1
|
MAFFEZZOLI MICHELE, GIUDICE GIULIACLAIRE, IOVANE GIACOMO, MANINI MARTINA, RAPACCHI ELENA, CARUSO GIUSEPPE, SIMONI NICOLA, FERRETTI STEFANIA, PULIATTI STEFANO, CAMPOBASSO DAVIDE, BUTI SEBASTIANO. The effect of concomitant drugs on oncological outcomes in patients treated with immunotherapy for metastatic urothelial carcinoma: a narrative review. Oncol Res 2025; 33:741-757. [PMID: 40191722 PMCID: PMC11964881 DOI: 10.32604/or.2024.057278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 04/09/2025] Open
Abstract
Background immune checkpoint inhibitors (ICIs) have revolutionized the treatment of metastatic urothelial carcinoma (mUC), significantly improving survival outcomes. However, a subset of patients do not respond to ICIs, prompting research into potential predictive factors. Commonly prescribed medications such as corticosteroids, proton-pump inhibitors (PPIs), antibiotics (Abs), antihypertensives, and analgesics may influence ICI effectiveness. Methods we conducted a literature search on PubMed to investigate the impact of concomitant medications on the outcomes of patients with mUC, treated with ICIs. We selected the most relevant studies and performed a narrative review. Results corticosteroids, PPIs and Abs have been associated with reduced survival in ICI-treated patients, including those with mUC. In contrast, antihypertensive agents like renin-angiotensin system inhibitors and beta-blockers may enhance ICI efficacy, though evidence remains inconclusive. The impact of other medications, such as statins, metformin, and analgesics, on ICI outcomes is less clear, with some data suggesting a detrimental impact on immune response. Conclusions this narrative review synthesizes current evidence on how concomitant medications affect outcomes in mUC patients treated with ICIs.
Collapse
Affiliation(s)
- MICHELE MAFFEZZOLI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - GIULIA CLAIRE GIUDICE
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - GIACOMO IOVANE
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - MARTINA MANINI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - ELENA RAPACCHI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - GIUSEPPE CARUSO
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - NICOLA SIMONI
- Radiotherapy Unit, University Hospital of Parma, Parma, 43126, Italy
| | - STEFANIA FERRETTI
- Department of Urology, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - STEFANO PULIATTI
- Department of Urology, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | | | - SEBASTIANO BUTI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| |
Collapse
|
2
|
Adewuyi E, Chorya H, Muili A, Moradeyo A, Kayode A, Naik A, Odedele T, Opabode M. Chemotherapy, immunotherapy, and targeted therapy for osteosarcoma: Recent advancements. Crit Rev Oncol Hematol 2025; 206:104575. [PMID: 39581243 DOI: 10.1016/j.critrevonc.2024.104575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/22/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Recent advancements in the treatment of osteosarcoma, a rare and aggressive form of bone cancer, have seen significant progress with chemotherapy, immunotherapy, and targeted therapy. Chemotherapy, the conventional approach, has witnessed refined drug regimens and novel agents tailored to enhance efficacy while minimizing adverse effects. This evolution aims to strike a balance between eradicating cancer cells and preserving patients' overall well-being. Immunotherapy has emerged as a promising avenue, leveraging the body's immune system to recognize and combat cancer cells. Innovative immunotherapeutic strategies, including immune checkpoint inhibitors, adoptive T cell therapy, and chimeric antigen receptor (CAR)-T cell therapy, exhibit the potential to enhance immune responses against osteosarcoma. Moreover, targeted therapy, designed to disrupt specific molecular pathways crucial for cancer growth, has gained traction in the treatment of osteosarcoma. Precision medicine approaches, such as identifying biomarkers and employing targeted agents, aim to tailor therapies to individual patients, maximizing effectiveness while minimizing collateral damage to healthy tissues. This article analyzes the current state of these three treatment modalities while comparing the efficacies of current chemotherapy, immunotherapy and targeted therapy agents.
Collapse
Affiliation(s)
- Esther Adewuyi
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria.
| | - Harshal Chorya
- Department of Medicine and Surgery, Baroda Medical College, India
| | - Abdulbasit Muili
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Abdulrahmon Moradeyo
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Ayomide Kayode
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Aastha Naik
- Department of Medicine and Surgery, Parul Institute of Medical Sciences and Research, Parul University, India
| | - Temitayo Odedele
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Muntaqim Opabode
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| |
Collapse
|
3
|
Tian XL, Chen P, Hu Y, Zhang L, Yu XQ, Zhang J. Enhanced gene transfection ability of sulfonylated low-molecular-weight PEI and its application in anti-tumor treatment. J Mater Chem B 2024; 12:12111-12123. [PMID: 39469904 DOI: 10.1039/d4tb01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
With the continuous progress of nanotechnology in the field of tumor vaccines, immunotherapy has been regarded as one of the most powerful approaches for cancer treatment. Currently, DNA vaccines are used to efficiently deliver plasmids encoding tumor-associated antigens to antigen-presenting cells (APCs) and enhance the activation of immune cells. In this work, a series of aromatic sulfonyl small-molecule-modified polymers R-P based on low-molecular-weight polyethylenimine (PEI) were prepared, and their structure-activity relationship was studied. Among them, Ns-P with high transfection efficiency and low toxicity was applied to deliver antigen ovalbumin (OVA)-encoded plasmid DNA to APCs for triggering the immune activation of dendritic cells (DCs). It was also found that Ns-P could be used as an immune adjuvant to activate the STING pathway in DCs, integrating innate stimulating activity into the carrier to enhance antitumor immunity. Moreover, the modification of Ns-P/pOVA complexes with oxidized mannan could not only improve the biocompatibility of the complex, but also enhance the uptake of DCs, further inducing OVA antigen presentation and immune stimulation. In vivo antitumor assays indicated that Ns-P/pOVA/Man immunization could inhibit the growth of OVA-expressing E.G7 tumors in C57BL/6 mice. These results demonstrated that Ns-P/pOVA/Man is promising for gene delivery and immunotherapy application.
Collapse
Affiliation(s)
- Xiao-Li Tian
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ping Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yue Hu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Lan Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Li Y, Xu Z, Qi Z, Huang X, Li M, Liu S, Yan Y, Gao M. Application of Carbon Nanomaterials to Enhancing Tumor Immunotherapy: Current Advances and Prospects. Int J Nanomedicine 2024; 19:10899-10915. [PMID: 39479174 PMCID: PMC11524014 DOI: 10.2147/ijn.s480799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Recent advances in tumor immunotherapy have highlighted the pivotal role of carbon nanomaterials, such as carbon dots, graphene quantum dots, and carbon nanotubes. This review examines the unique benefits of these materials in cancer treatment, focusing on their mechanisms of action within immunotherapy. These include applications in immunoregulation, recognition, and enhancement. We explore how these nanomaterials when combined with specific biomolecules, can form immunosensors. These sensors are engineered for highly sensitive and specific detection of tumor markers, offering crucial support for early diagnosis and timely therapeutic interventions. This review also addresses significant challenges facing carbon nanomaterials in clinical settings, such as issues related to long-term biocompatibility and the hurdles of clinical translation. These challenges require extensive ongoing research and discussion. This review is of both theoretical and practical importance, aiming to promote using carbon nanomaterials in tumor immunotherapy, potentially transforming clinical outcomes and enhancing patient care.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zijuan Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mingyu Li
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, People’s Republic of China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Orrapin S, Moonmuang S, Udomruk S, Yongpitakwattana P, Pruksakorn D, Chaiyawat P. Unlocking the tumor-immune microenvironment in osteosarcoma: insights into the immune landscape and mechanisms. Front Immunol 2024; 15:1394284. [PMID: 39359731 PMCID: PMC11444963 DOI: 10.3389/fimmu.2024.1394284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Osteosarcoma has a unique tumor microenvironment (TME), which is characterized as a complex microenvironment comprising of bone cells, immune cells, stromal cells, and heterogeneous vascular structures. These elements are intricately embedded in a mineralized extracellular matrix, setting it apart from other primary TMEs. In a state of normal physiological function, these cell types collaborate in a coordinated manner to maintain the homeostasis of the bone and hematopoietic systems. However, in the pathological condition, i.e., neoplastic malignancies, the tumor-immune microenvironment (TIME) has been shown to promote cancer cells proliferation, migration, apoptosis and drug resistance, as well as immune escape. The intricate and dynamic system of the TIME in osteosarcoma involves crucial roles played by various infiltrating cells, the complement system, and exosomes. This complexity is closely associated with tumor cells evading immune surveillance, experiencing uncontrolled proliferation, and facilitating metastasis. In this review, we elucidate the intricate interplay between diverse cell populations in the osteosarcoma TIME, each contributing uniquely to tumor progression. From chondroblastic and osteoblastic osteosarcoma cells to osteoclasts, stromal cells, and various myeloid and lymphoid cell subsets, the comprehensive single-cell analysis provides a detailed roadmap of the complex osteosarcoma ecosystem. Furthermore, we summarize the mutations, epigenetic mechanisms, and extracellular vesicles that dictate the immunologic landscape and modulate the TIME of osteosarcoma. The perspectives of the clinical implementation of immunotherapy and therapeutic approaches for targeting immune cells are also intensively discussed.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sutpirat Moonmuang
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Petlada Yongpitakwattana
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Mansour AMA, Khattab MM, El-Khatib AS, Awaad AK, El-Refaie WM, El-Mezayen NS. Valsartan as a prophylactic treatment against breast cancer development and niche activation: What molecular sequels follow chronic AT-1R blockade? Life Sci 2024; 353:122939. [PMID: 39094905 DOI: 10.1016/j.lfs.2024.122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
AIMS Transactivation of insulin-growth-factor-receptor (IGF-1R) by angiotensin-II-type-1-receptor (AT-1R) was only demonstrated in vascular-smooth-muscle cells and has never been tested in breast-cancer (BC). This investigation addressed the impact of chronic AT-1R blockade by valsartan (Val) on possible concurrent AT-1R/IGF-1R signaling inhibition, regressing BC-tumor-microenvironment (TME) cellular components activation, and hindering BC development. MAIN METHODS The effect of different Val doses (10, 20, 40 & 80 mg/kg/day for 490 days) was tested on dimethylbenz(a)anthracene (DMBA)-induced progesterone-promoted-BC in rats. The influence on intratumoral/circulating angiotensin-II (ANG-II) levels and AT-1R/Mas-R immunofluorescent-expression were assessed. The potential AT-1R/IGF-1R crosstalk within TME-BC-stem-cells (BCSCs) and cancer-associated-fibroblasts (CAFs) was evaluated by fluorescently marking these cells and locating the immunofluorescently-stained AT-1R/IGF-1R in them using confocal-laser-microscopy and further quantified by flow cytometry. In addition, the molecular alterations following blocking AT-1R were inspected including determining Src; crucial for IGF-1R transactivation by AT-1R, Notch-1; IGF-IR transcriptional-regulator, and PI3K/Akt &IL-6/STAT expression. Further, the suppression of CSCs' capabilities to maintain pluripotency, stemness features, epithelial-to-mesenchymal-transition (EMT), and angiogenesis was evaluated by assessing NANOG gene, aldehyde-dehydrogenase (ALDH), N-cadherin and vascular-endothelial-growth-factor (VEGF), respectively. Furthermore, the proliferative marker; Ki-67, was detected by immunostaining, and tumors were histologically graded using Elston-Ellis-modified-Scarff-Bloom-Richardson method. KEY FINDINGS Prophylactic Val significantly reduced tumor size, prolonged latency, reduced tumor histopathologic grade, decreased circulating/intratumoral-ANG-II levels, increased Mas-R, and decreased AT1R expression. AT-1R/IGF-1R were co-expressed with a high correlation coefficient on CAFs/BCSCs. Moreover, Val significantly attenuated IGF-1R transactivation and transcriptional regulation via Src and Notch-1 genes' downregulation and reduced Src/IGF-IR-associated PI3K/Akt and IL-6/STAT3 signaling. Further, Val significantly decreased intratumoral NANOG, ALDH, N-cadherin, VEGF, and Ki-67 levels. SIGNIFICANCE Chronic Val administration carries a potential for repurposing as adjuvant or conjunct therapy for patients at high risk for BC.
Collapse
Affiliation(s)
- Amira M A Mansour
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
7
|
Kirschenbaum D, Xie K, Ingelfinger F, Katzenelenbogen Y, Abadie K, Look T, Sheban F, Phan TS, Li B, Zwicky P, Yofe I, David E, Mazuz K, Hou J, Chen Y, Shaim H, Shanley M, Becker S, Qian J, Colonna M, Ginhoux F, Rezvani K, Theis FJ, Yosef N, Weiss T, Weiner A, Amit I. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 2024; 187:149-165.e23. [PMID: 38134933 DOI: 10.1016/j.cell.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.
Collapse
Affiliation(s)
- Daniel Kirschenbaum
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ken Xie
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Florian Ingelfinger
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Kathleen Abadie
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Thomas Look
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Fadi Sheban
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Truong San Phan
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Baoguo Li
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Pascale Zwicky
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ido Yofe
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Eyal David
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Kfir Mazuz
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Soeren Becker
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jiawen Qian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Assaf Weiner
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
8
|
Bhattacharya R, Ghosh A, Mukhopadhyay S. High-grade serous ovarian carcinoma, the "Achiles' hill" for clinicians and molecular biologists: a molecular insight. Mol Biol Rep 2023; 50:9511-9519. [PMID: 37737967 DOI: 10.1007/s11033-023-08760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC), the deadliest ovarian cancer, alone accounts for 90% of all its subtypes. Characterized by hallmark mutation of TP53, HGSOC show diverse molecular etiology. HGSOC can arise from both ovarian epithelium as well as the fimbrial epithelium of the fallopian tube. Ovulation induced reactive oxygen species, follicular fluid associated growth factor induced stemness, deregulation of hormone receptors like ER, FSHR, AR and hormones like FSH, LH, prolonged ovulation cycle, use of oral contraceptives are agonists of HGSOC while parity, breastfeeding provide protective effect from HGSOC development. Apart from a generic TP53 mutation, mutation of BRCA1/2, RAD51, BRIP1, PALB2, CHEK2, RAD50 etc., were reportedly associated with development of HGSOC. Epigenetic events like methylation of RASSF1A of RAS signaling pathway,OR51L1, OR51I1, OR51F1 etc. has been reported in HGSOC. Micro-RNAs like miR-1290, miR 27-a-3p miR23a, miR205 were reportedly upregulated in HGSOC. Amongst its cognate subtypes viz. differentiated, immunoreactive, mesenchymal, and proliferative, mesenchymal, and proliferative show worst prognosis. A system biology approach showed five major altered pathways in HGSOC, namely, RB, PI3K/RAS, NOTCH, HRR and FOXM1 signaling. For chemonaive patients, drugs that helps in efflux of reduced glutathione or prevent the redox coupling of GSH-GSSG, like Cisplatin, could be considered as the best therapeutic choice for HGSOC. For patients with BRCA1/2 mutations, PARP inhibitors alone or with Bevacizumab can be effective. Immune checkpoint inhibitors could be effective against immunoreactive subtypes. Identification of genes deregulated in chemoresistance could provide better insights in dealing with the disease.
Collapse
Affiliation(s)
- Rittwika Bhattacharya
- Dept of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081, Nayabad, Kolkata, 700094, India.
| | - Arijit Ghosh
- Dept of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081, Nayabad, Kolkata, 700094, India
| | - Soma Mukhopadhyay
- Dept of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081, Nayabad, Kolkata, 700094, India
| |
Collapse
|
9
|
Hassani B, Attar Z, Firouzabadi N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 2023; 23:254. [PMID: 37891636 PMCID: PMC10604988 DOI: 10.1186/s12935-023-03080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS), is an old system with new fundamental roles in cancer biology which influences cell growth, migration, death, and metastasis. RAAS signaling enhances cell proliferation in malignancy directly and indirectly by affecting tumor cells and modulating angiogenesis. Cancer development may be influenced by the balance between the ACE/Ang II/AT1R and the ACE2/Ang 1-7/Mas receptor pathways. The interactions between Ang II/AT1R and Ang I/AT2R as well as Ang1-7/Mas and alamandine/MrgD receptors in the RAAS pathway can significantly impact the development of cancer. Ang I/AT2R, Ang1-7/Mas, and alamandine/MrgD interactions can have anticancer effects while Ang II/AT1R interactions can be involved in the development of cancer. Evidence suggests that inhibitors of the RAAS, which are conventionally used to treat cardiovascular diseases, may be beneficial in cancer therapies.Herein, we aim to provide a thorough description of the elements of RAAS and their molecular play in cancer. Alongside this, the role of RAAS components in sex-dependent cancers as well as GI cancers will be discussed with the hope of enlightening new venues for adjuvant cancer treatment.
Collapse
Affiliation(s)
- Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S, Khori V. Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol 2023; 957:175991. [PMID: 37619785 DOI: 10.1016/j.ejphar.2023.175991] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The use of repurposing drugs that may have neoplastic and anticancer effects increases the efficiency and decrease resistance to chemotherapy drugs through a biochemical and mechanical transduction mechanisms through modulation of fibroblast/fibrosis remodeling in tumor microenvironment (TME). Interestingly, fibroblast/fibrosis remodeling plays a vital role in mediating cancer metastasis and drug resistance after immune chemotherapy. The most essential hypothesis for induction of chemo-immunotherapy resistance is via activation of fibroblast/fibrosis remodeling and preventing the infiltration of T cells after is mainly due to the interference between cytoskeleton, mechanical, biochemical, metabolic, vascular, and remodeling signaling pathways in TME. The structural components of the tumor that can be targeted in the fibroblast/fibrosis remodeling include the depletion of the TME components, targeting the cancer-associated fibroblasts and tumor associated macrophages, alleviating the mechanical stress within the ECM, and normalizing the blood vessels. It has also been found that during immune-chemotherapy, TME injury and fibroblast/fibrosis remodeling causes the up-regulation of inhibitory signals and down-regulation of activated signals, which results in immune escape or chemo-resistance of the tumor. In this regard, repurposing or neo-adjuvant drugs with various transduction signaling mechanisms, including anti-fibrotic effects, are used to target the TME and fibroblast/fibrosis signaling pathway such as angiotensin 2, transforming growth factor-beta, physical barriers of the TME, cytokines and metabolic factors which finally led to the reverse of the chemo-resistance. Consistent to many repurposing drugs such as pirfenidone, metformin, losartan, tranilast, dexamethasone and pentoxifylline are used to decrease immune-suppression by abrogation of TME inhibitory signal that stimulates the immune system and increases efficiency and reduces resistance to chemotherapy drugs. To overcome immunosuppression based on fibroblast/fibrosis remodeling, in this review, we focus on inhibitory signal transduction, which is the physical barrier, alleviates mechanical stress and prevents mechano-metabolic activation.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciencess, Catastega Institue of Medical Sciences, Mashhad, Iran
| | - Parham Aref
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farahnazsadat Ahmadi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
11
|
To KKW, Cho WC. Drug Repurposing to Circumvent Immune Checkpoint Inhibitor Resistance in Cancer Immunotherapy. Pharmaceutics 2023; 15:2166. [PMID: 37631380 PMCID: PMC10459070 DOI: 10.3390/pharmaceutics15082166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have achieved unprecedented clinical success in cancer treatment. However, drug resistance to ICI therapy is a major hurdle that prevents cancer patients from responding to the treatment or having durable disease control. Drug repurposing refers to the application of clinically approved drugs, with characterized pharmacological properties and known adverse effect profiles, to new indications. It has also emerged as a promising strategy to overcome drug resistance. In this review, we summarized the latest research about drug repurposing to overcome ICI resistance. Repurposed drugs work by either exerting immunostimulatory activities or abolishing the immunosuppressive tumor microenvironment (TME). Compared to the de novo drug design strategy, they provide novel and affordable treatment options to enhance cancer immunotherapy that can be readily evaluated in the clinic. Biomarkers are exploited to identify the right patient population to benefit from the repurposed drugs and drug combinations. Phenotypic screening of chemical libraries has been conducted to search for T-cell-modifying drugs. Genomics and integrated bioinformatics analysis, artificial intelligence, machine and deep learning approaches are employed to identify novel modulators of the immunosuppressive TME.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
12
|
Gunchick V, McDevitt RL, Choi E, Winslow K, Zalupski MM, Sahai V. Survival Analysis of 1140 Patients with Biliary Cancer and Benefit from Concurrent Renin-Angiotensin Antagonists, Statins, or Aspirin with Systemic Therapy. Oncologist 2023; 28:531-541. [PMID: 37036699 PMCID: PMC10243793 DOI: 10.1093/oncolo/oyad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/08/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Patients with advanced biliary tract cancers (BTCs) have poor prognoses and limited therapeutic options. Renin-angiotensin antagonists (ACE-I/ARBs), statins, and aspirin may have potential anti-tumorigenic effects and decrease mortality per retrospective analyses in some solid tumors. OBJECTIVE To evaluate the efficacy of ACE-Is/ARBs, statins, and/or aspirin concurrent to first-line systemic therapy in patients with advanced or metastatic BTC. METHODS Adult patients at University of Michigan with pathologic confirmation of BTC between January 2010 and December 2020 were included in this retrospective analysis. RESULTS Of 1140 patients who met eligibility, a total of 509 patients received one or more concomitant medication(s) of interest in conjunction with systemic therapy for advanced cancer. In the total cohort, the overall survival for locally advanced patients (N = 305) was 16.3 months (95% CI: 12.1-18.6), and metastatic patients (N = 512) 8.6 months (95% CI: 7.6-9.5); P < .0001. Within this concomitant medication cohort, patients with locally advanced stage (n = 132) experienced significantly longer progression-free survival (9.8 vs 4.5; P < 0.0001), and overall survival (17.4 vs 10.6; P < 0.0001) than those with metastatic (n = 297) cancer, respectively. Patients who received ACE-Is/ARBs, statins, and/or aspirin (n = 245) versus not (n = 264) concurrent with systemic anti-cancer therapy did not experience improved progression-free (5.5 vs 5.5 months; hazard ratio (HR) 1.1; P = 0.51), or overall survival (12.3 vs 12.6 months; HR 1.1; P = 0.18), respectively. CONCLUSION In contrast to prior studies, no progression free or overall survival benefit in patients with advanced BTC from concurrent use of ACE-I/ARBs, statin, and/or aspirin with systemic therapy was observed when assessed by BTC subtype or specific systemic therapy regimen.
Collapse
Affiliation(s)
- Valerie Gunchick
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Rachel L McDevitt
- College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth Choi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Katherine Winslow
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark M Zalupski
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Wu K, Lyu F, Wu SY, Sharma S, Deshpande RP, Tyagi A, Zhao D, Xing F, Singh R, Watabe K. Engineering an active immunotherapy for personalized cancer treatment and prevention of recurrence. SCIENCE ADVANCES 2023; 9:eade0625. [PMID: 37126558 PMCID: PMC11811890 DOI: 10.1126/sciadv.ade0625] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Breast cancer has been shown to be resistant to immunotherapies. To overcome this challenge, we developed an active immunotherapy for personalized treatment based on a smart nanovesicle. This is achieved by anchoring membrane-bound bioactive interleukin 2 (IL2) and enriching T cell-promoting costimulatory factors on the surface of the dendritic cell-derived small extracellular vesicles. This nanovesicle also displays major histocompatibility complex-bound antigens inherited from tumor lysate-pulsed dendritic cell. When administrated, the surface-bound IL2 is able to guide the nanovesicle to lymphoid organs and activate the IL2 receptor on lymphocytes. Furthermore, it is able to perform antigen presentation in the replacement of professional antigen-presenting cells. This nanovesicle, named IL2-ep13nsEV, induced a strong immune reaction to rescue 50% of the mice in our humanized patient-derived xenografts, sensitized cancer cells to immune checkpoint inhibitor treatment, and prevented the recurrence of resected tumors. This paradigm presents a feasible strategy for the treatment and prevention of metastatic breast cancer.
Collapse
Affiliation(s)
- Kerui Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Feng Lyu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Breast Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sambad Sharma
- Department of Translation Biology, Auron Therapeutics, Newton, MA 02458, USA
| | - Ravindra Pramod Deshpande
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dan Zhao
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
14
|
Colard-Thomas J, Thomas QD, Viala M. Comedications with Immune Checkpoint Inhibitors: Involvement of the Microbiota, Impact on Efficacy and Practical Implications. Cancers (Basel) 2023; 15:2276. [PMID: 37190203 PMCID: PMC10136801 DOI: 10.3390/cancers15082276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been a major breakthrough in solid oncology over the past decade. The immune system and the gut microbiota are involved in their complex mechanisms of action. However, drug interactions have been suspected of disrupting the fine equilibrium necessary for optimal ICI efficacy. Thus, clinicians are facing a great deal of sometimes contradictory information on comedications with ICIs and must at times oppose conflicting objectives between oncological response and comorbidities or complications. We compiled in this review published data on the role of the microbiota in ICI efficacy and the impact of comedications. We found mostly concordant results on detrimental action of concurrent corticosteroids, antibiotics, and proton pump inhibitors. The timeframe seems to be an important variable each time to preserve an initial immune priming at ICIs initiation. Other molecules have been associated with improved or impaired ICIs outcomes in pre-clinical models with discordant conclusions in retrospective clinical studies. We gathered the results of the main studies concerning metformin, aspirin, and non-steroidal anti-inflammatory drugs, beta blockers, renin-angiotensin-aldosterone system inhibitors, opioids, and statins. In conclusion, one should always assess the necessity of concomitant treatment according to evidence-based recommendations and discuss the possibility of postponing ICI initiation or switching strategies to preserve the critical window.
Collapse
Affiliation(s)
- Julien Colard-Thomas
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), University of Montpellier (UM), 34090 Montpellier, France
| | - Quentin Dominique Thomas
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), University of Montpellier (UM), 34090 Montpellier, France
- Oncogenic Pathways in Lung Cancer, Montpellier Cancer Research Institute (IRCM) INSERM U1194, University of Montpellier (UM), 34090 Montpellier, France
| | - Marie Viala
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), University of Montpellier (UM), 34090 Montpellier, France
| |
Collapse
|
15
|
Zhu L, Ma M, Zhang L, Wang S, Guo Y, Ling X, Lin H, Lai N, Lin S, Du L, Dong Q. System Analysis Based on Lipid-Metabolism-Related Genes Identifies AGT as a Novel Therapy Target for Gastric Cancer with Neoadjuvant Chemotherapy. Pharmaceutics 2023; 15:810. [PMID: 36986671 PMCID: PMC10051152 DOI: 10.3390/pharmaceutics15030810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common causes of cancer-related deaths worldwide, and chemotherapy is still a standard strategy for treating patients with advanced GC. Lipid metabolism has been reported to play an important role in the carcinogenesis and development of GC. However, the potential values of lipid-metabolism-related genes (LMRGs) concerning prognostic value and the prediction of chemotherapy responsiveness in GC remains unclear. A total of 714 stomach adenocarcinoma patients were enrolled from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Using univariate Cox and LASSO regression analyses, we developed a risk signature based on LMRGs that can distinguish high-GC-risk patients from low-risk patients with significant differences in overall survival. We further validated this signature prognostic value using the GEO database. The R package "pRRophetic" was applied to calculate the sensitivity of each sample from high- and low-risk groups to chemotherapy drugs. The expression of two LMRGs, AGT and ENPP7, can predict the prognosis and response to chemotherapy in GC. Furthermore, AGT significantly promoted GC growth and migration, and the downregulation of AGT enhanced the chemotherapy response of GC both in vitro and in vivo. Mechanistically, AGT induced significant levels of epithelial-mesenchymal transition (EMT) through the PI3K/AKT pathway. The PI3K/AKT pathway agonist 740 Y-P can restore the EMT of GC cells impaired by AGT knockdown and treatment with 5-fluorouracil. Our findings suggest that AGT plays a key role in the development of GC, and targeting AGT may help to improve the chemotherapy response of GC patients.
Collapse
Affiliation(s)
- Le Zhu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Ming Ma
- Gastroenterology Department of Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Lumin Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Shun Wang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yu Guo
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Xinxin Ling
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hanchao Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Shengli Lin
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University & Shanghai Collaborative Innovation Center of Endoscopy, Shanghai 200032, China
| | - Ling Du
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai 201199, China
| |
Collapse
|
16
|
Liu H, Nassour I, Lebowitz S, D'Alesio M, Hampton E, Desilva A, Hammad A, AlMasri S, Khachfe HH, Singhi A, Bahary N, Lee K, Zureikat A, Paniccia A. The use of angiotensin system inhibitors correlates with longer survival in resected pancreatic adenocarcinoma patients. HPB (Oxford) 2023; 25:320-329. [PMID: 36610939 PMCID: PMC11199074 DOI: 10.1016/j.hpb.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Activities and inhibition of the Renin-Angiotensin-Aldosterone System (RAAS) may affect the survival of resected pancreatic ductal adenocarcinoma (PDAC) patients METHOD: A single-institution retrospective analysis of resected PDAC patients between 2010 and 2019. To estimate the effect of angiotensin system inhibitors (ASIs) on patient survival, we performed Kaplan Meier analysis, Cox Proportional Hazards model, Propensity Score Matching (PSM), and inverse probability weighting (IPW) analysis. RESULTS 742 patients were included in the analysis. The average age was 67.0 years, with a median follow-up of 24.1 months. The use of ASI was associated with significantly longer overall survival in univariate (p = 0.004) and multivariable (HR = 0.70 [0.56-0.88],p = 0.003) adjusted analysis. In a propensity score-matched cohort of 400 patients, ASI use was again associated with longer overall survival (p = 0.039). Lastly, inverse probability weighting (IPW) analysis suggested that the use of ASI was associated with an average treatment effect on the treated (ATT) of HR = 0.68 [0.53-0.86],p = 0.002) for overall survival. CONCLUSION In this single-institution retrospective study focusing on resected PDAC patients, the use of ASI was associated with longer overall survival in multiple statistical models. Prospective clinical trials are needed before routine clinical implementation of ASI as an adjuvant to existing therapy can be recommended.
Collapse
Affiliation(s)
- Hao Liu
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ibrahim Nassour
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Steven Lebowitz
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark D'Alesio
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erica Hampton
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Annissa Desilva
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Abdulrahman Hammad
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Samer AlMasri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussein H Khachfe
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Aatur Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Nathan Bahary
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Amer Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
17
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
18
|
Shen J, Hou H, Liang B, Guo X, Chen L, Yang Y, Wang Y. Effect of renin-angiotensin-aldosterone system inhibitors on survival outcomes in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol 2023; 14:1155104. [PMID: 37153578 PMCID: PMC10154532 DOI: 10.3389/fimmu.2023.1155104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Background Effect of renin-angiotensin-aldosterone system inhibitors (RAASIs) in combination with immune checkpoint inhibitors (ICIs) on prognoses in cancer patients remains controversial. This study systematically evaluated the effect of RAASIs on survival outcomes in cancer patients receiving ICIs treatment and provided an evidence-based reference for the rational use of RAASIs and ICIs combination therapy in clinical practice. Methods Studies evaluating the prognosis of RAASIs-used versus RAASIs-free in cancer patients receiving ICIs treatment from inception to 1 November 2022 were retrieved by searching PubMed, Cochrane Library, Web of Science, Embase, and major conference proceedings. Studies in English reporting hazard ratios (HRs) with 95% confidence intervals (CIs) for overall survival (OS) and/or progression-free survival (PFS) were included. Statistical analyses were conducted using the software Stata 17.0. Results A total of 12 studies containing 11739 patients were included, comprising ~4861 patients in the RAASIs-used and ICIs-treated group and ~6878 patients in RAASIs-free and ICIs-treated group. The pooled HR was 0.85 (95%CI, 0.75-0.96; P = 0.009) for OS and 0.91 (95%CI, 0.76-1.09; P = 0.296) for PFS, indicating a positive effect of RAASIs concomitant with ICIs on cancer patients. This effect was observed especially in patients with urothelial carcinoma (HR, 0.53; 95%CI, 0.31-0.89; P = 0.018) and renal cell carcinoma (HR, 0.56; 95%CI, 0.37-0.84; P = 0.005) on OS. Conclusion Concomitant use of RAASIs and ICIs enhanced the efficacy of ICIs and this combination regimen was associated with significantly improved OS and a trend towards better PFS. RAASIs can be considered as adjuvant drugs when hypertensive patients receive ICIs treatment. Our results provide an evidence-based reference for the rational use of the RAASIs and ICIs combination therapy to improve the efficacy of ICIs in clinical practice. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022372636; https://inplasy.com/, identifier INPLASY2022110136.
Collapse
Affiliation(s)
- Jinhai Shen
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hui Hou
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bowen Liang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiao Guo
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li Chen
- Department of Pharmacology, Suzhou Institute for Drug Control, Suzhou, Jiangsu, China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Yun Wang, ; Yong Yang,
| | - Yun Wang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Yun Wang, ; Yong Yang,
| |
Collapse
|
19
|
Angiotensinogen, a promising gene signature for rectum and stomach adenocarcinoma patients. Am J Transl Res 2022; 14:8879-8892. [PMID: 36628228 PMCID: PMC9827296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Angiotensinogen (AGT), as a component of the renin-angiotensin system (RAS), is one of the major risk factors for cancer development. To date, there has not been a systematic pan-cancer analysis of AGT. METHODS This pan-cancer study comprehensively investigated AGT in 24 different cancers based on the UALCAN, KM plotter, GENT2, HPA, MEXPRESS, cBioportal, STRING, TIMER, and CTD databases. RESULTS The results showed that AGT was highly expressed in most tumors, and AGT overexpression may be related to the worst survival of Rectum adenocarcinoma (READ) and Stomach Adenocarcinoma (STAD) patients only. Furthermore, pathway analysis indicated that AGT-associated genes are involved in six critical pathways. Moreover, the higher expression of AGT was found to be detrimental to the promoter methylation level (P<0.05), immune cells infiltration (P<0.05), and genetic alterations. We have also predicted various chemotherapeutic drugs contributing to the expression regulation of AGT. CONCLUSION Our results together support that AGT is a possible biomarker for READ and STAD.
Collapse
|
20
|
Jiang A, Pang Q, Gan X, Wang A, Wu Z, Liu B, Luo P, Qu L, Wang L. Definition and verification of novel metastasis and recurrence related signatures of ccRCC: A multicohort study. CANCER INNOVATION 2022; 1:146-167. [PMID: 38090653 PMCID: PMC10686128 DOI: 10.1002/cai2.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2024]
Abstract
Background Cancer metastasis and recurrence remain major challenges in renal carcinoma patient management. There are limited biomarkers to predict the metastatic probability of renal cancer, especially in the early-stage subgroup. Here, our study applied robust machine-learning algorithms to identify metastatic and recurrence-related signatures across multiple renal cancer cohorts, which reached high accuracy in both training and testing cohorts. Methods Clear cell renal cell carcinoma (ccRCC) patients with primary or metastatic site sequencing information from eight cohorts, including one out-house cohort, were enrolled in this study. Three robust machine-learning algorithms were applied to identify metastatic signatures. Then, two distinct metastatic-related subtypes were identified and verified; matrix remodeling associated 5 (MXRA5), as a promising diagnostic and therapeutic target, was investigated in vivo and in vitro. Results We identified five stable metastasis-related signatures (renin, integrin subunit beta-like 1, MXRA5, mesenchyme homeobox 2, and anoctamin 3) from multicenter cohorts. Additionally, we verified the specificity and sensibility of these signatures in external and out-house cohorts, which displayed a satisfactory consistency. According to these metastatic signatures, patients were grouped into two distinct and heterogeneous ccRCC subtypes named metastatic cancer subtype 1 (MTCS1) and type 2 (MTCS2). MTCS2 exhibited poorer clinical outcomes and metastatic tendencies than MTCS1. In addition, MTCS2 showed higher immune cell infiltration and immune signature expression but a lower response rate to immune blockade therapy than MTCS1. The MTCS2 subgroup was more sensitive to saracatinib, sunitinib, and several molecular targeted drugs. In addition, MTCS2 displayed a higher genome mutation burden and instability. Furthermore, we constructed a prognosis model based on subtype biomarkers, which performed well in training and validation cohorts. Finally, MXRA5, as a promising biomarker, significantly suppressed malignant ability, including the cell migration and proliferation of ccRCC cell lines in vitro and in vivo. Conclusions This study identified five robust metastatic signatures and proposed two metastatic probability clusters with stratified prognoses, multiomics landscapes, and treatment options. The current work not only provided new insight into the heterogeneity of renal cancer but also shed light on optimizing decision-making in immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Qingyang Pang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Xinxin Gan
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Anbang Wang
- Department of Urology, Changzheng HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Zhenjie Wu
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Bing Liu
- Department of Urology, The Third Affiliated HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Le Qu
- Department of Urology, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Linhui Wang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| |
Collapse
|
21
|
Rad HS, Shiravand Y, Radfar P, Ladwa R, Perry C, Han X, Warkiani ME, Adams MN, Hughes BGM, O'Byrne K, Kulasinghe A. Understanding the tumor microenvironment in head and neck squamous cell carcinoma. Clin Transl Immunology 2022; 11:e1397. [PMID: 35686027 PMCID: PMC9170522 DOI: 10.1002/cti2.1397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a heterogeneous group of tumors. While significant progress has been made using multimodal treatment, the 5-year survival remains at 50%. Developing effective therapies, such as immunotherapy, will likely lead to better treatment of primary and metastatic disease. However, not all HNSCC tumors respond to immune checkpoint blockade therapy. Understanding the complex cellular composition and interactions of the tumor microenvironment is likely to lead to new knowledge for effective therapies and treatment resistance. In this review, we discuss HNSCC characteristics, predictive biomarkers, factors influencing immunotherapy response, with a focus on the tumor microenvironment.
Collapse
Affiliation(s)
- Habib Sadeghi Rad
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
| | - Yavar Shiravand
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Payar Radfar
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
| | - Rahul Ladwa
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Chris Perry
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Xiaoyuan Han
- Department of Biomedical ScienceUniversity of the Pacific, Arthur A. Dugoni School of DentistryStocktonCAUSA
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Institute of Molecular MedicineSechenov First Moscow State UniversityMoscowRussia
| | - Mark N Adams
- Centre for Genomics and Personalised HealthSchool of Biomedical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Brett GM Hughes
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Royal Brisbane and Women's HospitalBrisbaneQLDAustralia
| | - Ken O'Byrne
- Princess Alexandra HospitalBrisbaneQLDAustralia
- Centre for Genomics and Personalised HealthSchool of Biomedical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Arutha Kulasinghe
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
22
|
Lu Y, Zhang J, Chen Y, Kang Y, Liao Z, He Y, Zhang C. Novel Immunotherapies for Osteosarcoma. Front Oncol 2022; 12:830546. [PMID: 35433427 PMCID: PMC9012135 DOI: 10.3389/fonc.2022.830546] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone sarcoma mainly affecting adolescents and young adults, which often progresses to pulmonary metastasis and leads to the death of OS patients. OS is characterized as a highly heterogeneous cancer type and the underlying pathologic mechanisms triggering tumor progress and metastasis are incompletely recognized. Surgery combined with neoadjuvant and postoperative chemotherapy has elevated 5-year survival to over 70% for patients with localized OS tumors, as opposed to only 20% of patients with recurrence and/or metastasis. Therefore, novel therapeutic strategies are needed to overcome the drawbacks of conventional treatments. Immunotherapy is gaining momentum for the treatment of OS with an increasing number of FDA-approved therapies for malignancies resistant to conventional therapies. Here, we review the OS tumor microenvironment and appraise the promising immunotherapies available in the management of OS.
Collapse
Affiliation(s)
- Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahe Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yutong Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuchen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhipeng Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuanqi He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Cangyu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
23
|
Targeting Proliferating Tumor-Infiltrating Macrophages Facilitates Spatial Redistribution of CD8 + T Cells in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14061474. [PMID: 35326625 PMCID: PMC8946118 DOI: 10.3390/cancers14061474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play crucial roles in cancer progression, but the contributions and regulation of different macrophage subpopulations remain unclear. Here, we report a high level of TAM infiltration in human and mouse pancreatic ductal adenocarcinoma (PDAC) models and that the targeting of proliferating F4/80+ macrophages facilitated cytotoxic CD8+ T-cell-dependent antitumor immune responses. A well-defined KPC-derived PDAC cell line and the murine Panc02 PDAC cell line were used. Treatment of PDAC-bearing mice with clodronate liposomes, an agent that chemically depletes macrophages, did not impact macrophage subpopulations in the local tumor microenvironment (TME). However, further investigation using both BrdU and Ki67 to evaluate proliferating cells showed that clodronate liposomes treatment reduced proliferating macrophages in the KPC and Panc02 models. We further evaluated the distance between CD8+ T cells and PanCK+ tumor cells, and clodronate liposomes treatment significantly increased the number of CD8+ T cells in close proximity (<30 µm) to PanCK+ PDAC cells, with increased numbers of tumor-infiltrating IFN-γ+CD8+ T cells. This study suggests that targeting proliferating tumor-infiltrating macrophages may increase CD8+ cytotoxic lymphocyte (CTL) infiltration and facilitate the spatial redistribution of CD8+ T cells in tumors, contributing to the antitumor effect.
Collapse
|
24
|
Cui Y, Chen F, Gao J, Lei M, Wang D, Jin X, Guo Y, Shan L, Chen X. Comprehensive landscape of the renin-angiotensin system in Pan-cancer: a potential downstream mediated mechanism of SARS-CoV-2. Int J Biol Sci 2021; 17:3795-3817. [PMID: 34671200 PMCID: PMC8495399 DOI: 10.7150/ijbs.53312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background: SARS-CoV-2, the cause of the worldwide COVID-19 pandemic, utilizes the mechanism of binding to ACE2 (a crucial component of the renin-angiotensin system [RAS]), subsequently mediating a secondary imbalance of the RAS family and leading to severe injury to the host. However, very few studies have been conducted to reveal the mechanism behind the effect of SARS-CoV-2 on tumors. Methods: Demographic data extracted from 33 cancer types and over 10,000 samples were employed to determine the comprehensive landscape of the RAS. Expression distribution, pretranscriptional and posttranscriptional regulation and posttranslational modifications (PTMs) as well as genomic alterations, DNA methylation and m6A modification were analyzed in both tissue and cell lines. The clinical phenotype, prognostic value and significance of the RAS during immune infiltration were identified. Results: Low expression of AGTR1 was common in tumors compared to normal tissues, while very low expression of AGTR2 and MAS1 was detected in both tissues and cell lines. Differential expression patterns of ACE in ovarian serous cystadenocarcinoma (OV) and kidney renal clear cell carcinoma (KIRC) were correlated with ubiquitin modification involving E3 ligases. Genomic alterations of the RAS family were infrequent across TCGA pan-cancer program, and ACE had the highest alteration frequency compared with other members. Low expression of AGTR1 may result from hypermethylation in the promoter. Downregulation of RAS family was linked to higher clinical stage and worse survival (as measured by disease-specific survival [DSS], overall survival [OS] or progression-free interval [PFI]), especially for ACE2 and AGTR1 in KIRC. ACE-AGTR1, a classical axis of the RAS family related to immune infiltration, was positively correlated with M2-type macrophages, cancer-associated fibroblasts (CAFs) and immune checkpoint genes in most cancers. Conclusion: ACE, ACE2, AGT and AGTR1 were differentially expressed in 33 types of cancers. PTM of RAS family was found to rely on ubiquitination. ACE2 and AGTR1 might serve as independent prognostic factors for LGG and KIRC. SARS-CoV-2 might modify the tumor microenvironment by regulating the RAS family, thus affecting the biological processes of cancer.
Collapse
Affiliation(s)
- Yuqing Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Fengzhi Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Jiayi Gao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Mengxia Lei
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Dandan Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xiaoying Jin
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Yan Guo
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Liying Shan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| |
Collapse
|
25
|
Yu J, Li S, Wang L, Dong Z, Si L, Bao L, Wu L. Pathogenesis of Brucella epididymoorchitis-game of Brucella death. Crit Rev Microbiol 2021; 48:96-120. [PMID: 34214000 DOI: 10.1080/1040841x.2021.1944055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonotic disease caused by Brucella spp. Human infection often results from direct contact with tissues from infected animals or by consumption of undercooked meat and unpasteurised dairy products, causing serious economic losses and public health problems. The male genitourinary system is a common involved system in patients with brucellosis. Among them, unilateral orchitis and epididymitis are the most common. Although the clinical and imaging aspect of orchi-epididymitis caused by brucellosis have been widely described, the cellular and molecular mechanisms involved in the damage and the immune response in testis and epididymis have not been fully elucidated. In this review, we first summarised the clinical characteristics of Brucella epididymo-orchitis and the composition of testicular and epididymal immune system. Secondly, with regard to the mechanism of Brucella epididymoorchitis, we mainly discussed the process of Brucella invading testis and epididymis in temporal and spatial order, including i) Brucella evades innate immune recognition of testicular PRRs;ii) Brucella overcomes the immune storm triggered by the invasion of testis through bacterial lipoproteins and virulence factors, and changes the secretion mode of cytokines; iii) Brucella breaks through the blood-testis barrier with the help of macrophages, and inflammatory cytokines promote the oxidative stress of Sertoli cells, damaging the integrity of BTB; iv) Brucella inhibits apoptosis of testicular phagocytes. Finally, we revealed the structure and sequence of testis invaded by Brucella at the tissue level. This review will enable us to better understand the pathogenesis of orchi-epididymitis caused by brucellosis and shed light on the development of new treatment strategies for the treatment of brucellosis and the prevention of transition to chronic form. Facing the testicle with immunity privilege, Brucella is like Bruce Lee in the movie Game of Death, winning is survival while losing is death.HIGHLIGHTSWe summarized the clinical features and pathological changes of Brucellaepididymoorchitis.Our research reveals the pathogenesis of Brucella epididymoorchitis, which mainly includes the subversion of testicular immune privilege by Brucella and a series of destructive reactions derived from it.As a basic framework and valuable resource, this study can promote the exploration of the pathogenesis of Brucella and provide reference for determining new therapeutic targets for brucellosis in the future.
Collapse
Affiliation(s)
- Jiuwang Yu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Sha Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lu Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lengge Si
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lan Wu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
26
|
Garcia-Garduño TC, Padilla-Gutierrez JR, Cambrón-Mora D, Valle Y. RAAS: A Convergent Player in Ischemic Heart Failure and Cancer. Int J Mol Sci 2021; 22:7106. [PMID: 34281199 PMCID: PMC8268500 DOI: 10.3390/ijms22137106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
The current global prevalence of heart failure is estimated at 64.34 million cases, and it is expected to increase in the coming years, especially in countries with a medium-low sociodemographic index where the prevalence of risk factors is increasing alarmingly. Heart failure is associated with many comorbidities and among them, cancer has stood out as a contributor of death in these patients. This connection points out new challenges both in the context of the pathophysiological mechanisms involved, as well as in the quality of life of affected individuals. A hallmark of heart failure is chronic activation of the renin-angiotensin-aldosterone system, especially marked by a systemic increase in levels of angiotensin-II, a peptide with pleiotropic activities. Drugs that target the renin-angiotensin-aldosterone system have shown promising results both in the prevention of secondary cardiovascular events in myocardial infarction and heart failure, including a lower risk of certain cancers in these patients, as well as in current cancer therapies; therefore, understanding the mechanisms involved in this complex relationship will provide tools for a better diagnosis and treatment and to improve the prognosis and quality of life of people suffering from these two deadly diseases.
Collapse
Affiliation(s)
- Texali C. Garcia-Garduño
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico; (T.C.G.-G.); (J.R.P.-G.)
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jorge R. Padilla-Gutierrez
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico; (T.C.G.-G.); (J.R.P.-G.)
| | - Diego Cambrón-Mora
- Doctorado en Biología Molecular, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Yeminia Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico; (T.C.G.-G.); (J.R.P.-G.)
| |
Collapse
|
27
|
Effect of concomitant use of antihypertensives and immune check point inhibitors on cancer outcomes. J Hypertens 2021; 39:1274-1281. [PMID: 34074965 DOI: 10.1097/hjh.0000000000002799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Antihypertensives and cancer have a complex relationship. Among the antihypertensives, renin--angiotensin system inhibitors have strong immune modulatory activities that may affect immune check point inhibitors-related outcomes in cancer patients. We evaluated the association between concomitant use of renin--angiotensin system inhibitors and other antihypertensive agents with survival/toxicity outcomes from atezolizumab. METHODS A post hoc analysis of individual patient data from seven clinical trials of lung, renal or urothelial cancers was performed. Users and nonusers of antihypertensive classes were compared for overall survival, progression-free survival and immune adverse events. Cox proportional hazards were calculated between the groups and reported as hazards ratio and 95% confidence interval (95% CI). RESULTS Of the 3695 patients, 2539 were treated with atezolizumab and the rest with chemotherapy. Twenty-four percent of patients were on a renin--angiotensin system inhibitor at trial commencement. No statistically significant difference in overall survival (hazard ratio 0.92, 95% CI 0.79-1.07, P = 0.29), progression-free survival (hazard ratio 0.95, 95% CI 0.84-1.08, P = 0.42) or immune adverse events (odds ratio 0.94, 95% CI 0.76-1.15, P = 0.55) between renin--angiotensin system inhibitor users and nonusers were identified in the atezolizumab-treated cohort. Other classes of antihypertensives were also not associated with survival. CONCLUSION Concomitant use of antihypertensives including RASi was not associated with survival and immune-related safety outcomes during atezolizumab therapy for solid cancers. Future studies should evaluate the association between antihypertensives and other ICI as well as ICI combination interventions in clinical trials and real-world settings.
Collapse
|
28
|
Carlos-Escalante JA, de Jesús-Sánchez M, Rivas-Castro A, Pichardo-Rojas PS, Arce C, Wegman-Ostrosky T. The Use of Antihypertensive Drugs as Coadjuvant Therapy in Cancer. Front Oncol 2021; 11:660943. [PMID: 34094953 PMCID: PMC8173186 DOI: 10.3389/fonc.2021.660943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Cancer is a complex group of diseases that constitute the second largest cause of mortality worldwide. The development of new drugs for treating this disease is a long and costly process, from the discovery of the molecule through testing in phase III clinical trials, a process during which most candidate molecules fail. The use of drugs currently employed for the management of other diseases (drug repurposing) represents an alternative for developing new medical treatments. Repurposing existing drugs is, in principle, cheaper and faster than developing new drugs. Antihypertensive drugs, primarily belonging to the pharmacological categories of angiotensin-converting enzyme inhibitors, angiotensin II receptors, direct aldosterone antagonists, β-blockers and calcium channel blockers, are commonly prescribed and have well-known safety profiles. Additionally, some of these drugs have exhibited pharmacological properties useful for the treatment of cancer, rendering them candidates for drug repurposing. In this review, we examine the preclinical and clinical evidence for utilizing antihypertensive agents in the treatment of cancer.
Collapse
Affiliation(s)
- José A. Carlos-Escalante
- Plan de Estudios Combinados En Medicina (PECEM) (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela de Jesús-Sánchez
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Orizaba-Córdoba, Mexico
| | - Alejandro Rivas-Castro
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Claudia Arce
- Medical Oncology/Breast Tumors, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Talia Wegman-Ostrosky
- Basic Research Subdirection, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
29
|
Denaro N, Merlano MC, Lo Nigro C. Further Understanding of the Immune Microenvironment in Head and Neck Squamous Cell Carcinoma: Implications for Prognosis. Cancer Manag Res 2021; 13:3973-3980. [PMID: 34040438 PMCID: PMC8139676 DOI: 10.2147/cmar.s277907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose We aimed to review the literature on the tumor microenvironment as a key player in tumor growth and anti-cancer treatment responses in head and neck cancer. Patients and Methods We reviewed the recent literature on this topic, using the following research words: “tumor microenvironment” and “head and neck cancer or neoplasm or head and neck squamous cell carcinoma” and “immune cells” and “stromal cells”. A search was conducted on the PubMed website and reports from international meetings, presentations and abstracts. Results The tumor microenvironment is a complex network in which myeloid cells, tumoral cells, growth factors and cytokines are involved in angiogenesis, the extracellular matrix and epithelial-to-mesenchymal transition. Conclusion Immune resistance and rapid tumor growth depend on immunosuppressive and pro-tumoral environments. Further investigations to classify and adequately treat patients with head and neck cancer are required.
Collapse
Affiliation(s)
- Nerina Denaro
- Medical Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | | | - Cristiana Lo Nigro
- Medical Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy.,Central Laboratory, Galliera Hospital, Genoa, Italy
| |
Collapse
|
30
|
Peng J, Cui Y, Xu S, Wu X, Huang Y, Zhou W, Wang S, Fu Z, Xie H. Altered glycolysis results in drug-resistant in clinical tumor therapy. Oncol Lett 2021; 21:369. [PMID: 33747225 DOI: 10.3892/ol.2021.12630] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells undergo metabolic reprogramming, including increased glucose metabolism, fatty acid synthesis and glutamine metabolic rates. These enhancements to three major metabolic pathways are closely associated with glycolysis, which is considered the central component of cancer cell metabolism. Increasing evidence suggests that dysfunctional glycolysis is commonly associated with drug resistance in cancer treatment, and aberrant glycolysis plays a significant role in drug-resistant cancer cells. Studies on the development of drugs targeting these abnormalities have led to improvements in the efficacy of tumor treatment. The present review discusses the changes in glycolysis targets that cause drug resistance in cancer cells, including hexokinase, pyruvate kinase, pyruvate dehydrogenase complex, glucose transporters, and lactate, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies. In addition, the association between increased oxidative phosphorylation and drug resistance is introduced, which is caused by metabolic plasticity. Given that aberrant glycolysis has been identified as a common metabolic feature of drug-resistant tumor cells, targeting glycolysis may be a novel strategy to develop new drugs to benefit patients with drug-resistance.
Collapse
Affiliation(s)
- Jinghui Peng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yangyang Cui
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shipeng Xu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaowei Wu
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Huang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenbin Zhou
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China.,Department of Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
31
|
Jiang H, Tai Z, Chen Z, Zhu Q, Bao L. Clinical applicability of renin-angiotensin system inhibitors in cancer treatment. Am J Cancer Res 2021; 11:318-336. [PMID: 33575074 PMCID: PMC7868760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023] Open
Abstract
The renin-angiotensin system (RAS) regulates physiological functions of the cardiovascular system, kidneys, and other tissues. Various in vivo and in vitro studies have shown that RAS plays a pivotal role in the development of malignant tumors, while several retrospective studies have confirmed that patients undergoing long-term RAS inhibitors (RASi) treatment have a lowered risk of cancer. Moreover, blocking RAS has been shown to inhibit tumor growth, metastasis, and angiogenesis in various experimental models of malignant tumors. Herein, we review the available RASi-related literature and provide an analysis using the scientific atlas software VOSviewer. We observed that recent studies have primarily focused on gene expression, tumor biology, and survival analysis. Through an in-depth data analysis from the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx), we identified the impact of AGTR1, an essential component of RAS, on tumors, and we discuss the underlying biological mechanism of RASi. Furthermore, we outline the research progress and potential use of RASi in tumor treatment. Overall, RASi may be a promising adjunct in cancer therapy.
Collapse
Affiliation(s)
- Huirong Jiang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai 200438, China
- Shanghai Skin Disease Hospital, Tongji University School of MedicineShanghai 200443, China
- Department of Pharmacy, Changhai Hospital, Second Military Medical UniversityShanghai 200433, China
- Bengbu Medical CollegeBengbu 233030, China
| | - Zongguang Tai
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai 200438, China
- Shanghai Skin Disease Hospital, Tongji University School of MedicineShanghai 200443, China
- Department of Pharmacy, Changhai Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of MedicineShanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of MedicineShanghai 200443, China
| | - Leilei Bao
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghai 200438, China
| |
Collapse
|
32
|
Renin-Angiotensin System in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:105-114. [PMID: 33119868 DOI: 10.1007/978-3-030-50224-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For enhancing the antitumor effects of current immunotherapies including immune-checkpoint blockade, it is important to reverse cancer-induced immunosuppression. The renin-angiotensin system (RAS) controls systemic body fluid circulation; however, the presence of a local RAS in tumors has been reported. Furthermore, the local RAS in tumors influences various immune and interstitial cells and affects tumor immune response. RAS stimulation through the angiotensin II type 1 receptor has been reported to inhibit tumor immune response. Therefore, RAS inhibitors and combined treatment with immunotherapy are expected in the future. In this chapter, we provide a background on the RAS and describe the tumor environment with regard to the RAS and tumor immune response.
Collapse
|
33
|
Almutlaq M, Alamro AA, Alamri HS, Alghamdi AA, Barhoumi T. The Effect of Local Renin Angiotensin System in the Common Types of Cancer. Front Endocrinol (Lausanne) 2021; 12:736361. [PMID: 34539580 PMCID: PMC8446618 DOI: 10.3389/fendo.2021.736361] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The Renin Angiotensin System (RAS) is a hormonal system that is responsible for blood pressure hemostasis and electrolyte balance. It is implicated in cancer hallmarks because it is expressed locally in almost all of the body's tissues. In this review, current knowledge on the effect of local RAS in the common types of cancer such as breast, lung, liver, prostate and skin cancer is summarised. The mechanisms by which RAS components could increase or decrease cancer activity are also discussed. In addition to the former, this review explores how the administration of AT1R blockers and ACE inhibitors drugs intervene with cancer therapy and contribute to the outcomes of cancer.
Collapse
Affiliation(s)
- Moudhi Almutlaq
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Moudhi Almutlaq, ; Tlili Barhoumi,
| | - Abir Abdullah Alamro
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan S. Alamri
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Medical Research Core Facility and Platforms, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Amani Ahmed Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Medical Research Core Facility and Platforms, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- *Correspondence: Moudhi Almutlaq, ; Tlili Barhoumi,
| |
Collapse
|
34
|
Brown SA, Zaharova S, Mason P, Thompson J, Thapa B, Ishizawar D, Wilkes E, Ahmed G, Rubenstein J, Sanchez J, Joyce D, Kalyanaraman B, Widlansky M. Pandemic Perspective: Commonalities Between COVID-19 and Cardio-Oncology. Front Cardiovasc Med 2020; 7:568720. [PMID: 33344513 PMCID: PMC7746643 DOI: 10.3389/fcvm.2020.568720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
Overlapping commonalities between coronavirus disease of 2019 (COVID-19) and cardio-oncology regarding cardiovascular toxicities (CVT), pathophysiology, and pharmacology are special topics emerging during the pandemic. In this perspective, we consider an array of CVT common to both COVID-19 and cardio-oncology, including cardiomyopathy, ischemia, conduction abnormalities, myopericarditis, and right ventricular (RV) failure. We also emphasize the higher risk of severe COVID-19 illness in patients with cardiovascular disease (CVD) or its risk factors or cancer. We explore commonalities in the underlying pathophysiology observed in COVID-19 and cardio-oncology, including inflammation, cytokine release, the renin-angiotensin-aldosterone-system, coagulopathy, microthrombosis, and endothelial dysfunction. In addition, we examine common pharmacologic management strategies that have been elucidated for CVT from COVID-19 and various cancer therapies. The use of corticosteroids, as well as antibodies and inhibitors of various molecules mediating inflammation and cytokine release syndrome, are discussed. The impact of angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) is also addressed, since these drugs are used in cardio-oncology and have received considerable attention during the COVID-19 pandemic, since the culprit virus enters human cells via the angiotensin converting enzyme 2 (ACE2) receptor. There are therefore several areas of overlap, similarity, and interaction in the toxicity, pathophysiology, and pharmacology profiles in COVID-19 and cardio-oncology syndromes. Learning more about either will likely provide some level of insight into both. We discuss each of these topics in this viewpoint, as well as what we foresee as evolving future directions to consider in cardio-oncology during the pandemic and beyond. Finally, we highlight commonalities in health disparities in COVID-19 and cardio-oncology and encourage continued development and implementation of innovative solutions to improve equity in health and healing.
Collapse
Affiliation(s)
- Sherry-Ann Brown
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Svetlana Zaharova
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter Mason
- Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan Thompson
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David Ishizawar
- Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Erin Wilkes
- Department of Pharmacy, Froedtert Health and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gulrayz Ahmed
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jason Rubenstein
- Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joyce Sanchez
- Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David Joyce
- Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Michael Widlansky
- Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
35
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|
36
|
Renin angiotensin system inhibition attenuates adipocyte-breast cancer cell interactions. Exp Cell Res 2020; 394:112114. [DOI: 10.1016/j.yexcr.2020.112114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022]
|
37
|
Kelm NQ, Straughn AR, Kakar SS. Withaferin A attenuates ovarian cancer-induced cardiac cachexia. PLoS One 2020; 15:e0236680. [PMID: 32722688 PMCID: PMC7386592 DOI: 10.1371/journal.pone.0236680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cachexia is a common multifactorial syndrome in the advanced stages of cancer and accounts for approximately 20–30% of all cancer-related fatalities. In addition to the progressive loss of skeletal muscle mass, cancer results in impairments in cardiac function. We recently demonstrated that WFA attenuates the cachectic skeletal muscle phenotype induced by ovarian cancer. The purpose of this study was to investigate whether ovarian cancer induces cardiac cachexia, the possible pathway involved, and whether WFA attenuates cardiac cachexia. Xenografting of ovarian cancer induced cardiac cachexia, leading to the loss of normal heart functions. Treatment with WFA rescued the heart weight. Further, ovarian cancer induced systolic dysfunction and diastolic dysfunction Treatment with WFA preserved systolic function in tumor-bearing mice, but diastolic dysfunction was partially improved. In addition, WFA abrogated the ovarian cancer-induced reduction in cardiomyocyte cross-sectional area. Finally, treatment with WFA ameliorated fibrotic deposition in the hearts of tumor-bearing animals. We observed a tumor-induced MHC isoform switching from the adult MHCα to the embryonic MHCβ isoform, which was prevented by WFA treatment. Circulating Ang II level was increased significantly in the tumor-bearing, which was lowered by WFA treatment. Our results clearly demonstrated the induction of cardiac cachexia in response to ovarian tumors in female NSG mice. Further, we observed induction of proinflammatory markers through the AT1R pathway, which was ameliorated by WFA, in addition to amelioration of the cachectic phenotype, suggesting WFA as a potential therapeutic agent for cardiac cachexia in oncological paradigms.
Collapse
Affiliation(s)
- Natia Q. Kelm
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
| | - Alex R. Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
| | - Sham S. Kakar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
- * E-mail:
| |
Collapse
|
38
|
Bui AD, Helgeson SA, Guru PK, Sanghavi DK. Angiotensin II for the treatment of septic shock in a neutropenic patient with T-cell acute lymphoblastic leukaemia. BMJ Case Rep 2020; 13:13/6/e233432. [PMID: 32595128 DOI: 10.1136/bcr-2019-233432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mortality remains high in septic shock with few new treatment options. Angiotensin II has been recently approved for use in septic shock due to promising results in the ATHOS-3 trial. However, patients with neutropenia were excluded in the trial. This patient population is becoming increasingly common in the intensive care unit as there is an increase in novel biologic therapies and stem cell transplantations for haematological and solid organ malignancies. We present a case of a patient with T-cell acute lymphoblastic leukaemia who received chemotherapy, resulting in neutropenia and septic shock. There was persistent hypotension despite initiating multiple conventional vasopressors. Angiotensin II was attempted with immediate improvement in the blood pressure which resulted in weaning of other vasopressors. This positive haemodynamic response suggests that angiotensin II can successfully be used in neutropenic patients without increasing the overall catecholamine burden of septic shock.
Collapse
Affiliation(s)
- Albert D Bui
- Critical Care, Mayo Clinic Florida, Jacksonville, Florida, USA.,Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| | | | - Pramod K Guru
- Critical Care, Mayo Clinic Florida, Jacksonville, Florida, USA
| | | |
Collapse
|
39
|
Renin-Angiotensin System in Lung Tumor and Microenvironment Interactions. Cancers (Basel) 2020; 12:cancers12061457. [PMID: 32503281 PMCID: PMC7352181 DOI: 10.3390/cancers12061457] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The mechanistic involvement of the renin-angiotensin system (RAS) reaches beyond cardiovascular physiopathology. Recent knowledge pinpoints a pleiotropic role for this system, particularly in the lung, and mainly through locally regulated alternative molecules and secondary pathways. Angiotensin peptides play a role in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. This manuscript reviews the literature supporting a role for the renin-angiotensin system in the lung tumor microenvironment and discusses whether blockade of this pathway in clinical settings may serve as an adjuvant therapy in lung cancer.
Collapse
|
40
|
Yang K, Zhou J, Chen Y, Chen Y, Chen L, Zhang P, Ma L, Jiang Z, Bian J, Yin W. Angiotensin II contributes to intratumoral immunosuppressionvia induction of PD-L1 expression in non-small cell lung carcinoma. Int Immunopharmacol 2020; 84:106507. [PMID: 32339920 DOI: 10.1016/j.intimp.2020.106507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022]
Abstract
The formation of an immunosuppressive microenvironment and up-regulation of PD-L1 protein are the main causes of tumor immune escape. Previous reports suggest that Angiotensin II (Ang II) can modulate the immune status of tumor microenvironment in non-small cell lung cancer (NSCLC), but the underlying mechanism remains not fully understood. Here we demonstrated that AngII treatment causes the reduction of intratumoral infiltrating CD4 T lymphocytes in tumor-bearing mice, increases the accumulation of immunosuppressive granulocytes and TAMs in tumor tissue, and upregulates the expression levels of immunosuppressive marker genes. In addition, AngII/AGTR1 axis triggers cell PD-L1 expression through a mechanism involving increases in PD-L1 mRNA stability by human antigen R (HuR), an AU-rich element (ARE)-binding protein. Collectively, AngII/AGTR1 signaling promotes the tumor immunosuppressive microenvironment by upregulating PD-L1 in NSCLC, the mechanism of which is largely accounted by HuR-mediated PD-L1 mRNA stabilization.
Collapse
Affiliation(s)
- Kaiyong Yang
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Jiaqian Zhou
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Chen
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Chen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Lili Chen
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Pei Zhang
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Lin Ma
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Zhengyu Jiang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
41
|
Mpekris F, Voutouri C, Baish JW, Duda DG, Munn LL, Stylianopoulos T, Jain RK. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc Natl Acad Sci U S A 2020; 117:3728-3737. [PMID: 32015113 PMCID: PMC7035612 DOI: 10.1073/pnas.1919764117] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Advances in immunotherapy have revolutionized the treatment of multiple cancers. Unfortunately, tumors usually have impaired blood perfusion, which limits the delivery of therapeutics and cytotoxic immune cells to tumors and also results in hypoxia-a hallmark of the abnormal tumor microenvironment (TME)-that causes immunosuppression. We proposed that normalization of TME using antiangiogenic drugs and/or mechanotherapeutics can overcome these challenges. Recently, immunotherapy with checkpoint blockers was shown to effectively induce vascular normalization in some types of cancer. Although these therapeutic approaches have been used in combination in preclinical and clinical studies, their combined effects on TME are not fully understood. To identify strategies for improved immunotherapy, we have developed a mathematical framework that incorporates complex interactions among various types of cancer cells, immune cells, stroma, angiogenic molecules, and the vasculature. Model predictions were compared with the data from five previously reported experimental studies. We found that low doses of antiangiogenic treatment improve immunotherapy when the two treatments are administered sequentially, but that high doses are less efficacious because of excessive vessel pruning and hypoxia. Stroma normalization can further increase the efficacy of immunotherapy, and the benefit is additive when combined with vascular normalization. We conclude that vessel functionality dictates the efficacy of immunotherapy, and thus increased tumor perfusion should be investigated as a predictive biomarker of response to immunotherapy.
Collapse
Affiliation(s)
- Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus
| | - James W Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, PA 17837
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus;
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
42
|
Fong W, To KKW. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell Mol Life Sci 2019; 76:3383-3406. [PMID: 31087119 PMCID: PMC11105507 DOI: 10.1007/s00018-019-03134-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Emergence of novel treatment modalities provides effective therapeutic options, apart from conventional cytotoxic chemotherapy, to fight against colorectal cancer. Unfortunately, drug resistance remains a huge challenge in clinics, leading to invariable occurrence of disease progression after treatment initiation. While novel drug development is unfavorable in terms of time frame and costs, drug repurposing is one of the promising strategies to combat resistance. This approach refers to the application of clinically available drugs to treat a different disease. With the well-established safety profile and optimal dosing of these approved drugs, their combination with current cancer therapy is suggested to provide an economical, safe and efficacious approach to overcome drug resistance and prolong patient survival. Here, we review both preclinical and clinical efficacy, as well as cellular mechanisms, of some extensively studied repurposed drugs, including non-steroidal anti-inflammatory drugs, statins, metformin, chloroquine, disulfiram, niclosamide, zoledronic acid and angiotensin receptor blockers. The three major treatment modalities in the management of colorectal cancer, namely classical cytotoxic chemotherapy, molecular targeted therapy and immunotherapy, are covered in this review.
Collapse
Affiliation(s)
- Winnie Fong
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K W To
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
43
|
Rao R, Husain A, Bharti AC, Kashyap MK. Discovery of a Novel Connecting Link between Renin-Angiotensin System and Cancer in Barrett's Esophagus by Proteomic Screening. Proteomics Clin Appl 2019; 13:e1900006. [PMID: 30891939 DOI: 10.1002/prca.201900006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 02/05/2023]
Abstract
The renin-angiotensin system (RAS) plays a central role in the regulation of homeostasis and blood pressure. This involves an important enzyme called angiotensin-converting enzyme that leads to the conversion of angiotensin I into angiotensin II. RAS has been reported to show association with inflammation, and in sporadic studies, with cancer. In particular, angiotensin II has been reported to be prevalent in the hypoxic microenvironment and associated with cancer signaling pathways. In a recent study, Bratlie et al. (Proteomics Clin. Appl. 2019, 4, 1800102) is shown to exploit 2D gel electrophoresis, and mass spectrometry (MS) to identify differentially expressed proteins by comparing low-grade dysplasia in Barrett's Esophagus (BE) following administration of agents that interfere with RAS, that is, enalapril and candesartan, and identified specific modulation of HSP60, PDIA3, and PPA1. Though 2D gel coupled with MS is a commonly-used tool for studying proteomes, it still has limitations in terms of a comprehensive analysis due to lack of absolute quantitation in a high-throughput manner. Despite technical limitations and the small size of the study, preliminary data emerging from the investigation show interference caused by clinically approved RAS inhibitors resulting in alteration of molecular markers associated with tumorigenicity. The authors propose potential factors that may influence the progression of the disease. However, these are conspicuous changes in high-abundance proteins only. Therefore, there is a need to carry out detailed experimental studies either using an in vitro labeling technique (isobaric labeling for relative and absolute quantitation) for tissues or an in vivo labeling technique (stable isotope labeling in animal cell culture) coupled with LC-MS/MS to identify differentially-regulated proteins to delineate the role of RAS in BE.
Collapse
Affiliation(s)
- Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, 247121, Uttar Pradesh, India
| | - Amjad Husain
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, 247121, Uttar Pradesh, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manoj K Kashyap
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, 247121, Uttar Pradesh, India
| |
Collapse
|
44
|
Cano IP, Dionisio TJ, Cestari TM, Calvo AM, Colombini-Ishikiriama BL, Faria FAC, Siqueira WL, Santos CF. Losartan and isoproterenol promote alterations in the local renin-angiotensin system of rat salivary glands. PLoS One 2019; 14:e0217030. [PMID: 31116771 PMCID: PMC6530859 DOI: 10.1371/journal.pone.0217030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Renin-angiotensin system (RAS) systemically or locally collaborates with tissue homeostasis, growth and development, which has been extensively studied for its pharmacological implications. This study was primarily aimed at finding and characterizing local RAS in rat parotid, sublingual and submandibular glands. It was also hypothesized that vasoactive drugs could affect the expression of RAS targets, as well as saliva flow and its composition. Therefore, another objective of this study was to compare the effects of losartan (angiotensin II receptor blocker) and isoproterenol (β-adrenergic receptor agonist). Forty-one Wistar rats were divided into three groups and administered a daily intraperitoneal dose of saline, losartan or isoproterenol solutions for one week. The following RAS targets were studied using qPCR: renin (REN), angiotensinogen (AGT), angiotensin converting enzyme (ACE), ACE-2, elastase-2 (ELA-2), AT1-a and MAS receptors, using RPL-13 as a reference gene. Morphology of glands was analyzed by immunohistochemistry using REN, ACE, ACE-2, AT1, AT2 and MAS antibodies. The volume and total protein content of saliva were measured. Our results revealed that ACE, ACE-2, AT1-a, AT2 and MAS receptors were expressed in all salivary gland samples, but REN and ELA-2 were absent. Losartan decreased mRNA expression of RAS targets in parotid (MAS) and submandibular glands (ACE and both AT receptors), without affecting morphological alterations, and significantly decreased saliva and total protein secretions. Isoproterenol treatment affected gene expression profiles in parotid (ACE, ACE-2, AT1-a, MAS, AGT), and submandibular (ACE, AT2, AGT) glands, thus promoting acinar hypertrophy in serous acini, without significant changes in salivary flow or total protein content. These drugs affected mainly acini, followed by duct systems and myoepithelial cells, whereas blood vessels were not affected. In conclusion, there is a local RAS in major rat salivary glands and losartan, an angiotensin II receptor blocker, affected not only the RAS-target gene expression but also decreased salivary flow and total protein content.
Collapse
Affiliation(s)
- Isadora Prado Cano
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Thiago José Dionisio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Tânia Mary Cestari
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Adriana Maria Calvo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Flávio Augusto Cardoso Faria
- Department of Biochemistry and School of Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Walter Luiz Siqueira
- Department of Biochemistry and School of Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
- * E-mail:
| |
Collapse
|