococcus sanguinis as a cellular host of a specific obelisk and find that this obelisk's maintenance is not essential for bacterial growth. Our observations identify obelisks as a class of diverse RNAs of yet-to-be-determined impact that have colonized and gone unnoticed in human and global microbiomes.
Collapse
Affiliation(s)
- Ivan N Zheludev
- Stanford University, Department of Biochemistry, Stanford, CA, USA.
| | | | - Maria Jose Lopez-Galiano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Artem Babaian
- University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada; University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Ami S Bhatt
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Medicine, Division of Hematology, Stanford, CA, USA
| | - Andrew Z Fire
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Pathology, Stanford, CA, USA.
| |
Collapse
|
20
|
Gu Q, Du Q, Xia L, Lu X, Wan X, Shao Y, He J, Wu P. Mechanistic insights into EGCG's preventive effects on obesity-induced precocious puberty through multi-omics analyses. Food Funct 2024; 15:11169-11185. [PMID: 39445911 DOI: 10.1039/d4fo03844d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Epigallocatechin gallate (EGCG) has demonstrated potential effects on obesity-induced precocious puberty, but the underlying mechanisms remain unclear. Female mice were randomly assigned into control (CON), EGCG-treated (EGCG), high-fat diet (HFD), and HFD with EGCG treatment (HFDEGCG) groups. Key measurements included body weight, vaginal opening time, and serum sex hormone levels. The gut microbiota was analyzed through 16S rRNA sequencing, fecal metabolites were assessed via metabolomics, and the hypothalamic transcriptome was examined using RNA sequencing. EGCG mitigated weight gain and delayed vaginal opening in mice with obesity-induced precocious puberty. Additionally, it reduced serum estradiol levels and decreased the number of mature ovarian follicles in the HFDEGCG group compared to the HFD group. EGCG treatment partially reversed HFD-induced dysbiosis by increasing the abundance of beneficial bacteria such as Akkermansia. Metabolomic analysis revealed significant alterations in tryptophan metabolism, while transcriptome analysis identified genes involved in metabolic pathways. Correlation analyses underscored the importance of the gut-brain axis in mediating EGCG's effects. Overall, EGCG prevents obesity-induced precocious puberty by modulating the gut microbiota, altering metabolic pathways, and regulating hypothalamic gene expression.
Collapse
Affiliation(s)
- Qiuyun Gu
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiujv Du
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Xia
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Lu
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaoqing Wan
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shao
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieyi He
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Wu
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Jacobs JP, Spencer EA, Helmus DS, Yang JC, Lagishetty V, Bongers G, Britton G, Gettler K, Reyes-Mercedes P, Hu J, Hart A, Lamousé-Smith E, Wehkamp J, Landers C, Debbas P, Torres J, Colombel JF, Cho J, Peter I, Faith J, Braun J, Dubinsky M. Age-related patterns of microbial dysbiosis in multiplex inflammatory bowel disease families. Gut 2024; 73:1953-1964. [PMID: 39122361 PMCID: PMC11560537 DOI: 10.1136/gutjnl-2024-332475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE IBD is characterised by dysbiosis, but it remains unclear to what extent dysbiosis develops in unaffected at-risk individuals. To address this, we investigated age-related patterns of faecal and serum markers of dysbiosis in high-risk multiplex IBD families (two or more affected first-degree relatives). DESIGN Faecal and serum samples were collected from multiplex IBD and control families (95 IBD, 292 unaffected, 51 controls). Findings were validated in independent cohorts of 616 and 1173 subjects including patients with IBD, infants born to mothers with IBD and controls. 16S rRNA gene sequencing and global untargeted metabolomics profiling of faeces and serum were performed. RESULTS Microbial and metabolomic parameters of dysbiosis progressively decreased from infancy until age 8. This microbial maturation process was slower in infants born to mothers with IBD. After age 15, dysbiosis steadily increased in unaffected relatives throughout adulthood. Dysbiosis was accompanied by marked shifts in the faecal metabolome and, to a lesser extent, the serum metabolome. Faecal and serum metabolomics dysbiosis indices were validated in an independent cohort. Dysbiosis was associated with elevated antimicrobial serologies but not with faecal calprotectin. Dysbiosis metrics differentiated IBD from non-IBD comparably to serologies, with a model combining calprotectin, faecal metabolomics dysbiosis index and serology score demonstrating highest accuracy. CONCLUSION These findings support that dysbiosis exists as a pre-disease state detectable by faecal and serum biomarkers for IBD risk prediction. Given the expansion of disease-modifying agents and non-invasive imaging, the indices developed here may facilitate earlier diagnoses and improved management in at-risk individuals.
Collapse
Affiliation(s)
- Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Elizabeth A Spencer
- The Division of Pediatric Gastroenterology and Nutrition, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Drew S Helmus
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julianne C Yang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gerold Bongers
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Graham Britton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyle Gettler
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pamela Reyes-Mercedes
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy Hart
- Janssen, Spring House, Pennsylvania, USA
| | | | | | - Carol Landers
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Philip Debbas
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Joana Torres
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Hospital da Luz, Lisboa, Portugal
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judy Cho
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jeremiah Faith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan Braun
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Marla Dubinsky
- The Division of Pediatric Gastroenterology and Nutrition, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
22
|
Li J, Ghosh TS, Arendt E, Shanahan F, O'Toole PW. Cross-Cohort Gut Microbiome Signatures of Irritable Bowel Syndrome Presentation and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308313. [PMID: 39243395 PMCID: PMC11538712 DOI: 10.1002/advs.202308313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/02/2024] [Indexed: 09/09/2024]
Abstract
Irritable bowel syndrome (IBS) is a prevalent disorder of gut-brain interaction without a reliable cure. Evidence suggests that an alteration of the gut microbiome may contribute to IBS pathogenesis, motivating the development of microbiome-targeted therapies to alleviate IBS symptoms. However, IBS-specific microbiome signatures are variable across cohorts. A total of 9204 datasets were meta-analyzed, derived from fourteen IBS microbiome discovery cohorts, three validation cohorts for diet-microbiome interactions, and five rifaximin therapy cohorts. The consistent bacterial species and functional signatures associated with IBS were identified. Network analysis revealed two distinct IBS-enriched microbiota clusters; obligate anaerobes that are found commonly in the gut, and facultative anaerobes typically present in the mouth, implying a possible association between oral bacterial translocation to gut and IBS pathogenesis. By analyzing diet-microbiome interactions, microbiota-targeted diets that can potentially modulate the altered gut microbiota of IBS subjects toward a healthy status were identified. Furthermore, rifaximin treatment of IBS subjects was linked with a reduction in the abundance of facultatively anaerobic pathobionts. Gut microbiome signatures were identified across IBS cohorts that may inform the development of therapies for microbiome modulation in IBS. The microbiota-targeted diet patterns described may enable nutritional intervention trials in IBS and for assisting dietary management.
Collapse
Affiliation(s)
- Junhui Li
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFIreland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFIreland
| | - Tarini Shankar Ghosh
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFIreland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFIreland
- Present address:
Indraprastha Institute of Information Technology DelhiNew Delhi110020India
| | - Elke Arendt
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFIreland
- School of Food and Nutritional SciencesUniversity College CorkCorkT12 K8AFIreland
| | - Fergus Shanahan
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFIreland
- Department of MedicineUniversity College CorkCorkT12 K8AFIreland
| | - Paul W. O'Toole
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFIreland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFIreland
| |
Collapse
|
23
|
Tang BB, Su CX, Wen N, Zhang Q, Chen JH, Liu BB, Wang YQ, Huang CQ, Hu YL. FMT and TCM to treat diarrhoeal irritable bowel syndrome with induced spleen deficiency syndrome- microbiomic and metabolomic insights. BMC Microbiol 2024; 24:433. [PMID: 39455910 PMCID: PMC11515126 DOI: 10.1186/s12866-024-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Diarrheal irritable bowel syndrome (IBS-D) is a functional bowel disease with diarrhea, and can be associated with common spleen deficiency syndrome of the prevelent traditional Chinese medicine (TCM) syndrome. Fecal microbiota transplantation (FMT) could help treating IBS-D, but may provide variable effects. Our study evaluated the efficacy of TCM- shenling Baizhu decoction and FMT in treating IBS-D with spleen deficiency syndrome, with significant implications on gut microbiome and serum metabolites. METHODS The new borne rats were procured from SPF facility and separated as healthy (1 group) and IBS-D model ( 3 groups) rats were prepared articially using mother's separation and senna leaf treatment. 2 groups of IBS-D models were further treated with TCM- shenling Baizhu decoction and FMT. The efficacy was evaluated by defecation frequency, bristol stool score, and intestinal tight junction proteins (occludin-1 and claudin-1) expression. Microbiomic analysis was conducted using 16 S rRNA sequencing and bioinformatics tools. Metabolomics were detected in sera of rats by LC-MS and annotated by using KEGG database. RESULTS Significant increment in occludin-1 and claudin-1 protein expression alleviated the diarrheal severity in IBS-D rats (P < 0.05) after treatment with FMT and TCM. FMT and TCM altered the gut microbiota and regulated the tryptophan metabolism, steroid hormone biosynthesis and glycerophospholipid metabolism of IBS-D rats with spleen deficiency syndrome.The microbial abundance were changed in each case e.g., Monoglobus, Dubosiella, and Akkermansia and othe metabolic profiles. CONCLUSION FMT and TCM treatment improved the intestinal barrier function by regulating gut microbiota and improved metabolic pathways in IBS-D with spleen deficiency syndrome.
Collapse
Affiliation(s)
- Bin-Bin Tang
- Second Outpatient Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Cheng-Xia Su
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Na Wen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Qian Zhang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Jian-Hui Chen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin-Bin Liu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi-Qing Wang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Chao-Qun Huang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yun-Lian Hu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
- Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
24
|
Guo Z, Lei Y, Wang Q. Chinese expert consensus on standard technical specifications for a gut microecomics laboratory (Review). Exp Ther Med 2024; 28:403. [PMID: 39234587 PMCID: PMC11372251 DOI: 10.3892/etm.2024.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
The intestinal microbiota is a complex ecosystem that not only affects various physiological functions, such as metabolism, inflammation and the immune response, but also has an important effect on the development of tumors and response to treatment. The detection of intestinal flora enables the timely identification of disease-related flora abnormalities, which has significant implications for both disease prevention and treatment. In the field of basic and clinical research targeting gut microbiome, there is a need to recognize and understand the laboratory assays for gut microbiomics. Currently, there is no unified standard for the experimental procedure, quality management and report interpretation of intestinal microbiome assay technology. In order to clarify the process, the Tumor and Microecology Committee of China Anti-Cancer Association and the Tumor and Microecology Committee of Hubei Provincial Immunology Society organized relevant experts to discuss and put forward the standard technical specifications for gut microecomics laboratories, which provides a basis for further in-depth research in the field of intestinal microecomics.
Collapse
Affiliation(s)
- Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
25
|
Aguilar A, Benslaiman B, Serra J. Effect of Iberogast (STW5) on tolerance to colonic gas in patients with irritable bowel syndrome: A randomized, double-blind, placebo control clinical trial. Neurogastroenterol Motil 2024; 36:e14765. [PMID: 38361151 DOI: 10.1111/nmo.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND STW5 is an herbal medicinal product that, in previous studies, reduced abdominal pain in irritable bowel syndrome (IBS). The effect of STW5 on gas-related abdominal symptoms is unknown. AIM To determine the effects of STW5, compared to placebo, on the responses to colonic gas in IBS. METHODS Using a cross-over design, two gas challenge tests were performed in 10 patients with IBS and bloating after 2-weeks treatment with (a) STW5 and (b) placebo. The challenge test consisted in continuous infusion of gas into the colon (24 mL/min for 60 min), followed by a 30-min free evacuation period. Gas evacuation, symptom perception, and abdominal distension were continuously registered. RESULTS Colonic gas filling was associated to a significant rise in abdominal symptom perception, that was significantly greater when patients were on-placebo (score increment 4.0 ± 0.3) compared with on-STW5 (score increment 3.2 ± 0.4; p = 0.035). Gas filling was associated to a progressive abdominal distension that was similar with both treatments. Opening of the rectal cannula produced a massive gas evacuation, similar after both treatments, associated to a return of abdominal perception and distension to basal levels when patients were on-STW5 (score increment -0.1 ± 0.4; distension 0.3 ± 0.2 cm; p = 0.399, and p = 0.112 vs. basal), whereas both remained increased on-placebo (score increment 0.5 ± 0.3; distension 0.8 ± 0.3 cm; p = 0.048, and p = 0.016 vs. infusion start). CONCLUSIONS STW5 improves colonic gas tolerance in IBS patients with bloating without a significant effect on gas retention and evacuation. This medicinal product can be beneficious for treatment of gas-related abdominal symptoms in patients with bloating. EudraCT: 2019-003976-38.
Collapse
Affiliation(s)
- Ariadna Aguilar
- Digestive System Research Unit, University Hospital Vall d'Hebrón, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
- Motility and Functional Gut disorders Unit, University Hospital Germans Trias i Pujol, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Bouchra Benslaiman
- Digestive System Research Unit, University Hospital Vall d'Hebrón, Barcelona, Spain
- Motility and Functional Gut disorders Unit, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jordi Serra
- Digestive System Research Unit, University Hospital Vall d'Hebrón, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
26
|
Kwon H, Nam EH, Kim H, Jo H, Bang WY, Lee M, Shin H, Kim D, Kim J, Kim H, Lee J, Jung YH, Yang J, Won DD, Shin M. Effect of Lacticaseibacillus rhamnosus IDCC 3201 on irritable bowel syndrome with constipation: a randomized, double-blind, and placebo-controlled trial. Sci Rep 2024; 14:22384. [PMID: 39333245 PMCID: PMC11437119 DOI: 10.1038/s41598-024-72887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Irritable bowel syndrome is a chronic disorder affecting the gastrointestinal tract, negatively impacting patients' quality of life. Here, we aimed to evaluate the effects of Lacticaseibacillus rhamnosus IDCC 3201 (RH 3201) on irritable bowel syndrome with constipation (IBS-C). In this randomised, double-blind, placebo-controlled trial, a total of 30 subjects with IBS-C were randomly assigned (1:1) to receive 8 weeks of probiotics administration or placebo. Concerning bowel activities, both irritant bowel movements and discomfort caused by constipation showed significant improvement with RH 3201 at 8 weeks. Symptoms including severity of abdominal bloating, frequency of abdominal bloating, and satisfaction of bowel habits based on the irritable bowel syndrome-severity scoring system also ameliorated in the probiotic group. Analysis of the fecal microbiome revealed that the abundance of Bacteroides cellulosilyticus and Akkermansia muciniphila was higher during the period of RH 3201 administration compared to the placebo. Untargeted metabolome analysis further suggested a correlation between specific metabolites, such as N-acetylornithine, xanthine, and 3-phenylpropionic acid, and the improvement of clinical symptoms. These results indicate that RH 3201 was effective in ameliorating IBS-C, potentially by enriching beneficial microbes and associated metabolites in the gut environment.
Collapse
Affiliation(s)
- Hyeji Kwon
- Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Eoun Ho Nam
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Hayoung Kim
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Haneul Jo
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Won Yeong Bang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Minjee Lee
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Hyeonmin Shin
- Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Dana Kim
- Immunology Laboratory, Cancer Genomic Research Institute, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Jeongho Kim
- Digestive Endoscopic Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Hyejin Kim
- Digestive Endoscopic Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Jongkyun Lee
- Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
- Institute of Fermentation Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jungwoo Yang
- Department of Microbiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea.
| | - Daeyoun David Won
- Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, 04597, Republic of Korea.
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
27
|
Shin A, Xing Y, Waseem MR, Siwiec R, James-Stevenson T, Rogers N, Bohm M, Wo J, Lockett C, Gupta A, Kadariya J, Toh E, Anderson R, Xu H, Gao X. Microbiota-Short Chain Fatty Acid Relationships Underlie Clinical Heterogeneity and Identify Key Microbial Targets in Irritable Bowel Syndrome (IBS). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.31.24302084. [PMID: 38352442 PMCID: PMC10863002 DOI: 10.1101/2024.01.31.24302084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Background Identifying microbial targets in irritable bowel syndrome (IBS) and other disorders of gut-brain interaction (DGBI) is challenging due to the dynamic nature of microbiota-metabolite-host interactions. SCFA are key microbial metabolites that modulate intestinal homeostasis and may influence IBS pathophysiology. We aimed to assess microbial features associated with short chain fatty acids (SCFA) and determine if features varied across IBS subtypes and endophenotypes. Among 96 participants who were screened, 71 completed the study. We conducted in-depth investigations of stool microbial metagenomes, stool SCFA, and measurable IBS traits (stool bile acids, colonic transit, stool form) in 41 patients with IBS (IBS with constipation [IBS-C] IBS with diarrhea [IBS-D]) and 17 healthy controls. We used partial canonical correspondence analyses (pCCA), conditioned on transit, to quantify microbe-SCFA associations across clinical groups. To explore relationships between microbially-derived SCFA and IBS traits, we compared gut microbiome-encoded potential for substrate utilization across groups and within a subset of participants selected by their stool characteristics as well as stool microbiomes of patients with and without clinical bile acid malabsorption. Results Overall stool microbiome composition and individual taxa abundances differed between clinical groups. Microbes-SCFA associations differed across groups and revealed key taxa including Dorea sp. CAG:317 and Bifidobacterium pseudocatenulatum in IBS-D and Akkermansia muciniphila and Prevotella copri in IBS-C that that may drive subtype-specific microbially-mediated mechanisms. Strongest microbe-SCFA associations were observed in IBS-D and several SCFA-producing species surprisingly demonstrated inverse correlations with SCFA. Fewer bacterial taxa were associated with acetate to butyrate ratios in IBS compared to health. In participants selected by stool form, we demonstrated differential abundances of microbial genes/pathways for SCFA metabolism and degradation of carbohydrates and mucin across groups. SCFA-producing taxa were reduced in IBS-D patients with BAM. Conclusion Keystone taxa responsible for SCFA production differ according to IBS subtype and traits and the IBS microbiome is characterized by reduced functional redundancy. Differences in microbial substrate preferences are also linked to bowel functions. Focusing on taxa that drive SCFA profiles and stool form may be a rational strategy for identifying relevant microbial targets in IBS and other DGBI.
Collapse
|
28
|
Gryaznova M, Smirnova Y, Burakova I, Morozova P, Lagutina S, Chizhkov P, Korneeva O, Syromyatnikov M. Fecal Microbiota Characteristics in Constipation-Predominant and Mixed-Type Irritable Bowel Syndrome. Microorganisms 2024; 12:1414. [PMID: 39065182 PMCID: PMC11278693 DOI: 10.3390/microorganisms12071414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common condition that affects the lifestyle of patients. It is associated with significant changes in the composition of the gut microbiome, but the underlying microbial mechanisms remain to be fully understood. We study the fecal microbiome of patients with constipation-predominant IBS (IBS-C) and mixed-type IBS (IBS-M). METHODS We sequenced the V3 region of the 16S rRNA on the Ion Torrent PGM sequencing platform to study the microbiome. RESULTS In the patients with IBS-C and IBS-M, an increase in alpha diversity was found, compared to the healthy group, and differences in beta diversity were also noted. At the phylum level, both IBS subtypes showed an increase in the Firmicutes/Bacteroidetes ratio, as well as an increase in the abundance of Actinobacteria and Verrucomicrobiota. Changes in some types of bacteria were characteristic of only one of the IBS subtypes, while no statistically significant differences in the composition of the microbiome were detected between IBS-C and IBS-M. CONCLUSIONS This study was the first to demonstrate the association of Turicibacter sanguinis, Mitsuokella jalaludinii, Erysipelotrichaceae UCG-003, Senegalimassilia anaerobia, Corynebacterium jeikeium, Bacteroides faecichinchillae, Leuconostoc carnosum, and Parabacteroides merdae with IBS subtypes.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia;
| | - Svetlana Lagutina
- Department of Polyclinic Therapy, Voronezh State Medical University Named after N.N. Burdenko, 394036 Voronezh, Russia;
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia;
| | - Olga Korneeva
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia;
| |
Collapse
|
29
|
Li F, Yano Y, Étiévant L, Daniel CR, Sharma SV, Brown EL, Li R, Loftfield E, Lan Q, Sinha R, Moshiree B, Inoue-Choi M, Vogtmann E. The Time-Dependent Association Between Irritable Bowel Syndrome and All-Cause and Cause-Specific Mortality: A Prospective Cohort Study Within the UK Biobank. Am J Gastroenterol 2024; 119:1373-1382. [PMID: 38275237 PMCID: PMC11222041 DOI: 10.14309/ajg.0000000000002675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, but few studies have evaluated mortality risks among individuals with IBS. We explored the association between IBS and all-cause and cause-specific mortality in the UK Biobank. METHODS We included 502,369 participants from the UK Biobank with mortality data through 2022. IBS was defined using baseline self-report and linkage to primary care or hospital admission data. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause and cause-specific mortality using multivariable Cox proportional hazards regression models within partitioned follow-up time categories (0-5, >5-10, and >10 years). RESULTS A total of 25,697 participants (5.1%) had a history of IBS at baseline. After a median follow-up of 13.7 years, a total of 44,499 deaths occurred. Having an IBS diagnosis was strongly associated with lower risks of all-cause (HR = 0.70, 95% CI = 0.62-0.78) and all-cancer (HR = 0.69, 95% CI = 0.60-0.79) mortality in the first 5 years of follow-up. These associations were attenuated over follow-up, but even after 10 years of follow-up, associations remained inverse (all-cause: HR = 0.89, 95% CI = 0.84-0.96; all-cancer: HR = 0.87, 95% CI = 0.78-0.97) after full adjustment. Individuals with IBS had decreased risk of mortality from breast, prostate, and colorectal cancers in some of the follow-up time categories. DISCUSSION We found that earlier during follow-up, having diagnosed IBS was associated with lower mortality risk, and the association attenuated over time. Additional studies to understand whether specific factors, such as lifestyle and healthcare access, explain the inverse association between IBS and mortality are needed.
Collapse
Affiliation(s)
- Fangyu Li
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute; Bethesda, MD, USA
| | - Yukiko Yano
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute; Bethesda, MD, USA
| | - Lola Étiévant
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute; Bethesda, MD, USA
| | - Carrie R. Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | - Shreela V. Sharma
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston; Houston, TX, USA
| | - Eric L. Brown
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston; Houston, TX, USA
| | - Ruosha Li
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston; Houston, TX, USA
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute; Bethesda, MD, USA
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute; Bethesda, MD, USA
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute; Bethesda, MD, USA
| | - Baharak Moshiree
- Division of Gastroenterology, Hepatology, and Nutrition, Atrium Health, Wake Forest University, Charlotte, North Carolina; Charlotte, NC, USA
| | - Maki Inoue-Choi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute; Bethesda, MD, USA
| | - Emily Vogtmann
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute; Bethesda, MD, USA
| |
Collapse
|
30
|
Zhao Y, Zhan J, Sun C, Zhu S, Zhai Y, Dai Y, Wang X, Gao X. Sishen Wan enhances intestinal barrier function via regulating endoplasmic reticulum stress to improve mice with diarrheal irritable bowel syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155541. [PMID: 38579640 DOI: 10.1016/j.phymed.2024.155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Diarrheal irritable bowel syndrome (IBS-D), characterized primarily by the presence of diarrhea and abdominal pain, is a clinical manifestation resulting from a multitude of causative factors. Furthermore, Sishen Wan (SSW) has demonstrated efficacy in treating IBS-D. Nevertheless, its mechanism of action remains unclear. METHODS A model of IBS-D was induced by a diet containing 45 % lactose and chronic unpredictable mild stress. Additionally, the impact of SSW was assessed by measuring body weight, visceral sensitivity, defecation parameters, intestinal transport velocity, intestinal neurotransmitter levels, immunohistochemistry, and transmission electron microscopy analysis. Immunofluorescent staining was used to detect the expression of Mucin 2 (MUC2) and Occludin in the colon. Western blotting was used to detect changes in proteins related to tight junction (TJ), autophagy, and endoplasmic reticulum (ER) stress in the colon. Finally, 16S rRNA amplicon sequencing was used to monitor the alteration of gut microbiota after SSW treatment. RESULTS Our study revealed that SSW administration resulted in reduced visceral sensitivity, improved defecation parameters, decreased intestinal transport velocity, and reduced intestinal permeability in IBS-D mice. Furthermore, SSW promotes the secretion of colonic mucus by enhancing autophagy and inhibiting ER stress. SSW treatment caused remodeling of the gut microbiome by increasing the abundance of Blautia, Muribaculum and Ruminococcus torques group. CONCLUSION SSW can improve intestinal barrier function by promoting autophagy and inhibiting ER stress, thus exerting a therapeutic effect on IBS-D.
Collapse
Affiliation(s)
- Yucui Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaguo Zhan
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixiao Zhu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongna Dai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiaoying Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
31
|
Wu Y, Li S, Lv L, Jiang S, Xu L, Chen H, Li L. Protective effect of Pediococcus pentosaceus Li05 on diarrhea-predominant irritable bowel syndrome in rats. Food Funct 2024; 15:3692-3708. [PMID: 38488110 DOI: 10.1039/d3fo04904c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pediococcus pentosaceus Li05 (Li05) has demonstrated potential benefits in various intestinal and liver diseases, but its potential and mechanisms in relieving diarrhea have not been understood. The objective of this research was to examine the effects and mechanisms of Li05 in rats with diarrhea-predominant irritable bowel syndrome (IBS-D) induced by wrap restrain stress (WRS) and 4% acetic acid. The results demonstrated that Li05 effectively alleviated weight loss, visceral sensitivity and diarrhea in rats with IBS-D. It also improved intestinal and systemic inflammation by reducing the levels of chemokines and proinflammatory cytokines (GRO/KC, RANTES, IL-1β, IL-7, and IL-18). The 5-hydroxytryptamine (5-HT) signaling pathway is involved in regulating excessive intestinal motility and secretion in IBS-D. Li05 effectively reduced the expression levels of the 5-HT3B receptor (5-HT3BR) (p < 0.01) in the intestine. Additionally, Li05 intervention had a regulatory effect on the gut composition, with a decrease in the abundance of [Ruminococcus] gauvreauii group, Dubosiella, Erysipelatoclostridium and Blautia, and an increase in the abundance of Alloprevotella, Anaerotruncus and Mucispirillum. Furthermore, Li05 induced significant changes in fatty acid and amino acid metabolism in the gut of rats with IBS-D. These findings indicate that Li05 exhibits an effective improvement in IBS-D symptoms by reducing inflammation and modulating gut microbiota and metabolism. Based on the above results, Li05 holds promise as a potential probiotic for managing IBS-D.
Collapse
Affiliation(s)
- Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| |
Collapse
|
32
|
Ethier R, Krishnamurthy A, Jeffrey M, Tompkins TA. Profiling of Metabolites in a Fermented Soy Dietary Supplement Reinforces its Role in the Management of Intestinal Inflammation. Mol Nutr Food Res 2024; 68:e2300770. [PMID: 38522032 DOI: 10.1002/mnfr.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Indexed: 03/25/2024]
Abstract
SCOPE Gastro-AD (GAD) is a soy flour derived product that undergoes an industrial fermentation with Lactobacillus delbrueckii R0187 and has demonstrated clinical effects in gastroesophageal reflux and peptic ulcer symptom resolution. The aim of this study is to describe and link GAD's metabolomic profile to plausible mechanisms that manifest and explain the documented clinical outcomes. METHODS AND RESULTS 1H NMR spectroscopy with multivariate statistical analysis is used to characterize the prefermented soy flour and GAD products. The acquired spectra are screened using various resources and the molecular assignments are confirmed using total correlation spectroscopy (TOCSY). Peaks corresponding to different metabolites are integrated and compared between the two products for relative changes. HPLC and GC are used to quantify some specific molecules. NMR analyses demonstrate significant changes in the composition of various assigned bioactive moieties. HPLC and GC analysis demonstrate deglycation of isoflavones after fermentation, resulting in estrogenically active secondary metabolites that have been previously shown to help to reduce inflammation. CONCLUSION The identification of bioactive molecules, such as genistein and SCFAs, capable of modulating anti-inflammatory signaling cascades in the stomach's gastric and neuroendocrine tissues can explain the reported biological effects in GAD and is supported by in vivo data.
Collapse
Affiliation(s)
- Richard Ethier
- Richard Ethier Consulting, Montreal, Quebec, H4C 2J9, Canada
| | - Arun Krishnamurthy
- Purity-IQ Inc., Suite# 102, 150 Research Lane, Guelph, Ontario, N1G 4T2, Canada
| | - Michael Jeffrey
- Faculty of Science, Engineering & Information Technology, Durham College, Oshawa, Ontario, L1G 0C5, Canada
| | - Thomas A Tompkins
- Lallemand Bio-Ingredients, 1620 rue Prefontaine, Montreal, Quebec, H1W 2N8, Canada
| |
Collapse
|
33
|
Liu M, Guo S, Wang L. Systematic review of metabolomic alterations in ulcerative colitis: unveiling key metabolic signatures and pathways. Therap Adv Gastroenterol 2024; 17:17562848241239580. [PMID: 38560428 PMCID: PMC10981261 DOI: 10.1177/17562848241239580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite numerous metabolomic studies on ulcerative colitis (UC), the results have been highly variable, making it challenging to identify key metabolic abnormalities in UC. Objectives This study aims to uncover key metabolites and metabolic pathways in UC by analyzing existing metabolomics data. Design A systematic review. Data sources and methods We conducted a comprehensive search in databases (PubMed, Cochrane Library, Embase, and Web of Science) and relevant study references for metabolomic research on UC up to 28 December 2022. Significant metabolite differences between UC patients and controls were identified, followed by an analysis of relevant metabolic pathways. Results This review incorporated 78 studies, identifying 2868 differentially expressed metabolites between UC patients and controls. The metabolites were predominantly from 'lipids and lipid-like molecules' and 'organic acids and derivatives' superclasses. We found 101 metabolites consistently altered in multiple datasets within the same sample type and 78 metabolites common across different sample types. Of these, 62 metabolites exhibited consistent regulatory trends across various datasets or sample types. Pathway analysis revealed 22 significantly altered metabolic pathways, with 6 pathways being recurrently enriched across different sample types. Conclusion This study elucidates key metabolic characteristics in UC, offering insights into molecular mechanisms and biomarker discovery for the disease. Future research could focus on validating these findings and exploring their clinical applications.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siyi Guo
- Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Jacobs JP, Sauk JS, Ahdoot AI, Liang F, Katzka W, Ryu HJ, Khandadash A, Lagishetty V, Labus JS, Naliboff BD, Mayer EA. Microbial and Metabolite Signatures of Stress Reactivity in Ulcerative Colitis Patients in Clinical Remission Predict Clinical Flare Risk. Inflamm Bowel Dis 2024; 30:336-346. [PMID: 37650887 PMCID: PMC10906354 DOI: 10.1093/ibd/izad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Stress reactivity (SR) is associated with increased risk of flares in ulcerative colitis (UC) patients. Because both preclinical and clinical data support that stress can influence gut microbiome composition and function, we investigated whether microbiome profiles of SR exist in UC. METHODS Ninety-one UC subjects in clinical and biochemical remission were classified into high and low SR groups by questionnaires. Baseline and longitudinal characterization of the intestinal microbiome was performed by 16S rRNA gene sequencing and fecal and plasma global untargeted metabolomics. Microbe, fecal metabolite, and plasma metabolite abundances were analyzed separately to create random forest classifiers for high SR and biomarker-derived SR scores. RESULTS High SR reactivity was characterized by altered abundance of fecal microbes, primarily in the Ruminococcaceae and Lachnospiraceae families; fecal metabolites including reduced levels of monoacylglycerols (endocannabinoid-related) and bile acids; and plasma metabolites including increased 4-ethyl phenyl sulfate, 1-arachidonoylglycerol (endocannabinoid), and sphingomyelin. Classifiers generated from baseline microbe, fecal metabolite, and plasma metabolite abundance distinguished high vs low SR with area under the receiver operating characteristic curve of 0.81, 0.83, and 0.91, respectively. Stress reactivity scores derived from these classifiers were significantly associated with flare risk during 6 to 24 months of follow-up, with odds ratios of 3.8, 4.1, and 4.9. Clinical flare and intestinal inflammation did not alter fecal microbial abundances but attenuated fecal and plasma metabolite differences between high and low SR. CONCLUSIONS High SR in UC is characterized by microbial signatures that predict clinical flare risk, suggesting that the microbiome may contribute to stress-induced UC flares.
Collapse
Affiliation(s)
- Jonathan P Jacobs
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jenny S Sauk
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Aaron I Ahdoot
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fengting Liang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William Katzka
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hyo Jin Ryu
- A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, USA
| | - Ariela Khandadash
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA, USA
| | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jennifer S Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Bruce D Naliboff
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
35
|
Cui L, Zou S, Liu J, Lv H, Li H, Zhang Z. Potential effects of sodium hyaluronate on constipation-predominant irritable bowel syndrome. Int Immunopharmacol 2024; 127:111404. [PMID: 38128311 DOI: 10.1016/j.intimp.2023.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Treatment strategies for constipation-predominant irritable bowel syndrome (IBS-C) continue to improve. However, effective drugs are still lacking. Herein, we explored whether sodium hyaluronate (SH) could be used to treat IBS-C. The effects of SH with different molecular weights were compared in a rat model of IBS-C. Low-molecular-weight SH (LMW-SH, 5 ∼ 10 kDa), medium-molecular-weight SH (MMW-SH, 200 ∼ 400 kDa), and high-molecular-weight SH (HMW-SH, 1300 ∼ 1500 kDa) were screened for efficacy in IBS-C using the following indicators: body weight, number of fecal pellets, fecal moisture, visceral hypersensitivity, and gastrointestinal transit rate. H-HMW-SH was the most effective in improving IBS-C symptoms. The ELISA kits indicated that H-HMW-SH reduced the levels of pro-inflammatory cytokines IL-1β, IL-18, and TNF-α in IBS-C rats. In addition, both western blot and immunofluorescence analyses showed that H-HMW-SH increased the protein expressions of claudin-1, occludin and zonula occludens-1. Furthermore, H-HMW-SH restored the balance of intestinal flora in different intestinal contents (duodenum, jejunum, ileum, and colon) and feces of rats with IBS-C. Overall, our study illustrates the therapeutic potential of H-HMW-SH in the treatment of IBS-C.
Collapse
Affiliation(s)
- Li Cui
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Shuting Zou
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Jing Liu
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China
| | - Huixia Lv
- School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Hui Li
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China.
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China.
| |
Collapse
|
36
|
Zheludev IN, Edgar RC, Lopez-Galiano MJ, de la Peña M, Babaian A, Bhatt AS, Fire AZ. Viroid-like colonists of human microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576352. [PMID: 38293115 PMCID: PMC10827157 DOI: 10.1101/2024.01.20.576352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Here, we describe the "Obelisks," a previously unrecognised class of viroid-like elements that we first identified in human gut metatranscriptomic data. "Obelisks" share several properties: (i) apparently circular RNA ~1kb genome assemblies, (ii) predicted rod-like secondary structures encompassing the entire genome, and (iii) open reading frames coding for a novel protein superfamily, which we call the "Oblins". We find that Obelisks form their own distinct phylogenetic group with no detectable sequence or structural similarity to known biological agents. Further, Obelisks are prevalent in tested human microbiome metatranscriptomes with representatives detected in ~7% of analysed stool metatranscriptomes (29/440) and in ~50% of analysed oral metatranscriptomes (17/32). Obelisk compositions appear to differ between the anatomic sites and are capable of persisting in individuals, with continued presence over >300 days observed in one case. Large scale searches identified 29,959 Obelisks (clustered at 90% nucleotide identity), with examples from all seven continents and in diverse ecological niches. From this search, a subset of Obelisks are identified to code for Obelisk-specific variants of the hammerhead type-III self-cleaving ribozyme. Lastly, we identified one case of a bacterial species (Streptococcus sanguinis) in which a subset of defined laboratory strains harboured a specific Obelisk RNA population. As such, Obelisks comprise a class of diverse RNAs that have colonised, and gone unnoticed in, human, and global microbiomes.
Collapse
Affiliation(s)
- Ivan N Zheludev
- Stanford University, Department of Biochemistry, Stanford, CA, USA
| | | | - Maria Jose Lopez-Galiano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Artem Babaian
- University of Toronto, Department of Molecular Genetics, Ontario, Canada
- University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Ontario, Canada
| | - Ami S Bhatt
- Stanford University, Department of Genetics, Stanford, CA, USA
- Stanford University, Department of Medicine, Division of Hematology, Stanford, CA, USA
| | - Andrew Z Fire
- Stanford University, Department of Genetics, Stanford, CA, USA
- Stanford University, Department of Pathology, Stanford, CA, USA
| |
Collapse
|
37
|
Wu J, Singleton SS, Bhuiyan U, Krammer L, Mazumder R. Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning. Front Mol Biosci 2024; 10:1337373. [PMID: 38313584 PMCID: PMC10834744 DOI: 10.3389/fmolb.2023.1337373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
The human gastrointestinal (gut) microbiome plays a critical role in maintaining host health and has been increasingly recognized as an important factor in precision medicine. High-throughput sequencing technologies have revolutionized -omics data generation, facilitating the characterization of the human gut microbiome with exceptional resolution. The analysis of various -omics data, including metatranscriptomics, metagenomics, glycomics, and metabolomics, holds potential for personalized therapies by revealing information about functional genes, microbial composition, glycans, and metabolites. This multi-omics approach has not only provided insights into the role of the gut microbiome in various diseases but has also facilitated the identification of microbial biomarkers for diagnosis, prognosis, and treatment. Machine learning algorithms have emerged as powerful tools for extracting meaningful insights from complex datasets, and more recently have been applied to metagenomics data via efficiently identifying microbial signatures, predicting disease states, and determining potential therapeutic targets. Despite these rapid advancements, several challenges remain, such as key knowledge gaps, algorithm selection, and bioinformatics software parametrization. In this mini-review, our primary focus is metagenomics, while recognizing that other -omics can enhance our understanding of the functional diversity of organisms and how they interact with the host. We aim to explore the current intersection of multi-omics, precision medicine, and machine learning in advancing our understanding of the gut microbiome. A multidisciplinary approach holds promise for improving patient outcomes in the era of precision medicine, as we unravel the intricate interactions between the microbiome and human health.
Collapse
Affiliation(s)
- Jingyue Wu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Stephanie S. Singleton
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Urnisha Bhuiyan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lori Krammer
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, United States
| |
Collapse
|
38
|
Kraimi N, Ross T, Pujo J, De Palma G. The gut microbiome in disorders of gut-brain interaction. Gut Microbes 2024; 16:2360233. [PMID: 38949979 PMCID: PMC11218806 DOI: 10.1080/19490976.2024.2360233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs), chronic disorders characterized by either abdominal pain, altered intestinal motility, or their combination, have a worldwide prevalence of more than 40% and impose a high socioeconomic burden with a significant decline in quality of life. Recently, FGIDs have been reclassified as disorders of gut-brain interaction (DGBI), reflecting the key role of the gut-brain bidirectional communication in these disorders and their impact on psychological comorbidities. Although, during the past decades, the field of DGBIs has advanced significantly, the molecular mechanisms underlying DGBIs pathogenesis and pathophysiology, and the role of the gut microbiome in these processes are not fully understood. This review aims to discuss the latest body of literature on the complex microbiota-gut-brain interactions and their implications in the pathogenesis of DGBIs. A better understanding of the existing communication pathways between the gut microbiome and the brain holds promise in developing effective therapeutic interventions for DGBIs.
Collapse
Affiliation(s)
- Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Taylor Ross
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Julien Pujo
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| |
Collapse
|
39
|
Liao L, Su BB, Xu SP. Helicobacter pylori infection and small intestinal bacterial overgrowth: a systematic review and meta-analysis. BMC Microbiol 2023; 23:386. [PMID: 38053022 PMCID: PMC10698970 DOI: 10.1186/s12866-023-03063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/14/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND There is a link between Helicobacter pylori (HP) infection and small intestinal bacterial overgrowth (SIBO) with nonspecific digestive symptoms. Nonetheless, whether HP infection is associated with SIBO in adults remains unclear. Based on a meta-analysis, we evaluated this relationship. RESULTS Observational studies relevant to our research were identified by searching PubMed, Embase, the Cochrane Library, and the Web of Science. We evaluated between-study heterogeneity using the Cochrane Q test and estimated the I2 statistic. Random-effects models were used when significant heterogeneity was observed; otherwise, fixed-effects models were used. Ten datasets from eight studies, including 874 patients, were involved in the meta-analysis. It was shown that HP infection was related to a higher odds of SIBO (odds ratio [OR]: 1.82, 95% confidence interval: 1.29 to 2.58, p < 0.001) with mild heterogeneity (p for Cochrane Q test = 0.11, I2 = 7%). Subgroup analyses showed that HP infection was related to SIBO in young patients (mean age < 48 years, OR: 2.68, 95% CI: 1.67 to 4.28, p < 0.001; I2 = 15%) but not in older patients (mean age ≥ 48 years, OR: 1.15, 95% CI: 0.69 to 1.92, p < 0.60; I2 = 1%; p for subgroup difference = 0.02). Subgroup analyses further indicated that the association was not significantly affected by the country of study, comorbidities, exposure to proton pump inhibitors, or methods of evaluating HP infection and SIBO. CONCLUSIONS HP infection may be related to SIBO in adults, which supports the detection of SIBO in patients with digestive symptoms and HP infection.
Collapse
Affiliation(s)
- Liang Liao
- Department of Gastroenterology, The Second Medical Center of PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Bin-Bin Su
- Department of Gastroenterology, The Second Medical Center of PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Shi-Ping Xu
- Department of Gastroenterology, The Second Medical Center of PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
40
|
Gargari G, Mantegazza G, Taverniti V, Gardana C, Valenza A, Rossignoli F, Barbaro MR, Marasco G, Cremon C, Barbara G, Guglielmetti S. Fecal short-chain fatty acids in non-constipated irritable bowel syndrome: a potential clinically relevant stratification factor based on catabotyping analysis. Gut Microbes 2023; 15:2274128. [PMID: 37910479 PMCID: PMC10773536 DOI: 10.1080/19490976.2023.2274128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
The gut microbiota is believed to be a critical factor in the pathogenesis of IBS, and its metabolic byproducts, such as short-chain fatty acids (SCFAs), are known to influence gut function and host health. Despite this, the precise role of SCFAs in IBS remains a topic of debate. In this study, we examined the bacterial community structure by 16S rRNA gene profiling and SCFA levels by UPLC-MS/MS in fecal samples from healthy controls (HC; n = 100) and non-constipated patients (IBS-D and IBS-M; NC-IBS; n = 240) enrolled in 19 hospitals in Italy. Our findings suggest a significant difference between the fecal microbiomes of NC-IBS patients and HC subjects, with HC exhibiting higher intra-sample biodiversity. Furthermore, we were able to classify non-constipated patients into two distinct subgroups based on their fecal SCFA levels (fecal catabotype "high" and "low"), each characterized by unique taxonomic bacterial signatures. Our results suggest that the fecal catabotype with higher SCFA levels may represent a distinct clinical phenotype of IBS that could have implications for its diagnosis and treatment. This study provides a new perspective on the intricate relationship between the gut microbiome and bowel symptoms in IBS, underscoring the importance of personalized strategies for its management.
Collapse
Affiliation(s)
- Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Claudio Gardana
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Alice Valenza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Federico Rossignoli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Maria Raffaella Barbaro
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cesare Cremon
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Barbara
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
41
|
Zheng H, Zhang C, Zhang J, Duan L. "Sentinel or accomplice": gut microbiota and microglia crosstalk in disorders of gut-brain interaction. Protein Cell 2023; 14:726-742. [PMID: 37074139 PMCID: PMC10599645 DOI: 10.1093/procel/pwad020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
Abnormal brain-gut interaction is considered the core pathological mechanism behind the disorders of gut-brain interaction (DGBI), in which the intestinal microbiota plays an important role. Microglia are the "sentinels" of the central nervous system (CNS), which participate in tissue damage caused by traumatic brain injury, resist central infection and participate in neurogenesis, and are involved in the occurrence of various neurological diseases. With in-depth research on DGBI, we could find an interaction between the intestinal microbiota and microglia and that they are jointly involved in the occurrence of DGBI, especially in individuals with comorbidities of mental disorders, such as irritable bowel syndrome (IBS). This bidirectional regulation of microbiota and microglia provides a new direction for the treatment of DGBI. In this review, we focus on the role and underlying mechanism of the interaction between gut microbiota and microglia in DGBI, especially IBS, and the corresponding clinical application prospects and highlight its potential to treat DGBI in individuals with psychiatric comorbidities.
Collapse
Affiliation(s)
- Haonan Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| |
Collapse
|
42
|
Paripati N, Nesi L, Sterrett JD, Dawud LM, Kessler LR, Lowry CA, Perez LJ, DeSipio J, Phadtare S. Gut Microbiome and Lipidome Signatures in Irritable Bowel Syndrome Patients from a Low-Income, Food-Desert Area: A Pilot Study. Microorganisms 2023; 11:2503. [PMID: 37894161 PMCID: PMC10609137 DOI: 10.3390/microorganisms11102503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastroenterological disorder with triggers such as fructose. We showed that our IBS patients suffering from socioeconomic challenges have a significantly high consumption of high-fructose corn syrup (HFCS). Here, we characterize gut microbial dysbiosis and fatty acid changes, with respect to IBS, HFCS consumption, and socioeconomic factors. Fecal samples from IBS patients and healthy controls were subjected to microbiome and lipidome analyses. We assessed phylogenetic diversity and community composition of the microbiomes, and used linear discriminant analysis effect size (LEfSe), analysis of compositions of microbiomes (ANCOM) on highly co-occurring subcommunities (modules), least absolute shrinkage and selection operator (LASSO) on phylogenetic isometric log-ratio transformed (PhILR) taxon abundances to identify differentially abundant taxa. Based on a Procrustes randomization test, the microbiome and lipidome datasets correlated significantly (p = 0.002). Alpha diversity correlated with economic factors (p < 0.001). Multiple subsets of the phylogenetic tree were associated with HFCS consumption (p < 0.001). In IBS patients, relative abundances of potentially beneficial bacteria such as Monoglobaceae, Lachnospiraceae, and Ruminococcaceae were lower (p = 0.007), and Eisenbergiella, associated with inflammatory disorders, was higher. In IBS patients, certain saturated fatty acids were higher and unsaturated fatty acids were lower (p < 0.05). Our study aims first to underscore the influence of HFCS consumption and socioeconomic factors on IBS pathophysiology, and provides new insights that inform patient care.
Collapse
Affiliation(s)
- Nikita Paripati
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Department of Emergency Medicine, Penn Medicine, Pittsburgh, PA 15261, USA
| | - Lauren Nesi
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Department of Urology, Detroit Medical Center, Detroit, MI 4820, USA
| | - John D Sterrett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lamya'a M Dawud
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lyanna R Kessler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lark J Perez
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Joshua DeSipio
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Department of Gastroenterology, Cooper University Hospital, Camden, NJ 08103, USA
| | - Sangita Phadtare
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
43
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
44
|
Hu M, Zhu J, Peng G, Lu W, Wang H, Xie Z. IMOVNN: incomplete multi-omics data integration variational neural networks for gut microbiome disease prediction and biomarker identification. Brief Bioinform 2023; 24:bbad394. [PMID: 37930027 DOI: 10.1093/bib/bbad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/03/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
The gut microbiome has been regarded as one of the fundamental determinants regulating human health, and multi-omics data profiling has been increasingly utilized to bolster the deep understanding of this complex system. However, stemming from cost or other constraints, the integration of multi-omics often suffers from incomplete views, which poses a great challenge for the comprehensive analysis. In this work, a novel deep model named Incomplete Multi-Omics Variational Neural Networks (IMOVNN) is proposed for incomplete data integration, disease prediction application and biomarker identification. Benefiting from the information bottleneck and the marginal-to-joint distribution integration mechanism, the IMOVNN can learn the marginal latent representation of each individual omics and the joint latent representation for better disease prediction. Moreover, owing to the feature-selective layer predicated upon the concrete distribution, the model is interpretable and can identify the most relevant features. Experiments on inflammatory bowel disease multi-omics datasets demonstrate that our method outperforms several state-of-the-art methods for disease prediction. In addition, IMOVNN has identified significant biomarkers from multi-omics data sources.
Collapse
Affiliation(s)
- Mingyi Hu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenping Xie
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| |
Collapse
|
45
|
Gautam A, Bhowmik D, Basu S, Zeng W, Lahiri A, Huson DH, Paul S. Microbiome Metabolome Integration Platform (MMIP): a web-based platform for microbiome and metabolome data integration and feature identification. Brief Bioinform 2023; 24:bbad325. [PMID: 37771003 DOI: 10.1093/bib/bbad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/12/2023] [Indexed: 09/30/2023] Open
Abstract
A microbial community maintains its ecological dynamics via metabolite crosstalk. Hence, knowledge of the metabolome, alongside its populace, would help us understand the functionality of a community and also predict how it will change in atypical conditions. Methods that employ low-cost metagenomic sequencing data can predict the metabolic potential of a community, that is, its ability to produce or utilize specific metabolites. These, in turn, can potentially serve as markers of biochemical pathways that are associated with different communities. We developed MMIP (Microbiome Metabolome Integration Platform), a web-based analytical and predictive tool that can be used to compare the taxonomic content, diversity variation and the metabolic potential between two sets of microbial communities from targeted amplicon sequencing data. MMIP is capable of highlighting statistically significant taxonomic, enzymatic and metabolic attributes as well as learning-based features associated with one group in comparison with another. Furthermore, MMIP can predict linkages among species or groups of microbes in the community, specific enzyme profiles, compounds or metabolites associated with such a group of organisms. With MMIP, we aim to provide a user-friendly, online web server for performing key microbiome-associated analyses of targeted amplicon sequencing data, predicting metabolite signature, and using learning-based linkage analysis, without the need for initial metabolomic analysis, and thereby helping in hypothesis generation.
Collapse
Affiliation(s)
- Anupam Gautam
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Debaleena Bhowmik
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayantani Basu
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Wenhuan Zeng
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2064: Machine Learning: New Perspectives for Science, University of Tübingen, Tübingen, Germany
| | - Abhishake Lahiri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, West Bengal, India
| | - Daniel H Huson
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Sandip Paul
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, West Bengal, India
| |
Collapse
|
46
|
Vanstokstraeten R, Demuyser T, Piérard D, Wybo I, Blockeel C, Mackens S. Culturomics in Unraveling the Upper Female Reproductive Tract Microbiota. Semin Reprod Med 2023; 41:151-159. [PMID: 38101449 DOI: 10.1055/s-0043-1777758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In recent years, the study of the human microbiome has surged, shedding light on potential connections between microbiome composition and various diseases. One specific area of intense interest within this research is the female reproductive tract, as it holds the potential to influence the process of embryo implantation. Advanced sequencing technologies have delivered unprecedented insights into the microbial communities, also known as microbiota, residing in the female reproductive tract. However, their efficacy encounters significant challenges when analyzing low-biomass microbiota, such as those present in the endometrium. These molecular techniques are susceptible to contamination from laboratory reagents and extraction kits, leading to sequencing bias that can significantly alter the perceived taxonomy of a sample. Consequently, investigating the microbiota of the upper female reproductive tract necessitates the exploration of alternative methods. In this context, the current review delves into the application of culturomics in unraveling the upper female reproductive tract microbiota. While culturomics holds value in research, its transition to routine clinical practice appears remote, at least in the foreseeable future.
Collapse
Affiliation(s)
- Robin Vanstokstraeten
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Thomas Demuyser
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- AIMS Lab, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ingrid Wybo
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Christophe Blockeel
- Brussels IVF, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Shari Mackens
- Brussels IVF, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
47
|
Castillo DF, Denson LA, Haslam DB, Hommel KA, Ollberding NJ, Sahay R, Santucci NR. The microbiome in adolescents with irritable bowel syndrome and changes with percutaneous electrical nerve field stimulation. Neurogastroenterol Motil 2023; 35:e14573. [PMID: 37092330 PMCID: PMC10729794 DOI: 10.1111/nmo.14573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS), a disorder of the gut-brain axis, is affected by the microbiome. Microbial studies in pediatric IBS, especially for centrally mediated treatments, are lacking. We compared the microbiome between pediatric IBS patients and healthy controls (HC), in relation to symptom severity, and with percutaneous electrical nerve field stimulation (PENFS), a non-invasive treatment targeting central pain pathways. METHODS We collected a stool sample, questionnaires and a 1-2 week stool and pain diary from 11 to 18 years patients with IBS. A patient subset completed 4 weeks of PENFS and repeated data collection immediately after and/or 3 months after treatment. Stool samples were collected from HC. Samples underwent metagenomic sequencing to evaluate diversity, composition, and abundance of species and MetaCyc pathways. KEY RESULTS We included 27 cases (15.4 ± 2.5 year) and 34 HC (14.2 ± 2.9 year). Twelve species including Firmicutes spp., and carbohydrate degradation/long-chain fatty acid (LCFA) synthesis pathways, were increased in IBS but not statistically significantly associated with symptom severity. Seventeen participants (female) who completed PENFS showed improvements in pain (p = 0.012), disability (p = 0.007), and catastrophizing (p = 0.003). Carbohydrate degradation and LCFA synthesis pathways decreased post-treatment and at follow-up (FDR p-value <0.1). CONCLUSIONS AND INFERENCES Firmicutes, including Clostridiaceae spp., and LCFA synthesis pathways were increased in IBS patients suggesting pain-potentiating effects. PENFS led to marked improvements in abdominal pain, functioning, and catastrophizing, while Clostridial species and LCFA microbial pathways decreased with treatment, suggesting these as potential targets for IBS centrally mediated treatments.
Collapse
Affiliation(s)
- Daniel F. Castillo
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David B. Haslam
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kevin A. Hommel
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nicholas J. Ollberding
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rashmi Sahay
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Neha R. Santucci
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
48
|
Shaikh SD, Sun N, Canakis A, Park WY, Weber HC. Irritable Bowel Syndrome and the Gut Microbiome: A Comprehensive Review. J Clin Med 2023; 12:jcm12072558. [PMID: 37048642 PMCID: PMC10095554 DOI: 10.3390/jcm12072558] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Irritable Bowel Syndrome (IBS) is a functional disorder of the gastrointestinal tract characterized by abdominal pain and altered bowel habits. It has a prevalence of 10 to 25% in the United States and has a high disease burden, as evidenced by reduced quality of life, decreased work productivity and increased healthcare utilization and costs. IBS has been associated with several intra-intestinal and extra-intestinal conditions, including psychiatric comorbidities. Although the pathophysiology of IBS has not been fully elucidated, it involves dysregulation of communication between the brain and gut (brain–gut axis) which is associated with alterations in intestinal motility, gut permeability, visceral hypersensitivity and gut microbiota composition. The purpose of this article is to review the role the gut microbiota plays in the pathophysiology of IBS, understand factors that affect the gut microbiome and explore the microbiome as a target of treatment.
Collapse
|
49
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 268] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|