1
|
Yang J, Xin B, Wang X, Wan Y. Cancer-associated fibroblasts in breast cancer in the single-cell era: Opportunities and challenges. Biochim Biophys Acta Rev Cancer 2025; 1880:189291. [PMID: 40024607 DOI: 10.1016/j.bbcan.2025.189291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer is a leading cause of morbidity and mortality in women, and its progression is closely linked to the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), key components of the TME, play a crucial role in promoting tumor growth by driving cancer cell proliferation, invasion, extracellular matrix (ECM) remodeling, inflammation, chemoresistance, and immunosuppression. CAFs exhibit considerable heterogeneity and are classified into subgroups based on different combinations of biomarkers. Single-cell RNA sequencing (scRNA-seq) enables high-throughput and high-resolution analysis of individual cells. Relying on this technology, it is possible to cluster complex CAFs according to different biomarkers to analyze the specific phenotypes and functions of different subpopulations. This review explores CAF clusters in breast cancer and their associated biomarkers, highlighting their roles in disease progression and potential for targeted therapies.
Collapse
Affiliation(s)
- Jingtong Yang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Benkai Xin
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Xiaoyu Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
2
|
Fujimura T. Significance of PAI-1 on the development of skin cancer: optimal targets for cancer therapies. Biomed J 2025:100850. [PMID: 40113209 DOI: 10.1016/j.bj.2025.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor that plays a critical role in cancer progression, particularly in skin cancers. PAI-1 is widely recognized for its role in inhibiting fibrinolysis; however, emerging evidence suggests that it also contributes to tumor progression through multiple mechanisms, including tumor angiogenesis, immunomodulation, and stromal cell regulation. In the tumor microenvironment (TME), PAI-1 influences tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), promoting an immunosuppressive environment that supports cancer growth and therapy resistance. Furthermore, PAI-1 has been implicated in the regulation of programmed death-ligand 1 (PD-L1) expression via the JAK/STAT signaling pathway, thereby influencing immune evasion in various skin cancers. The significance of PAI-1 as a therapeutic target has been demonstrated in melanoma and other cutaneous malignancies, where inhibition of PAI-1 has shown promise in overcoming resistance to immune checkpoint inhibitors. Additionally, clinical trials evaluating PAI-1 inhibitors, such as TM5614, highlight its potential as an adjunctive therapy for melanoma and cutaneous angiosarcoma. This review comprehensively explores PAI-1's role in skin cancer progression, its influence on tumor-stromal interactions, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine.
| |
Collapse
|
3
|
Tauch S, Hey J, Kast B, Gengenbacher N, Weiß L, Sator‐Schmitt M, Lohr S, Brobeil A, Schirmacher P, Utikal J, Augustin HG, Plass C, Angel P. A Unique Signature for Cancer-Associated Fibroblasts in Melanoma Metastases. Pigment Cell Melanoma Res 2025; 38:e70002. [PMID: 39924882 PMCID: PMC11808227 DOI: 10.1111/pcmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Cancer-associated fibroblasts (CAFs) represent a central cell population of the tumor microenvironment (TME). Recently, single-cell RNA-sequencing (scRNA-seq) analyses of primary tumors of different cancer entities yielded different classifications of CAF subsets underscoring the heterogeneity of CAFs within the TME. Here, we analyzed the transcriptional signatures of approximately 8400 CAFs and normal fibroblasts by scRNA-seq and compared genetic profiles of CAFs from murine melanoma primary tumors to CAFs from corresponding melanoma lung metastases. This revealed distinct subsets for primary tumor and metastasis-specific CAF populations, respectively. Combined with the spatial characterization of metastasis CAFs at the RNA and protein level, scRNA analyses indicate tumor-dependent crosstalk between neutrophils and CAFs, mediated via SAA3 and IL1b-related signaling pathways, which can be recapitulated in vitro. Analyzing tissue sections of human patient samples, this interaction was found to be present in human melanoma metastasis. Taken together, our data highlight unique characteristics of metastasis CAFs with potential therapeutic impact for melanoma metastasis.
Collapse
Affiliation(s)
- Saskia Tauch
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Joschka Hey
- Division of Cancer EpigenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Bettina Kast
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Nicolas Gengenbacher
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- DKFZ‐Hector Cancer Institute, University Medical Centre MannheimMannheimGermany
| | - Lena Weiß
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Melanie Sator‐Schmitt
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Sabrina Lohr
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Alexander Brobeil
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Peter Schirmacher
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Jochen Utikal
- DKFZ‐Hector Cancer Institute, University Medical Centre MannheimMannheimGermany
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center Mannheim, Ruprecht‐Karl University of HeidelbergMannheimGermany
| | - Hellmut G. Augustin
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- DKFZ‐Hector Cancer Institute, University Medical Centre MannheimMannheimGermany
| | - Christoph Plass
- Division of Cancer EpigenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Peter Angel
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| |
Collapse
|
4
|
Tauch S, Kast B, Lohr S, Kemm L, Sator‐Schmitt M, Gengenbacher N, Augustin HG, Angel P. CAF Specific Expression of Podoplanin May Be Dispensable for the Malignancy of Malignant Melanoma. Mol Carcinog 2025; 64:215-220. [PMID: 39513649 PMCID: PMC11731424 DOI: 10.1002/mc.23841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) were shown to be an active and pivotal cell population, supporting many protumorigenic mechanisms. Podoplanin (PDPN)-positive CAFs are of special interest since their abundance correlated with a worse prognosis for patients of different cancer entities, including malignant melanoma. In this study, we applied a loss-of-function approach in an in vivo mouse melanoma model to evaluate the contribution of CAF-specific PDPN expression to melanoma formation and progression. Surprisingly, despite its prominent expression in CAFs deletion of PDPN in this cell type did neither affect the onset, nor growth of MM tumors. These data imply that PDPN expression in CAFs represents a biomarker for poor prognosis but does not serve as a useful target for stroma-directed therapy of malignant melanoma.
Collapse
Affiliation(s)
- Saskia Tauch
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Bettina Kast
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Sabrina Lohr
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Lowis Kemm
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Melanie Sator‐Schmitt
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Nicolas Gengenbacher
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- DKFZ‐Hector Cancer InstituteUniversity Medical Centre MannheimMannheimGermany
| | - Hellmut G. Augustin
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- DKFZ‐Hector Cancer InstituteUniversity Medical Centre MannheimMannheimGermany
| | - Peter Angel
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| |
Collapse
|
5
|
Jin Y, Zhang J, Xing J, Li Y, Yang H, Ouyang L, Fang Z, Sun L, Jin B, Huang P, Yang H, Du S, Sang X, Mao Y. Multicellular 3D bioprinted human gallbladder carcinoma for in vitromimicry of tumor microenvironment and intratumoral heterogeneity. Biofabrication 2024; 16:045028. [PMID: 39121870 DOI: 10.1088/1758-5090/ad6d8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Gallbladder carcinoma (GBC) is a malignant hepatobiliary cancer characterized by an intricate tumor microenvironments (TME) and heterogeneity. The traditional GBC 2D culture models cannot faithfully recapitulate the characteristics of the TME. Three-dimensional (3D) bioprinting enables the establishment of high-throughput and high-fidelity multicellular GBC models. In this study, we designed a concentric cylindrical tetra-culture model to reconstitute the spatial distribution of cells in tumor tissue, with the inner portion containing GBC cells, and the outer ring containing a mixture of endothelial cells, fibroblasts, and macrophages. We confirmed the survival, proliferation, biomarker expression and gene expression profiles of GBC 3D tetra-culture models. Hematoxylin-eosin (HE) and immunofluorescence staining verified the morphology and robust expression of GBC/endothelial/fibroblast/macrophage biomarkers in GBC 3D tetra-culture models. Single-cell RNA sequencing revealed two distinct subtypes of GBC cells within the model, glandular epithelial and squamous epithelial cells, suggesting the mimicry of intratumoral heterogeneity. Comparative transcriptome profile analysis among variousin vitromodels revealed that cellular interactions and the TME in 3D tetra-culture models reshaped the biological processes of tumor cells to a more aggressive phenotype. GBC 3D tetra-culture models restored the characteristics of the TME as well as intratumoral heterogeneity. Therefore, this model is expected to have future applications in tumor biology research and antitumor drug development.
Collapse
Affiliation(s)
- Yukai Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Jiangang Zhang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
- Eight-Year Medical Doctor Program, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Jiali Xing
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Yiran Li
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Huiyu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
- Eight-Year Medical Doctor Program, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Liujian Ouyang
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Zhiyuan Fang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
- Eight-Year Medical Doctor Program, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Lejia Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
- Colorectal Surgery Division, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Pengyu Huang
- Institute of Biomedical Engineering, PUMC & CAMS, Tianjin, People's Republic of China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, People's Republic of China
| |
Collapse
|
6
|
Gao X, Gao N, Du M, Xiang Y, Zuo H, Cao H, Zheng S, Huang R, Wan W, Hu K. Pilocarpine mediated excessive calcium accumulation leads to ciliary muscle cell senescence and apoptosis. FASEB J 2024; 38:e23878. [PMID: 39120551 DOI: 10.1096/fj.202401286r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The ciliary muscle constitutes a crucial element in refractive regulation. Investigating the pathophysiological mechanisms within the ciliary muscle during excessive contraction holds significance in treating ciliary muscle dysfunction. A guinea pig model of excessive contraction of the ciliary muscle induced by drops pilocarpine was employed, alongside the primary ciliary muscle cells was employed in in vitro experiments. The results of the ophthalmic examination showed that pilocarpine did not significantly change refraction and axial length during the experiment, but had adverse effects on the regulatory power of the ciliary muscle. The current data reveal notable alterations in the expression profiles of hypoxia inducible factor 1 (HIF-1α), ATP2A2, P53, α-SMA, Caspase-3, and BAX within the ciliary muscle of animals subjected to pilocarpine exposure, alongside corresponding changes observed in cultured cells treated with pilocarpine. Augmented levels of ROS were detected in both tissue specimens and cells, culminating in a significant increase in cell apoptosis in in vivo and in vitro experiments. Further examination revealed that pilocarpine induced an increase in intracellular Ca2+ levels and disrupted MMP, as evidenced by mitochondrial swelling and diminished cristae density compared to control conditions, concomitant with a noteworthy decline in antioxidant enzyme activity. However, subsequent blockade of Ca2+ channels in cells resulted in downregulation of HIF-1α, ATP2A2, P53, α-SMA, Caspase-3, and BAX expression, alongside ameliorated mitochondrial function and morphology. The inhibition of Ca2+ channels presents a viable approach to mitigate ciliary cells damage and sustain proper ciliary muscle function by curtailing the mitochondrial damage induced by excessive contractions.
Collapse
Affiliation(s)
- Xiang Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Ning Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Miaomiao Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Yongguo Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Hangjia Zuo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Huijie Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Shijie Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | | | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Dong Y, Zhang C, Mao F, Dan H, Zeng X, Ji N, Li J, Chen Q, Zhou Y, Li T. Mass cytometry and transcriptomic profiling reveal PD1 blockade induced alterations in oral carcinogenesis. Mol Carcinog 2024; 63:563-576. [PMID: 38085124 DOI: 10.1002/mc.23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 03/16/2024]
Abstract
Oral squamous cell carcinoma is the predominant subtype of head and neck squamous cell carcinoma, characterized by a challenging prognosis. In this study, we established a murine model of oral carcinogenesis using 4-nitroquinoline-1-oxide (4-NQO) induction to investigate the impact of immunotherapy on microenvironmental alterations. Mice in the precancerous condition were randomly divided into two groups: one receiving programmed death-1 (PD1) monoclonal antibody treatment and the other, control immunoglobulin G. Our observations showed that while PD1 blockade effectively delayed the progression of carcinogenesis, it did not completely impede or reverse it. To unravel the underlying reasons for the limited effectiveness of PD1 blockade, we collected tongue lesions and applied mass cytometry (CyTOF) and RNA sequencing (RNA-seq) to characterize the microenvironment. CyTOF analysis revealed an increased macrophage subset (expressing high levels of IFNγ and iNOS) alongside a diminished Th1-like subset (exhibiting low expression of TCF7) and three myeloid-derived suppressor cell subsets (displaying low expression of MHC Class II or IFNγ) following anti-PD1 treatment. Notably, we observed an increased presence of cancer-associated fibroblasts (CAFs) expressing collagen-related genes after PD1 blockade. Furthermore, we found a negative correlation between the infiltration levels of CAFs and CD8+ T cells. These findings were validated in murine tongue tissue slides, and publicly available multi-omics datasets. Our results suggest that CAFs may impair the therapeutic efficacy of PD1 blockade in oral carcinogenesis by the remodeling of the extracellular matrix.
Collapse
Affiliation(s)
- Yunmei Dong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengli Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Mao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Institute of Drug/Medical Device Clinical Trial, West China Hospital of Stomatology, Chengdu, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Lujano Olazaba O, Farrow J, Monkkonen T. Fibroblast heterogeneity and functions: insights from single-cell sequencing in wound healing, breast cancer, ovarian cancer and melanoma. Front Genet 2024; 15:1304853. [PMID: 38525245 PMCID: PMC10957653 DOI: 10.3389/fgene.2024.1304853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Cancer has been described as the wound that does not heal, in large part due to fibroblast involvement. Activation of cancer-associated fibroblasts (CAFs) contributes to critical features of the tumor microenvironment, including upregulation of key marker proteins, recruitment of immune cells, and deposition of extracellular matrix (ECM)-similar to fibroblast activation in injury-induced wound healing. Prior to the widespread availability of single-cell RNA sequencing (scRNA seq), studies of CAFs or fibroblasts in wound healing largely relied on models guided by individual fibroblast markers, or methods with less resolution to unravel the heterogeneous nature of CAFs and wound healing fibroblasts (especially regarding scarring outcome). Here, insights from the enhanced resolution provided by scRNA sequencing of fibroblasts in normal wound healing, breast cancer, ovarian cancer, and melanoma are discussed. These data have revealed differences in expression of established canonical activation marker genes, epigenetic modifications, fibroblast lineages, new gene and proteins of clinical interest for further experimentation, and novel signaling interactions with other cell types that include spatial information.
Collapse
Affiliation(s)
| | | | - Teresa Monkkonen
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
9
|
Batra H, Ding Q, Pandurengan R, Ibarguen H, Rabassedas NB, Sahin A, Wistuba I, Parra ER, Raso MG. Exploration of cancer associated fibroblasts phenotypes in the tumor microenvironment of classical and pleomorphic Invasive Lobular Carcinoma. Front Oncol 2023; 13:1281650. [PMID: 38192631 PMCID: PMC10772146 DOI: 10.3389/fonc.2023.1281650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024] Open
Abstract
As the second most common subtype of breast carcinoma, Invasive Lobular Carcinoma (ILC) microenvironment features have not been thoroughly explored. ILC has different histological subtypes and elucidating differences in their microenvironments could lead to a comprehensive development of cancer therapies. We designed a custom-made cancer associated fibroblast (CAFs) panel and used multiplex immunofluorescence to identify the differences in tumor microenvironment between Classic ILC and Pleomorphic ILC. Materials and methods Multiplex immunofluorescence were performed on formalin fixed paraffin embedded tissues using Opal-7 color kit. The antibodies used for phenotyping CAFs were Pan CK (AE1/AE3), CD45, A-SMA, FAP, S100, Thy-1 with optimized dilutions. The images were acquired and analyzed using Vectra 3.0 imaging system and InForm software respectively. Results We studied 19 different CAFs colocalized phenotypes in the tumor, stroma and overall tissue compartments between classic and pleomorphic ILC. Total A-SMA+, A-SMA+FAP+S100+ and A-SMA+S100+ CAFs demonstrated higher densities in classic ILC cases while FAP+S100+ and S-100+ CAFs were increased in the pleomorphic subtype samples. Conclusion Our study explores multiple CAFs phenotypes between classical and pleomorphic ILC. We showed that CAFs subset differ between Classic ILC and Pleomorphic ILC. A-SMA CAFs are more prevalent in the TME of classic ILCs whereas Pleomorphic ILCs are dominated by CAFs without A-SMA expression. This also iterates the importance of exploring this particular type of breast carcinoma in more detail, paving the way for meaningful translational research.
Collapse
Affiliation(s)
- Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingqing Ding
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Renganayaki Pandurengan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Heladio Ibarguen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Neus Bota Rabassedas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aysegul Sahin
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
10
|
Zhao Z, Zhu Y. FAP, CD10, and GPR77-labeled CAFs cause neoadjuvant chemotherapy resistance by inducing EMT and CSC in gastric cancer. BMC Cancer 2023; 23:507. [PMID: 37277751 DOI: 10.1186/s12885-023-11011-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
OBJECTIVE A significant proportion of patients can not benefit from neoadjuvant chemotherapy (NCT) due to drug resistance. Cancer-associated fibroblasts (CAFs) influence many biological behaviours of tumors, including chemo-resistance. This study aims to explore whether CAFs expressing FAP, CD10, and GPR77 affect the efficacy of NCT and the prognosis of patients with gastric cancer, and its mechanism. METHODS One hundred seventy-one patients with locally progressive gastric adenocarcinoma who had undergone NCT and radical surgery were collected. Immunohistochemistry was used to detect the expression of FAP, CD10, and GPR77 in CAFs; the EMT markers (N-cadherin, Snail1, and Twist1) and the CSC markers (ALDH1, CD44, and LGR5) in gastric cancer cells. The χ2 test was used to analyze the relationship between the expression of CAF, EMT, and CSC markers and the clinicopathological factors, as well as the relationship between CAF markers and EMT, and CSC markers. Logistic regression and Cox risk regression were used to analyze the relationship between the expression of CAF, EMT, and CSC markers and TRG grading and OS; Kaplan-Meier analysis was used for survival analysis and plotting the curves. RESULTS The expression of CAF markers FAP, CD10, and GPR77 was closely associated with that of EMT markers; FAP and CD10 were closely related to CSC markers. In the univariate analysis of pathological response, CAF markers (FAP, CD10, GPR77), EMT markers (N-cadherin, Snail1, Twist1), and CSC markers (ALDH1, LGR5, CD44), were all closely associated with pathological response (all p < 0.05). Only Twist1 was an independent factor affecting pathological response in multifactorial analysis (p = 0.001). In a univariate analysis of OS, expression of FAP and CD10 in CAF, as well as expression of EMT biomarkers (N-cadherin, Snail1), were significant factors influencing patient prognosis (all p < 0.05). Multifactorial analysis revealed N-cadherin (p = 0.032) and Snail1 (p = 0.028), as independent prognostic factors affecting OS. CONCLUSION FAP, CD10, and GPR77 labeled CAF subgroup may lead to NCT resistance and poor prognosis by inducing EMT and CSC of gastric cancer cells in locally advanced gastric cancer patients.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Dadong District, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Shenyang, 110042, China
| | - Yanmei Zhu
- Department of Pathology, Dadong District, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Shenyang, 110042, China.
| |
Collapse
|
11
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:1130. [PMID: 37189748 PMCID: PMC10135912 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease's origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a "double-edged sword" in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| |
Collapse
|
12
|
Peng H, Wu X, Liu S, He M, Xie C, Zhong R, Liu J, Tang C, Li C, Xiong S, Zheng H, He J, Lu X, Liang W. Multiplex immunofluorescence and single-cell transcriptomic profiling reveal the spatial cell interaction networks in the non-small cell lung cancer microenvironment. Clin Transl Med 2023; 13:e1155. [PMID: 36588094 PMCID: PMC9806015 DOI: 10.1002/ctm2.1155] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Conventional immunohistochemistry technologies were limited by the inability to simultaneously detect multiple markers and the lack of identifying spatial relationships among cells, hindering understanding of the biological processes in cancer immunology. METHODS Tissue slices of primary tumours from 553 IA∼IIIB non-small cell lung cancer (NSCLC) cases were stained by multiplex immunofluorescence (mIF) assay for 10 markers, including CD4, CD38, CD20, FOXP3, CD66b, CD8, CD68, PD-L1, CD133 and CD163, evaluating the amounts of 26 phenotypes of cells in tumour nest and tumour stroma. StarDist depth learning model was utilised to determine the spatial location of cells based on mIF graphs. Single-cell RNA sequencing (scRNA-seq) on four primary NSCLC cases was conducted to investigate the putative cell interaction networks. RESULTS Spatial proximity among CD20+ B cells, CD4+ T cells and CD38+ T cells (r2 = 0.41) was observed, whereas the distribution of regulatory T cells was associated with decreased infiltration levels of CD20+ B cells and CD38+ T cells (r2 = -0.45). Univariate Cox analyses identified closer proximity between CD8+ T cells predicted longer disease-free survival (DFS). In contrast, closer proximity between CD133+ cancer stem cells (CSCs), longer distances between CD4+ T cells and CD20+ B cells, CD4+ T cells and neutrophils, and CD20+ B cells and neutrophils were correlated with dismal DFS. Data from scRNA-seq further showed that spatially adjacent N1-like neutrophils could boost the proliferation and activation of T and B lymphocytes, whereas spatially neighbouring M2-like macrophages showed negative effects. An immune-related risk score (IRRS) system aggregating robust quantitative and spatial prognosticators showed that high-IRRS patients had significantly worse DFS than low-IRRS ones (HR 2.72, 95% CI 1.87-3.94, p < .001). CONCLUSIONS We developed a framework to analyse the cell interaction networks in tumour microenvironment, revealing the spatial architecture and intricate interplays between immune and tumour cells.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineNanshan SchoolGuangzhou Medical UniversityGuangzhouChina
| | - Xiangrong Wu
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineNanshan SchoolGuangzhou Medical UniversityGuangzhouChina
| | - Shaopeng Liu
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
- Department of Artificial Intelligence ResearchPazhou LabGuangzhouChina
| | - Miao He
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chao Xie
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
| | - Ran Zhong
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liu
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chenshuo Tang
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
| | - Caichen Li
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shan Xiong
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hongbo Zheng
- Medical DepartmentGenecast Biotechnology Co., LtdBeijingChina
| | - Jianxing He
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xu Lu
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
- Department of Artificial Intelligence ResearchPazhou LabGuangzhouChina
| | - Wenhua Liang
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Medical OncologyThe First People's Hospital of ZhaoqingZhaoqingChina
| |
Collapse
|
13
|
Gajón JA, Juarez-Flores A, De León Rodríguez SG, Aguilar Flores C, Mantilla A, Fuentes-Pananá EM, Bonifaz LC. Immunotherapy Options for Acral Melanoma, A fast-growing but Neglected Malignancy. Arch Med Res 2022; 53:794-806. [PMID: 36460547 DOI: 10.1016/j.arcmed.2022.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Melanoma is the deadliest form of skin cancer. It is classified as cutaneous and non-cutaneous, with the former characterized by developing in sun-exposed areas of the skin, UV-light radiation being its most important risk factor and ordinarily affecting fair skin populations. In recent years, the incidence of melanoma has been increasing in populations with darker complexion, for example, Hispanics, in which acral melanoma is highly prevalent. The WHO estimates that the incidence and mortality of melanoma will increase by more than 60% by 2040, particularly in low/medium income countries. Acral melanoma appears in the palms, soles and nails, and because of these occult locations, it is often considered different from other cutaneous melanomas even though it also originates in the skin. Acral melanoma is very rare in Caucasian populations and is often not included from genetic analysis and clinical trials. In this review, we present the worldwide epidemiology of acral melanoma; we summarize its genetic characterization and point out important signaling pathways for targeted therapy. We also discuss how genetic analyses have shown that acral melanoma carries a sufficient mutational load and neoantigen formation to be targeted by the immune system, arguing for a potential benefit with novel immunotherapeutic strategies, alone or combined with targeted therapy. This is important because chemotherapy remains the first-line treatment in non-developed nations despite a disheartening response. In summary, the increased incidence and mortality of acral melanoma in low/medium income countries calls for increasing our knowledge about its nature and therapeutic options and leveling off the asymmetric research conducted primarily on Caucasian populations.
Collapse
Affiliation(s)
- Julian A Gajón
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angel Juarez-Flores
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Saraí G De León Rodríguez
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Cristina Aguilar Flores
- Unidad de Investigación Médica en Inmunología Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Alejandra Mantilla
- Servicio de Patología, Hospital de Oncología Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México, México.
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| |
Collapse
|
14
|
Antoranz A, Van Herck Y, Bolognesi MM, Lynch SM, Rahman A, Gallagher WM, Boecxstaens V, Marine JC, Cattoretti G, van den Oord JJ, De Smet F, Bechter O, Bosisio FM. Mapping the Immune Landscape in Metastatic Melanoma Reveals Localized Cell-Cell Interactions That Predict Immunotherapy Response. Cancer Res 2022; 82:3275-3290. [PMID: 35834277 PMCID: PMC9478533 DOI: 10.1158/0008-5472.can-22-0363] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/30/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
While immune checkpoint-based immunotherapy (ICI) shows promising clinical results in patients with cancer, only a subset of patients responds favorably. Response to ICI is dictated by complex networks of cellular interactions between malignant and nonmalignant cells. Although insights into the mechanisms that modulate the pivotal antitumoral activity of cytotoxic T cells (Tcy) have recently been gained, much of what has been learned is based on single-cell analyses of dissociated tumor samples, resulting in a lack of critical information about the spatial distribution of relevant cell types. Here, we used multiplexed IHC to spatially characterize the immune landscape of metastatic melanoma from responders and nonresponders to ICI. Such high-dimensional pathology maps showed that Tcy gradually evolve toward an exhausted phenotype as they approach and infiltrate the tumor. Moreover, a key cellular interaction network functionally linked Tcy and PD-L1+ macrophages. Mapping the respective spatial distributions of these two cell populations predicted response to anti-PD-1 immunotherapy with high confidence. These results suggest that baseline measurements of the spatial context should be integrated in the design of predictive biomarkers to identify patients likely to benefit from ICI. SIGNIFICANCE This study shows that spatial characterization can address the challenge of finding efficient biomarkers, revealing that localization of macrophages and T cells in melanoma predicts patient response to ICI. See related commentary by Smalley and Smalley, p. 3198.
Collapse
Affiliation(s)
- Asier Antoranz
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Belgium, Leuven
| | - Yannick Van Herck
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Belgium, Leuven
| | - Maddalena M. Bolognesi
- Pathology, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Seodhna M. Lynch
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Arman Rahman
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Veerle Boecxstaens
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB/KU Leuven Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Oncology Department, KU Leuven, Leuven, Belgium
| | - Giorgio Cattoretti
- Pathology, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Joost J. van den Oord
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Belgium, Leuven
| | - Frederik De Smet
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Belgium, Leuven
| | - Oliver Bechter
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Belgium, Leuven
| | - Francesca M. Bosisio
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Belgium, Leuven.,Corresponding Author: Francesca M Bosisio, Laboratory of Translational Cell and Tissue Research, KU Leuven, Herestraat 49, Leuven 3000, Belgium. Phone: 321-632-9965; E-mail:
| |
Collapse
|
15
|
Zhao Y, Liu Y, Jia Y, Wang X, He J, Zhen S, Wang J, Liu L. Fibroblast activation protein in the tumor microenvironment predicts outcomes of PD-1 blockade therapy in advanced non-small cell lung cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04250-4. [PMID: 35951090 DOI: 10.1007/s00432-022-04250-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE The identification of robust predictive biomarkers of the response to programmed cell death-1 (PD-1) blockade remains a critical concern. Here, we investigated on fibroblast activation protein (FAP) as a microenvironment-derived biomarker of clinical outcomes of PD-1 blockade therapy, and the correlation between FAP expression and T cell infiltration in advanced non-small cell lung cancer (NSCLC). METHODS A total of 135 patients with advanced NSCLC who received PD-1 blockade therapy were retrospectively analyzed. The potential associations among FAP expression, CD3 + T cell and CD8 + T cell infiltration, and clinical outcomes of immunotherapy were validated by immunohistochemistry, bioinformatic analyses, and statistical measurements. RESULTS FAP was widely expressed in advanced NSCLC tissues. FAP was correlated with decreased density of CD8 + T cells (Spearman's rho - 0.32, p < 0.001) and immunosuppressive tumor microenvironment (TME) status. No correlations were detected between FAP and PD-L1 expression or with the density of CD3 + T cells. The patients with higher expression of FAP showed worse response rate (16.4% vs. 38.7%, p < 0.001) and worse progression-free survival (HR = 2.56, 95% CI 1.69-3.87, p < 0.001). In addition, FAP contributed to shortened overall survival in subgroups of the patients with squamous cell lung cancer (p = 0.020), PD-1 blockade monotherapy (p = 0.017), and first-line therapy (p = 0.028). CONCLUSION FAP is a potential predictive biomarker of resistance to PD-1 blockade. Further investigation is warranted to identify a strategy for targeting FAP to alleviate the immunosuppressive TME and broaden the clinical effectiveness of PD-1 blockade therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China.,Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yunlong Jia
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Xiaoxiao Wang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiankun He
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Shuman Zhen
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Jiali Wang
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China. .,Cancer Research Institute of Hebei Province, Shijiazhuang, 050011, China. .,China International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
16
|
Wu J, Deng H, Zhong H, Wang T, Rao Z, Wang Y, Chen Y, Zhang C. Comparison of 68Ga-FAPI and 18F-FDG PET/CT in the Evaluation of Patients With Newly Diagnosed Non-Small Cell Lung Cancer. Front Oncol 2022; 12:924223. [PMID: 35860594 PMCID: PMC9289292 DOI: 10.3389/fonc.2022.924223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose Several studies have demonstrated that 68Ga-FAPI PET/CT shows high intratumoral tracer uptake and low normal tissue uptake, allowing for excellent visualization of cancer. The purpose of this study was to compare the ability of 68Ga-FAPI and 18F-FDG PET/CT for the evaluation of newly diagnosed NSCLC. Materials and Methods A prospective analysis of 28 individuals with histopathologically newly confirmed NSCLC that underwent 68Ga-FAPI and 18F-FDG PET/CT was conducted. The performance of two imaging modalities was compared based upon visual assessment, rates of cancer detection, and semi-quantitative parameters (target-to-background ratio [TBR], maximum standard uptake value [SUVmax]) for both primary tumors and metastases. Results In total, this study enrolled 28 participants (13 male, 15 female; median age: 60.5 years, range: 34 – 78 years. <u>For primary tumors, 68Ga-FAPI and 18F-FDG PET/CT have similar detection performance (28 vs. 27). However, 68Ga-FAPI PET/CT was found to more effectively evaluate most metastases as compared to 18F-FDG PET/CT. 68Ga-FAPI PET/CT detecting more metastases present within the lymph nodes (53 vs. 49), pleura (8 vs. 7), liver (4 vs. 1), and bone (41 vs. 35).</u> The SUVmax and TBR values for 68Ga-FAPI were substantially superior to those for 18F-FDG in lymph node, pleural, and bone metastases. While the SUVmax for these two imaging approaches was comparable for hepatic metastases, 68Ga-FAPI exhibited a significantly higher TBR in relation to that of 18F-FDG. In addition, 68Ga-FAPI PET/CT demonstrates excellent N (80% [8/10]) and M (92.9% [26/28]) staging accuracy in NSCLC patients. Conclusions 68Ga-FAPI PET/CT as an examination modality is excellent for evaluation of newly diagnosed NSCLC. 68Ga-FAPI PET/CT improves the detection rates of most metastases and facilitating the superior staging of patients with newly diagnosed NSCLC, relative to that achieved by 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Junhao Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Hao Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Haoshu Zhong
- Department of Hematology, Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Stem Cell Laboratory, The Clinical Research Institute, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Wang
- Department of the General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zijuan Rao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yingwei Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Chunyin Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
- *Correspondence: Chunyin Zhang,
| |
Collapse
|
17
|
Sakowska J, Arcimowicz Ł, Jankowiak M, Papak I, Markiewicz A, Dziubek K, Kurkowiak M, Kote S, Kaźmierczak-Siedlecka K, Połom K, Marek-Trzonkowska N, Trzonkowski P. Autoimmunity and Cancer-Two Sides of the Same Coin. Front Immunol 2022; 13:793234. [PMID: 35634292 PMCID: PMC9140757 DOI: 10.3389/fimmu.2022.793234] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Autoimmune disease results from the immune response against self-antigens, while cancer develops when the immune system does not respond to malignant cells. Thus, for years, autoimmunity and cancer have been considered as two separate fields of research that do not have a lot in common. However, the discovery of immune checkpoints and the development of anti-cancer drugs targeting PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways proved that studying autoimmune diseases can be extremely helpful in the development of novel anti-cancer drugs. Therefore, autoimmunity and cancer seem to be just two sides of the same coin. In the current review, we broadly discuss how various regulatory cell populations, effector molecules, genetic predisposition, and environmental factors contribute to the loss of self-tolerance in autoimmunity or tolerance induction to cancer. With the current paper, we also aim to convince the readers that the pathways involved in cancer and autoimmune disease development consist of similar molecular players working in opposite directions. Therefore, a deep understanding of the two sides of immune tolerance is crucial for the proper designing of novel and selective immunotherapies.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Martyna Jankowiak
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
18
|
Fujimura T. Stromal Factors as a Target for Immunotherapy in Melanoma and Non-Melanoma Skin Cancers. Int J Mol Sci 2022; 23:ijms23074044. [PMID: 35409404 PMCID: PMC8999844 DOI: 10.3390/ijms23074044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death 1 (PD1) antibodies (Abs) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) Abs, have been widely administered for not only advanced melanoma, but also various non-melanoma skin cancers. Since profiles of tumor-infiltrating leukocytes (TILs) play important roles in immunotherapy using ICIs, it is important to evaluate cancer stromal cells such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), as well as stromal extracellular matrix protein, to predict the efficacy of ICIs. This review article focuses particularly on TAMs and related factors. Among TILs, TAMs and their related factors could be the optimal biomarkers for immunotherapy such as anti-PD1 Ab therapy. According to the studies presented, TAM-targeting therapies for advanced melanoma and non-melanoma skin cancer will develop in the future.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
19
|
Yaghoobi V, Moutafi M, Aung TN, Pelekanou V, Yaghoubi S, Blenman K, Ibrahim E, Vathiotis IA, Shafi S, Sharma A, O'Meara T, Fernandez AI, Pusztai L, Rimm DL. Quantitative assessment of the immune microenvironment in African American Triple Negative Breast Cancer: a case-control study. Breast Cancer Res 2021; 23:113. [PMID: 34906209 PMCID: PMC8670126 DOI: 10.1186/s13058-021-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Triple negative breast cancer (TNBC) is more common in African American (AA) than Non-AA (NAA) population. We hypothesize that tumor microenvironment (TME) contributes to this disparity. Here, we use multiplex quantitative immunofluorescence to characterize the expression of immunologic biomarkers in the TME in both populations. PATIENTS AND METHODS TNBC tumor resection specimen tissues from a 100-patient case: control cohort including 49 AA and 51 NAA were collected. TME markers including CD45, CD14, CD68, CD206, CD4, CD8, CD20, CD3, Ki67, GzB, Thy1, FAP, aSMA, CD34, Col4, VWF and PD-L1 we quantitatively assessed in every field of view. Mean expression levels were compared between cases and controls. RESULTS Although no significant differences were detected in individual lymphoid and myeloid markers, we found that infiltration with CD45+ immune cells (p = 0.0102) was higher in TNBC in AA population. AA TNBC tumors also had significantly higher level of lymphocytic infiltration defined as CD45+ CD14- cells (p = 0.0081). CD3+ T-cells in AA tumors expressed significantly higher levels of Ki67 (0.0066) compared to NAAs, indicating that a higher percentage of AA tumors contained activated T-cells. All other biomarkers showed no significant differences between the AA and NAA group. CONCLUSIONS While the TME in TNBC is rich in immune cells in both racial groups, there is a numerical increase in lymphoid infiltration in AA compared to NAA TNBC. Significantly, higher activated T cells seen in AA patients raises the possibility that there may be a subset of AA patients with improved response to immunotherapy.
Collapse
Affiliation(s)
- Vesal Yaghoobi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Myrto Moutafi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Thazin Nwe Aung
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Vasiliki Pelekanou
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Sanam Yaghoubi
- Genetics Branch, National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD, USA
| | - Kim Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Eiman Ibrahim
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Ioannis A Vathiotis
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Saba Shafi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Tess O'Meara
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Aileen I Fernandez
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Lajos Pusztai
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Li B, He Y, Li P, Chen X. Leptin Receptor Overlapping Transcript (LEPROT) Is Associated with the Tumor Microenvironment and a Prognostic Predictor in Pan-Cancer. Front Genet 2021; 12:749435. [PMID: 34804118 PMCID: PMC8596502 DOI: 10.3389/fgene.2021.749435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Leptin receptor overlapping transcript (LEPROT) is reported to be involved in metabolism regulation and energy balance as well as molecular signaling of breast cancer and osteosarcoma. LEPROT is expressed in various tissue and is suggested to be involved in cancer developments but with contradictory roles. The comprehensive knowledge of the effects of LEPROT on cancer development and progression across pan-cancer is still missing. Methods The expressions of LEPROT in cancers were compared with corresponding normal tissues across pan-cancer types. The relationships between expression and methylation of LEPROT were then demonstrated. The correlations of LEPROT with the tumor microenvironment (TME), including immune checkpoints, tumor immune cells infiltration (TII), and cancer-associated fibroblasts (CAFs), were also investigated. Co-expression analyses and functional enrichments were conducted to suggest the most relevant genes and the mechanisms of the effects in cancers for LEPROT. Finally, the correlations of LEPROT with patient survival and immunotherapy response were explored. Results LEPROT expression was found to be significantly aberrant in 15/19 (78.9%) cancers compared with corresponding normal tissues; LEPROT was downregulated in 12 cancers and upregulated in three cancers. LEPROT expressions were overall negatively correlated with its methylation alterations. Moreover, LEPROT was profoundly correlated with the TME, including immune checkpoints, TIIs, and CAFs. According to co-expression analyses and functional enrichments, the interactions of LEPROT with the TME may be mediated by the interleukin six signal transducer/the Janus kinase/signal transducers and activators of the transcription signaling pathway. Prognostic values may exist for LEPROT to predict patient survival and immunotherapy response in a context-dependent way. Conclusions LEPROT affects cancer development by interfering with the TME and regulating inflammatory or immune signals. LEPROT may also serve as a potential prognostic marker or a target in cancer therapy. This is the first study to investigate the roles of LEPROT across pan-cancer.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Li
- Institute for Pathology of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Du Y, Cao J, Jiang X, Cai X, Wang B, Wang Y, Wang X, Xue B. Comprehensive analysis of CXCL12 expression reveals the significance of inflammatory fibroblasts in bladder cancer carcinogenesis and progression. Cancer Cell Int 2021; 21:613. [PMID: 34801033 PMCID: PMC8606085 DOI: 10.1186/s12935-021-02314-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Background Bladder cancer (BLCA) is the most common genitourinary tumor but lacks specific diagnostic biomarkers. Recent years have witnessed significant advances in the use and approval of immune checkpoint blockade (ICB) therapy to manage BLCA at advanced stages when platinum-based therapy has failed. The tumor microenvironment (TME) is essential in impacting BLCA patients' prognosis and responsiveness to ICB therapy. CXCL12 is a stromal secreted factor that was essentially involved in regulating the TME among cancers. In this article, we thoroughly investigated the TME regulating roles of CXCL12 in BLCA and revealed its critical involvement in the development of BLCA, which was closely correlated with inflammatory fibroblasts (iCAFs). Methods We examined the gene expression profiles in the TCGA and GEO database to reveal the potential association of CXCL12 with the carcinogenesis and prognosis of BLCA. The receiver operating characteristic curve was used to explore the accuracy of CXCL12 along with multiple iCAFs-associated genes in the diagnosis of BLCA. The MCP-COUNTER, ESTIMATE, and TIDE algorithms were applied to estimate the TME components and predict immunotherapy responsiveness. An iCAFs signature was constructed using the ssGSEA algorithm. The "maftool" R package analyzed the oncogenic mutations in BLCA patients. Bioinformatics analysis results were further validated through immunohistochemistry of clinical samples. IMvigor210 cohort was used to validate bioinformatic predictions of therapeutic responsiveness to immune checkpoint inhibitors. Results This manuscript revealed a significantly reduced expression of CXCL12 in BLCA compared with normal tissue. The expressions of various marker genes for iCAFs were also reduced considerably in BLCA tissues, highlighting the reduction of iCAFs in the pathogenesis of BLCA. Further studies revealed that CXCL12 and iCAFs were associated with pathological features, TME remodeling and aging in BLCA patients. The iCAFs signature further confirmed the intricate immunomodulatory roles of iCAFs in BLCA. Gene mutation analysis revealed the essential relationship between iCAFs and the mutation frequency of oncogenic genes, including TP53 and FGFR3. Meantimes, iCAFs levels also significantly affected BLCA patients' mutations in the TP53 and RTK-RAS pathways. Finally, our results confirmed the significant exclusion of CD8 + T cells by iCAFs, which further influenced the immunotherapy responsiveness in BLCA patients. Conclusions This article highlighted the impact of CXCL12 on the pathogenesis and progression of BLCA. The reduced expression levels of iCAFs markers, including CXCL12, were highly accurate in the diagnosis of BLCA, suggesting the reduction of iCAFs accompanied bladder carcinogenesis. However, both CXCL12 and iCAFs significantly impacted the prognosis and immunotherapy responsiveness for BLCA patients by remodeling the TME. Our results critically suggested the dual roles of iCAFs in the carcinogenesis and progression of BLCA. Further exploration of iCAFs might unravel potential diagnostic biomarkers and therapeutic targets for BLCA.
Collapse
Affiliation(s)
- YiHeng Du
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.,Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Jin Cao
- Department of Pathology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Xiang Jiang
- Department of Pathology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - XiaoWei Cai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Bo Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Yi Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - XiZhi Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China.
| | - BoXin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
22
|
Li Z, Zhang X, Liu C, Ma J. Non-immune Cell Components in the Gastrointestinal Tumor Microenvironment Influencing Tumor Immunotherapy. Front Cell Dev Biol 2021; 9:729941. [PMID: 34722510 PMCID: PMC8549829 DOI: 10.3389/fcell.2021.729941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Interactions of genetic susceptibility factors, immune microenvironment, and microbial factors contribute to gastrointestinal tumorigenesis. The suppressive immune microenvironment reshaped by the tumors during gastrointestinal tumorigenesis directly contributes to T-cell depletion in tumor immunotherapy. Soluble factors secreted by tumor cells or stromal cells collectively shape the suppressive immune environment. Here, we reviewed the key factors in the gastrointestinal tumor microenvironment that influence tumor immunotherapy, focusing on the effects of fibroblasts, neuronal cells, soluble cytokines, exosomes, and the microbiome in tumor microenvironment. Research in this field has helped to identify more precise and effective biomarkers and therapeutic targets in the era of tumor immunotherapy.
Collapse
Affiliation(s)
- Zhengshuo Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Changsha, China.,NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| | - Xiaoyue Zhang
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Changsha, China.,NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| | - Can Liu
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Changsha, China.,NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Changsha, China.,NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| |
Collapse
|
23
|
Multiplex Quantitative Analysis of Tumor-Infiltrating Lymphocytes, Cancer-Associated Fibroblasts, and CD200 in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13215501. [PMID: 34771664 PMCID: PMC8583434 DOI: 10.3390/cancers13215501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is marked by a desmoplastic tumor microenvironment and low tumor immunogenicity, making it difficult for immunotherapy drugs to improve outcomes for patients. Tumor-infiltrating lymphocytes (TILs) and cancer-associated fibroblasts (CAFs) are seen in the tumor microenvironment of patients with pancreatic ductal adenocarcinoma (PDAC). In this work, we sought to characterize the expression levels and potential prognostic value of TILs (CD4, CD8, and CD20) and CAFs (Thy-1, FAP, and SMA) in a large retrospective cohort of PDAC patients. Additionally, we investigated the expression levels and prognostic significance of CD200, an immunoinhibitory protein that has shown interest as a potential target for immune checkpoint blockade. We measured the expression levels of these seven proteins with multiplexed immunofluorescence staining and quantitative immunofluorescence (QIF). We found CD8 and FAP to be independent predictors of progression-free survival and overall survival. CD200 was found to be heterogeneously expressed in both the tumor and stromal compartments of PDAC, with the majority of patients having positive stromal expression and negative tumor expression. This work demonstrates the potential clinical utility of CD8 and FAP in PDAC patients, and it sheds light on the expression patterns of CD200 in pancreatic cancer as the protein is being tested as a target for immune checkpoint blockade.
Collapse
|
24
|
Sloane RAS, White MG, Witt RG, Banerjee A, Davies MA, Han G, Burton E, Ajami N, Simon JM, Bernatchez C, Haydu LE, Tawbi HA, Gershenwald JE, Keung E, Ross M, McQuade J, Amaria RN, Wani K, Lazar AJ, Woodman SE, Wang L, Andrews MC, Wargo JA. Identification of MicroRNA-mRNA Networks in Melanoma and Their Association with PD-1 Checkpoint Blockade Outcomes. Cancers (Basel) 2021; 13:5301. [PMID: 34771465 PMCID: PMC8582574 DOI: 10.3390/cancers13215301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
Metastatic melanoma is a deadly malignancy with poor outcomes historically. Immuno-oncology (IO) agents, targeting immune checkpoint molecules such as cytotoxic T-lymphocyte associated protein-4 (CTLA-4) and programmed cell death-1 (PD-1), have revolutionized melanoma treatment and outcomes, achieving significant response rates and remarkable long-term survival. Despite these vast improvements, roughly half of melanoma patients do not achieve long-term clinical benefit from IO therapies and there is an urgent need to understand and mitigate mechanisms of resistance. MicroRNAs are key post-transcriptional regulators of gene expression that regulate many aspects of cancer biology, including immune evasion. We used network analysis to define two core microRNA-mRNA networks in melanoma tissues and cell lines corresponding to 'MITF-low' and 'Keratin' transcriptomic subsets of melanoma. We then evaluated expression of these core microRNAs in pre-PD-1-inhibitor-treated melanoma patients and observed that higher expression of miR-100-5p and miR-125b-5p were associated with significantly improved overall survival. These findings suggest that miR-100-5p and 125b-5p are potential markers of response to PD-1 inhibitors, and further evaluation of these microRNA-mRNA interactions may yield further insight into melanoma resistance to PD-1 inhibitors.
Collapse
Affiliation(s)
- Robert A. Szczepaniak Sloane
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
| | - Michael G. White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
| | - Russell G. Witt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
| | - Anik Banerjee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.A.D.); (H.A.T.); (J.M.); (R.N.A.); (S.E.W.)
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (N.A.); (K.W.); (A.J.L.); (L.W.)
| | - Elizabeth Burton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
| | - Nadim Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (N.A.); (K.W.); (A.J.L.); (L.W.)
| | - Julie M. Simon
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
| | - Chantale Bernatchez
- Department of Biologics Development, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Lauren E. Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.A.D.); (H.A.T.); (J.M.); (R.N.A.); (S.E.W.)
| | - Jeffrey E. Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
| | - Emily Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
| | - Merrick Ross
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.A.D.); (H.A.T.); (J.M.); (R.N.A.); (S.E.W.)
| | - Rodabe N. Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.A.D.); (H.A.T.); (J.M.); (R.N.A.); (S.E.W.)
| | - Khalida Wani
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (N.A.); (K.W.); (A.J.L.); (L.W.)
| | - Alexander J. Lazar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (N.A.); (K.W.); (A.J.L.); (L.W.)
| | - Scott E. Woodman
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.A.D.); (H.A.T.); (J.M.); (R.N.A.); (S.E.W.)
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (N.A.); (K.W.); (A.J.L.); (L.W.)
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (N.A.); (K.W.); (A.J.L.); (L.W.)
| | - Miles C. Andrews
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.A.S.S.); (M.G.W.); (R.G.W.); (A.B.); (E.B.); (J.M.S.); (L.E.H.); (J.E.G.); (E.K.); (M.R.); (M.C.A.)
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.H.); (N.A.); (K.W.); (A.J.L.); (L.W.)
| |
Collapse
|
25
|
Quek C, Bai X, Long GV, Scolyer RA, Wilmott JS. High-Dimensional Single-Cell Transcriptomics in Melanoma and Cancer Immunotherapy. Genes (Basel) 2021; 12:1629. [PMID: 34681023 PMCID: PMC8535767 DOI: 10.3390/genes12101629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in single-cell transcriptomics have greatly improved knowledge of complex transcriptional programs, rapidly expanding our knowledge of cellular phenotypes and functions within the tumour microenvironment and immune system. Several new single-cell technologies have been developed over recent years that have enabled expanded understanding of the mechanistic cells and biological pathways targeted by immunotherapies such as immune checkpoint inhibitors, which are now routinely used in patient management with high-risk early-stage or advanced melanoma. These technologies have method-specific strengths, weaknesses and capabilities which need to be considered when utilising them to answer translational research questions. Here, we provide guidance for the implementation of single-cell transcriptomic analysis platforms by reviewing the currently available experimental and analysis workflows. We then highlight the use of these technologies to dissect the tumour microenvironment in the context of cancer patients treated with immunotherapy. The strategic use of single-cell analytics in clinical settings are discussed and potential future opportunities are explored with a focus on their use to rationalise the design of novel immunotherapeutic drug therapies that will ultimately lead to improved cancer patient outcomes.
Collapse
Affiliation(s)
- Camelia Quek
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xinyu Bai
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Royal North Shore and Mater Hospitals, Sydney, NSW 2065, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW 2050, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Chhabra G, Singh CK, Guzmán-Pérez G, Ndiaye MA, Iczkowski KA, Ahmad N. Anti-melanoma effects of concomitant inhibition of SIRT1 and SIRT3 in Braf V600E/Pten NULL mice. J Invest Dermatol 2021; 142:1145-1157.e7. [PMID: 34597611 PMCID: PMC9199498 DOI: 10.1016/j.jid.2021.08.434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Novel therapeutic strategies are required for the effective and lasting treatment of metastatic melanoma, one of the deadliest skin malignancies. In this study, we determined the anti-melanoma efficacy of 4'-bromo-resveratrol (4'-BR), which is a small molecule dual inhibitor of SIRT1 and SIRT3 in a BrafV600E/PtenNULL mouse model that recapitulates human disease, including metastases. Tumors were induced by topical application of 4-hydroxy-tamoxifen on shaved backs of 10-week-old mice, and the effects of 4'-BR (5-30 mg/kg b.wt.; intraperitoneally; 3d/week for 5 weeks) were assessed on melanoma development and progression. We found that 4'-BR at a dose of 30 mg/kg significantly reduced size and volume of primary melanoma tumors, as well as lung metastasis, with no adverse effects. Further, mechanistic studies on tumors showed significant modulation in markers of proliferation, survival and melanoma progression. As SIRT1 and SIRT3 are linked to immunomodulation, we performed differential gene expression analysis via NanoString PanCancer Immune Profiling panel (770 genes). Our data demonstrated that 4'-BR significantly downregulated genes related to metastasis-promotion, chemokine/cytokine-regulation, and innate/adaptive immune functions. Overall, inhibition of SIRT1 and SIRT3 by 4'-BR is a promising anti-melanoma therapy with anti-metastatic and immunomodulatory activities warranting further detailed studies, including clinical investigations.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA; William S. Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
27
|
Furman SA, Stern AM, Uttam S, Taylor DL, Pullara F, Chennubhotla SC. In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence. CELL REPORTS METHODS 2021; 1:100072. [PMID: 34888541 PMCID: PMC8653984 DOI: 10.1016/j.crmeth.2021.100072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/14/2021] [Accepted: 08/09/2021] [Indexed: 04/21/2023]
Abstract
Tumors are dynamic ecosystems comprising localized niches (microdomains), possessing distinct compositions and spatial configurations of cancer and non-cancer cell populations. Microdomain-specific network signaling coevolves with a continuum of cell states and functional plasticity associated with disease progression and therapeutic responses. We present LEAPH, an unsupervised machine learning algorithm for identifying cell phenotypes, which applies recursive steps of probabilistic clustering and spatial regularization to derive functional phenotypes (FPs) along a continuum. Combining LEAPH with pointwise mutual information and network biology analyses enables the discovery of outcome-associated microdomains visualized as distinct spatial configurations of heterogeneous FPs. Utilization of an immunofluorescence-based (51 biomarkers) image dataset of colorectal carcinoma primary tumors (n = 213) revealed microdomain-specific network dysregulation supporting cancer stem cell maintenance and immunosuppression that associated selectively with the recurrence phenotype. LEAPH enables an explainable artificial intelligence platform providing insights into pathophysiological mechanisms and novel drug targets to inform personalized therapeutic strategies.
Collapse
Affiliation(s)
- Samantha A. Furman
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew M. Stern
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shikhar Uttam
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - D. Lansing Taylor
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- SpIntellx, Inc., 2425 Sidney Street, Pittsburgh, PA 15203, USA
| | - Filippo Pullara
- SpIntellx, Inc., 2425 Sidney Street, Pittsburgh, PA 15203, USA
| | - S. Chakra Chennubhotla
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- SpIntellx, Inc., 2425 Sidney Street, Pittsburgh, PA 15203, USA
| |
Collapse
|
28
|
Cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Ther 2021; 28:984-999. [PMID: 33712707 DOI: 10.1038/s41417-021-00318-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023]
Abstract
Tumors are one of the main causes of death in humans. The development of safe and effective methods for early diagnosis and treatment of tumors is a difficult problem that needs to be solved urgently. It is well established that the occurrence of tumors involves complex biological mechanisms, and the tumor microenvironment (TME) plays an important role in regulating the biological behavior of tumors. Cancer-associated fibroblasts (CAFs) are a group of activated fibroblasts with significant heterogeneity and plasticity in the tumor microenvironment. They secrete a variety of active factors to regulate tumor occurrence, development, metastasis, and therapeutic resistance. Although most studies suggest that CAFs have significant tumor-promoting functions, some evidence indicates that they may have certain tumor-suppressive functions in the early stage of tumors. Current research on CAFs continues to face many challenges, and the heterogeneity of their origin, phenotype, and function is a major difficulty and hot spot. To provide new perspectives for the research on CAFs and tumor diagnosis and treatment, this review summarizes the definition, origin, biomarkers, generation mechanism, functions, heterogeneity, plasticity, subpopulations, pre-metastasis niches (PMN), immune microenvironment, and targeted therapy of CAFs, describes the research progress and challenges, and proposes possible future research directions based on existing reports.
Collapse
|
29
|
Vidács DL, Veréb Z, Bozó R, Flink LB, Polyánka H, Németh IB, Póliska S, Papp BT, Manczinger M, Gáspár R, Mirdamadi S, Kemény L, Bata-Csörgő Z. Phenotypic plasticity of melanocytes derived from human adult skin. Pigment Cell Melanoma Res 2021; 35:38-51. [PMID: 34467641 DOI: 10.1111/pcmr.13012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022]
Abstract
We previously described a novel in vitro culture technique for dedifferentiated human adult skin melanocytes. Melanocytes cultured in a defined, cholera toxin and PMA free medium became bipolar, unpigmented, and highly proliferative. Furthermore, TRP-1 and c-Kit expression disappeared and EGFR receptor and nestin expression were induced in the cells. Here, we further characterized the phenotype of these dedifferentiated cells and by comparing them to mature pigmented melanocytes we detected crucial steps in their phenotype change. Our data suggest that normal adult melanocytes easily dedifferentiate into pluripotent stem cells given the right environment. This dedifferentiation process described here for normal melanocyte is very similar to what has been described for melanoma cells, indicating that phenotype switching driven by environmental factors is a general characteristic of melanocytes that can occur independent of malignant transformation.
Collapse
Affiliation(s)
- Dániel László Vidács
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), Szeged, Hungary
| | - Renáta Bozó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), Szeged, Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Hilda Polyánka
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Genomic Medicine and Bioinformatics Core Facility, The University of Debrecen, Debrecen, Hungary
| | - Benjamin Tamás Papp
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Máté Manczinger
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Seyedmohsen Mirdamadi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
30
|
Gunaydin G. CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion. Front Oncol 2021; 11:668349. [PMID: 34336660 PMCID: PMC8317617 DOI: 10.3389/fonc.2021.668349] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) are among the most important and abundant players of the tumor microenvironment. CAFs as well as TAMs are known to play pivotal supportive roles in tumor growth and progression. The number of CAF or TAM cells is mostly correlated with poor prognosis. Both CAFs and TAMs are in a reciprocal communication with the tumor cells in the tumor milieu. In addition to such interactions, CAFs and TAMs are also involved in a dynamic and reciprocal interrelationship with each other. Both CAFs and TAMs are capable of altering each other's functions. Here, the current understanding of the distinct mechanisms about the complex interplay between CAFs and TAMs are summarized. In addition, the consequences of such a mutual relationship especially for tumor progression and tumor immune evasion are highlighted, focusing on the synergistic pleiotropic effects. CAFs and TAMs are crucial components of the tumor microenvironment; thus, they may prove to be potential therapeutic targets. A better understanding of the tri-directional interactions of CAFs, TAMs and cancer cells in terms of tumor progression will pave the way for the identification of novel theranostic cues in order to better target the crucial mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
31
|
Fibroblasts Influence the Efficacy, Resistance, and Future Use of Vaccines and Immunotherapy in Cancer Treatment. Vaccines (Basel) 2021; 9:vaccines9060634. [PMID: 34200702 PMCID: PMC8230410 DOI: 10.3390/vaccines9060634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022] Open
Abstract
Tumors are composed of not only epithelial cells but also many other cell types that contribute to the tumor microenvironment (TME). Within this space, cancer-associated fibroblasts (CAFs) are a prominent cell type, and these cells are connected to an increase in tumor progression as well as alteration of the immune landscape present in and around the tumor. This is accomplished in part by their ability to alter the presence of both innate and adaptive immune cells as well as the release of various chemokines and cytokines, together leading to a more immunosuppressive TME. Furthermore, new research implicates CAFs as players in immunotherapy response in many different tumor types, typically by blunting their efficacy. Fibroblast activation protein (FAP) and transforming growth factor β (TGF-β), two major CAF proteins, are associated with the outcome of different immunotherapies and, additionally, have become new targets themselves for immune-based strategies directed at CAFs. This review will focus on CAFs and how they alter the immune landscape within tumors, how this affects response to current immunotherapy treatments, and how immune-based treatments are currently being harnessed to target the CAF population itself.
Collapse
|
32
|
Romano V, Belviso I, Venuta A, Ruocco MR, Masone S, Aliotta F, Fiume G, Montagnani S, Avagliano A, Arcucci A. Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape. Int J Mol Sci 2021; 22:5283. [PMID: 34067929 PMCID: PMC8157224 DOI: 10.3390/ijms22105283] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alterations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma-associated fibroblasts (MAFs) that are highly abundant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal microenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we discuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progression, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Immacolata Belviso
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Alessandro Venuta
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Angelica Avagliano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, 80125 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| |
Collapse
|
33
|
Sadeghi Rad H, Monkman J, Warkiani ME, Ladwa R, O'Byrne K, Rezaei N, Kulasinghe A. Understanding the tumor microenvironment for effective immunotherapy. Med Res Rev 2021; 41:1474-1498. [PMID: 33277742 PMCID: PMC8247330 DOI: 10.1002/med.21765] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Advances in immunotherapy have led to durable and long-term benefits in a subset of patients across a number of solid tumor types. Understanding of the subsets of patients that respond to immune checkpoint inhibitors at the cellular level, and in the context of their tumor microenvironment (TME) is becoming increasingly important. The TME is composed of a heterogeneous milieu of tumor and immune cells. The immune landscape of the TME can inhibit or promote tumor initiation and progression; thus, a deeper understanding of tumor immunity is necessary to develop immunotherapeutic strategies. Recent developments have focused on characterizing the TME immune contexture (type, density, and function) to discover mechanisms and biomarkers that may predict treatment outcomes. This has, in part, been powered by advancements in spatial characterization technologies. In this review article, we address the role of specific immune cells within the TME at various stages of tumor progression and how the immune contexture determinants affecting tumor growth are used therapeutically.
Collapse
Affiliation(s)
| | - James Monkman
- The School of Biomedical Sciences, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueenslandAustralia
- Translational Research InstituteWoolloongabbaQueenslandAustralia
| | - Majid E. Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneyUltimoNew South WalesAustralia
- Institute of Molecular MedicineSechenov UniversityMoscowRussia
| | - Rahul Ladwa
- Princess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Ken O'Byrne
- The School of Biomedical Sciences, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueenslandAustralia
- Translational Research InstituteWoolloongabbaQueenslandAustralia
- Princess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Nima Rezaei
- School of MedicineTehran University of Medical SciencesTehranIran
- Research Center for Immunodeficiencies, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and AutoimmunityUniversal Scientific Education and Research NetworkTehranIran
| | - Arutha Kulasinghe
- The School of Biomedical Sciences, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueenslandAustralia
- Translational Research InstituteWoolloongabbaQueenslandAustralia
- Institute for Molecular BiosciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
34
|
Van Herck Y, Antoranz A, Andhari MD, Milli G, Bechter O, De Smet F, Bosisio FM. Multiplexed Immunohistochemistry and Digital Pathology as the Foundation for Next-Generation Pathology in Melanoma: Methodological Comparison and Future Clinical Applications. Front Oncol 2021; 11:636681. [PMID: 33854972 PMCID: PMC8040928 DOI: 10.3389/fonc.2021.636681] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
The state-of-the-art for melanoma treatment has recently witnessed an enormous revolution, evolving from a chemotherapeutic, "one-drug-for-all" approach, to a tailored molecular- and immunological-based approach with the potential to make personalized therapy a reality. Nevertheless, methods still have to improve a lot before these can reliably characterize all the tumoral features that make each patient unique. While the clinical introduction of next-generation sequencing has made it possible to match mutational profiles to specific targeted therapies, improving response rates to immunotherapy will similarly require a deep understanding of the immune microenvironment and the specific contribution of each component in a patient-specific way. Recent advancements in artificial intelligence and single-cell profiling of resected tumor samples are paving the way for this challenging task. In this review, we provide an overview of the state-of-the-art in artificial intelligence and multiplexed immunohistochemistry in pathology, and how these bear the potential to improve diagnostics and therapy matching in melanoma. A major asset of in-situ single-cell profiling methods is that these preserve the spatial distribution of the cells in the tissue, allowing researchers to not only determine the cellular composition of the tumoral microenvironment, but also study tissue sociology, making inferences about specific cell-cell interactions and visualizing distinctive cellular architectures - all features that have an impact on anti-tumoral response rates. Despite the many advantages, the introduction of these approaches requires the digitization of tissue slides and the development of standardized analysis pipelines which pose substantial challenges that need to be addressed before these can enter clinical routine.
Collapse
Affiliation(s)
| | - Asier Antoranz
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Madhavi Dipak Andhari
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Giorgia Milli
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Francesca Maria Bosisio
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Zhang Y, Mou GZ, Li TZ, Xu WT, Zhang T, Xue H, Zuo WB, Li YN, Luo YH, Jin CH. PD-1 Immune Checkpoint Inhibitor Therapy Malignant Tumor Based on Monotherapy and Combined Treatment Research. Technol Cancer Res Treat 2021; 20:15330338211004942. [PMID: 33759637 PMCID: PMC8093614 DOI: 10.1177/15330338211004942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recently, immunotherapy has become the fourth pillar of cancer treatment
in addition to surgery therapy, chemotherapy, and radiation therapy.
The inhibitors of programed cell death protein 1 (PD-1) and its ligand
PD-L1 are the new stars in immunotherapy, as they can overcome tumor
immunosuppression. However, the efficacy of PD-1 inhibitors still
needs to be further developed for clinical treatment. Therefore,
research into treatment with anti-PD-1 drugs has emerged as a new
development field. This review provides novel insights into the role
and mechanism of PD-1 combination anti-tumor therapy, thereby
promoting its clinical application in anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | | | - Tian-Zhu Li
- Molecular Medicine Research Center, School of Basic Medical Science, Chifeng University, Chifeng, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wen-Bo Zuo
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan-Nan Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,National Coarse Cereals Engineering Research Center, Daqing, China
| |
Collapse
|
36
|
Chan JY, Lim JQ, Yeong J, Ravi V, Guan P, Boot A, Tay TKY, Selvarajan S, Md Nasir ND, Loh JH, Ong CK, Huang D, Tan J, Li Z, Ng CCY, Tan TT, Masuzawa M, Sung KWK, Farid M, Quek RHH, Tan NC, Teo MCC, Rozen SG, Tan P, Futreal A, Teh BT, Soo KC. Multiomic analysis and immunoprofiling reveal distinct subtypes of human angiosarcoma. J Clin Invest 2021; 130:5833-5846. [PMID: 33016928 DOI: 10.1172/jci139080] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Angiosarcomas are rare, clinically aggressive tumors with limited treatment options and a dismal prognosis. We analyzed angiosarcomas from 68 patients, integrating information from multiomic sequencing, NanoString immuno-oncology profiling, and multiplex immunohistochemistry and immunofluorescence for tumor-infiltrating immune cells. Through whole-genome sequencing (n = 18), 50% of the cutaneous head and neck angiosarcomas exhibited higher tumor mutation burden (TMB) and UV mutational signatures; others were mutationally quiet and non-UV driven. NanoString profiling revealed 3 distinct patient clusters represented by lack (clusters 1 and 2) or enrichment (cluster 3) of immune-related signaling and immune cells. Neutrophils (CD15+), macrophages (CD68+), cytotoxic T cells (CD8+), Tregs (FOXP3+), and PD-L1+ cells were enriched in cluster 3 relative to clusters 2 and 1. Likewise, tumor inflammation signature (TIS) scores were highest in cluster 3 (7.54 vs. 6.71 vs. 5.75, respectively; P < 0.0001). Head and neck angiosarcomas were predominant in clusters 1 and 3, providing the rationale for checkpoint immunotherapy, especially in the latter subgroup with both high TMB and TIS scores. Cluster 2 was enriched for secondary angiosarcomas and exhibited higher expression of DNMT1, BRD3/4, MYC, HRAS, and PDGFRB, in keeping with the upregulation of epigenetic and oncogenic signaling pathways amenable to targeted therapies. Molecular and immunological dissection of angiosarcomas may provide insights into opportunities for precision medicine.
Collapse
Affiliation(s)
- Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,SingHealth Duke-NUS Blood Cancer Centre, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Joe Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore.,Institute of Molecular and Cell Biology, Singapore
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peiyong Guan
- Integrated Biostatistics and Bioinformatics Programme
| | - Arnoud Boot
- Integrated Biostatistics and Bioinformatics Programme.,Centre for Computational Biology, and
| | | | | | | | - Jie Hua Loh
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Jing Tan
- Laboratory of Cancer Epigenome, Division of Medical Sciences National Cancer Centre Singapore, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, Division of Medical Sciences National Cancer Centre Singapore, Singapore
| | - Cedric Chuan-Young Ng
- Laboratory of Cancer Epigenome, Division of Medical Sciences National Cancer Centre Singapore, Singapore
| | - Thuan Tong Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Mikio Masuzawa
- Department of Regulation Biochemistry, School of Allied Health Sciences, Kitasato University, Minato City, Tokyo, Japan
| | - Ken Wing-Kin Sung
- Genome Institute of Singapore, A*STAR, Singapore.,School of Computing, National University of Singapore, Singapore
| | - Mohamad Farid
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.,SingHealth Duke-NUS Blood Cancer Centre, Singapore
| | | | - Ngian Chye Tan
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore.,SingHealth Duke-NUS Head and Neck Centre, Singapore
| | | | - Steven George Rozen
- Integrated Biostatistics and Bioinformatics Programme.,Centre for Computational Biology, and.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Genome Institute of Singapore, A*STAR, Singapore
| | - Andrew Futreal
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Tean Teh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Laboratory of Cancer Epigenome, Division of Medical Sciences National Cancer Centre Singapore, Singapore.,Division of Cellular and Molecular Research, National Cancer Centre Singapore
| | - Khee Chee Soo
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore.,SingHealth Duke-NUS Head and Neck Centre, Singapore
| |
Collapse
|
37
|
Simiczyjew A, Dratkiewicz E, Mazurkiewicz J, Ziętek M, Matkowski R, Nowak D. The Influence of Tumor Microenvironment on Immune Escape of Melanoma. Int J Mol Sci 2020; 21:E8359. [PMID: 33171792 PMCID: PMC7664679 DOI: 10.3390/ijms21218359] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
The low efficiency of currently-used anti-cancer therapies poses a serious challenge, especially in the case of malignant melanoma, a cancer characterized by elevated invasiveness and relatively high mortality rate. The role of the tumor microenvironment in the progression of melanoma and its acquisition of resistance to treatment seems to be the main focus of recent studies. One of the factors that, in normal conditions, aids the organism in its fight against the cancer and, following the malignant transformation, adapts to facilitate the development of the tumor is the immune system. A variety of cell types, i.e., T and B lymphocytes, macrophages, and dendritic and natural killer cells, as well as neutrophils, support the growth and invasiveness of melanoma cells, utilizing a plethora of mechanisms, including secretion of pro-inflammatory molecules, induction of inhibitory receptors expression, or depletion of essential nutrients. This review provides a comprehensive summary of the processes regulated by tumor-associated cells that promote the immune escape of melanoma cells. The described mechanisms offer potential new targets for anti-cancer treatment and should be further studied to improve currently-employed therapies.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (E.D.); (J.M.); (D.N.)
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (E.D.); (J.M.); (D.N.)
| | - Justyna Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (E.D.); (J.M.); (D.N.)
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; (M.Z.); (R.M.)
- Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; (M.Z.); (R.M.)
- Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (E.D.); (J.M.); (D.N.)
| |
Collapse
|
38
|
Druzhkova I, Shirmanova M, Ignatova N, Dudenkova V, Lukina M, Zagaynova E, Safina D, Kostrov S, Didych D, Kuzmich A, Sharonov G, Rakitina O, Alekseenko I, Sverdlov E. Expression of EMT-Related Genes in Hybrid E/M Colorectal Cancer Cells Determines Fibroblast Activation and Collagen Remodeling. Int J Mol Sci 2020; 21:8119. [PMID: 33143259 PMCID: PMC7662237 DOI: 10.3390/ijms21218119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Collagen, the main non-cellular component of the extracellular matrix (ECM), is profoundly reorganized during tumorigenesis and has a strong impact on tumor behavior. The main source of collagen in tumors is cancer-associated fibroblasts. Cancer cells can also participate in the synthesis of ECM; however, the contribution of both types of cells to collagen rearrangements during the tumor progression is far from being clear. Here, we investigated the processes of collagen biosynthesis and remodeling in parallel with the transcriptome changes during cancer cells and fibroblasts interactions. Combining immunofluorescence, RNA sequencing, and second harmonic generation microscopy, we have explored the relationships between the ratio of epithelial (E) and mesenchymal (M) components of hybrid E/M cancer cells, their ability to activate fibroblasts, and the contributions of both cell types to collagen remodeling. To this end, we studied (i) co-cultures of colorectal cancer cells and normal fibroblasts in a collagen matrix, (ii) patient-derived cancer-associated fibroblasts, and (iii) mouse xenograft models. We found that the activation of normal fibroblasts that form dense collagen networks consisting of large, highly oriented fibers depends on the difference in E/M ratio in the cancer cells. The more-epithelial cells activate the fibroblasts more strongly, which correlates with a dense and highly ordered collagen structure in tumors in vivo. The more-mesenchymal cells activate the fibroblasts to a lesser degree; on the other hand, this cell line has a higher innate collagen remodeling capacity. Normal fibroblasts activated by cancer cells contribute to the organization of the extracellular matrix in a way that is favorable for migratory potency. At the same time, in co-culture with epithelial cancer cells, the contribution of fibroblasts to the reorganization of ECM is more pronounced. Therefore, one can expect that targeting the ability of epithelial cancer cells to activate normal fibroblasts may provide a new anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Marina Shirmanova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Varvara Dudenkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Maria Lukina
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Elena Zagaynova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
- Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Dina Safina
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
| | - Sergey Kostrov
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
| | - Dmitry Didych
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
| | - Alexey Kuzmich
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
| | - George Sharonov
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Olga Rakitina
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
| | - Irina Alekseenko
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
- Laboratory of Epigenetics, FSBI «National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov» Ministry of Healthcare of the Russian Federation, 117198 Moscow, Russia
| | - Eugene Sverdlov
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
- National Research Center «Kurchatov Institute», 123182 Moscow, Russia
| |
Collapse
|
39
|
Benavente S, Sánchez-García A, Naches S, LLeonart ME, Lorente J. Therapy-Induced Modulation of the Tumor Microenvironment: New Opportunities for Cancer Therapies. Front Oncol 2020; 10:582884. [PMID: 33194719 PMCID: PMC7645077 DOI: 10.3389/fonc.2020.582884] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Advances in immunotherapy have achieved remarkable clinical outcomes in tumors with low curability, but their effects are limited, and increasing evidence has implicated tumoral and non-tumoral components of the tumor microenvironment as critical mediators of cancer progression. At the same time, the clinical successes achieved with minimally invasive and optically-guided surgery and image-guided and ablative radiation strategies have been successfully implemented in clinical care. More effective, localized and safer treatments have fueled strong research interest in radioimmunotherapy, which has shown the potential immunomodulatory effects of ionizing radiation. However, increasingly more observations suggest that immunosuppressive changes, metabolic remodeling, and angiogenic responses in the local tumor microenvironment play a central role in tumor recurrence. In this review, we address challenges to identify responders vs. non-responders to the immune checkpoint blockade, discuss recent developments in combinations of immunotherapy and radiotherapy for clinical evaluation, and consider the clinical impact of immunosuppressive changes in the tumor microenvironment in the context of surgery and radiation. Since the therapy-induced modulation of the tumor microenvironment presents a multiplicity of forms, we propose that overcoming microenvironment related resistance can become clinically relevant and represents a novel strategy to optimize treatment immunogenicity and improve patient outcome.
Collapse
Affiliation(s)
- Sergi Benavente
- Radiation Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Almudena Sánchez-García
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Naches
- Otorhinolaryngology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde Esther LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Barcelona, Spain
| | - Juan Lorente
- Otorhinolaryngology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Liu J, Li P, Wang L, Li M, Ge Z, Noordam L, Lieshout R, Verstegen MM, Ma B, Su J, Yang Q, Zhang R, Zhou G, Carrascosa LC, Sprengers D, IJzermans JN, Smits R, Kwekkeboom J, van der Laan LJ, Peppelenbosch MP, Pan Q, Cao W. Cancer-Associated Fibroblasts Provide a Stromal Niche for Liver Cancer Organoids That Confers Trophic Effects and Therapy Resistance. Cell Mol Gastroenterol Hepatol 2020; 11:407-431. [PMID: 32932015 PMCID: PMC7788239 DOI: 10.1016/j.jcmgh.2020.09.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Cancer-associated fibroblasts (CAFs) play a key role in the cancer process, but the research progress is hampered by the paucity of preclinical models that are essential for mechanistic dissection of cancer cell-CAF interactions. Here, we aimed to establish 3-dimensional (3D) organotypic co-cultures of primary liver tumor-derived organoids with CAFs, and to understand their interactions and the response to treatment. METHODS Liver tumor organoids and CAFs were cultured from murine and human primary liver tumors. 3D co-culture models of tumor organoids with CAFs and Transwell culture systems were established in vitro. A xenograft model was used to investigate the cell-cell interactions in vivo. Gene expression analysis of CAF markers in our hepatocellular carcinoma cohort and an online liver cancer database indicated the clinical relevance of CAFs. RESULTS To functionally investigate the interactions of liver cancer cells with CAFs, we successfully established murine and human 3D co-culture models of liver tumor organoids with CAFs. CAFs promoted tumor organoid growth in co-culture with direct cell-cell contact and in a Transwell system via paracrine signaling. Vice versa, cancer cells secrete paracrine factors regulating CAF physiology. Co-transplantation of CAFs with liver tumor organoids of mouse or human origin promoted tumor growth in xenograft models. Moreover, tumor organoids conferred resistance to clinically used anticancer drugs including sorafenib, regorafenib, and 5-fluorouracil in the presence of CAFs, or the conditioned medium of CAFs. CONCLUSIONS We successfully established murine and human 3D co-culture models and have shown robust effects of CAFs in liver cancer nurturing and treatment resistance.
Collapse
Affiliation(s)
- Jiaye Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Ling Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Meng Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Zhouhong Ge
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Lisanne Noordam
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Ruby Lieshout
- Department of Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Monique M.A. Verstegen
- Department of Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Buyun Ma
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Junhong Su
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qin Yang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands,Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Second Medical School of Chengdu, Chongqing Medical University, Chengdu, China
| | - Ruyi Zhang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Guoying Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Lucia Campos Carrascosa
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jan N.M. IJzermans
- Department of Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Luc J.W. van der Laan
- Department of Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands,Correspondence Address correspondence to: Qiuwei Pan, PhD, or Wanlu Cao, PhD, Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center, Room Na-1005, Wytemaweg 80, NL-3015 CN Rotterdam, The Netherlands. fax: (10) 703-2793.
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands,Correspondence Address correspondence to: Qiuwei Pan, PhD, or Wanlu Cao, PhD, Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center, Room Na-1005, Wytemaweg 80, NL-3015 CN Rotterdam, The Netherlands. fax: (10) 703-2793.
| |
Collapse
|
41
|
Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers. Cells 2020; 9:cells9092027. [PMID: 32899119 PMCID: PMC7563527 DOI: 10.3390/cells9092027] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer associated fibroblasts (CAF) and the extracellular matrix (ECM) produced by them have been recognized as key players in cancer biology and emerged as important targets for cancer treatment and drug discovery. Apart from their presence in stroma rich tumors, such as biliary, pancreatic and subtypes of hepatocellular cancer (HCC), both CAF and certain ECM components are also present in cancers without an overt intra-tumoral desmoplastic reaction. They support cancer development, growth, metastasis and resistance to chemo- or checkpoint inhibitor therapy by a multitude of mechanisms, including angiogenesis, ECM remodeling and active immunosuppression by secretion of tumor promoting and immune suppressive cytokines, chemokines and growth factors. CAF resemble activated hepatic stellate cells (HSC)/myofibroblasts, expressing α-smooth muscle actin and especially fibroblast activation protein (FAP). Apart from FAP, CAF also upregulate other functional cell surface proteins like platelet-derived growth factor receptor β (PDGFRβ) or the insulin-like growth factor receptor II (IGFRII). Notably, if formulated with adequate size and zeta potential, injected nanoparticles home preferentially to the liver. Several nanoparticular formulations were tested successfully to deliver dugs to activated HSC/myofibroblasts. Thus, surface modified nanocarriers with a cyclic peptide binding to the PDGFRβ or with mannose-6-phosphate binding to the IGFRII, effectively directed drug delivery to activated HSC/CAF in vivo. Even unguided nanohydrogel particles and lipoplexes loaded with siRNA demonstrated a high in vivo uptake and functional siRNA delivery in activated HSC, indicating that liver CAF/HSC are also addressed specifically by well-devised nanocarriers with optimized physicochemical properties. Therefore, CAF have become an attractive target for the development of stroma-based cancer therapies, especially in the liver.
Collapse
|
42
|
Hou A, Hou K, Huang Q, Lei Y, Chen W. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Front Immunol 2020. [PMID: 32508809 DOI: 10.3389/fimmu.2020.00783.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are starting to transform the treatment for patients with advanced cancer. The extensive application of these antibodies for various cancer obtains exciting anti-tumor immune response by activating T cells. Although the encouraging clinical benefit in patients receiving these immunostimulatory agents are observed, numbers of patients still derive limited response or even none for reasons unknown, sometimes at the cost of adverse reactions. Myeloid-derived suppressor cells (MDSCs) is a heterogeneous immature population of myeloid cells partly influencing the efficacy of immunotherapies. These cells not only directly suppress T cell but mediate a potently immunosuppressive network within tumor microenvironment to attenuate the anti-tumor response. The crosstalk between MDSCs and immune cells/non-immune cells generates several positive feedbacks to negatively modulate the tumor microenvironment. As such, the recruitment of immunosuppressive cells, upregulation of immune checkpoints, angiogenesis and hypoxia are induced and contributing to the acquired resistance to ICIs. Targeting MDSCs could be a potential therapy to overcome the limitation. In this review, we focus on the role of MDSCs in resistance to ICIs and summarize the therapeutic strategies targeting them to enhance ICIs efficiency in cancer patients.
Collapse
Affiliation(s)
- Aohan Hou
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaiyu Hou
- Department of Bone and Trauma, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Qiubo Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Wanling Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| |
Collapse
|
43
|
Cai S, Allam M, Coskun AF. Multiplex Spatial Bioimaging for Combination Therapy Design. Trends Cancer 2020; 6:813-818. [PMID: 32466969 DOI: 10.1016/j.trecan.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022]
Abstract
Multiplex spatial analyses dissect the heterogeneous cellular abundances and interactions in tumors. Single-cell bioimaging profiles many disease-associated protein biomarkers in patient biopsies to inform the design of cancer therapies. Guided by the mechanistic insights from spatial cellular maps, combination therapy can efficiently eliminate cancers with reduced off-targets, resistance, and relapse.
Collapse
Affiliation(s)
- Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
44
|
Hou A, Hou K, Huang Q, Lei Y, Chen W. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Front Immunol 2020; 11:783. [PMID: 32508809 PMCID: PMC7249937 DOI: 10.3389/fimmu.2020.00783] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are starting to transform the treatment for patients with advanced cancer. The extensive application of these antibodies for various cancer obtains exciting anti-tumor immune response by activating T cells. Although the encouraging clinical benefit in patients receiving these immunostimulatory agents are observed, numbers of patients still derive limited response or even none for reasons unknown, sometimes at the cost of adverse reactions. Myeloid-derived suppressor cells (MDSCs) is a heterogeneous immature population of myeloid cells partly influencing the efficacy of immunotherapies. These cells not only directly suppress T cell but mediate a potently immunosuppressive network within tumor microenvironment to attenuate the anti-tumor response. The crosstalk between MDSCs and immune cells/non-immune cells generates several positive feedbacks to negatively modulate the tumor microenvironment. As such, the recruitment of immunosuppressive cells, upregulation of immune checkpoints, angiogenesis and hypoxia are induced and contributing to the acquired resistance to ICIs. Targeting MDSCs could be a potential therapy to overcome the limitation. In this review, we focus on the role of MDSCs in resistance to ICIs and summarize the therapeutic strategies targeting them to enhance ICIs efficiency in cancer patients.
Collapse
Affiliation(s)
- Aohan Hou
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaiyu Hou
- Department of Bone and Trauma, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Qiubo Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Wanling Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| |
Collapse
|
45
|
Érsek B, Silló P, Cakir U, Molnár V, Bencsik A, Mayer B, Mezey E, Kárpáti S, Pós Z, Németh K. Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune checkpoint regulators via increased arginase activity. Cell Mol Life Sci 2020; 78:661-673. [PMID: 32328671 PMCID: PMC7581550 DOI: 10.1007/s00018-020-03517-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023]
Abstract
Abstract This study shows that melanoma-associated fibroblasts (MAFs) suppress cytotoxic T lymphocyte (CTL) activity and reveals a pivotal role played by arginase in this phenomenon. MAFs and normal dermal fibroblasts (DFs) were isolated from surgically resected melanomas and identified as Melan-A-/gp100-/FAP+ cells. CTLs of healthy blood donors were activated in the presence of MAF- and DF-conditioned media (CM). Markers of successful CTL activation, cytotoxic degranulation, killing activity and immune checkpoint regulation were evaluated by flow cytometry, ELISPOT, and redirected killing assays. Soluble mediators responsible for MAF-mediated effects were identified by ELISA, flow cytometry, inhibitor assays, and knock-in experiments. In the presence of MAF-CM, activated/non-naïve CTLs displayed dysregulated ERK1/2 and NF-κB signaling, impeded CD69 and granzyme B production, impaired killing activity, and upregulated expression of the negative immune checkpoint receptors TIGIT and BTLA. Compared to DFs, MAFs displayed increased amounts of VISTA and HVEM, a known ligand of BTLA on T cells, increased l-arginase activity and CXCL12 release. Transgenic arginase over-expression further increased, while selective arginase inhibition neutralized MAF-induced TIGIT and BTLA expression on CTLs. Our data indicate that MAF interfere with intracellular CTL signaling via soluble mediators leading to CTL anergy and modify immune checkpoint receptor availability via l-arginine depletion. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00018-020-03517-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Érsek
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 4 Nagyvarad ter, VII/709, Budapest, 1089, Hungary.,Office for Research Groups Attached to Universities and Other Institutions of the Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Pálma Silló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Ugur Cakir
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Viktor Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, 1083, Hungary
| | - András Bencsik
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 4 Nagyvarad ter, VII/709, Budapest, 1089, Hungary
| | - Balázs Mayer
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Eva Mezey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20815, USA
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Zoltán Pós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 4 Nagyvarad ter, VII/709, Budapest, 1089, Hungary.
| | - Krisztián Németh
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| |
Collapse
|
46
|
Modern Aspects of Immunotherapy with Checkpoint Inhibitors in Melanoma. Int J Mol Sci 2020; 21:ijms21072367. [PMID: 32235439 PMCID: PMC7178114 DOI: 10.3390/ijms21072367] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Although melanoma is one of the most immunogenic tumors, it has an ability to evade anti-tumor immune responses by exploiting tolerance mechanisms, including negative immune checkpoint molecules. The most extensively studied checkpoints represent cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Immune checkpoint inhibitors (ICI), which were broadly applied for melanoma treatment in the past decade, can unleash anti-tumor immune responses and result in melanoma regression. Patients responding to the ICI treatment showed long-lasting remission or disease control status. However, a large group of patients failed to respond to this therapy, indicating the development of resistance mechanisms. Among them are intrinsic tumor properties, the dysfunction of effector cells, and the generation of immunosuppressive tumor microenvironment (TME). This review discusses achievements of ICI treatment in melanoma, reasons for its failure, and promising approaches for overcoming the resistance. These methods include combinations of different ICI with each other, strategies for neutralizing the immunosuppressive TME and combining ICI with other anti-cancer therapies such as radiation, oncolytic viral, or targeted therapy. New therapeutic approaches targeting other immune checkpoint molecules are also discussed.
Collapse
|
47
|
Yeong J, Tan T, Chow ZL, Cheng Q, Lee B, Seet A, Lim JX, Lim JCT, Ong CCH, Thike AA, Saraf S, Tan BYC, Poh YC, Yee S, Liu J, Lim E, Iqbal J, Dent R, Tan PH. Multiplex immunohistochemistry/immunofluorescence (mIHC/IF) for PD-L1 testing in triple-negative breast cancer: a translational assay compared with conventional IHC. J Clin Pathol 2020; 73:557-562. [PMID: 31969377 DOI: 10.1136/jclinpath-2019-206252] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) monoclonal antibody therapy has recently gained approval for treating metastatic triple-negative breast cancer (TNBC) -, in particular in the PD-L1+ patient subgroup of the recent IMpassion130 trial. The SP142 PD-L1 antibody clone was used as a predictive assay in this trial, but this clone was found to be an outlier in previous harmonisation studies in lung cancer. AIMS To address the comparability of PD-L1 clones in TNBC, we evaluated the concordance between conventional immunohistochemistry (IHC) and multiplex immunohistochemistry/immunofluorescence (mIHC/IF) that allowed simultaneous quantification of three different PD-L1 antibodies (22C3, SP142 and SP263). METHODS Our cohort comprised 25 TNBC cases, 12 non-small-cell lung carcinomas and 8 other cancers. EpCAM labelling was used to distinguish tumour cells from immune cells. RESULTS Moderate-to-strong correlations in PD-L1 positivity were found between results obtained through mIHC/IF and IHC. Individual concordance rates in the study ranged from 67% to 100%, with Spearman's rank correlation coefficient values up to 0.88. CONCLUSIONS mIHC/IF represents a promising tool in the era of cancer immunotherapy, as it can simultaneously detect and quantify PD-L1 labelling with multiple antibody clones, and allow accurate evaluation of tumour and immune cells. Clinicians and pathologists require this information to predict patient response to anti-PD-1/PD-L1 therapy. The adoption of this assay may represent a significant advance in the management of therapeutically challenging cancers. Further analysis and assay harmonisation are essential for translation to a routine diagnostic setting.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, Singapore .,Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Tira Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Zi Long Chow
- Division of Pathology, Singapore General Hospital, Singapore.,University of Tasmania, Hobart, Tasmania, Australia
| | - Qing Cheng
- Duke-NUS Medical School, Duke-NUS Medical School, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Amanda Seet
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | | | - Jeffrey Chun Tatt Lim
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore
| | - Clara Chong Hui Ong
- Division of Pathology, Singapore General Hospital, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore
| | - Sahil Saraf
- Division of Pathology, Singapore General Hospital, Singapore
| | | | - Yong Cheng Poh
- Diagnostics Development (DxD) Hub, Agency of Science, Technology and Research (A*STAR), Singapore
| | - Sidney Yee
- Diagnostics Development (DxD) Hub, Agency of Science, Technology and Research (A*STAR), Singapore
| | - Jin Liu
- Duke-NUS Medical School, Duke-NUS Medical School, Singapore
| | - Elaine Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
48
|
De Jaeghere EA, Denys HG, De Wever O. Fibroblasts Fuel Immune Escape in the Tumor Microenvironment. Trends Cancer 2019; 5:704-723. [PMID: 31735289 DOI: 10.1016/j.trecan.2019.09.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023]
Abstract
Immune escape is central to the persistence of most, if not all, solid tumors and poses a critical obstacle to successful cancer (immuno)therapy. Cancer-associated fibroblasts (CAFs) constitute the most prevalent, yet heterogeneous, component of the tumor stroma, where they 'cool down' the immune microenvironment. The central role played by CAFs, both as a physical barrier and source of immunosuppressive molecules, sets them as a target to enhance immunotherapy of cancer. We outline the current understanding of how CAFs fuel immune escape, as well as their potential clinical applications. Whether these therapeutics really have clinically significant activity remains to be seen, but the outlook is positive.
Collapse
Affiliation(s)
- Emiel A De Jaeghere
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium; Gynecologic Pelvic Oncology Network Ghent (GYPON), Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Hannelore G Denys
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium; Gynecologic Pelvic Oncology Network Ghent (GYPON), Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Gynecologic Pelvic Oncology Network Ghent (GYPON), Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|