1
|
Ma J, Wang S, Zhang P, Zheng S, Li X, Li J, Pei H. Emerging roles for fatty acid oxidation in cancer. Genes Dis 2025; 12:101491. [PMID: 40290117 PMCID: PMC12022645 DOI: 10.1016/j.gendis.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/09/2024] [Indexed: 04/30/2025] Open
Abstract
Fatty acid oxidation (FAO) denotes the mitochondrial aerobic process responsible for breaking down fatty acids (FAs) into acetyl-CoA units. This process holds a central position in the cancer metabolic landscape, with certain tumor cells relying primarily on FAO for energy production. Over the past decade, mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth, epigenetic modifications, tissue-immune homeostasis, cell signal transduction, and more. FAO is tightly regulated by multiple evolutionarily conserved mechanisms, and any dysregulation can predispose to cancer development. In this view, we summarize recent findings to provide an updated understanding of the multifaceted roles of FAO in tumor development, metastasis, and the response to cancer therapy. Additionally, we explore the regulatory mechanisms of FAO, laying the groundwork for potential therapeutic interventions targeting FAO in cancers within the metabolic landscape.
Collapse
Affiliation(s)
- Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Smith KW, Fecke A, Kasarla SS, Phapale P. Large-Scale Metabolite Imaging Gallery of Mouse Organ Tissues to Study Spatial Metabolism. J Proteome Res 2025. [PMID: 40294336 DOI: 10.1021/acs.jproteome.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Mass spectrometry imaging (MSI) has revolutionized the study of tissue metabolism by enabling the visualization of small molecule metabolites (SMMs) with high spatial resolution. However, comprehensive SMM imaging databases for different organ tissues are lacking, hindering our understanding of spatial organ metabolism. To address this resource gap, we present a large-scale SMM imaging gallery for mouse brain, kidney, and liver, capturing SMMs spanning eight chemical super classes and encompassing over 40 metabolic pathways. Manual curation and display of these imaging data sets unveil spatial patterns of metabolites that are less documented in the reported organs. Specifically, we identify 65 SMMs in brain coronal sections and 71 in sagittal tissue sections, including spatial patterns for neurotransmitters. Furthermore, we map 98 SMMs in kidneys and 66 SMMs in liver, providing insights into their amino acid and glutathione metabolism. Our insightful SMM imaging gallery serves as a critical resource for the spatial metabolism research community, filling a significant resource gap. This resource is freely available for download and can be accessed through the BioImage Archive and METASPACE repositories, providing high-quality annotated images for potential future computational models and advancing our understanding of tissue metabolism at the spatial level.
Collapse
Affiliation(s)
- Karl W Smith
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Antonia Fecke
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Siva Swapna Kasarla
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Prasad Phapale
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| |
Collapse
|
3
|
Fidelito G, Todorovski I, Cluse L, Vervoort SJ, Taylor RA, Watt MJ. Lipid-metabolism-focused CRISPR screens identify enzymes of the mevalonate pathway as essential for prostate cancer growth. Cell Rep 2025; 44:115470. [PMID: 40146774 DOI: 10.1016/j.celrep.2025.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/22/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Dysregulated lipid metabolism plays an important role in prostate cancer, although the understanding of the essential regulatory processes in tumorigenesis is incomplete. We employ a CRISPR-Cas9 screen using a custom human lipid metabolism knockout library to identify essential genes for prostate cancer survival. Screening in three prostate cancer cell lines reveals 63 shared dependencies, with enrichment in terpenoid backbone synthesis and N-glycan biosynthesis. Independent knockout of key genes of the mevalonate pathway reduces cell proliferation. Further investigation focuses on NUS1, a subunit of cis-prenyltransferase required for dolichol synthesis. NUS1 knockout decreases tumor growth in vivo and viability in patient-derived xenograft (PDX)-derived organoids. Mechanistic studies reveal that loss of NUS1 promotes oxidative stress, lipid peroxidation and ferroptosis sensitivity, endoplasmic reticulum (ER) stress, and G1 cell-cycle arrest, and it dampens androgen receptor (AR) signaling, collectively leading to growth arrest. This study highlights the critical role of the mevalonate-dolichol-N-glycan biosynthesis pathway, particularly NUS1, in prostate cancer survival and growth.
Collapse
Affiliation(s)
- Gio Fidelito
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Izabela Todorovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Leonie Cluse
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephin J Vervoort
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Melbourne Urological Research Alliance (MURAL), Monash University, Clayton, VIC 3168, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia.
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
4
|
Godfrey TM, Shanneik Y, Zhang W, Tran T, Verbeeck N, Patterson NH, Jackobs FE, Nagi C, Ramineni M, Eberlin LS. Integrating Ambient Ionization Mass Spectrometry Imaging and Spatial Transcriptomics on the Same Cancer Tissues to Identify RNA-Metabolite Correlations. Angew Chem Int Ed Engl 2025:e202502028. [PMID: 40216587 DOI: 10.1002/anie.202502028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Innovations in spatial omics technologies applied to human tissues have led to breakthrough discoveries in various diseases, including cancer. Two of these approaches-spatial transcriptomics and spatial metabolomics-have blossomed independently, fueled by technologies such as spatial transcriptomics (ST) and mass spectrometry imaging (MSI). Although powerful, these technologies only offer insights into the spatial distributions of restricted classes of molecules and have not yet been integrated to provide more holistic insights into biological questions. These techniques can be performed on adjacent serial sections from the same sample, but section-to-section variability can convolute data integration. We present a novel method combining desorption electrospray ionization mass spectrometry imaging (DESI-MSI) spatial metabolomics and Visium spatial transcriptomics on the same tissue sections. We show that RNA quality is maintained after performing DESI-MSI on a tissue under ambient conditions and that ST data is unperturbed following DESI-MSI. We demonstrate this workflow on human breast and lung cancer tissues and identify novel correlations between metabolites and mRNA transcripts in cancer-specific tissue regions.
Collapse
Affiliation(s)
- Trevor M Godfrey
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yasmin Shanneik
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | | | | | - Faith E Jackobs
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maheshwari Ramineni
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Blilie A, Giskeødegård GF, Nybøen Å, Krossa S, Midtbust E, Gudlaugsson E, Aasprong OG, Skogseth H, Halgunset J, Janssen EAM, Tessem MB, Taskén KA. Biobanking after Radical Prostatectomy: Comparison of Slice and Punch Protocols. Biopreserv Biobank 2025. [PMID: 40206019 DOI: 10.1089/bio.2024.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Background: Biobanking of prostate cancer tissue is crucial for advancing biomarker-guided precision medicine. However, there is no standardized optimal protocol for biobanking prostatectomy specimens. This study aims to compare the representativeness and sustainability of two biobanking protocols-"Punch" and "Slice"-currently used in Norway. Methods: Fresh frozen tissue from 40 radical prostatectomy specimens was biobanked using both the Punch and Slice protocols. Following macroscopic evaluation, a 2 mm thick transverse slice of the prostate (Slice protocol) was collected and stored in an ultra-freezer for future drill biopsy subsampling, guided by histopathological assessment of adjacent formalin-fixed, paraffin-embedded tissue sections. After the slice was collected, five cylindrical tissue samples were punched from the cut surfaces (Punch protocol). Statistical analyses were conducted to compare the sampling precision and time consumption of both protocols. Results: Cancerous tissue was successfully sampled in 87.5% of cases using the Punch protocol and 75% of cases using the Slice protocol. Both methods yielded comparable results in terms of the number of cancerous cores and the ability to sample tissue representing the highest Gleason grade. The mean biobanking time of tissue slices was 4.9 minutes compared to 15.1 minutes for the ready-to-use tissue punches. Both methods have previously been shown to provide high-quality RNA extracts. Conclusion: Both biobanking protocols are effective for sampling prostate cancer tissue, with no significant difference in precision or quality. The choice between protocols should consider factors such as resource availability, tissue quantity, and specific research needs. The Punch protocol is less resource-intensive overall, while the Slice protocol collects vastly more tissue, has a shorter period of ischemia, and provides detailed mapping of biobanked components, allowing for further subsampling at multiple time points.
Collapse
Affiliation(s)
- Anders Blilie
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| | - Guro F Giskeødegård
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Åsmund Nybøen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Sebastian Krossa
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Central staff, St. Olavs Hospital HF, Trondheim, Norway
| | - Elise Midtbust
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Einar Gudlaugsson
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | | | - Haakon Skogseth
- Department of Research and Development, St. Olavs Hospital , Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jostein Halgunset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
- Institute for Biomedicine and Glycomics, Griffith University, Queensland, Australia
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kristin Austlid Taskén
- Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Dudka I, Figueira J, Wikström P, Bergh A, Gröbner G. Metabolic readouts of tumor instructed normal tissues (TINT) identify aggressive prostate cancer subgroups for tailored therapy. Front Mol Biosci 2025; 12:1426949. [PMID: 40260402 PMCID: PMC12009692 DOI: 10.3389/fmolb.2025.1426949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 03/07/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Prostate cancer (PC) diagnosis relies on histopathological examination of prostate biopsies, which is restricted by insufficient sampling of all tumors present. Including samples from non-PC but tumor instructed normal tissues (TINT) may increase the diagnostic power by displaying the adaptive responses in benign tissues near tumors. Methods Here, we applied high-resolution magic angle spinning nuclear magnetic resonance (HR MAS NMR) to identify metabolomic biomarkers of possible diagnostic value in benign prostate tissues near low/high-grade tumors. Results Benign samples near high-grade tumors (B ISUP 3 + 4) exhibited altered metabolic profiles compared to those close to low-grade tumors (B ISUP 1 + 2). The levels of six metabolites differentiated between the two groups; myo-inositol, lysine, serine and combined signal of lysine/leucine/arginine were increased in benign samples near high-grade tumors (B ISUP 3 + 4) compared to near low-grade tumors (B ISUP 1 + 2), while levels of ethanolamine and lactate were decreased. Additionally, we revealed metabolic differences in non-cancer tissues as a function of their distance to the nearest tumor. Eight metabolites (glutathione, glutamate, combined signal of glutamate/glutamine - glx, glycerol, inosine, ethanolamine, serine and arginine) differentiated between benign tissue located close to the tumor (d ≤ 5 mm) compared to those far away (d ≥ 1 cm). Conclusion Our HR MAS NMR-based approach identified metabolic signatures in prostate biopsies that reflect the response of benign tissues to the presence of nearby located tumors in the same prostate and confirmed the power of the TINT concept for improved PC diagnostics and understanding of tumor-tissue interactions.
Collapse
Affiliation(s)
- Ilona Dudka
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - João Figueira
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
7
|
Altea-Manzano P, Decker-Farrell A, Janowitz T, Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat Rev Cancer 2025; 25:274-292. [PMID: 39833533 DOI: 10.1038/s41568-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Ayelet Erez
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Kay EJ, Zanivan S. The tumor microenvironment is an ecosystem sustained by metabolic interactions. Cell Rep 2025; 44:115432. [PMID: 40088447 DOI: 10.1016/j.celrep.2025.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/09/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) and immune cells make up two major components of the tumor microenvironment (TME), contributing to an ecosystem that can either support or restrain cancer progression. Metabolism is a key regulator of the TME, providing a means for cells to communicate with and influence each other, modulating tumor progression and anti-tumor immunity. Cells of the TME can metabolically interact directly through metabolite secretion and consumption or by influencing other aspects of the TME that, in turn, stimulate metabolic rewiring in target cells. Recent advances in understanding the subtypes and plasticity of cells in the TME both open up new avenues and create challenges for metabolically targeting the TME to hamper tumor growth and improve response to therapy. This perspective explores ways in which the CAF and immune components of the TME could metabolically influence each other, based on current knowledge of their metabolic states, interactions, and subpopulations.
Collapse
Affiliation(s)
- Emily Jane Kay
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK.
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Ding B, Meng W, Zang X, Lv Z. Metabolic characteristics of prostate cancer cells with high metastatic potential revealed by (S)-ethyl 1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate inhibition. J Pharm Biomed Anal 2025; 255:116611. [PMID: 39662125 DOI: 10.1016/j.jpba.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024]
Abstract
A small molecule, (S)-ethyl 1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate (SEC), has been reported to be capable of suppressing metastasis of prostate cancer (PCa) cells. In this study, SEC was used to study the metabolic responses of PCa cell lines (LNCaP, PC3, and DU145) with different metastatic potential and the alterations of mTOR, p-mTOR, AMPK, and p-AMPK levels, when the PCa cells were inhibited. The ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based analysis showed that SEC induced the decreases of intracellular metabolites including glutamic acid, glutamine, and histidine (LNCaP); creatinine, citric acid/isocitric acid, and aspartic acid (PC3); and spermidine, S-hydroxymethylglutathione, LPE (20:3), and palmitic amide (DU145), and the increases of intracellular LPC (18:0) (LNCaP); tyrosine, pyroglutamic acid/pyrroline hydroxycarboxylic acid (PC3); and tyrosine, phenylalanine, phenylacetylglycine, spermine, histidine, and choline (DU145). SEC also caused the decrease of extracellular N1-acetylspermidine (LNCaP), erythronic acid/threonic acid (PC3 and DU145), and nicotinic acid/picolinic acid (DU145), and the increase of extracellular 5'-methylthioadenosine (DU145). High metastatic PC3 and DU145 cells exhibited changes in aromatic amino acid metabolism including tyrosine metabolism, phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism (PC3 and DU145), TCA cycle (PC3), arginine and proline metabolism, and glycerophospholipid metabolism (DU145), different from the low metastatic LNCaP cells, which had changes in alanine, aspartate, and glutamate metabolism, and arginine biosynthesis. In addition, the levels of p-mTOR and p-AMPK were shown to be obviously downregulated and upregulated, respectively, in high metastatic PC3 and DU145 cells upon SEC inhibition, while this behavior was not detected in LNCaP cells.
Collapse
Affiliation(s)
- Baoyan Ding
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Wei Meng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China.
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China
| |
Collapse
|
10
|
Wess M, Andersen MK, Midtbust E, Guillem JCC, Viset T, Størkersen Ø, Krossa S, Rye MB, Tessem MB. Spatial integration of multi-omics data from serial sections using the novel Multi-Omics Imaging Integration Toolset. Gigascience 2025; 14:giaf035. [PMID: 40366868 PMCID: PMC12077394 DOI: 10.1093/gigascience/giaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/11/2025] [Accepted: 03/05/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Truly understanding the cancer biology of heterogeneous tumors in precision medicine requires capturing the complexities of multiple omics levels and the spatial heterogeneity of cancer tissue. Techniques like mass spectrometry imaging (MSI) and spatial transcriptomics (ST) achieve this by spatially detecting metabolites and RNA but are often applied to serial sections. To fully leverage the advantage of such multi-omics data, the individual measurements need to be integrated into 1 dataset. RESULTS We present the Multi-Omics Imaging Integration Toolset (MIIT), a Python framework for integrating spatially resolved multi-omics data. A key component of MIIT's integration is the registration of serial sections for which we developed a nonrigid registration algorithm, GreedyFHist. We validated GreedyFHist on 244 images from fresh-frozen serial sections, achieving state-of-the-art performance. As a proof of concept, we used MIIT to integrate ST and MSI data from prostate tissue samples and assessed the correlation of a gene signature for citrate-spermine secretion derived from ST with metabolic measurements from MSI. CONCLUSION MIIT is a highly accurate, customizable, open-source framework for integrating spatial omics technologies performed on different serial sections.
Collapse
Affiliation(s)
- Maximilian Wess
- Department of Circulation and Medical Imaging, NTNU–Norwegian University of Science and Technology, Trondheim, 7491, Norway
- ELIXIR, Norway
| | - Maria K Andersen
- Department of Circulation and Medical Imaging, NTNU–Norwegian University of Science and Technology, Trondheim, 7491, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7006, Norway
| | - Elise Midtbust
- Department of Circulation and Medical Imaging, NTNU–Norwegian University of Science and Technology, Trondheim, 7491, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7006, Norway
| | - Juan Carlos Cabellos Guillem
- Department of Circulation and Medical Imaging, NTNU–Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Trond Viset
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
| | - Øystein Størkersen
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
| | - Sebastian Krossa
- Department of Circulation and Medical Imaging, NTNU–Norwegian University of Science and Technology, Trondheim, 7491, Norway
- Central staff, St. Olavs Hospital HF, Trondheim, 7006, Norway
| | - Morten Beck Rye
- ELIXIR, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7006, Norway
- Department of Clinical and Molecular Medicine, NTNU–Norwegian University of Science and Technology, Trondheim, 7491, Norway
- Clinic of Laboratory Medicine, St.Olavs Hospital, Trondheim University Hospital, Trondheim, 7006, Norway
- BioCore–Bioinformatics Core Facility, NTNU–Norwegian University of Science and Technology, Trondheim, 7030, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, NTNU–Norwegian University of Science and Technology, Trondheim, 7491, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7006, Norway
| |
Collapse
|
11
|
Kulasinghe A, Berrell N, Donovan ML, Nilges BS. Spatial-Omics Methods and Applications. Methods Mol Biol 2025; 2880:101-146. [PMID: 39900756 DOI: 10.1007/978-1-0716-4276-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Traditional tissue profiling approaches have evolved from bulk studies to single-cell analysis over the last decade; however, the spatial context in tissues and microenvironments has always been lost. Over the last 5 years, spatial technologies have emerged that enabled researchers to investigate tissues in situ for proteins and transcripts without losing anatomy and histology. The field of spatial-omics enables highly multiplexed analysis of biomolecules like RNAs and proteins in their native spatial context-and has matured from initial proof-of-concept studies to a thriving field with widespread applications from basic research to translational and clinical studies. While there has been wide adoption of spatial technologies, there remain challenges with the standardization of methodologies, sample compatibility, throughput, resolution, and ease of use. In this chapter, we discuss the current state of the field and highlight technological advances and limitations.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | - Naomi Berrell
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | - Meg L Donovan
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | | |
Collapse
|
12
|
López-Hernández Y, Andres-Lacueva C, Wishart DS, Torres-Calzada C, Martínez-Huélamo M, Almanza-Aguilera E, Zamora-Ros R. Prostate cancer risk biomarkers from large cohort and prospective metabolomics studies: A systematic review. Transl Oncol 2025; 51:102196. [PMID: 39580963 PMCID: PMC11625367 DOI: 10.1016/j.tranon.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. The heterogeneous nature of this disease presents challenges in its diagnosis, prognosis, and treatment. Numerous potential predictive, diagnostic, prognostic, and risk assessment biomarkers have been proposed through various population studies. However, to date, no metabolite biomarker has been approved or validated for the diagnosis, prognosis, or risk assessment of PCa. Recognizing that systematic reviews of case reports or heterogenous studies cannot reliably establish causality, this review analyzed 29 large prospective metabolomics studies that utilized harmonized criteria for patient selection, consistent methodologies for blood sample collection and storage, data analysis, and that are available in public repositories. By focusing on these large prospective studies, we identified 42 metabolites that were consistently replicated by different authors and across cohort studies. These metabolites have the potential to serve as PCa risk-assessment or predictive biomarkers. A discussion on their associations with dietary sources or dietary patterns is also provided. Further detailed exploration of the relationship with diet, supplement intake, nutrition patterns, contaminants, lifestyle factors, and pre-existing comorbidities that may predispose individuals to PCa is warranted for future research and validation.
Collapse
Affiliation(s)
- Yamilé López-Hernández
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Research Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028, Barcelona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Claudia Torres-Calzada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Miriam Martínez-Huélamo
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Science and Gastronomy, Research Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028, Barcelona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| |
Collapse
|
13
|
Galey L, Olanrewaju A, Nabi H, Paquette JS, Pouliot F, Audet-Walsh É. Rediscovering citrate as a biomarker for prostate cancer. Nat Rev Urol 2024; 21:573-575. [PMID: 38811764 DOI: 10.1038/s41585-024-00899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Affiliation(s)
- Lucas Galey
- Endocrinology-Nephrology Research Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Québec, Canada
| | - Ayokunle Olanrewaju
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hermann Nabi
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Québec, Canada
- Oncology Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
- Departement of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Jean-Sébastien Paquette
- Laboratoire de recherche et d'innovation en médecine de première ligne (ARIMED), Groupe de médecine de famille universitaire de Saint-Charles-Borromée, CISSS Lanaudière, Saint-Charles-Borromée, Québec, Canada
- VITAM Research Centre for Sustainable Health, Québec City, Québec, Canada
- Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Frédéric Pouliot
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Québec, Canada
- Oncology Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Étienne Audet-Walsh
- Endocrinology-Nephrology Research Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada.
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
14
|
Galey L, Olanrewaju A, Nabi H, Paquette JS, Pouliot F, Audet-Walsh É. PSA, an outdated biomarker for prostate cancer: In search of a more specific biomarker, citrate takes the spotlight. J Steroid Biochem Mol Biol 2024; 243:106588. [PMID: 39025336 DOI: 10.1016/j.jsbmb.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
The prevailing biomarker employed for prostate cancer (PCa) screening and diagnosis is the prostate-specific antigen (PSA). Despite excellent sensitivity, PSA lacks specificity, leading to false positives, unnecessary biopsies and overdiagnosis. Consequently, PSA is increasingly less used by clinicians, thus underscoring the imperative for the identification of new biomarkers. An emerging biomarker in this context is citrate, a molecule secreted by the normal prostate, which has been shown to be inversely correlated with PCa. Here, we discuss about PSA and its usage for PCa diagnosis, its lack of specificity, and the various conditions that can affect its levels. We then provide our vision about what we think would be a valuable addition to our PCa diagnosis toolkit, citrate. We describe the unique citrate metabolic program in the prostate and how this profile is reprogrammed during carcinogenesis. Finally, we summarize the evidence that supports the usage of citrate as a biomarker for PCa diagnosis, as it can be measured in various patient samples and be analyzed by several methods. The unique relationship between citrate and PCa, combined with the stability of citrate levels in other prostate-related conditions and the simplicity of its detection, further accentuates its potential as a biomarker.
Collapse
Affiliation(s)
- Lucas Galey
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Ayokunle Olanrewaju
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hermann Nabi
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Jean-Sébastien Paquette
- Laboratoire de recherche et d'innovation en médecine de première ligne (ARIMED), Groupe de médecine de famille universitaire de Saint-Charles-Borromée, CISSS Lanaudière, Saint-Charles-Borromée, QC, Canada; VITAM Research Centre for Sustainable Health, Québec, QC, Canada; Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Frédéric Pouliot
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Department of surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada.
| |
Collapse
|
15
|
Bhardwaj JK, Siwach A, Sachdeva SN. Metabolomics and cellular altered pathways in cancer biology: A review. J Biochem Mol Toxicol 2024; 38:e23807. [PMID: 39148273 DOI: 10.1002/jbt.23807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Cancer is a deadly disease that affects a cell's metabolism and surrounding tissues. Understanding the fundamental mechanisms of metabolic alterations in cancer cells would assist in developing cancer treatment targets and approaches. From this perspective, metabolomics is a great analytical tool to clarify the mechanisms of cancer therapy as well as a useful tool to investigate cancer from a distinct viewpoint. It is a powerful emerging technology that detects up to thousands of molecules in tissues and biofluids. Like other "-omics" technologies, metabolomics involves the comprehensive investigation of micromolecule metabolites and can reveal important details about the cancer state that is otherwise not apparent. Recent developments in metabolomics technologies have made it possible to investigate cancer metabolism in greater depth and comprehend how cancer cells utilize metabolic pathways to make the amino acids, nucleotides, and lipids required for tumorigenesis. These new technologies have made it possible to learn more about cancer metabolism. Here, we review the cellular and systemic effects of cancer and cancer treatments on metabolism. The current study provides an overview of metabolomics, emphasizing the current technologies and their use in clinical and translational research settings.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
16
|
Bordanaba-Florit G, Royo F, Albóniga OE, Clayton A, Falcón-Pérez JM, Webber J. Integration of proteomic and metabolomic analysis reveal distinct metabolic alterations of prostate cancer-associated fibroblasts compared to normal fibroblasts from patient's stroma samples. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167229. [PMID: 38734319 DOI: 10.1016/j.bbadis.2024.167229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The prostate gland is a complex and heterogeneous organ composed of epithelium and stroma. Whilst many studies into prostate cancer focus on epithelium, the stroma is known to play a key role in disease with the emergence of a cancer-associated fibroblasts (CAF) phenotype associated upon disease progression. In this work, we studied the metabolic rewiring of stromal fibroblasts following differentiation to a cancer-associated, myofibroblast-like, phenotype. We determined that CAFs were metabolically more active compared to normal fibroblasts. This corresponded with a heightened lipogenic metabolism, as both reservoir species and building block compounds. Interestingly, lipid metabolism affects mitochondria functioning yet the mechanisms of lipid-mediated functions are unclear. Data showing oxidised fatty acids and glutathione system are elevated in CAFs, compared to normal fibroblasts, strengthens the hypothesis that increased metabolic activity is related to mitochondrial activity. This manuscript describes mechanisms responsible for the altered metabolic flux and shows that prostate cancer-derived extracellular vesicles can increase basal respiration in normal fibroblasts, mirroring that of the disease-like phenotype. This indicates that extracellular vesicles derived from prostate cancer cells may drive an altered oxygen-dependent metabolism associated to mitochondria in CAFs.
Collapse
Affiliation(s)
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), 28029 Madrid, Spain
| | - Oihane E Albóniga
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Aled Clayton
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Juan Manuel Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), 28029 Madrid, Spain; Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Jason Webber
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK.
| |
Collapse
|
17
|
Sushentsev N, Hamm G, Flint L, Birtles D, Zakirov A, Richings J, Ling S, Tan JY, McLean MA, Ayyappan V, Horvat Menih I, Brodie C, Miller JL, Mills IG, Gnanapragasam VJ, Warren AY, Barry ST, Goodwin RJA, Barrett T, Gallagher FA. Metabolic imaging across scales reveals distinct prostate cancer phenotypes. Nat Commun 2024; 15:5980. [PMID: 39013948 PMCID: PMC11252279 DOI: 10.1038/s41467-024-50362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/07/2024] [Indexed: 07/18/2024] Open
Abstract
Hyperpolarised magnetic resonance imaging (HP-13C-MRI) has shown promise as a clinical tool for detecting and characterising prostate cancer. Here we use a range of spatially resolved histological techniques to identify the biological mechanisms underpinning differential [1-13C]lactate labelling between benign and malignant prostate, as well as in tumours containing cribriform and non-cribriform Gleason pattern 4 disease. Here we show that elevated hyperpolarised [1-13C]lactate signal in prostate cancer compared to the benign prostate is primarily driven by increased tumour epithelial cell density and vascularity, rather than differences in epithelial lactate concentration between tumour and normal. We also demonstrate that some tumours of the cribriform subtype may lack [1-13C]lactate labelling, which is explained by lower epithelial lactate dehydrogenase expression, higher mitochondrial pyruvate carrier density, and increased lipid abundance compared to lactate-rich non-cribriform lesions. These findings highlight the potential of combining spatial metabolic imaging tools across scales to identify clinically significant metabolic phenotypes in prostate cancer.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Gregory Hamm
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lucy Flint
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Daniel Birtles
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Aleksandr Zakirov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jack Richings
- Predictive AI & Data, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Stephanie Ling
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jennifer Y Tan
- Predictive AI & Data, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Vinay Ayyappan
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ines Horvat Menih
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Cara Brodie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jodi L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Vincent J Gnanapragasam
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Richard J A Goodwin
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
18
|
Zuo C, Xia J, Chen L. Dissecting tumor microenvironment from spatially resolved transcriptomics data by heterogeneous graph learning. Nat Commun 2024; 15:5057. [PMID: 38871687 DOI: 10.1038/s41467-024-49171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Spatially resolved transcriptomics (SRT) has enabled precise dissection of tumor-microenvironment (TME) by analyzing its intracellular molecular networks and intercellular cell-cell communication (CCC). However, lacking computational exploration of complicated relations between cells, genes, and histological regions, severely limits the ability to interpret the complex structure of TME. Here, we introduce stKeep, a heterogeneous graph (HG) learning method that integrates multimodality and gene-gene interactions, in unraveling TME from SRT data. stKeep leverages HG to learn both cell-modules and gene-modules by incorporating features of diverse nodes including genes, cells, and histological regions, allows for identifying finer cell-states within TME and cell-state-specific gene-gene relations, respectively. Furthermore, stKeep employs HG to infer CCC for each cell, while ensuring that learned CCC patterns are comparable across different cell-states through contrastive learning. In various cancer samples, stKeep outperforms other tools in dissecting TME such as detecting bi-potent basal populations, neoplastic myoepithelial cells, and metastatic cells distributed within the tumor or leading-edge regions. Notably, stKeep identifies key transcription factors, ligands, and receptors relevant to disease progression, which are further validated by the functional and survival analysis of independent clinical data, thereby highlighting its clinical prognostic and immunotherapy applications.
Collapse
Affiliation(s)
- Chunman Zuo
- Institute of Artificial Intelligence, Shanghai Engineering Research Center of Industrial Big Data and Intelligent System, Donghua University, Shanghai, 201620, China.
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130022, China.
| | - Junjie Xia
- Institute of Artificial Intelligence, Shanghai Engineering Research Center of Industrial Big Data and Intelligent System, Donghua University, Shanghai, 201620, China
- Department of Applied Mathematics, Donghua University, Shanghai, 201620, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
- West China Biomedical Big Data Center, Med-X center for informatics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Van Assche CXL, Krüger DN, Flinders B, Vandenbosch M, Franssen C, Guns PJD, Heeren RMA, Cillero-Pastor B. Improved on-tissue detection of the anti-cancer agent doxorubicin by quantitative matrix-assisted laser desorption/ionization mass spectrometry imaging. Talanta 2024; 271:125667. [PMID: 38245959 DOI: 10.1016/j.talanta.2024.125667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Doxorubicin (dox) is an affordable, and highly effective chemotherapeutic agent used in cancer treatment, yet its application is known to cause cumulative cardiac and renal toxicity. In this study, we employed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to evaluate the distribution of dox in mouse heart and kidney after in vivo treatment. To this end, we performed absolute quantification using an isotopically labeled form (13C d3-dox) as an internal standard. Unfortunately, ion suppression often leads to loss of sensitivity in compound detection and can result in hampered drug quantification. To overcome this issue, we developed an on-tissue chemical derivatization (OTCD) method using Girard's reagent T (GirT). With the developed method, dox signal was increased by two orders of magnitude. This optimized sample preparation enabled a sensible gain in dox detection, making it possible to study its distribution and abundance (up to 0.11 pmol/mm2 in the heart and 0.33 pmol/mm2 in the kidney medulla). The optimized approach for on-tissue derivatization and subsequent quantification creates a powerful tool to better understand the relationship between dox exposure (at clinically relevant concentrations) and its biological detrimental effects in various tissues. Overall, this work is a showcase of the added value of MALDI-MSI for pharmaceutical studies to better understand heterogeneity in drug exposure between and within organs.
Collapse
Affiliation(s)
- Charles X L Van Assche
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Dustin N Krüger
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Antwerp B-2610, Belgium
| | - Bryn Flinders
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Michiel Vandenbosch
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, B-2610 Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem, Belgium
| | - Pieter-Jan D Guns
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Antwerp B-2610, Belgium
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Berta Cillero-Pastor
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands; Institute for Technology-Inspired Regenerative Medicine (MERLN), Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
20
|
Duncan KD, Pětrošová H, Lum JJ, Goodlett DR. Mass spectrometry imaging methods for visualizing tumor heterogeneity. Curr Opin Biotechnol 2024; 86:103068. [PMID: 38310648 PMCID: PMC11520788 DOI: 10.1016/j.copbio.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Profiling spatial distributions of lipids, metabolites, and proteins in tumors can reveal unique cellular microenvironments and provide molecular evidence for cancer cell dysfunction and proliferation. Mass spectrometry imaging (MSI) is a label-free technique that can be used to map biomolecules in tumors in situ. Here, we discuss current progress in applying MSI to uncover molecular heterogeneity in tumors. First, the analytical strategies to profile small molecules and proteins are outlined, and current methods for multimodal imaging to maximize biological information are highlighted. Second, we present and summarize biological insights obtained by MSI of tumor tissue. Finally, we discuss important considerations for designing MSI experiments and several current analytical challenges.
Collapse
Affiliation(s)
- Kyle D Duncan
- Department of Chemistry, Vancouver Island University, Nanaimo, British Columbia, Canada; Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
| | - Helena Pětrošová
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Julian J Lum
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - David R Goodlett
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
21
|
Niehaus P, Gonzalez de Vega R, Haindl MT, Birkl C, Leoni M, Birkl-Toeglhofer AM, Haybaeck J, Ropele S, Seeba M, Goessler W, Karst U, Langkammer C, Clases D. Multimodal analytical tools for the molecular and elemental characterisation of lesions in brain tissue of multiple sclerosis patients. Talanta 2024; 270:125518. [PMID: 38128277 DOI: 10.1016/j.talanta.2023.125518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Multiple sclerosis (MS) is a prevalent immune-mediated inflammatory disease of the central nervous system inducing a widespread degradation of myelin and resulting in neurological deficits. Recent advances in molecular and atomic imaging provide the means to probe the microenvironment in affected brain tissues at an unprecedented level of detail and may provide new insights. This study showcases state-of-the-art spectroscopic and mass spectrometric techniques to compare distributions of molecular and atomic entities in MS lesions and surrounding brain tissues. MS brains underwent post-mortem magnetic resonance imaging (MRI) to locate and subsequently dissect MS lesions and surrounding white matter. Digests of lesions and unaffected white matter were analysed via ICP-MS/MS revealing significant differences in concentrations of Li, Mg, P, K, Mn, V, Rb, Ag, Gd and Bi. Micro x-ray fluorescence spectroscopy (μXRF) and laser ablation - inductively coupled plasma - time of flight - mass spectrometry (LA-ICP-ToF-MS) were used as micro-analytical imaging techniques to study distributions of both endogenous and xenobiotic elements. The essential trace elements Fe, Cu and Zn were subsequently calibrated using in-house manufactured gelatine standards. Lipid distributions were studied using IR-micro spectroscopy and matrix assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI). MALDI-MSI was complemented with high-resolution tandem mass spectrometry and trapped ion mobility spectroscopy for the annotation of specified phospho- and sphingolipids, revealing specific lipid species decreased in MS lesions compared to surrounding white matter. This explorative study demonstrated that modern molecular and atomic mapping techniques provide high-resolution imaging for relevant bio-indicative entities which may complement our current understanding of the underlying pathophysiological processes.
Collapse
Affiliation(s)
- Peter Niehaus
- Institute of Inorganic and Analytical Chemistry, University of Münster, Germany
| | | | | | - Christoph Birkl
- Department of Radiology, Medical University of Innsbruck, Austria
| | - Marlene Leoni
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria
| | - Anna Maria Birkl-Toeglhofer
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria
| | - Johannes Haybaeck
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | | | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Germany
| | | | - David Clases
- Institute of Chemistry, University of Graz, Austria.
| |
Collapse
|
22
|
Duan C, Zhang J, Xian T, Li L, Zhang Y, He X, Li P. Direct Performance of Triple-Stage Tandem Mass Spectrometry Analysis Using Dual-Direction Dipolar Excitation in a Digital Linear Ion Trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:551-560. [PMID: 38270642 DOI: 10.1021/jasms.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The ion trap mass spectrometer offers a unique advantage over other mass spectrometers by enabling multistage tandem mass spectrometry analysis with a single mass analyzer. It is employed to generate fragment ions through collision-induced dissociation (CID) usually by applying alternating current (AC) signals to a pair of electrodes for dipole excitation. The process of achieving double-stage tandem mass spectrometry analysis (MS/MS) in the mass spectrometer involves successive stages of injection, cooling, isolation, excitation, and scanning. For triple-stage tandem mass spectrometry analysis (MS/MS/MS), additional stages of isolation, cooling, and excitation need to be added based on the MS/MS analysis, resulting in a complex and time-consuming mass spectrometry workflow. In this study, a digital ion trap technology with the method of simultaneously applying dipole excitation signals to two pairs of electrodes in the ion trap was developed. This allows fragmentation of the precursor ion in one direction while exciting the first-generation product ions in the other direction, enabling direct acquisition of MS/MS/MS spectra. This approach simplifies the process of tandem mass spectrometry, as demonstrated by experimental studies on methamphetamine, which show that dual-direction excitation effectively reduces workflow and enhances the intensity of product ions. Additionally, the method of direct MS/MS/MS spectra achieved through dual-direction excitation in a digital ion trap mass spectrometer allows for a lower q value of the precursor ion owing to a pseudopotential well depth that is 1.648 times greater than that of a traditional sinusoidal ion trap. The experiments of analyzing high concentration n-butyl acetate and isobutyl acetate have shown that the implementation of MS/MS/MS analysis using dual-direction excitation can provide more mass spectral information and effectively distinguish between the two isomeric samples. The results of direct triple-stage spectra obtained by this technique for several typical volatile hazardous chemicals demonstrate the method's capability for rapid analysis and detection of such substances. In summary, the developed method of dual-directional excitation coupled with digital ion trap technology enables direct performance of triple-stage tandem mass spectrometry analysis, improving fragment ion intensities and providing more valuable mass spectral information. It offers advantages such as simplified workflows, faster analysis, and enhanced accuracy for analyzing compounds with low mass fragment ions.
Collapse
Affiliation(s)
- Changxuan Duan
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Jiashu Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Tianxin Xian
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Lingfeng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
- Suzhou Weimu Intelligent System Co., Ltd., Suzhou 215163, China
| | - Yunjing Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Xingli He
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
- Suzhou Weimu Intelligent System Co., Ltd., Suzhou 215163, China
| |
Collapse
|
23
|
de Souza N, Zhao S, Bodenmiller B. Multiplex protein imaging in tumour biology. Nat Rev Cancer 2024; 24:171-191. [PMID: 38316945 DOI: 10.1038/s41568-023-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
Tissue imaging has become much more colourful in the past decade. Advances in both experimental and analytical methods now make it possible to image protein markers in tissue samples in high multiplex. The ability to routinely image 40-50 markers simultaneously, at single-cell or subcellular resolution, has opened up new vistas in the study of tumour biology. Cellular phenotypes, interaction, communication and spatial organization have become amenable to molecular-level analysis, and application to patient cohorts has identified clinically relevant cellular and tissue features in several cancer types. Here, we review the use of multiplex protein imaging methods to study tumour biology, discuss ongoing attempts to combine these approaches with other forms of spatial omics, and highlight challenges in the field.
Collapse
Affiliation(s)
- Natalie de Souza
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Shan Zhao
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Bernd Bodenmiller
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland.
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland.
| |
Collapse
|
24
|
Truong JXM, Rao SR, Ryan FJ, Lynn DJ, Snel MF, Butler LM, Trim PJ. Spatial MS multiomics on clinical prostate cancer tissues. Anal Bioanal Chem 2024; 416:1745-1757. [PMID: 38324070 DOI: 10.1007/s00216-024-05178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Mass spectrometry (MS) and MS imaging (MSI) are used extensively for both the spatial and bulk characterization of samples in lipidomics and proteomics workflows. These datasets are typically generated independently due to different requirements for sample preparation. However, modern omics technologies now provide higher sample throughput and deeper molecular coverage, which, in combination with more sophisticated bioinformatic and statistical pipelines, make generating multiomics data from a single sample a reality. In this workflow, we use spatial lipidomics data generated by matrix-assisted laser desorption/ionization MSI (MALDI-MSI) on prostate cancer (PCa) radical prostatectomy cores to guide the definition of tumor and benign tissue regions for laser capture microdissection (LCM) and bottom-up proteomics all on the same sample and using the same mass spectrometer. Accurate region of interest (ROI) mapping was facilitated by the SCiLS region mapper software and dissected regions were analyzed using a dia-PASEF workflow. A total of 5525 unique protein groups were identified from all dissected regions. Lysophosphatidylcholine acyltransferase 1 (LPCAT1), a lipid remodelling enzyme, was significantly enriched in the dissected regions of cancerous epithelium (CE) compared to benign epithelium (BE). The increased abundance of this protein was reflected in the lipidomics data with an increased ion intensity ratio for pairs of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) in CE compared to BE.
Collapse
Affiliation(s)
- Jacob X M Truong
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Sushma R Rao
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Feargal J Ryan
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - David J Lynn
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Marten F Snel
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Lisa M Butler
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Paul J Trim
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
25
|
Holbrook JH, Kemper GE, Hummon AB. Quantitative mass spectrometry imaging: therapeutics & biomolecules. Chem Commun (Camb) 2024; 60:2137-2151. [PMID: 38284765 PMCID: PMC10878071 DOI: 10.1039/d3cc05988j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly utilized in the analysis of biological molecules. MSI grants the ability to spatially map thousands of molecules within one experimental run in a label-free manner. While MSI is considered by most to be a qualitative method, recent advancements in instrumentation, sample preparation, and development of standards has made quantitative MSI (qMSI) more common. In this feature article, we present a tailored review of recent advancements in qMSI of therapeutics and biomolecules such as lipids and peptides/proteins. We also provide detailed experimental considerations for conducting qMSI studies on biological samples, aiming to advance the methodology.
Collapse
Affiliation(s)
- Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
26
|
Le MUT, Park JH, Son JG, Shon HK, Joh S, Chung CG, Cho JH, Pirkl A, Lee SB, Lee TG. Monitoring lipid alterations in Drosophila heads in an amyotrophic lateral sclerosis model with time-of-flight secondary ion mass spectrometry. Analyst 2024; 149:846-858. [PMID: 38167886 DOI: 10.1039/d3an01670f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lipid alterations in the brain are well-documented in disease and aging, but our understanding of their pathogenic implications remains incomplete. Recent technological advances in assessing lipid profiles have enabled us to intricately examine the spatiotemporal variations in lipid compositions within the complex brain characterized by diverse cell types and intricate neural networks. In this study, we coupled time-of-flight secondary ion mass spectrometry (ToF-SIMS) to an amyotrophic lateral sclerosis (ALS) Drosophila model, for the first time, to elucidate changes in the lipid landscape and investigate their potential role in the disease process, serving as a methodological and analytical complement to our prior approach that utilized matrix-assisted laser desorption/ionization mass spectrometry. The expansion of G4C2 repeats in the C9orf72 gene is the most prevalent genetic factor in ALS. Our findings indicate that expressing these repeats in fly brains elevates the levels of fatty acids, diacylglycerols, and ceramides during the early stages (day 5) of disease progression, preceding motor dysfunction. Using RNAi-based genetic screening targeting lipid regulators, we found that reducing fatty acid transport protein 1 (FATP1) and Acyl-CoA-binding protein (ACBP) alleviates the retinal degeneration caused by G4C2 repeat expression and also markedly restores the G4C2-dependent alterations in lipid profiles. Significantly, the expression of FATP1 and ACBP is upregulated in G4C2-expressing flies, suggesting their contribution to lipid dysregulation. Collectively, our novel use of ToF-SIMS with the ALS Drosophila model, alongside methodological and analytical improvements, successfully identifies crucial lipids and related genetic factors in ALS pathogenesis.
Collapse
Affiliation(s)
- Minh Uyen Thi Le
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea.
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jeong Hyang Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Jin Gyeong Son
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea.
| | - Hyun Kyung Shon
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea.
| | - Sunho Joh
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea.
| | - Chang Geon Chung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Jae Ho Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Alexander Pirkl
- IonTOF Technologies GmbH, Helsenbergstrasse 15, 48149 Münster, Germany
| | - Sung Bae Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Tae Geol Lee
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea.
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
27
|
Romo-Perez A, Domínguez-Gómez G, Chávez-Blanco AD, González-Fierro A, Correa-Basurto J, Dueñas-González A. PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal. Curr Med Chem 2024; 31:3265-3285. [PMID: 37287286 DOI: 10.2174/0929867330666230607104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO). OBJECTIVE Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-β-Ketoacyl- CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer. RESULTS Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs. CONCLUSION We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Aurora González-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - José Correa-Basurto
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
28
|
Khan S, Baligar P, Tandon C, Nayyar J, Tandon S. Molecular heterogeneity in prostate cancer and the role of targeted therapy. Life Sci 2024; 336:122270. [PMID: 37979833 DOI: 10.1016/j.lfs.2023.122270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Data collected from large-scale studies has shown that the incidence of prostate cancer globally is on the rise, which could be attributed to an overall increase in lifespan. So, the question is how has modern science with all its new technologies and clinical breakthroughs mitigated or managed this disease? The answer is not a simple one as prostate cancer exhibits various subtypes, each with its unique characteristics or signatures which creates challenges in treatment. To understand the complexity of prostate cancer these signatures must be deciphered. Molecular studies of prostate cancer samples have identified certain genetic and epigenetic alterations, which are instrumental in tumorigenesis. Some of these candidates include the androgen receptor (AR), various oncogenes, tumor suppressor genes, and the tumor microenvironment, which serve as major drivers that lead to cancer progression. These aberrant genes and their products can give an insight into prostate cancer development and progression by acting as potent markers to guide future therapeutic approaches. Thus, understanding the complexity of prostate cancer is crucial for targeting specific markers and tailoring treatments accordingly.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Chanderdeep Tandon
- Amity School of Biological Sciences, Amity University Punjab, Mohali, India
| | - Jasamrit Nayyar
- Department of Chemistry, Goswami Ganesh Dutt Sanatan Dharam College, Chandigarh, India
| | - Simran Tandon
- Amity School of Health Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
29
|
Kale D, Fatangare A, Phapale P, Sickmann A. Blood-Derived Lipid and Metabolite Biomarkers in Cardiovascular Research from Clinical Studies: A Recent Update. Cells 2023; 12:2796. [PMID: 38132115 PMCID: PMC10741540 DOI: 10.3390/cells12242796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The primary prevention, early detection, and treatment of cardiovascular disease (CVD) have been long-standing scientific research goals worldwide. In the past decades, traditional blood lipid profiles have been routinely used in clinical practice to estimate the risk of CVDs such as atherosclerotic cardiovascular disease (ASCVD) and as treatment targets for the primary prevention of adverse cardiac events. These blood lipid panel tests often fail to fully predict all CVD risks and thus need to be improved. A comprehensive analysis of molecular species of lipids and metabolites (defined as lipidomics and metabolomics, respectively) can provide molecular insights into the pathophysiology of the disease and could serve as diagnostic and prognostic indicators of disease. Mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based lipidomics and metabolomics analysis have been increasingly used to study the metabolic changes that occur during CVD pathogenesis. In this review, we provide an overview of various MS-based platforms and approaches that are commonly used in lipidomics and metabolomics workflows. This review summarizes the lipids and metabolites in human plasma/serum that have recently (from 2018 to December 2022) been identified as promising CVD biomarkers. In addition, this review describes the potential pathophysiological mechanisms associated with candidate CVD biomarkers. Future studies focused on these potential biomarkers and pathways will provide mechanistic clues of CVD pathogenesis and thus help with the risk assessment, diagnosis, and treatment of CVD.
Collapse
Affiliation(s)
- Dipali Kale
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (A.F.); (P.P.)
| | | | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (A.F.); (P.P.)
| |
Collapse
|
30
|
Cai Y, Wang Z, Guo S, Lin C, Yao H, Yang Q, Wang Y, Yu X, He X, Sun W, Qiu S, Guo Y, Tang S, Xie Y, Zhang A. Detection, mechanisms, and therapeutic implications of oncometabolites. Trends Endocrinol Metab 2023; 34:849-861. [PMID: 37739878 DOI: 10.1016/j.tem.2023.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Metabolic abnormalities are a hallmark of cancer cells and are essential to tumor progression. Oncometabolites have pleiotropic effects on cancer biology and affect a plethora of processes, from oncogenesis and metabolism to therapeutic resistance. Targeting oncometabolites, therefore, could offer promising therapeutic avenues against tumor growth and resistance to treatments. Recent advances in characterizing the metabolic profiles of cancer cells are shedding light on the underlying mechanisms and associated metabolic networks. This review summarizes the diverse detection methods, molecular mechanisms, and therapeutic targets of oncometabolites, which may lead to targeting oncometabolism for cancer therapy.
Collapse
Affiliation(s)
- Ying Cai
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhibo Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiang Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yan Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Xiaodan Yu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Xiaowen He
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Wanying Sun
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yu Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
31
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of carnitine palmitoyltransferase 1a reduces docosahexaenoic acid-containing phospholipids and drives sexually dimorphic liver disease in mice. Mol Metab 2023; 78:101815. [PMID: 37797918 PMCID: PMC10568566 DOI: 10.1016/j.molmet.2023.101815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND AND AIMS Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism. APPROACH AND RESULTS Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks. Mice were necropsied after a 16 h fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging, kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis (Plin2, Cidec, G0S2) and in polyunsaturated fatty acid metabolism (Elovl5, Fads1, Elovl2), while only female LKO mice increased genes involved in inflammation (Ly6d, Mmp12, Cxcl2). Kinase profiling showed decreased protein kinase A activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. CONCLUSIONS Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.
Collapse
Affiliation(s)
- Mikala M Zelows
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Corissa Cady
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nikitha Dharanipragada
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anna E Mead
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nathan R Shelman
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Harrison A Clarke
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tara R Hawkinson
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Terrymar Medina
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida College of Medicine, Gainesville, FL, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samir Softic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Gregory A Graf
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
32
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
33
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
34
|
Ledoux L, Zirem Y, Renaud F, Duponchel L, Salzet M, Ogrinc N, Fournier I. Comparing MS imaging of lipids by WALDI and MALDI: two technologies for evaluating a common ground truth in MS imaging. Analyst 2023; 148:4982-4986. [PMID: 37740342 DOI: 10.1039/d3an01096a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
In this study, we conducted a direct comparison of water-assisted laser desorption ionization (WALDI) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging, with MALDI serving as the benchmark for label-free molecular tissue analysis in biomedical research. Specifically, we investigated the lipidomic profiles of several biological samples and calculated the similarity of detected peaks and Pearson's correlation of spectral profile intensities between the two techniques. We show that, overall, MALDI MS and WALDI MS present very close lipidomic analyses and that the highest similarity is obtained for the norharmane MALDI matrix. Indeed, for norharmane in negative ion mode, the lipidomic spectra revealed 100% similarity of detected peaks and over 0.90 intensity correlation between both technologies for five samples. The MALDI-MSI positive ion lipid spectra displayed more than 83% similarity of detected peaks compared to those of WALDI-MSI. However, we observed a lower percentage (77%) of detected peaks when comparing WALDI-MSI with MALDI-MSI due to the rich WALDI-MSI lipid spectra. Despite this difference, the global lipidomic spectra showed high consistency between the two technologies, indicating that they are governed by similar processes. Thanks to this similarity, we can increase datasets by including data from both modalities to either co-train classification models or obtain cross-interrogation.
Collapse
Affiliation(s)
- Léa Ledoux
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France.
| | - Yanis Zirem
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France.
| | - Florence Renaud
- Unité mixte SIRIC CURAMUS et 938, Inserm. Université Paris Sorbonne, France
| | | | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France.
- Institut Universitaire de France (IUF), Paris, France
| | - Nina Ogrinc
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France.
| | - Isabelle Fournier
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France.
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
35
|
Planque M, Igelmann S, Ferreira Campos AM, Fendt SM. Spatial metabolomics principles and application to cancer research. Curr Opin Chem Biol 2023; 76:102362. [PMID: 37413787 DOI: 10.1016/j.cbpa.2023.102362] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/07/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Mass spectrometry imaging (MSI) is an emerging technology in cancer metabolomics. Desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI) MSI are complementary techniques to identify hundreds of metabolites in space with close to single-cell resolution. This technology leap enables research focusing on tumor heterogeneity, cancer cell plasticity, and the communication signals between cancer and stromal cells in the tumor microenvironment (TME). Currently, unprecedented knowledge is generated using spatial metabolomics in fundamental cancer research. Yet, also translational applications are emerging, including the assessment of spatial drug distribution in organs and tumors. Moreover, clinical research investigates the use of spatial metabolomics as a rapid pathology tool during cancer surgeries. Here, we summarize MSI applications, the knowledge gained by this technology in space, future directions, and developments needed.
Collapse
Affiliation(s)
- Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sebastian Igelmann
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ana Margarida Ferreira Campos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
36
|
Petővári G, Tóth G, Turiák L, L. Kiss A, Pálóczi K, Sebestyén A, Pesti A, Kiss A, Baghy K, Dezső K, Füle T, Tátrai P, Kovalszky I, Reszegi A. Dynamic Interplay in Tumor Ecosystems: Communication between Hepatoma Cells and Fibroblasts. Int J Mol Sci 2023; 24:13996. [PMID: 37762298 PMCID: PMC10530979 DOI: 10.3390/ijms241813996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Tumors are intricate ecosystems where cancer cells and non-malignant stromal cells, including cancer-associated fibroblasts (CAFs), engage in complex communication. In this study, we investigated the interaction between poorly (HLE) and well-differentiated (HuH7) hepatoma cells and LX2 fibroblasts. We explored various communication channels, including soluble factors, metabolites, extracellular vesicles (EVs), and miRNAs. Co-culture with HLE cells induced LX2 to produce higher levels of laminin β1, type IV collagen, and CD44, with pronounced syndecan-1 shedding. Conversely, in HuH7/LX2 co-culture, fibronectin, thrombospondin-1, type IV collagen, and cell surface syndecan-1 were dominant matrix components. Integrins α6β4 and α6β1 were upregulated in HLE, while α5β1 and αVβ1 were increased in HuH7. HLE-stimulated LX2 produced excess MMP-2 and 9, whereas HuH7-stimulated LX2 produced excess MMP-1. LX2 activated MAPK and Wnt signaling in hepatoma cells, and conversely, hepatoma-derived EVs upregulated MAPK and Wnt in LX2 cells. LX2-derived EVs induced over tenfold upregulation of SPOCK1/testican-1 in hepatoma EV cargo. We also identified liver cancer-specific miRNAs in hepatoma EVs, with potential implications for early diagnosis. In summary, our study reveals tumor type-dependent communication between hepatoma cells and fibroblasts, shedding light on potential implications for tumor progression. However, the clinical relevance of liver cancer-specific miRNAs requires further investigation.
Collapse
Affiliation(s)
- Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Anna L. Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Krisztina Pálóczi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1085 Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
| | - Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Tibor Füle
- Thermo Fisher Scientific Inc., Váci út. 41-43, H-1134 Budapest, Hungary
| | - Péter Tátrai
- Charles River Laboratories Hungary, Irinyi József utca 4-20, H-1117 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Andrea Reszegi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
37
|
McIntyre CL, Temesgen A, Lynch L. Diet, nutrient supply, and tumor immune responses. Trends Cancer 2023; 9:752-763. [PMID: 37400315 DOI: 10.1016/j.trecan.2023.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
Nutrients are essential for cell function. Immune cells operating in the complex tumor microenvironment (TME), which has a unique nutrient composition, face challenges of adapting their metabolism to support effector functions. We discuss the impact of nutrient availability on immune function in the tumor, competition between immune cells and tumor cells for nutrients, and how this is altered by diet. Understanding which diets can promote antitumor immune responses could open a new era of treatment, where dietary modifications can be used as an adjunct to boost the success of existing cancer therapies.
Collapse
Affiliation(s)
- Claire L McIntyre
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayantu Temesgen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
38
|
Zelows MM, Cady C, Dharanipragada N, Mead AE, Kipp ZA, Bates EA, Varadharajan V, Banerjee R, Park SH, Shelman NR, Clarke HA, Hawkinson TR, Medina T, Sun RC, Lydic TA, Hinds TD, Brown JM, Softic S, Graf GA, Helsley RN. Loss of Carnitine Palmitoyltransferase 1a Reduces Docosahexaenoic Acid-Containing Phospholipids and Drives Sexually Dimorphic Liver Disease in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553705. [PMID: 37645721 PMCID: PMC10462091 DOI: 10.1101/2023.08.17.553705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background and Aims Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the impact by which liver-specific CPT1a deletion impacts hepatic lipid metabolism. Approach and Results Six-to-eight-week old male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (HFD; 60% kcal fat) for 15 weeks. Mice were necropsied after a 16 hour fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase (ALT) levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in both whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis ( Plin2 , Cidec , G0S2 ) and in polyunsaturated fatty acid (PUFA) metabolism ( Elovl5, Fads1, Elovl2 ), while only female LKO mice increased genes involved in inflammation ( Ly6d, Mmp12, Cxcl2 ). Kinase profiling showed decreased protein kinase A (PKA) activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. Conclusions Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury. Graphical Summary
Collapse
|
39
|
Sousa P, Silva L, Luís C, Câmara JS, Perestrelo R. MALDI-TOF MS: A Promising Analytical Approach to Cancer Diagnostics and Monitoring. SEPARATIONS 2023; 10:453. [DOI: 10.3390/separations10080453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Cancer remains the second most common cause of death after cardiovascular diseases, accounting for nearly 10 million deaths in 2020. Although the incidence of cancer increases considerably with age, the cancer burden can also be reduced and have a high chance of cure through early detection, appropriate treatment, and care of patients. The development of high-throughput analytical approaches, like matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), contributes to identifying a pool of proteins/peptides as putative biomarkers for the early detection, diagnosis, and tumor progression. The purpose of the current review is to present an updated outline of recent proteome/peptidome research to establish putative cancer biomarkers using MALDI-TOF MS and highlight the applicability of statistical analysis in the oncology field. The pros and cons of MALDI-TOF MS application on cancer diagnostics and monitoring will be discussed, as well as compared with tandem mass spectrometry (MS/MS)-based proteomics (e.g., liquid chromatography–tandem mass spectrometry). In addition, pre-analytical (e.g., sample quality control) and analytical (e.g., sample pre-treatment, instrumental analytical conditions) properties that influence the robustness of MALDI-TOF MS data will be also discussed.
Collapse
Affiliation(s)
- Patrícia Sousa
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Laurentina Silva
- Hospital Dr. Nélio Mendonça, SESARAM, EPERAM—Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de CamõesK, 9004-514 Funchal, Portugal
| | - Catarina Luís
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
40
|
Chen TY, You L, Hardillo JAU, Chien MP. Spatial Transcriptomic Technologies. Cells 2023; 12:2042. [PMID: 37626852 PMCID: PMC10453065 DOI: 10.3390/cells12162042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Spatial transcriptomic technologies enable measurement of expression levels of genes systematically throughout tissue space, deepening our understanding of cellular organizations and interactions within tissues as well as illuminating biological insights in neuroscience, developmental biology and a range of diseases, including cancer. A variety of spatial technologies have been developed and/or commercialized, differing in spatial resolution, sensitivity, multiplexing capability, throughput and coverage. In this paper, we review key enabling spatial transcriptomic technologies and their applications as well as the perspective of the techniques and new emerging technologies that are developed to address current limitations of spatial methodologies. In addition, we describe how spatial transcriptomics data can be integrated with other omics modalities, complementing other methods in deciphering cellar interactions and phenotypes within tissues as well as providing novel insight into tissue organization.
Collapse
Affiliation(s)
- Tsai-Ying Chen
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (T.-Y.C.); (L.Y.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Li You
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (T.-Y.C.); (L.Y.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Jose Angelito U. Hardillo
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (T.-Y.C.); (L.Y.)
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
41
|
Li X, Li F, Ye F, Guo H, Chen W, Jin J, Wang Y, Dai P, Shi H, Tao H, Dang W, Ding Y, Wang M, Jiang H, Chen K, Zhang N, Gao D, Zhang Y, Luo C. Spermine is a natural suppressor of AR signaling in castration-resistant prostate cancer. Cell Rep 2023; 42:112798. [PMID: 37453063 DOI: 10.1016/j.celrep.2023.112798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/04/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
In castration-resistant prostate cancer (CRPC), clinical response to androgen receptor (AR) antagonists is limited mainly due to AR-variants expression and restored AR signaling. The metabolite spermine is most abundant in prostate and it decreases as prostate cancer progresses, but its functions remain poorly understood. Here, we show spermine inhibits full-length androgen receptor (AR-FL) and androgen receptor splice variant 7 (AR-V7) signaling and suppresses CRPC cell proliferation by directly binding and inhibiting protein arginine methyltransferase PRMT1. Spermine reduces H4R3me2a modification at the AR locus and suppresses AR binding as well as H3K27ac modification levels at AR target genes. Spermine supplementation restrains CRPC growth in vivo. PRMT1 inhibition also suppresses AR-FL and AR-V7 signaling and reduces CRPC growth. Collectively, we demonstrate spermine as an anticancer metabolite by inhibiting PRMT1 to transcriptionally inhibit AR-FL and AR-V7 signaling in CRPC, and we indicate spermine and PRMT1 inhibition as powerful strategies overcoming limitations of current AR-based therapies in CRPC.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Fei Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; College of Life Sciences and Medicine, Zhejiang SciTech University, Hangzhou 310018, China
| | - Haotian Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Wentao Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jia Jin
- College of Life Sciences and Medicine, Zhejiang SciTech University, Hangzhou 310018, China
| | - Yiran Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pengfei Dai
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huili Shi
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongru Tao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenzhen Dang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiluan Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingchen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Naixia Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; China Pharmaceutical University, Nanjing 210009, P.R. China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China.
| |
Collapse
|
42
|
Hansen AF, Høiem TS, Selnaes KM, Bofin AM, Størkersen Ø, Bertilsson H, Wright AJ, Giskeødegård GF, Bathen TF, Rye MB, Tessem MB. Prediction of recurrence from metabolites and expression of TOP2A and EZH2 in prostate cancer patients treated with radiotherapy. NMR IN BIOMEDICINE 2023; 36:e4694. [PMID: 35032074 DOI: 10.1002/nbm.4694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The dual upregulation of TOP2A and EZH2 gene expression has been proposed as a biomarker for recurrence in prostate cancer patients to be treated with radical prostatectomy. A low tissue level of the metabolite citrate has additionally been connected to aggressive disease and recurrence in this patient group. However, for radiotherapy prostate cancer patients, few prognostic biomarkers have been suggested. The main aim of this study was to use an integrated tissue analysis to evaluate metabolites and expression of TOP2A and EZH2 as predictors for recurrence among radiotherapy patients. METHODS From 90 prostate cancer patients (56 received neoadjuvant hormonal treatment), 172 transrectal ultrasound-guided (TRUS) biopsies were collected prior to radiotherapy. Metabolic profiles were acquired from fresh frozen TRUS biopsies using high resolution-magic angle spinning MRS. Histopathology and immunohistochemistry staining for TOP2A and EZH2 were performed on TRUS biopsies containing cancer cells (n = 65) from 46 patients, where 24 of these patients (n = 31 samples) received hormonal treatment. Eleven radical prostatectomy cohorts of a total of 2059 patients were used for validation in a meta-analysis. RESULTS Among radiotherapy patients with up to 11 years of follow-up, a low level of citrate was found to predict recurrence, p = 0.001 (C-index = 0.74). Citrate had a higher predictive ability compared with individual clinical variables, highlighting its strength as a potential biomarker for recurrence. The dual upregulation of TOP2A and EZH2 was suggested as a biomarker for recurrence, particularly for patients not receiving neoadjuvant hormonal treatment, p = 0.001 (C-index = 0.84). While citrate was a statistically significant biomarker independent of hormonal treatment status, the current study indicated a potential of glutamine, glutamate and choline as biomarkers for recurrence among patients receiving neoadjuvant hormonal treatment, and glucose among patients not receiving neoadjuvant hormonal treatment. CONCLUSION Using an integrated approach, our study shows the potential of citrate and the dual upregulation of TOP2A and EZH2 as biomarkers for recurrence among radiotherapy patients.
Collapse
Affiliation(s)
- Ailin Falkmo Hansen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Therese Stork Høiem
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Kirsten Margrete Selnaes
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anna Mary Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Øystein Størkersen
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Helena Bertilsson
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Guro Fanneløb Giskeødegård
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
43
|
Xie S, Fei X, Wang J, Zhu Y, Liu J, Du X, Liu X, Dong L, Zhu Y, Pan J, Dong B, Sha J, Luo Y, Sun W, Xue W. Engineering the MoS 2 /MXene Heterostructure for Precise and Noninvasive Diagnosis of Prostate Cancer with Clinical Specimens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206494. [PMID: 36988431 PMCID: PMC10214233 DOI: 10.1002/advs.202206494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/26/2023] [Indexed: 05/27/2023]
Abstract
High-throughput metabolic fingerprinting has been deemed one of the most promising strategies for addressing the high false positive rate of prostate cancer (PCa) diagnosis in the prostate-specific antigen (PSA) gray zone. However, the current metabolic fingerprinting remains challenging in achieving high-precision metabolite detection in complex biological samples (e.g., serum and urine). Herein, a novel self-assembly MoS2 /MXene heterostructure nanocomposite with a tailored doping ratio of 10% is presented as a matrix for laser desorption ionization mass spectrometry analysis in clinical biosamples. Notably, owing to the two-dimensional architecture and doping effect, MoS2 /MXene demonstrates favorable laser desorption ionization performance with low adsorption energy, which is evidenced by efficient urinary metabolic fingerprinting with an enhanced area under curve (AUC) diagnosis capability of 0.959 relative to that of serum metabolic fingerprinting (AUC = 0.902) for the diagnosis of PCa in the PSA gray zone. Thus, this MoS2 /MXene heterostructure is anticipated to offer a novel strategy to precisely and noninvasively diagnose PCa in the PSA gray zone.
Collapse
Affiliation(s)
- Shaowei Xie
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
- Department of UltrasoundRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Xiaochen Fei
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Jiayi Wang
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Yi‐Cheng Zhu
- Central LaboratoryDepartment of UltrasoundPudong New Area People's HospitalShanghai201200China
| | - Jiazhou Liu
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Xinxing Du
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Xuesong Liu
- Department of UltrasoundRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Liang Dong
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Yinjie Zhu
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Jiahua Pan
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Baijun Dong
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Jianjun Sha
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Yu Luo
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical TechnologySchool of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghai201620China
| | - Wenshe Sun
- Cancer Institute, The Affiliated Hospital of Qingdao UniversityQingdao266071China
| | - Wei Xue
- Department of UrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| |
Collapse
|
44
|
Tressler CM, Ayyappan V, Nakuchima S, Yang E, Sonkar K, Tan Z, Glunde K. A multimodal pipeline using NMR spectroscopy and MALDI-TOF mass spectrometry imaging from the same tissue sample. NMR IN BIOMEDICINE 2023; 36:e4770. [PMID: 35538020 PMCID: PMC9867920 DOI: 10.1002/nbm.4770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/14/2023]
Abstract
NMR spectroscopy and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) are both commonly used to detect large numbers of metabolites and lipids in metabolomic and lipidomic studies. We have demonstrated a new workflow, highlighting the benefits of both techniques to obtain metabolomic and lipidomic data, which has realized for the first time the combination of these two complementary and powerful technologies. NMR spectroscopy is frequently used to obtain quantitative metabolite information from cells and tissues. Lipid detection is also possible with NMR spectroscopy, with changes being visible across entire classes of molecules. Meanwhile, MALDI MSI provides relative measures of metabolite and lipid concentrations, mapping spatial information of many specific metabolite and lipid molecules across cells or tissues. We have used these two complementary techniques in combination to obtain metabolomic and lipidomic measurements from triple-negative human breast cancer cells and tumor xenograft models. We have emphasized critical experimental procedures that ensured the success of achieving NMR spectroscopy and MALDI MSI in a combined workflow from the same sample. Our data show that several phospholipid metabolite species were differentially distributed in viable and necrotic regions of breast tumor xenografts. This study emphasizes the power of combined NMR spectroscopy-MALDI imaging to advance metabolomic and lipidomic studies.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sofia Nakuchima
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethan Yang
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zheqiong Tan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Einhaus J, Rochwarger A, Mattern S, Gaudillière B, Schürch CM. High-multiplex tissue imaging in routine pathology-are we there yet? Virchows Arch 2023; 482:801-812. [PMID: 36757500 PMCID: PMC10156760 DOI: 10.1007/s00428-023-03509-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
High-multiplex tissue imaging (HMTI) approaches comprise several novel immunohistological methods that enable in-depth, spatial single-cell analysis. Over recent years, studies in tumor biology, infectious diseases, and autoimmune conditions have demonstrated the information gain accessible when mapping complex tissues with HMTI. Tumor biology has been a focus of innovative multiparametric approaches, as the tumor microenvironment (TME) contains great informative value for accurate diagnosis and targeted therapeutic approaches: unraveling the cellular composition and structural organization of the TME using sophisticated computational tools for spatial analysis has produced histopathologic biomarkers for outcomes in breast cancer, predictors of positive immunotherapy response in melanoma, and histological subgroups of colorectal carcinoma. Integration of HMTI technologies into existing clinical workflows such as molecular tumor boards will contribute to improve patient outcomes through personalized treatments tailored to the specific heterogeneous pathological fingerprint of cancer, autoimmunity, or infection. Here, we review the advantages and limitations of existing HMTI technologies and outline how spatial single-cell data can improve our understanding of pathological disease mechanisms and determinants of treatment success. We provide an overview of the analytic processing and interpretation and discuss how HMTI can improve future routine clinical diagnostic and therapeutic processes.
Collapse
Affiliation(s)
- Jakob Einhaus
- Department of Anaesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Sven Mattern
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Brice Gaudillière
- Department of Anaesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany.
| |
Collapse
|
46
|
Haque MIU, Mukherjee D, Stopka SA, Agar NYR, Hinkle J, Ovchinnikova OS. Deep Learning on Multimodal Chemical and Whole Slide Imaging Data for Predicting Prostate Cancer Directly from Tissue Images. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:227-235. [PMID: 36625762 PMCID: PMC10479534 DOI: 10.1021/jasms.2c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Prostate cancer is one of the most common cancers globally and is the second most common cancer in the male population in the US. Here we develop a study based on correlating the hematoxylin and eosin (H&E)-stained biopsy data with MALDI mass-spectrometric imaging data of the corresponding tissue to determine the cancerous regions and their unique chemical signatures and variations of the predicted regions with original pathological annotations. We obtain features from high-resolution optical micrographs of whole slide H&E stained data through deep learning and spatially register them with mass spectrometry imaging (MSI) data to correlate the chemical signature with the tissue anatomy of the data. We then use the learned correlation to predict prostate cancer from observed H&E images using trained coregistered MSI data. This multimodal approach can predict cancerous regions with ∼80% accuracy, which indicates a correlation between optical H&E features and chemical information found in MSI. We show that such paired multimodal data can be used for training feature extraction networks on H&E data which bypasses the need to acquire expensive MSI data and eliminates the need for manual annotation saving valuable time. Two chemical biomarkers were also found to be predicting the ground truth cancerous regions. This study shows promise in generating improved patient treatment trajectories by predicting prostate cancer directly from readily available H&E-stained biopsy images aided by coregistered MSI data.
Collapse
Affiliation(s)
- Md Inzamam Ul Haque
- The Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Debangshu Mukherjee
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Jacob Hinkle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Olga S Ovchinnikova
- The Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
47
|
Rončević A, Koruga N, Soldo Koruga A, Debeljak Ž, Rončević R, Turk T, Kretić D, Rotim T, Krivdić Dupan Z, Troha D, Perić M, Šimundić T. MALDI Imaging Mass Spectrometry of High-Grade Gliomas: A Review of Recent Progress and Future Perspective. Curr Issues Mol Biol 2023; 45:838-851. [PMID: 36826000 PMCID: PMC9955680 DOI: 10.3390/cimb45020055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the brain with a relatively short median survival and high mortality. Advanced age, high socioeconomic status, exposure to ionizing radiation, and other factors have been correlated with an increased incidence of GBM, while female sex hormones, history of allergies, and frequent use of specific drugs might exert protective effects against this disease. However, none of these explain the pathogenesis of GBM. The most recent WHO classification of CNS tumors classifies neoplasms based on their histopathological and molecular characteristics. Modern laboratory techniques, such as matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry, enable the comprehensive metabolic analysis of the tissue sample. MALDI imaging is able to characterize the spatial distribution of a wide array of biomolecules in a sample, in combination with histological features, without sacrificing the tissue integrity. In this review, we first provide an overview of GBM epidemiology, risk, and protective factors, as well as the recent WHO classification of CNS tumors. We then provide an overview of mass spectrometry workflow, with a focus on MALDI imaging, and recent advances in cancer research. Finally, we conclude the review with studies of GBM that utilized MALDI imaging and offer our perspective on future research.
Collapse
Affiliation(s)
- Alen Rončević
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-98-169-8481
| | - Nenad Koruga
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Anamarija Soldo Koruga
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Neurology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Željko Debeljak
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Clinical Institute of Laboratory Diagnostics, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Robert Rončević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tajana Turk
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Domagoj Kretić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tatjana Rotim
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Zdravka Krivdić Dupan
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Damir Troha
- Department of Radiology, Vinkovci General Hospital, 31000 Osijek, Croatia
| | - Marija Perić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Clinical Cytology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tihana Šimundić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nephrology, University Hospital Center Osijek, 31000 Osijek, Croatia
| |
Collapse
|
48
|
Andersen MK, Giampà M, Midtbust E, Høiem TS, Krossa S, Tessem MB. Sample Preparation for Metabolite Detection in Mass Spectrometry Imaging. Methods Mol Biol 2023; 2688:135-146. [PMID: 37410290 DOI: 10.1007/978-1-0716-3319-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Metabolites reflect the biological state of cells and tissue, and metabolomics is therefore a field of high interest both to understand normal physiological functions and disease development. When studying heterogeneous tissue samples, mass spectrometry imaging (MSI) is a valuable tool as it conserves the spatial distribution of analytes on tissue sections. A large proportion of metabolites are, however, small and polar, making them vulnerable to delocalizing through diffusion during sample preparation. Here we present a sample preparation method optimized to limit diffusion and delocalization of small polar metabolites in fresh frozen tissue sections. This sample preparation protocol includes cryosectioning, vacuum frozen storage, and matrix application. The methods described were primely developed for matrix-assisted laser desorption/ionization (MALDI) MSI, but the protocol describing cryosectioning and vacuum freezing storage can also be applied before desorption electrospray ionization (DESI) MSI. Our vacuum drying and vacuum packing approach offers a particular advantage to limit delocalization and safe storage.
Collapse
Affiliation(s)
- Maria K Andersen
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Marco Giampà
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Elise Midtbust
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Therese S Høiem
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Sebastian Krossa
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
49
|
Liu H, Pan Y, Xiong C, Han J, Wang X, Chen J, Nie Z. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for in situ analysis of endogenous small molecules in biological samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Nascentes Melo LM, Lesner NP, Sabatier M, Ubellacker JM, Tasdogan A. Emerging metabolomic tools to study cancer metastasis. Trends Cancer 2022; 8:988-1001. [PMID: 35909026 DOI: 10.1016/j.trecan.2022.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
Metastasis is responsible for 90% of deaths in patients with cancer. Understanding the role of metabolism during metastasis has been limited by the development of robust and sensitive technologies that capture metabolic processes in metastasizing cancer cells. We discuss the current technologies available to study (i) metabolism in primary and metastatic cancer cells and (ii) metabolic interactions between cancer cells and the tumor microenvironment (TME) at different stages of the metastatic cascade. We identify advantages and disadvantages of each method and discuss how these tools and technologies will further improve our understanding of metastasis. Studies investigating the complex metabolic rewiring of different cells using state-of-the-art metabolomic technologies have the potential to reveal novel biological processes and therapeutic interventions for human cancers.
Collapse
Affiliation(s)
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Sabatier
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site, Essen, Germany.
| |
Collapse
|