1
|
Surgent O, Andrews DS, Lee JK, Boyle J, Dakopolos A, Miller M, Ozonoff S, Rogers SJ, Solomon M, Amaral DG, Nordahl CW. Sex Differences in the Striatal Contributions to Longitudinal Fine Motor Development in Autistic Children. Biol Psychiatry 2025:S0006-3223(25)00027-7. [PMID: 39818327 DOI: 10.1016/j.biopsych.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Fine motor challenges are prevalent in autistic populations. However, little is known about their neurobiological underpinnings or how their related neural mechanisms are influenced by sex. The dorsal striatum, which comprises the caudate nucleus and putamen, is associated with motor learning and control and may hold critical information. We investigated how autism diagnosis and sex assigned at birth influence associations between the dorsal striatum and fine motor development in autistic and nonautistic children. METHODS We used multimodal assessment of striatal structures (volume and corticostriatal white matter microstructure) and longitudinal assessment of fine motor skills, first at approximately 3 years of age (time 1) and again 2 to 3 years later (follow-up). Fine motor and magnetic resonance imaging (T1 and diffusion) data were collected at time 1 from 356 children (234 autistic; 128 girls) and at follow-up from 195 children (113 autistic; 76 girls). RESULTS At time 1, associations among fine motor skills, putamen volume, and sensorimotor-striatal fractional anisotropy (sensorimotor-affiliated dorsal striatal structures) were different in autistic boys compared with autistic girls and were not significant for nonautistic children. Further, time 1 sensorimotor-striatal and prefrontal-striatal microstructure predicted fine motor development for autistic girls but not boys. CONCLUSIONS Sensorimotor-affiliated dorsal striatum structures may contribute to concurrent motor ability and predict fine motor improvement during critical windows of development in a sex-specific and diagnosis-dependent way. Moreover, the dorsal striatum may play a key role in the distinct neural mechanisms underlying motor challenges in autistic boys and girls.
Collapse
Affiliation(s)
- Olivia Surgent
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California.
| | - Derek S Andrews
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Joshua K Lee
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Joseph Boyle
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California; Department of Psychology, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Andrew Dakopolos
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Meghan Miller
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Sally Ozonoff
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Sally J Rogers
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Marjorie Solomon
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - David G Amaral
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Christine Wu Nordahl
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
2
|
Elsherif R, Mm Abdel-Hafez A, Hussein OA, Sabry D, Abdelzaher LA, Bayoumy AA. The potential ameliorative effect of mesenchymal stem cells-derived exosomes on cerebellar histopathology and their modifying role on PI3k-mTOR signaling in rat model of autism spectrum disorder. J Mol Histol 2025; 56:65. [PMID: 39760823 DOI: 10.1007/s10735-024-10335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Autism spectrum disorder (ASD) is a group of severe neurodevelopmental disorders. This study aimed to elucidate the potential ameliorating effect of postnatal administration of MSCs-derived Exo in a rat model of ASD. Male pups were divided into control (Cont), (VPA); pups of pregnant rats injected with VPA subcutaneously (S.C.) at embryonic day (ED) 13, and (VPA + Exo); pups were intravenously (I.V.) injected with MSCs-derived Exo either at postnatal day (P) 21 (adolescent VPA + Exo) or P70 (adult VPA + Exo). They were evaluated for physiological, histopathological and immunohistochemical changes of cerebellar structure, and genetic expression of PI3k and mTOR. The VPA adult group showed increased locomotor activity and impaired social activity, and anxiety. The cerebellar histological structure was disrupted in VPA groups. VPA + Exo groups showed preservation of the normal histological structure of the cerebellum. Immunohistochemical studies revealed enhanced expression of caspase-3, GFAP, Nestin, and VEGF in VPA groups beside modifying PI3K and mTOR genetic expression. MSCs-derived Exo ameliorated most of the rat cerebellar histopathological alterations and behavioral changes. Their mitigating effect could be established through their antiapoptotic, anti-inflammatory and anti-neurogenesis effect besides modifying PI3k-mTOR signaling.
Collapse
Affiliation(s)
- Raghda Elsherif
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Amel Mm Abdel-Hafez
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Histology, Sphinx University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Badr University, Cairo, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Cairo, Egypt
| | - Ayat Ah Bayoumy
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Schinz D, Neubauer A, Hippen R, Schulz J, Li HB, Thalhammer M, Schmitz-Koep B, Menegaux A, Wendt J, Ayyildiz S, Brandl F, Priller J, Uder M, Zimmer C, Hedderich DM, Sorg C. Claustrum Volumes Are Lower in Schizophrenia and Mediate Patients' Attentional Deficits. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00350-1. [PMID: 39608754 DOI: 10.1016/j.bpsc.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND While the last decade of extensive research revealed the prominent role of the claustrum for mammalian forebrain organization (i.e., widely distributed claustral-cortical circuits coordinate basic cognitive functions such as attention), it is poorly understood whether the claustrum is relevant for schizophrenia and related cognitive symptoms. We hypothesized that claustrum volumes are lower in schizophrenia and also that potentially lower volumes mediate patients' attention deficits. METHODS Based on T1-weighted magnetic resonance imaging, advanced automated claustrum segmentation, and attention symbol coding task in 90 patients with schizophrenia and 96 healthy control participants from 2 independent sites, the COBRE open-source database and Munich dataset, we compared total intracranial volume-normalized claustrum volumes and symbol coding task scores across groups via analysis of covariance and related variables via correlation and mediation analysis. RESULTS Patients had lower claustrum volumes of about 13% (p < .001, Hedges' g = 0.63), which not only correlated with (r = 0.24, p = .014) but also mediated lower symbol coding task scores (indirect effect ab = -1.30 ± 0.69; 95% CI, -3.73 to -1.04). Results were not confounded by age, sex, global and claustrum-adjacent gray matter changes, scanner site, smoking, and medication. CONCLUSIONS Results demonstrate lower claustrum volumes that mediate patients' attention deficits in schizophrenia. Data indicate the claustrum as being relevant for schizophrenia pathophysiology and cognitive functioning.
Collapse
Affiliation(s)
- David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany.
| | - Antonia Neubauer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig Maximilians University of Munich, Munich, Germany
| | - Rebecca Hippen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hongwei Bran Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jil Wendt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sevilay Ayyildiz
- Anatomy Ph.D. Program, Graduate School of Health Sciences, Kocaeli University, Istanbul, Turkey
| | - Felix Brandl
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Ding Y, Zhang T, Cao W, Zhang L, Xu X. A multi-frequency approach of the altered functional connectome for autism spectrum disorder identification. Cereb Cortex 2024; 34:bhae341. [PMID: 39152674 DOI: 10.1093/cercor/bhae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024] Open
Abstract
Autism spectrum disorder stands as a multifaceted and heterogeneous neurodevelopmental condition. The utilization of functional magnetic resonance imaging to construct functional brain networks proves instrumental in comprehending the intricate interplay between brain activity and autism spectrum disorder, thereby elucidating the underlying pathogenesis at the cerebral level. Traditional functional brain networks, however, typically confine their examination to connectivity effects within a specific frequency band, disregarding potential connections among brain areas that span different frequency bands. To harness the full potential of interregional connections across diverse frequency bands within the brain, our study endeavors to develop a novel multi-frequency analysis method for constructing a comprehensive functional brain networks that incorporates multiple frequencies. Specifically, our approach involves the initial decomposition of functional magnetic resonance imaging into distinct frequency bands through wavelet transform. Subsequently, Pearson correlation is employed to generate corresponding functional brain networks and kernel for each frequency band. Finally, the classification was performed by a multi-kernel support vector machine, to preserve the connectivity effects within each band and the connectivity patterns shared among the different bands. Our proposed multi-frequency functional brain networks method yielded notable results, achieving an accuracy of 89.1%, a sensitivity of 86.67%, and an area under the curve of 0.942 in a publicly available autism spectrum disorder dataset.
Collapse
Affiliation(s)
- Yupan Ding
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China
| | - Ting Zhang
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao 266042, China
| | - Wenming Cao
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lei Zhang
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xiaowen Xu
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
5
|
Leone R, Zuglian C, Brambilla R, Morella I. Understanding copy number variations through their genes: a molecular view on 16p11.2 deletion and duplication syndromes. Front Pharmacol 2024; 15:1407865. [PMID: 38948459 PMCID: PMC11211608 DOI: 10.3389/fphar.2024.1407865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of pathological conditions that affect >4% of children worldwide, share common features and present a variegated genetic origin. They include clinically defined diseases, such as autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), motor disorders such as Tics and Tourette's syndromes, but also much more heterogeneous conditions like intellectual disability (ID) and epilepsy. Schizophrenia (SCZ) has also recently been proposed to belong to NDDs. Relatively common causes of NDDs are copy number variations (CNVs), characterised by the gain or the loss of a portion of a chromosome. In this review, we focus on deletions and duplications at the 16p11.2 chromosomal region, associated with NDDs, ID, ASD but also epilepsy and SCZ. Some of the core phenotypes presented by human carriers could be recapitulated in animal and cellular models, which also highlighted prominent neurophysiological and signalling alterations underpinning 16p11.2 CNVs-associated phenotypes. In this review, we also provide an overview of the genes within the 16p11.2 locus, including those with partially known or unknown function as well as non-coding RNAs. A particularly interesting interplay was observed between MVP and MAPK3 in modulating some of the pathological phenotypes associated with the 16p11.2 deletion. Elucidating their role in intracellular signalling and their functional links will be a key step to devise novel therapeutic strategies for 16p11.2 CNVs-related syndromes.
Collapse
Affiliation(s)
- Roberta Leone
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Cecilia Zuglian
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Riccardo Brambilla
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| | - Ilaria Morella
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| |
Collapse
|
6
|
Ünal D, Varol AB, Köse TB, Koçak EE. Morphological Correlates of Behavioral Variation in Autism Spectrum Disorder Groups in A Maternal Immune Activation Model. Noro Psikiyatr Ars 2024; 67:195-201. [PMID: 39258126 PMCID: PMC11382561 DOI: 10.29399/npa.28637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 09/12/2024] Open
Abstract
Introduction Clinical heterogeneity is one of the biggest challenges for researchers studying underlying neurobiological mechanisms in Autism Spectrum Disorder (ASD). We aimed to use polyinosinic-polycytidylic acid [Poly (I:C)] induced maternal immune activation mice model to investigate the behavioral variation and the role of brain circuits related to symptom clusters in ASD. For this purpose, behavioral tests were applied to offsprings and regional thickness was measured from histological brain sections in medial prefrontal cortex, hippocampus and striatum. Methods Pups of intraperitoneal Poly (I:C)-applied mothers (n: 14) and phosphate buffered saline-applied mothers (n: 6) were used for this study. We used three chamber socialization test and social memory test to evaluate social behavior deficit in mice. Marble burying test was used for assessing stereotypic behavior and new object recognition test for learning and cognitive flexibility. Three subgroups (n: 4 for each) were determined according to behavioral test parameters. Regional thickness was measured in medial prefrontal cortex, hippocampus and striatum and compared between subgroups. Results We detected that the behavioral differences were distributed in a spectrum as expected in the clinic and also detected increased hippocampus thickness in the stereotypic behavior dominant Poly (I:C) subgroup. Conclusion Poly (I:C) induced maternal immune activation model creates the behavioral variation and cortical development differences that are seen in relation with symptom groups in ASD.
Collapse
Affiliation(s)
- Dilek Ünal
- Hacettepe University School of Medicine, Department of Child and Adolescent Psychiatry, Ankara, Turkey
| | - Aslıhan Bahadır Varol
- Hacettepe University School of Medicine, Neurological and Psychiatric Sciences Institute, Ankara, Turkey
| | - Tansu Bilge Köse
- Hacettepe University School of Medicine, Neurological and Psychiatric Sciences Institute, Ankara, Turkey
| | - Emine Eren Koçak
- Hacettepe University School of Medicine, Neurological and Psychiatric Sciences Institute, Ankara, Turkey
| |
Collapse
|
7
|
Baizer JS. Neuroanatomy of autism: what is the role of the cerebellum? Cereb Cortex 2024; 34:94-103. [PMID: 38696597 PMCID: PMC11484497 DOI: 10.1093/cercor/bhae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 05/04/2024] Open
Abstract
Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, 123 Sherman Hall, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
8
|
de Medeiros Marcos GVT, Feitosa DDM, Paiva KM, Oliveira RF, da Rocha GS, de Medeiros Guerra LM, de Araújo DP, Goes HM, Costa S, de Oliveira LC, Guzen FP, de Souza Júnior JE, de Moura Freire MA, de Aquino ACQ, de Gois Morais PLA, de Paiva Cavalcanti JRL. Volumetric alterations in the basal ganglia in autism Spectrum disorder: A systematic review. Int J Dev Neurosci 2024; 84:163-176. [PMID: 38488315 DOI: 10.1002/jdn.10322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 05/04/2024] Open
Abstract
INTRODUCTION Recent research indicates that some brain structures show alterations in conditions such as Autism Spectrum Disorder (ASD). Among them, are the basal ganglia that are involved in motor, cognitive and behavioral neural circuits. OBJECTIVE Review the literature that describes possible volumetric alterations in the basal ganglia of individuals with ASD and the impacts that these changes have on the severity of the condition. METHODOLOGY This systematic review was registered in the design and reported according to the PRISMA Items and registered in PROSPERO (CRD42023394787). The study analyzed data from published clinical, case-contemplate, and cohort trials. The following databases were consulted: PubMed, Embase, Scopus, and Cochrane Central Register of Controlled Trials, using the Medical Subject Titles (MeSH) "Autism Spectrum Disorder" and "Basal Ganglia". The last search was carried out on February 28, 2023. RESULTS Thirty-five eligible articles were collected, analyzed, and grouped according to the levels of alterations. CONCLUSION The present study showed important volumetric alterations in the basal ganglia in ASD. However, the examined studies have methodological weaknesses that do not allow generalization and correlation with ASD manifestations.
Collapse
Affiliation(s)
| | | | - Karina Maia Paiva
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Rodrigo Freire Oliveira
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Gabriel Sousa da Rocha
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Luís Marcos de Medeiros Guerra
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Dayane Pessoa de Araújo
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | | | - Silva Costa
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Lucidio Clebeson de Oliveira
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Fausto Pierdoná Guzen
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - José Edvan de Souza Júnior
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Marco Aurélio de Moura Freire
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Antonio Carlos Queiroz de Aquino
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | | | | |
Collapse
|
9
|
Reyes-Lizaola S, Luna-Zarate U, Tendilla-Beltrán H, Morales-Medina JC, Flores G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110876. [PMID: 37863171 DOI: 10.1016/j.pnpbp.2023.110876] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.
Collapse
Affiliation(s)
- Sebastian Reyes-Lizaola
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad Popular del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Ulises Luna-Zarate
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla (UDLAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
10
|
Evans MM, Kim J, Abel T, Nickl-Jockschat T, Stevens HE. Developmental Disruptions of the Dorsal Striatum in Autism Spectrum Disorder. Biol Psychiatry 2024; 95:102-111. [PMID: 37652130 PMCID: PMC10841118 DOI: 10.1016/j.biopsych.2023.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental condition characterized by social and communication deficits as well as patterns of restricted, repetitive behavior. Abnormal brain development has long been postulated to underlie ASD, but longitudinal studies aimed at understanding the developmental course of the disorder have been limited. More recently, abnormal development of the striatum in ASD has become an area of interest in research, partially due to overlap of striatal functions and deficit areas in ASD, as well as the critical role of the striatum in early development, when ASD is first detected. Focusing on the dorsal striatum and the associated symptom domain of restricted, repetitive behavior, we review the current literature on dorsal striatal abnormalities in ASD, including studies on functional connectivity, morphometry, and cellular and molecular substrates. We highlight that observed striatal abnormalities in ASD are often dynamic across development, displaying disrupted developmental trajectories. Important findings include an abnormal trajectory of increasing corticostriatal functional connectivity with age and increased striatal growth during childhood in ASD. We end by discussing striatal findings from animal models of ASD. In sum, the studies reviewed here demonstrate a key role for developmental disruptions of the dorsal striatum in the pathogenesis of ASD. Directing attention toward these findings will improve our understanding of ASD and of how associated deficits may be better addressed.
Collapse
Affiliation(s)
- Maya M Evans
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Jaekyoon Kim
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Ted Abel
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
11
|
Hadaya L, Vanes L, Karolis V, Kanel D, Leoni M, Happé F, Edwards AD, Counsell SJ, Batalle D, Nosarti C. Distinct Neurodevelopmental Trajectories in Groups of Very Preterm Children Screening Positively for Autism Spectrum Conditions. J Autism Dev Disord 2024; 54:256-269. [PMID: 36273367 DOI: 10.1007/s10803-022-05789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 10/24/2022]
Abstract
Very preterm (VPT; < 33 weeks' gestation) toddlers screening positively for autism spectrum conditions (ASC) may display heterogenous neurodevelopmental trajectories. Here we studied neonatal brain volumes and childhood ASC traits evaluated with the Social Responsiveness Scale (SRS-2) in VPT-born toddlers (N = 371; median age 20.17 months) sub-divided into three groups based on their Modified-Checklist for Autism in Toddlers scores. These were: those screening positively failing at least 2 critical items (critical-positive); failing any 3 items, but less than 2 critical items (non-critical-positive); and screening negatively. Critical-positive scorers had smaller neonatal cerebellar volumes compared to non-critical-positive and negative scorers. However, both positive screening groups exhibited higher childhood ASC traits compared to the negative screening group, suggesting distinct aetiological trajectories associated with ASC outcomes.
Collapse
Affiliation(s)
- Laila Hadaya
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Lucy Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Vyacheslav Karolis
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Dana Kanel
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Marguerite Leoni
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Francesca Happé
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
12
|
Martínez de Lagrán M, Bascón-Cardozo K, Dierssen M. Neurodevelopmental disorders: 2024 update. FREE NEUROPATHOLOGY 2024; 5:20. [PMID: 39252863 PMCID: PMC11382549 DOI: 10.17879/freeneuropathology-2024-5734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Neurodevelopmental disorders encompass a range of conditions such as intellectual disability, autism spectrum disorder, rare genetic disorders and developmental and epileptic encephalopathies, all manifesting during childhood. Over 1,500 genes involved in various signaling pathways, including numerous transcriptional regulators, spliceosome elements, chromatin-modifying complexes and de novo variants have been recognized for their substantial role in these disorders. Along with new machine learning tools applied to neuroimaging, these discoveries facilitate genetic diagnoses, providing critical insights into neuropathological mechanisms and aiding in prognosis, and precision medicine. Also, new findings underscore the importance of understanding genetic contributions beyond protein-coding genes and emphasize the role of RNA and non-coding DNA molecules but also new players, such as transposable elements, whose dysregulation generates gene function disruption, epigenetic alteration, and genomic instability. Finally, recent developments in analyzing neuroimaging now offer the possibility of characterizing neuronal cytoarchitecture in vivo, presenting a viable alternative to traditional post-mortem studies. With a recently launched digital atlas of human fetal brain development, these new approaches will allow answering complex biological questions about fetal origins of cognitive function in childhood. In this review, we present ten fascinating topics where major progress has been made in the last year.
Collapse
Affiliation(s)
- María Martínez de Lagrán
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Karen Bascón-Cardozo
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Mara Dierssen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona 08003, Spain
- Hospital del Mar Research Institute, Barcelona 08003, Spain
| |
Collapse
|
13
|
Johnson AJ, Shankland E, Richards T, Corrigan N, Shusterman D, Edden R, Estes A, St John T, Dager S, Kleinhans NM. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111745. [PMID: 37956467 PMCID: PMC10841920 DOI: 10.1016/j.pscychresns.2023.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Theories of altered inhibitory/excitatory signaling in autism spectrum disorder (ASD) suggest that gamma amino butyric acid (GABA) and glutamate (Glu) abnormalities may underlie social and sensory challenges in ASD. Magnetic resonance spectroscopy was used to measure Glu and GABA+ levels in the amygdala-hippocampus region and cerebellum in autistic children (n = 30), a clinical control group with sensory abnormalities (SA) but not ASD (n = 30), and children with typical development (n = 37). All participants were clinically assessed using the Autism Diagnostic Interview-Revised, the Autism Diagnostic Observation Scale-2, and the Child Sensory Profile-2. The Social Responsiveness Scale-2, Sniffin Sticks Threshold Test, and the University of Pennsylvania Smell Identification Test were administered to assess social impairment and olfactory processing. Overall, autistic children showed increased cerebellar Glu levels compared to TYP children. Evidence for altered excitatory/inhibitory signaling in the cerebellum was more clear-cut when analyses were restricted to male participants. Further, lower cerebellar GABA+/Glu ratios were correlated to more severe social impairment in both autistic and SA males, suggesting that the cerebellum may play a transdiagnostic role in social impairment. Future studies of inhibitory/excitatory neural markers, powered to investigate the role of sex, may aid in parsing out disorder-specific neurochemical profiles.
Collapse
Affiliation(s)
- Allegra J Johnson
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | - Todd Richards
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Neva Corrigan
- Institute on Human Development and Disability (IHDD), University of Washington, USA
| | - Dennis Shusterman
- Department of Medicine, University of California, San Francisco, USA
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA; F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, USA
| | - Annette Estes
- Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Speech and Hearing Sciences, University of Washington, USA; University of Washington Autism Center, USA
| | - Tanya St John
- University of Washington Autism Center, USA; Department of Medicine, University of California, San Francisco, USA
| | - Stephen Dager
- Department of Radiology, University of Washington, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Biomedical Engineering, University of Washington, USA
| | - Natalia M Kleinhans
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA.
| |
Collapse
|
14
|
Ament SA, Cortes-Gutierrez M, Herb BR, Mocci E, Colantuoni C, McCarthy MM. A single-cell genomic atlas for maturation of the human cerebellum during early childhood. Sci Transl Med 2023; 15:eade1283. [PMID: 37824600 DOI: 10.1126/scitranslmed.ade1283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Inflammation early in life is a clinically established risk factor for autism spectrum disorders and schizophrenia, yet the impact of inflammation on human brain development is poorly understood. The cerebellum undergoes protracted postnatal maturation, making it especially susceptible to perturbations contributing to the risk of developing neurodevelopmental disorders. Here, using single-cell genomics of postmortem cerebellar brain samples, we characterized the postnatal development of cerebellar neurons and glia in 1- to 5-year-old children, comparing individuals who had died while experiencing inflammation with those who had died as a result of an accident. Our analyses revealed that inflammation and postnatal cerebellar maturation are associated with extensive, overlapping transcriptional changes primarily in two subtypes of inhibitory neurons: Purkinje neurons and Golgi neurons. Immunohistochemical analysis of a subset of these postmortem cerebellar samples revealed no change to Purkinje neuron soma size but evidence for increased activation of microglia in those children who had experienced inflammation. Maturation-associated and inflammation-associated gene expression changes included genes implicated in neurodevelopmental disorders. A gene regulatory network model integrating cell type-specific gene expression and chromatin accessibility identified seven temporally specific gene networks in Purkinje neurons and suggested that inflammation may be associated with the premature down-regulation of developmental gene expression programs.
Collapse
Affiliation(s)
- Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcia Cortes-Gutierrez
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian R Herb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Evelina Mocci
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pain Sciences, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Carlo Colantuoni
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Margaret M McCarthy
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Leung BK, Merlin S, Walker AK, Lawther AJ, Paxinos G, Eapen V, Clarke R, Balleine BW, Furlong TM. Immp2l knockdown in male mice increases stimulus-driven instrumental behaviour but does not alter goal-directed learning or neuron density in cortico-striatal circuits in a model of Tourette syndrome and autism spectrum disorder. Behav Brain Res 2023; 452:114610. [PMID: 37541448 DOI: 10.1016/j.bbr.2023.114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Cortico-striatal neurocircuits mediate goal-directed and habitual actions which are necessary for adaptive behaviour. It has recently been proposed that some of the core symptoms of autism spectrum disorder (ASD) and Gilles de la Tourette syndrome (GTS), such as tics and other repetitive behaviours, may emerge because of imbalances in these neurocircuits. We have recently developed a model of ASD and GTS by knocking down Immp2l, a mitochondrial gene frequently associated with these disorders. The current study sought to determine whether Immp2l knockdown (KD) in male mice alters flexible, goal- or cue- driven behaviour using procedures specifically designed to examine response-outcome and stimulus-response associations, which underlie goal-directed and habitual behaviour, respectively. Whether Immp2l KD alters neuron density in cortico-striatal neurocircuits known to regulate these behaviours was also examined. Immp2l KD mice and wild type-like mice (WT) were trained on Pavlovian and instrumental learning procedures where auditory cues predicted food delivery and lever-press responses earned a food outcome. It was demonstrated that goal-directed learning was not changed for Immp2l KD mice compared to WT mice, as lever-press responses were sensitive to changes in the value of the food outcome, and to contingency reversal and degradation. There was also no difference in the capacity of KD mice to form habitual behaviours compared to WT mice following extending training of the instrumental action. However, Immp2l KD mice were more responsive to auditory stimuli paired with food as indicated by a non-specific increase in lever response rates during Pavlovian-to-instrumental transfer. Finally, there were no alterations to neuron density in striatum or any prefrontal cortex or limbic brain structures examined. Thus, the current study suggests that Immp2l is not necessary for learned maladaptive goal or stimulus driven behaviours in ASD or GTS, but that it may contribute to increased capacity for external stimuli to drive behaviour. Alterations to stimulus-driven behaviour could potentially influence the expression of tics and repetitive behaviours, suggesting that genetic alterations to Immp2l may contribute to these core symptoms in ASD and GTS. Given that this is the first application of this battery of instrumental learning procedures to a mouse model of ASD or GTS, it is an important initial step in determining the contribution of known risk-genes to goal-directed versus habitual behaviours, which should be more broadly applied to other rodent models of ASD and GTS in the future.
Collapse
Affiliation(s)
- Beatrice K Leung
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Sam Merlin
- School of Science, Western Sydney University, Campbelltown, Sydney, NSW, Australia
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, University of New South Wales, NSW, Australia
| | - Adam J Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia
| | - George Paxinos
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, NSW, Australia; Mental Health Research Unit, South Western Sydney Local Health District, Liverpool, Australia
| | - Raymond Clarke
- Ingham Institute, Discipline of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Bernard W Balleine
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Teri M Furlong
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Giacometti C, Amiez C, Hadj-Bouziane F. Multiple routes of communication within the amygdala-mPFC network: A comparative approach in humans and macaques. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100103. [PMID: 37601951 PMCID: PMC10432920 DOI: 10.1016/j.crneur.2023.100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/14/2023] [Accepted: 07/15/2023] [Indexed: 08/22/2023] Open
Abstract
The network formed by the amygdala (AMG) and the medial Prefrontal Cortex (mPFC), at the interface between our internal and external environment, has been shown to support some important aspects of behavioral adaptation. Whether and how the anatomo-functional organization of this network evolved across primates remains unclear. Here, we compared AMG nuclei morphological characteristics and their functional connectivity with the mPFC in humans and macaques to identify potential homologies and differences between these species. Based on selected studies, we highlight two subsystems within the AMG-mPFC circuits, likely involved in distinct temporal dynamics of integration during behavioral adaptation. We also show that whereas the mPFC displays a large expansion but a preserved intrinsic anatomo-functional organization, the AMG displays a volume reduction and morphological changes related to specific nuclei. We discuss potential commonalities and differences in the dialogue between AMG nuclei and mPFC in humans and macaques based on available data.
Collapse
Affiliation(s)
- C. Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - C. Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - F. Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), University of Lyon 1, Lyon, France
| |
Collapse
|
17
|
Chhabra S, Nardi L, Leukel P, Sommer CJ, Schmeisser MJ. Striatal increase of dopamine receptor 2 density in idiopathic and syndromic mouse models of autism spectrum disorder. Front Psychiatry 2023; 14:1110525. [PMID: 36970280 PMCID: PMC10030619 DOI: 10.3389/fpsyt.2023.1110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) comprises a wide range of neurodevelopmental phenotypes united by impaired social interaction and repetitive behavior. Environmental and genetic factors are associated with the pathogenesis of ASD, while other cases are classified as idiopathic. The dopaminergic system has a profound impact in the modulation of motor and reward-motivated behaviors, and defects in dopaminergic circuits are implicated in ASD. In our study, we compare three well-established mouse models of ASD, one idiopathic, the BTBR strain, and two syndromic, Fmr1 and Shank3 mutants. In these models, and in humans with ASD, alterations in dopaminergic metabolism and neurotransmission were highlighted. Still, accurate knowledge about the distribution of dopamine receptor densities in the basal ganglia is lacking. Using receptor autoradiography, we describe the neuroanatomical distribution of D1 and D2 receptors in dorsal and ventral striatum at late infancy and adulthood in the above-mentioned models. We show that D1 receptor binding density is different among the models irrespective of the region. A significant convergence in increased D2 receptor binding density in the ventral striatum at adulthood becomes apparent in BTBR and Shank3 lines, and a similar trend was observed in the Fmr1 line. Altogether, our results confirm the involvement of the dopaminergic system, showing defined alterations in dopamine receptor binding density in three well-established ASD lines, which may provide a plausible explanation to some of the prevalent traits of ASD. Moreover, our study provides a neuroanatomical framework to explain the utilization of D2-acting drugs such as Risperidone and Aripiprazole in ASD.
Collapse
Affiliation(s)
- Stuti Chhabra
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Clemens J. Sommer
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Michael J. Schmeisser,
| |
Collapse
|
18
|
Mansour Y, Burchell A, Kulesza R. Abnormal vestibular brainstem structure and function in an animal model of autism spectrum disorder. Brain Res 2022; 1793:148056. [PMID: 35985362 DOI: 10.1016/j.brainres.2022.148056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes several key neuropathological changes and behavioral impairments. In utero exposure to the anti-epileptic valproic acid (VPA) increases risk of an ASD diagnosis in human subjects and timed in utero exposure to VPA is a clinically relevant animal model of ASD. Many human subjects with ASD have cerebellar hypoplasia, fewer Purkinje cells, difficulties with balance, ophthalmic dysfunction and abnormal responses to vestibular stimulation and such vestibular difficulties are likely under reported in ASD. We have recently shown that animals exposed to VPA in utero have fewer neurons in their auditory brainstem, reduced axonal projections to the auditory midbrain and thalamus, reduced expression of the calcium binding protein calbindin (CB) in the brainstem and cerebellum, smaller and occasionally ectopic cerebellar Purkinje cells and ataxia on several motor tasks. Based on these findings, we hypothesized that in utero VPA exposure similarly impacts structure and function of the vestibular brainstem. We investigated this hypothesis using quantitative morphometric analyses, immunohistochemistry for CB, a battery of vestibular challenges, recording of vestibular-evoked myogenic potentials and spontaneous eye movements. Our results indicate that VPA exposure results in fewer neurons in the vestibular nuclei, fewer CB-positive puncta, difficulty on certain motor tasks, longer latency VEMPs and significantly more horizontal eye movements. These findings indicate that the vestibular nuclei are impacted by in utero VPA exposure and provide a basis for further study of vestibular circuits in human cases of ASD.
Collapse
Affiliation(s)
- Yusra Mansour
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States; Henry Ford Macomb Hospital, Department of Otolaryngology - Head and Neck Surgery, Clinton Township, MI, United States
| | - Alyson Burchell
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States.
| |
Collapse
|
19
|
Poudel PP, Bhattarai C, Ghosh A, Kalthur SG. Histomorphometry of the cortical layers and the dentate nucleus of the human fetal cerebellum. J Taibah Univ Med Sci 2022; 18:390-399. [PMID: 37102073 PMCID: PMC10124138 DOI: 10.1016/j.jtumed.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives This study was aimed at determining the histomorphometry of the cerebellar cortical laminae and the dentate nucleus of the human fetal cerebellum; the number and shape of the neurons; and the gestational age of appearance of the cerebellar folia, white matter and arbor vitae cerebelli. Methods Microscopic sections of the human fetal cerebellum stained with hematoxylin and eosin and Bielschowsky silver stain were studied. Results The thickness of the cortical laminae of the human fetal cerebellum varied among gestational weeks as follows: external granular layer: 36.06 ± 9.36-50.05 ± 34.06 μm, molecular layer: 32.76 ± 17.16-52 ± 28.6 μm, Purkinje cell layer: 9.36 ± 6.8-15.6 ± 4.68 μm and internal granular layer: 66.65 ± 24.42-146.63 ± 47.79 μm. Similarly, the number of neurons per field of view at 1000X under a compound microscope varied among gestational weeks as follows: external granular layer: 89.92 ± 42-142.84 ± 50, molecular layer: 15 ± 12.5-25 ± 8.25, Purkinje cell layer: 3.5 ± 1-5 ± 2.5 and internal granular layer: 98.5 ± 69.75-224 ± 47.White matter in the fetal cerebellum was already present at the age of 12th gestational week, whereas cerebellar folia appeared at 16-20 gestational weeks. Arbor vitae cerebelli and the dentate nucleus became conspicuous after the 20th gestational week. Fetal neurons were round except for Purkinje cells. Conclusions The thickness and neuronal counts of the human fetal cerebellar cortical layers and the measurements of the dentate nucleus along with other histomorphological features varied with gestational age from the 12th week of gestation until birth.
Collapse
Affiliation(s)
- Phanindra P. Poudel
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Anatomy, Manipal College of Medical Sciences, Pokhara, Nepal
| | - Chacchu Bhattarai
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Anatomy, Manipal College of Medical Sciences, Pokhara, Nepal
| | - Arnab Ghosh
- Department of Pathology, Manipal-TATA Medical College, Jamshedpur, India
| | - Sneha G. Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Corresponding address: Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
20
|
The Regional and Cellular Distribution of GABAA Receptor Subunits in the Human Amygdala. J Chem Neuroanat 2022; 126:102185. [DOI: 10.1016/j.jchemneu.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
21
|
Nees F, Banaschewski T, Bokde ALW, Desrivières S, Grigis A, Garavan H, Gowland P, Grimmer Y, Heinz A, Brühl R, Isensee C, Becker A, Martinot JL, Paillère Martinot ML, Artiges E, Papadopoulos Orfanos D, Lemaître H, Stringaris A, van Noort B, Paus T, Penttilä J, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Poustka L. Global and Regional Structural Differences and Prediction of Autistic Traits during Adolescence. Brain Sci 2022; 12:1187. [PMID: 36138923 PMCID: PMC9496772 DOI: 10.3390/brainsci12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Autistic traits are commonly viewed as dimensional in nature, and as continuously distributed in the general population. In this respect, the identification of predictive values of markers such as subtle autism-related alterations in brain morphology for parameter values of autistic traits could increase our understanding of this dimensional occasion. However, currently, very little is known about how these traits correspond to alterations in brain morphology in typically developing individuals, particularly during a time period where changes due to brain development processes do not provide a bias. Therefore, in the present study, we analyzed brain volume, cortical thickness (CT) and surface area (SA) in a cohort of 14-15-year-old adolescents (N = 285, female: N = 162) and tested their predictive value for autistic traits, assessed with the social responsiveness scale (SRS) two years later at the age of 16-17 years, using a regression-based approach. We found that autistic traits were significantly predicted by volumetric changes in the amygdala (r = 0.181), cerebellum (r = 0.128) and hippocampus (r = -0.181, r = -0.203), both in boys and girls. Moreover, the CT of the superior frontal region was negatively correlated (r = -0.144) with SRS scores. Furthermore, we observed a significant association between the SRS total score and smaller left putamen volume, specifically in boys (r = -0.217), but not in girls. Our findings suggest that neural correlates of autistic traits also seem to lie on a continuum in the general population, are determined by limbic-striatal neuroanatomical brain areas, and are partly dependent on sex. As we imaged adolescents from a large population-based cohort within a small age range, these data may help to increase the understanding of autistic-like occasions in otherwise typically developing individuals.
Collapse
Affiliation(s)
- Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, 24118 Kiel, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Sylvane Desrivières
- Institute of Psychiatry, Psychology & Neuroscience, Centre for Population Neuroscience and Precision Medicine (PONS), SGDP Centre, King’s College London, London WC2R 2LS, UK
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2QL, UK
| | - Yvonne Grimmer
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM and Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany
| | - Corinna Isensee
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Andreas Becker
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, 91190 Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, 91190 Gif-sur-Yvette, France
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, AP-HP Sorbonne Université, 75013 Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, 91190 Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Gif-sur-Yvette, 91150 Etampes, France
| | | | - Hervé Lemaître
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, 33076 Bordeaux, France
| | - Argyris Stringaris
- National Institute of Mental Health/NIH, 15K North Drive, Bethesda, MD 20892, USA
| | - Betteke van Noort
- MSB Medical School Berlin, Hochschule für Gesundheit und Medizin, Siemens Villa, 14197 Berlin, Germany
| | - Tomáš Paus
- Departments of Psychology, University of Toronto, Toronto, ON M5T 2S8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Jani Penttilä
- CanadaDepartment of Social and Health Care, Psychosocial Services Adolescent Outpatient Clinic Kauppakatu 14, 15140 Lahti, Finland
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry, Neuroimaging Center, Technische Universität Dresden, 01069 Dresden, Germany
| | - Michael N. Smolka
- School of Psychology, Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Henrik Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Robert Whelan
- School of Psychology, Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Gunter Schumann
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
- PONS Research Group, Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, 10117 Berlin, Germany
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai 200437, China
| | - Luise Poustka
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires Développementales en Psychiatrie”, Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Centre Borelli, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
22
|
Alpay M, Yucel F. Changes of Cerebellar Cortex in a Valproic Acid-Induced Rat Model of Autism. Int J Dev Neurosci 2022; 82:606-614. [PMID: 35831992 DOI: 10.1002/jdn.10213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 07/02/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, 32 male Sprague-Dawley rats (8 for each group) were used in total to examine the effects of valproic acid on rat cerebellum. It was determined that the experimental group received valproic acid (600mg/kg) on embryonic day 15 and postnatal day 11, whereas the control group was treated with saline on the same days. Moreover, on the postnatal 30th day, the cerebellums of all pups were removed and prepared for light and electron microscopy. The numerical density of granule cells in the cerebellum of experimental groups of rats increased whereas the numerical density of Purkinje cells decreased. Furthermore, the granule cells had a smaller mean nuclear diameter in one of the experimental groups while the Purkinje cells had in both experimental groups than those in the comparison group. Thus, the numerical density of synaptic discs and their mean diameter in the cerebellar granular layer of experimental groups were significantly decreased compared to the corresponding controls; also, the synapse-to-neurons ratio, a parameter indicating interneural connectivity, was the same. Consequently, it was seen that valproic acid administration to pups in prenatal or early postnatal days causes changes in number of neurons and synapses in the cerebellum of rats.
Collapse
Affiliation(s)
- Meltem Alpay
- Department of Anatomy, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Ferruh Yucel
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
23
|
Li X, Abiko K, Sheriff S, Maudsley AA, Urushibata Y, Ahn S, Tha KK. The Distribution of Major Brain Metabolites in Normal Adults: Short Echo Time Whole-Brain MR Spectroscopic Imaging Findings. Metabolites 2022; 12:metabo12060543. [PMID: 35736476 PMCID: PMC9228869 DOI: 10.3390/metabo12060543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
This prospective study aimed to evaluate the variation in magnetic resonance spectroscopic imaging (MRSI)-observed brain metabolite concentrations according to anatomical location, sex, and age, and the relationships among regional metabolite distributions, using short echo time (TE) whole-brain MRSI (WB-MRSI). Thirty-eight healthy participants underwent short TE WB-MRSI. The major metabolite ratios, i.e., N-acetyl aspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate + glutamine (Glx)/Cr, and myoinositol (mI)/Cr, were calculated voxel-by-voxel. Their variations according to anatomical regions, sex, and age, and their relationship to each other were evaluated by using repeated-measures analysis of variance, t-tests, and Pearson’s product-moment correlation analyses. All four metabolite ratios exhibited widespread regional variation across the cerebral hemispheres (corrected p < 0.05). Laterality between the two sides and sex-related variation were also shown (p < 0.05). In several regions, NAA/Cr and Glx/Cr decreased and mI/Cr increased with age (corrected p < 0.05). There was a moderate positive correlation between NAA/Cr and mI/Cr in the insular lobe and thalamus and between Glx/Cr and mI/Cr in the parietal lobe (r ≥ 0.348, corrected p ≤ 0.025). These observations demand age- and sex- specific regional reference values in interpreting these metabolites, and they may facilitate the understanding of glial-neuronal interactions in maintaining homeostasis.
Collapse
Affiliation(s)
- Xinnan Li
- Laboratory for Biomarker Imaging Science, Hokkaido University Graduate School of Biomedical Science and Engineering, Sapporo 060-8638, Japan;
| | - Kagari Abiko
- Department of Rehabilitation, Hokkaido University Hospital, Sapporo 060-8648, Japan;
- Department of Rehabilitation, Sapporo Azabu Neurosurgical Hospital, Sapporo 065-0022, Japan
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami School of Medicine, Miami, FL 33146, USA; (S.S.); (A.A.M.)
| | - Andrew A. Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL 33146, USA; (S.S.); (A.A.M.)
| | | | - Sinyeob Ahn
- Siemens Healthineers, San Francisco, CA 94553, USA;
| | - Khin Khin Tha
- Laboratory for Biomarker Imaging Science, Hokkaido University Graduate School of Biomedical Science and Engineering, Sapporo 060-8638, Japan;
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
- Correspondence: ; Tel.: +81-11-706-8183
| |
Collapse
|
24
|
Connacher R, Williams M, Prem S, Yeung PL, Matteson P, Mehta M, Markov A, Peng C, Zhou X, McDermott CR, Pang ZP, Flax J, Brzustowicz L, Lu CW, Millonig JH, DiCicco-Bloom E. Autism NPCs from both idiopathic and CNV 16p11.2 deletion patients exhibit dysregulation of proliferation and mitogenic responses. Stem Cell Reports 2022; 17:1380-1394. [PMID: 35623351 PMCID: PMC9214070 DOI: 10.1016/j.stemcr.2022.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
Neural precursor cell (NPC) dysfunction has been consistently implicated in autism. Induced pluripotent stem cell (iPSC)-derived NPCs from two autism groups (three idiopathic [I-ASD] and two 16p11.2 deletion [16pDel]) were used to investigate if proliferation is commonly disrupted. All five individuals display defects, with all three macrocephalic individuals (two 16pDel, one I-ASD) exhibiting hyperproliferation and the other two I-ASD subjects displaying hypoproliferation. NPCs were challenged with bFGF, and all hyperproliferative NPCs displayed blunted responses, while responses were increased in hypoproliferative cells. mRNA expression studies suggest that different pathways can result in similar proliferation phenotypes. Since 16pDel deletes MAPK3, P-ERK was measured. P-ERK is decreased in hyperproliferative but increased in hypoproliferative NPCs. While these P-ERK changes are not responsible for the phenotypes, P-ERK and bFGF response are inversely correlated with the defects. Finally, we analyzed iPSCs and discovered that 16pDel displays hyperproliferation, while idiopathic iPSCs were normal. These data suggest that NPC proliferation defects are common in ASD.
Collapse
Affiliation(s)
- Robert Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Madeline Williams
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Percy L Yeung
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Paul Matteson
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Anna Markov
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Cynthia Peng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Courtney R McDermott
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Judy Flax
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | | | - Che-Wei Lu
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
25
|
Ledderose JMT, Benitez JA, Roberts AJ, Reed R, Bintig W, Larkum ME, Sachdev RNS, Furnari F, Eickholt BJ. The impact of phosphorylated PTEN at threonine 366 on cortical connectivity and behaviour. Brain 2022; 145:3608-3621. [PMID: 35603900 DOI: 10.1093/brain/awac188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
The lipid phosphatase PTEN (phosphatase and tensin homologue on chromosome 10) is a key tumour suppressor gene and an important regulator of neuronal signalling. PTEN mutations have been identified in patients with autism spectrum disorders, characterized by macrocephaly, impaired social interactions and communication, repetitive behaviour, intellectual disability, and epilepsy. PTEN enzymatic activity is regulated by a cluster of phosphorylation sites at the C-terminus of the protein. Here, we focussed on the role of PTEN T366 phosphorylation and generated a knock-in mouse line in which Pten T366 was substituted with alanine (PtenT366A/T366A). We identify that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing. We show in behavioural tests that PtenT366/T366A mice exhibit cognitive deficits and selective sensory impairments, with significant differences in male individuals. We identify restricted cellular overgrowth of cortical neurons in PtenT366A/T366A brains, linked to increases in both dendritic arborization and soma size. In a combinatorial approach of anterograde and retrograde monosynaptic tracing using rabies virus, we characterize differences in connectivity to the primary somatosensory cortex of PtenT366A/T366A brains, with imbalances in long-range cortico-cortical input to neurons. We conclude that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing and propose that PTEN T366 signalling may account for a subset of autism-related functions of PTEN.
Collapse
Affiliation(s)
- Julia M T Ledderose
- Institute for Biochemistry, Charité Universitätsmedizin Berlin, Germany.,Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jorge A Benitez
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California, 92121, USA
| | - Amanda J Roberts
- The Scripps Research Institute, Animal Models Core, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Rachel Reed
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California, 92121, USA
| | - Willem Bintig
- Institute for Biochemistry, Charité Universitätsmedizin Berlin, Germany
| | - Matthew E Larkum
- Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Germany
| | | | - Frank Furnari
- Ludwig Cancer Institute, San Diego, USA.,University of California San Diego, La Jolla, USA
| | - Britta J Eickholt
- Institute for Biochemistry, Charité Universitätsmedizin Berlin, Germany.,Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
26
|
Özkul B, Urfalı FE, Sever İH, Bozkurt MF, Söğüt İ, Elgörmüş ÇS, Erdogan MA, Erbaş O. Demonstration of Ameliorating Effect of Vardenafil Through Its Anti-Inflammatory and Neuroprotective Properties in Autism Spectrum Disorder Induced by Propionic Acid on Rat Model. Int J Neurosci 2022; 132:1150-1164. [PMID: 35584252 DOI: 10.1080/00207454.2022.2079507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology. In this study, we aimed to determine the ameliorating effects of vardenafil in the ASD rat model induced by propionic acid (PPA) in terms of neurobehavioral changes and also support these effects with histopathological changes, brain biochemical analysis and magnetic resonance spectroscopy (MRS) findings.Materials and Methods: Twenty-one male rats were randomly assigned into 3 groups. Group 1 (control, 7 rats) did not receive treatment. Rats in groups 2 and 3 were given PPA at the dose of 250 mg/kg/day intraperitoneally for 5 days. After PPA administration, animals in group 2 (PPAS, 7 rats) were given saline and animals in group 3 (PPAV, 7 rats) were given vardenafil. Behavioral tests were performed between the 20th and 24th days of the study. The rats were taken for MRS on the 25th day. At the end of the study, brain levels of interleukin-2 (IL-2), IL-17, tumor necrosis factor-α, nerve growth factor, cGMP and lactate levels were measured. In the cerebellum and the CA1 and CA3 regions of the hippocampus, counts of neurons and Purkinje cells and glial fibrillary acidic protein (associated with gliosis) were evaluated histologically.Results: Three chamber sociability and passive avoiding test, histopathological results, lactate levels derived from MRS, and biochemical biomarkers revealed significant differences among the PPAV and PPAS groups.Conclusion: We concluded that vardenafil improves memory and social behaviors and prevent loss of neuronal and Purkinje cell through its anti-inflammatory and neuroprotective effect.
Collapse
Affiliation(s)
- Bahattin Özkul
- Faculty of Medicine, Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Furkan Ertürk Urfalı
- Department of Radiology, Faculty of Medicine, Kutahya Saglık Bilimleri, Kutahya, Turkey
| | - İbrahim Halil Sever
- Department of Radiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Mehmet Fatih Bozkurt
- Department of Pathology, Faculty of Veterinary, Afyon Kocatepe University, Afyon, Turkey
| | - İbrahim Söğüt
- Department of Biochemistry, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Çağrı Serdar Elgörmüş
- Department of Emergency, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Oytun Erbaş
- Department of Physiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
27
|
Thabault M, Turpin V, Maisterrena A, Jaber M, Egloff M, Galvan L. Cerebellar and Striatal Implications in Autism Spectrum Disorders: From Clinical Observations to Animal Models. Int J Mol Sci 2022; 23:2294. [PMID: 35216408 PMCID: PMC8874522 DOI: 10.3390/ijms23042294] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are complex conditions that stem from a combination of genetic, epigenetic and environmental influences during early pre- and postnatal childhood. The review focuses on the cerebellum and the striatum, two structures involved in motor, sensory, cognitive and social functions altered in ASD. We summarize clinical and fundamental studies highlighting the importance of these two structures in ASD. We further discuss the relation between cellular and molecular alterations with the observed behavior at the social, cognitive, motor and gait levels. Functional correlates regarding neuronal activity are also detailed wherever possible, and sexual dimorphism is explored pointing to the need to apprehend ASD in both sexes, as findings can be dramatically different at both quantitative and qualitative levels. The review focuses also on a set of three recent papers from our laboratory where we explored motor and gait function in various genetic and environmental ASD animal models. We report that motor and gait behaviors can constitute an early and quantitative window to the disease, as they often correlate with the severity of social impairments and loss of cerebellar Purkinje cells. The review ends with suggestions as to the main obstacles that need to be surpassed before an appropriate management of the disease can be proposed.
Collapse
Affiliation(s)
- Mathieu Thabault
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Valentine Turpin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Alexandre Maisterrena
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Mohamed Jaber
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
- Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Matthieu Egloff
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
- Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Laurie Galvan
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| |
Collapse
|
28
|
Takagi S, Hori H, Yamaguchi T, Ochi S, Nishida M, Maruo T, Takahashi H. Motor Functional Characteristics in Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorders: A Systematic Review. Neuropsychiatr Dis Treat 2022; 18:1679-1695. [PMID: 35971415 PMCID: PMC9375548 DOI: 10.2147/ndt.s369845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The development of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASDs) has various influences on physical abilities. Identification of specific physical abilities of people with ADHD/ASDs as biomarkers for diagnosing these conditions is necessary. Therefore, in the present review, we aimed firstly to extract the difference in physical abilities of people with ADHD or ASDs compared to those of normal individuals. Secondly, we aimed to extract the specific physical ability characteristics for identifying potential diagnostic biomarkers in people with ADHD/ASDs. METHODS A systematic literature review was performed. The databases were searched for relevant articles on motor function deficits and characteristics of ADHD or ASD. RESULTS Forty-one cross-sectional studies and three randomized controlled trials were identified, comprising 33 studies of ADHD, 10 studies of ASDs, and 1 study of both ADHD and ASDs. The quality of studies varied. Three types of physical activities/exercises were identified, including coordinated movement, resistance-type sports, and aerobic-type sports. People with ADHD/ASDs generally exhibited poorer physical abilities for all types of activities, possibly because of low levels of physical activity. Specifically, we found temporal discoordination of movement in ADHD and integration or synchronization of separate movements in ASDs. CONCLUSION Specific deficits in physical ability may be attributed to ADHD/ASDs. However, there is not enough research on the physical abilities of people with ADHD and ASDs to clarify the specific deficits. Investigation of specific motor functions that characterize ADHD/ASDs should be facilitated.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Neurosciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Hikaru Hori
- Department of Psychiatry, School of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Tatsuya Yamaguchi
- Institute for Integrated Sports Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Ehime, 791-0295, Japan
| | - Masaki Nishida
- Faculty of Sport Science, Waseda University Tokorozawa, Saitama, 359-1192, Japan
| | - Takashi Maruo
- Department of Psychiatry and Behavioral Neurosciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Neurosciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| |
Collapse
|
29
|
Yang X, Yin H, Wang X, Sun Y, Bian X, Zhang G, Li A, Cao A, Li B, Ebrahimi-Fakhari D, Yang Z, Meisler MH, Liu Q. Social Deficits and Cerebellar Degeneration in Purkinje Cell Scn8a Knockout Mice. Front Mol Neurosci 2022; 15:822129. [PMID: 35557557 PMCID: PMC9087741 DOI: 10.3389/fnmol.2022.822129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Mutations in the SCN8A gene encoding the voltage-gated sodium channel α-subunit Nav1. 6 have been reported in individuals with epilepsy, intellectual disability and features of autism spectrum disorder. SCN8A is widely expressed in the central nervous system, including the cerebellum. Cerebellar dysfunction has been implicated in autism spectrum disorder. We investigated conditional Scn8a knockout mice under C57BL/6J strain background that specifically lack Scn8a expression in cerebellar Purkinje cells (Scn8a flox/flox , L7Cre + mice). Cerebellar morphology was analyzed by immunohistochemistry and MR imaging. Mice were subjected to a battery of behavioral tests including the accelerating rotarod, open field, elevated plus maze, light-dark transition box, three chambers, male-female interaction, social olfaction, and water T-maze tests. Patch clamp recordings were used to evaluate evoked action potentials in Purkinje cells. Behavioral phenotyping demonstrated that Scn8a flox/flox , L7Cre + mice have impaired social interaction, motor learning and reversal learning as well as increased repetitive behavior and anxiety-like behaviors. By 5 months of age, Scn8a flox/flox , L7Cre + mice began to exhibit cerebellar Purkinje cell loss and reduced molecular thickness. At 9 months of age, Scn8a flox/flox , L7Cre + mice exhibited decreased cerebellar size and a reduced number of cerebellar Purkinje cells more profoundly, with evidence of additional neurodegeneration in the molecular layer and deep cerebellar nuclei. Purkinje cells in Scn8a flox/flox , L7Cre + mice exhibited reduced repetitive firing. Taken together, our experiments indicated that loss of Scn8a expression in cerebellar Purkinje cells leads to cerebellar degeneration and several ASD-related behaviors. Our study demonstrated the specific contribution of loss of Scn8a in cerebellar Purkinje cells to behavioral deficits characteristic of ASD. However, it should be noted that our observed effects reported here are specific to the C57BL/6 genome type.
Collapse
Affiliation(s)
- Xiaofan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hongqiang Yin
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, China.,Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Xiaojing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yueqing Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xianli Bian
- Department of Neurology, Second Hospital of Shandong University, Jinan, China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Anning Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Aihua Cao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, China
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Qiji Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| |
Collapse
|
30
|
Baizer JS. Functional and Neuropathological Evidence for a Role of the Brainstem in Autism. Front Integr Neurosci 2021; 15:748977. [PMID: 34744648 PMCID: PMC8565487 DOI: 10.3389/fnint.2021.748977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The brainstem includes many nuclei and fiber tracts that mediate a wide range of functions. Data from two parallel approaches to the study of autistic spectrum disorder (ASD) implicate many brainstem structures. The first approach is to identify the functions affected in ASD and then trace the neural systems mediating those functions. While not included as core symptoms, three areas of function are frequently impaired in ASD: (1) Motor control both of the limbs and body and the control of eye movements; (2) Sensory information processing in vestibular and auditory systems; (3) Control of affect. There are critical brainstem nuclei mediating each of those functions. There are many nuclei critical for eye movement control including the superior colliculus. Vestibular information is first processed in the four nuclei of the vestibular nuclear complex. Auditory information is relayed to the dorsal and ventral cochlear nuclei and subsequently processed in multiple other brainstem nuclei. Critical structures in affect regulation are the brainstem sources of serotonin and norepinephrine, the raphe nuclei and the locus ceruleus. The second approach is the analysis of abnormalities from direct study of ASD brains. The structure most commonly identified as abnormal in neuropathological studies is the cerebellum. It is classically a major component of the motor system, critical for coordination. It has also been implicated in cognitive and language functions, among the core symptoms of ASD. This structure works very closely with the cerebral cortex; the cortex and the cerebellum show parallel enlargement over evolution. The cerebellum receives input from cortex via relays in the pontine nuclei. In addition, climbing fiber input to cerebellum comes from the inferior olive of the medulla. Mossy fiber input comes from the arcuate nucleus of the medulla as well as the pontine nuclei. The cerebellum projects to several brainstem nuclei including the vestibular nuclear complex and the red nucleus. There are thus multiple brainstem nuclei distributed at all levels of the brainstem, medulla, pons, and midbrain, that participate in functions affected in ASD. There is direct evidence that the cerebellum may be abnormal in ASD. The evidence strongly indicates that analysis of these structures could add to our understanding of the neural basis of ASD.
Collapse
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
31
|
Falcone C, Mevises NY, Hong T, Dufour B, Chen X, Noctor SC, Martínez Cerdeño V. Neuronal and glial cell number is altered in a cortical layer-specific manner in autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:2238-2253. [PMID: 34107793 DOI: 10.1177/13623613211014408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
LAY ABSTRACT The cerebral cortex affected with autism spectrum disorder presents changes in the number of neurons and glia cells, possibly leading to a dysregulation of brain circuits and affecting behavior. However, little is known about cell number alteration in specific layers of the cortex in autism spectrum disorder. We found an increase in the number of neurons and a decrease in the number of astrocytes in specific layers of the prefrontal cortex in postmortem human brains from autism spectrum disorder cases. We hypothesize that this may be due to a failure in neural stem cells to shift differentiation from neurons to glial cells during prenatal brain development. These data provide key anatomical findings that contribute to the bases of autism spectrum disorder pathogenesis.
Collapse
Affiliation(s)
- Carmen Falcone
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Natalie-Ya Mevises
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Tiffany Hong
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Brett Dufour
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Xiaohui Chen
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | | | - Verónica Martínez Cerdeño
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| |
Collapse
|
32
|
Zhang FF, Zhang Q, Wang YL, Wang FF, Hardiman PJ, Qu F. Intergenerational Influences between Maternal Polycystic Ovary Syndrome and Offspring: An Updated Overview. J Pediatr 2021; 232:272-281. [PMID: 33482217 DOI: 10.1016/j.jpeds.2021.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Fang-Fang Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan-Lin Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Fang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Paul J Hardiman
- Institute for Women's Health, University College London, London, United Kingdom
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
Jack A, Sullivan CAW, Aylward E, Bookheimer SY, Dapretto M, Gaab N, Van Horn JD, Eilbott J, Jacokes Z, Torgerson CM, Bernier RA, Geschwind DH, McPartland JC, Nelson CA, Webb SJ, Pelphrey KA, Gupta AR. A neurogenetic analysis of female autism. Brain 2021; 144:1911-1926. [PMID: 33860292 PMCID: PMC8320285 DOI: 10.1093/brain/awab064] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
Females versus males are less frequently diagnosed with autism spectrum disorder (ASD), and while understanding sex differences is critical to delineating the systems biology of the condition, female ASD is understudied. We integrated functional MRI and genetic data in a sex-balanced sample of ASD and typically developing youth (8–17 years old) to characterize female-specific pathways of ASD risk. Our primary objectives were to: (i) characterize female ASD (n = 45) brain response to human motion, relative to matched typically developing female youth (n = 45); and (ii) evaluate whether genetic data could provide further insight into the potential relevance of these brain functional differences. For our first objective we found that ASD females showed markedly reduced response versus typically developing females, particularly in sensorimotor, striatal, and frontal regions. This difference between ASD and typically developing females does not resemble differences between ASD (n = 47) and typically developing males (n = 47), even though neural response did not significantly differ between female and male ASD. For our second objective, we found that ASD females (n = 61), versus males (n = 66), showed larger median size of rare copy number variants containing gene(s) expressed in early life (10 postconceptual weeks to 2 years) in regions implicated by the typically developing female > female functional MRI contrast. Post hoc analyses suggested this difference was primarily driven by copy number variants containing gene(s) expressed in striatum. This striatal finding was reproducible among n = 2075 probands (291 female) from an independent cohort. Together, our findings suggest that striatal impacts may contribute to pathways of risk in female ASD and advocate caution in drawing conclusions regarding female ASD based on male-predominant cohorts.
Collapse
Affiliation(s)
- Allison Jack
- Department of Psychology, George Mason University, Fairfax, VA 22030, USA
| | | | - Elizabeth Aylward
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | - Nadine Gaab
- Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115 USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Harvard Graduate School of Education, Cambridge, MA 02138, USA
| | - John D Van Horn
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.,School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey Eilbott
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zachary Jacokes
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Carinna M Torgerson
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90007, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Daniel H Geschwind
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA.,Department of Neurology and Center for Neurobehavioral Genetics, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | | | - Charles A Nelson
- Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115 USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sara J Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kevin A Pelphrey
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Brain Institute, and School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Abha R Gupta
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA.,Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
34
|
Amore G, Spoto G, Ieni A, Vetri L, Quatrosi G, Di Rosa G, Nicotera AG. A Focus on the Cerebellum: From Embryogenesis to an Age-Related Clinical Perspective. Front Syst Neurosci 2021; 15:646052. [PMID: 33897383 PMCID: PMC8062874 DOI: 10.3389/fnsys.2021.646052] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The cerebellum and its functional multiplicity and heterogeneity have been objects of curiosity and interest since ancient times, giving rise to the urge to reveal its complexity. Since the first hypothesis of cerebellar mere role in motor tuning and coordination, much more has been continuously discovered about the cerebellum’s circuitry and functioning throughout centuries, leading to the currently accepted knowledge of its prominent involvement in cognitive, social, and behavioral areas. Particularly in childhood, the cerebellum may subserve several age-dependent functions, which might be compromised in several Central Nervous System pathologies. Overall, cerebellar damage may produce numerous signs and symptoms and determine a wide variety of neuropsychiatric impairments already during the evolutive age. Therefore, an early assessment in children would be desirable to address a prompt diagnosis and a proper intervention since the first months of life. Here we provide an overview of the cerebellum, retracing its morphology, histogenesis, and physiological functions, and finally outlining its involvement in typical and atypical development and the age-dependent patterns of cerebellar dysfunctions.
Collapse
Affiliation(s)
- Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Ieni
- Unit of Pathology, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Luigi Vetri
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Quatrosi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
35
|
Hooshmandi M, Truong VT, Fields E, Thomas RE, Wong C, Sharma V, Gantois I, Soriano Roque P, Chalkiadaki K, Wu N, Chakraborty A, Tahmasebi S, Prager-Khoutorsky M, Sonenberg N, Suvrathan A, Watt AJ, Gkogkas CG, Khoutorsky A. 4E-BP2-dependent translation in cerebellar Purkinje cells controls spatial memory but not autism-like behaviors. Cell Rep 2021; 35:109036. [PMID: 33910008 DOI: 10.1016/j.celrep.2021.109036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1. Here, we show that mice with selective ablation of 4E-BP2 in PCs display a reduced number of PCs, increased regularity of PC action potential firing, and deficits in motor learning. Surprisingly, although spatial memory is impaired in these mice, they exhibit normal social interaction and show no deficits in repetitive behavior. Our data suggest that, downstream of mTORC1/4E-BP2, there are distinct cerebellar mechanisms independently controlling social behavior and memory formation.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vinh Tai Truong
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Riya Elizabeth Thomas
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vijendra Sharma
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ilse Gantois
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Patricia Soriano Roque
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Neil Wu
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anindyo Chakraborty
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christos G Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece.
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
36
|
Matas E, Maisterrena A, Thabault M, Balado E, Francheteau M, Balbous A, Galvan L, Jaber M. Major motor and gait deficits with sexual dimorphism in a Shank3 mutant mouse model. Mol Autism 2021; 12:2. [PMID: 33468258 PMCID: PMC7814442 DOI: 10.1186/s13229-020-00412-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Contrasting findings were reported in several animal models with a Shank3 mutation used to induce various autism spectrum disorder (ASD) symptoms. Here, we aimed at investigating behavioral, cellular, and molecular consequences of a C-terminal (frameshift in exon 21) deletion in Shank3 protein in mice, a mutation that is also found in clinical conditions and which results in loss of major isoforms of Shank3. A special focus was made on cerebellar related parameters. Methods All three genotypes were analyzed [wild type (WT), heterozygote (Shank3+/ΔC) and homozygote (Shank3 ΔC/ΔC)] and males and females were separated into two distinct groups. Motor and social behavior, gait, Purkinje cells (PC) and glutamatergic protein levels were determined. Behavioral and cellular procedures used here were previously validated using two environmental animal models of ASD. ANOVA and post-hoc analysis were used for statistical analysis. Results Shank3 ΔC/ΔC mice showed significant impairments in social novelty preference, stereotyped behavior and gait. These were accompanied by a decreased number of PC in restricted cerebellar sub-regions and decreased cerebellar expression of mGluR5. Females Shank3 ΔC/ΔC were less affected by the mutation than males. Shank3+/ΔC mice showed impairments only in social novelty preference, grooming, and decreased mGluR5 expression and that were to a much lesser extent than in Shank3 ΔC/ΔC mice. Limitations As Shank3 mutation is a haploinsufficiency, it is of interest to emphasize that Shank3+/ΔC mice showed only mild to no deficiencies compared to Shank3 ΔC/ΔC. Conclusions Our findings indicate that several behavioral, cellular, and molecular parameters are affected in this animal model. The reported deficits are more pronounced in males than in females. Additionally, male Shank3 ΔC/ΔC mice show more pronounced alterations than Shank3+/ΔC. Together with our previous findings in two environmental animal models of ASD, our studies indicate that gait dysfunction constitutes a robust set of motor ASD symptoms that may be considered for implementation in clinical settings as an early and quantitative diagnosis criteria.
Collapse
Affiliation(s)
- Emmanuel Matas
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Alexandre Maisterrena
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Mathieu Thabault
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Eric Balado
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Maureen Francheteau
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Anais Balbous
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France.,CHU de Poitiers, 86000 Poitiers, France
| | - Laurie Galvan
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France. .,CHU de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
37
|
White Matter Interstitial Neurons in the Adult Human Brain: 3% of Cortical Neurons in Quest for Recognition. Cells 2021; 10:cells10010190. [PMID: 33477896 PMCID: PMC7833373 DOI: 10.3390/cells10010190] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/03/2023] Open
Abstract
White matter interstitial neurons (WMIN) are a subset of cortical neurons located in the subcortical white matter. Although they were fist described over 150 years ago, they are still largely unexplored and often considered a small, functionally insignificant neuronal population. WMIN are adult remnants of neurons located in the transient fetal subplate zone (SP). Following development, some of the SP neurons undergo apoptosis, and the remaining neurons are incorporated in the adult white matter as WMIN. In the adult human brain, WMIN are quite a large population of neurons comprising at least 3% of all cortical neurons (between 600 and 1100 million neurons). They include many of the morphological neuronal types that can be found in the overlying cerebral cortex. Furthermore, the phenotypic and molecular diversity of WMIN is similar to that of the overlying cortical neurons, expressing many glutamatergic and GABAergic biomarkers. WMIN are often considered a functionally unimportant subset of neurons. However, upon closer inspection of the scientific literature, it has been shown that WMIN are integrated in the cortical circuitry and that they exhibit diverse electrophysiological properties, send and receive axons from the cortex, and have active synaptic contacts. Based on these data, we are able to enumerate some of the potential WMIN roles, such as the control of the cerebral blood flow, sleep regulation, and the control of information flow through the cerebral cortex. Also, there is a number of studies indicating the involvement of WMIN in the pathophysiology of many brain disorders such as epilepsy, schizophrenia, Alzheimer’s disease, etc. All of these data indicate that WMIN are a large population with an important function in the adult brain. Further investigation of WMIN could provide us with novel data crucial for an improved elucidation of the pathophysiology of many brain disorders. In this review, we provide an overview of the current WMIN literature, with an emphasis on studies conducted on the human brain.
Collapse
|
38
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
39
|
Adorjan I, Sun B, Feher V, Tyler T, Veres D, Chance SA, Szele FG. Evidence for Decreased Density of Calretinin-Immunopositive Neurons in the Caudate Nucleus in Patients With Schizophrenia. Front Neuroanat 2020; 14:581685. [PMID: 33281566 PMCID: PMC7691639 DOI: 10.3389/fnana.2020.581685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia (SCH) and autism spectrum disorder (ASD) share several common aetiological and symptomatic features suggesting they may be included in a common spectrum. For example, recent results suggest that excitatory/inhibitory imbalance is relevant in the etiology of SCH and ASD. Numerous studies have investigated this imbalance in regions like the ventromedial and dorsolateral prefrontal cortex (DLPFC). However, relatively little is known about neuroanatomical changes that could reduce inhibition in subcortical structures, such as the caudate nucleus (CN), in neuropsychiatric disorders. We recently showed a significant decrease in calretinin-immunopositive (CR-ip) interneuronal density in the CN of patients with ASD without significant change in the density of neuropeptide Y-immunopositive (NPY-ip) neurons. These subtypes together constitute more than 50% of caudate interneurons and are likely necessary for maintaining excitatory/inhibitory balance. Consequently, and since SCH and ASD share characteristic features, here we tested the hypothesis, that the density of CR-ip neurons in the CN is decreased in patients with SCH. We used immunohistochemistry and qPCR for CR and NPY in six patients with schizophrenia and six control subjects. As expected, small, medium and large CR-ip interneurons were detected in the CN. We found a 38% decrease in the density of all CR-ip interneurons (P < 0.01) that was driven by the loss of the small CR-ip interneurons (P < 0.01) in patients with SCH. The densities of the large CR-ip and of the NPY-ip interneurons were not significantly altered. The lower density detected could have been due to inflammation-induced degeneration. However, the state of microglial activation assessed by quantification of ionized calcium-binding adapter molecule 1 (Iba1)- and transmembrane protein 119 (TMEM119)-immunopositive cells showed no significant difference between patients with SCH and controls. Our results warrant further studies focussing on the role of CR-ip neurons and on the striatum being a possible hub for information selection and regulation of associative cortical fields whose function have been altered in SCH.
Collapse
Affiliation(s)
- Istvan Adorjan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences, London, United Kingdom
| | - Virginia Feher
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Teadora Tyler
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Daniel Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Steven A Chance
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Brandenburg C, Soghomonian JJ, Zhang K, Sulkaj I, Randolph B, Kachadoorian M, Blatt GJ. Increased Dopamine Type 2 Gene Expression in the Dorsal Striatum in Individuals With Autism Spectrum Disorder Suggests Alterations in Indirect Pathway Signaling and Circuitry. Front Cell Neurosci 2020; 14:577858. [PMID: 33240045 PMCID: PMC7681004 DOI: 10.3389/fncel.2020.577858] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is behaviorally defined and diagnosed by delayed and/or impeded language, stereotyped repetitive behaviors, and difficulties with social interactions. Additionally, there are disruptions in motor processing, which includes the intent to execute movements, interrupted/inhibited action chain sequences, impaired execution of speech, and repetitive motor behaviors. Cortical loops through basal ganglia (BG) structures are known to play critical roles in the typical functioning of these actions. Specifically, corticostriate projections to the dorsal striatum (caudate and putamen) convey abundant input from motor, cognitive and limbic cortices and subsequently project to other BG structures. Excitatory dopamine (DA) type 1 receptors are predominantly expressed on GABAergic medium spiny neurons (MSNs) in the dorsal striatum as part of the "direct pathway" to GPi and SNpr whereas inhibitory DA type 2 receptors are predominantly expressed on MSNs that primarily project to GPe. This study aimed to better understand how this circuitry may be altered in ASD, especially concerning the neurochemical modulation of GABAergic MSNs within the two major BG pathways. We utilized two classical methods to analyze the postmortem BG in ASD in comparison to neurotypical cases: ligand binding autoradiography to quantify densities of GABA-A, GABA-B, 5-HT2, and DA type 1 and 2 receptors and in situ hybridization histochemistry (ISHH) to quantify mRNA for D1, D2 receptors and three key GABAergic subunits (α1, β2, and γ2), as well as the GABA synthesizing enzymes (GAD65/67). Results demonstrated significant increases in D2 mRNA within MSNs in both the caudate and putamen, which was further verified by proenkephalin mRNA that is co-expressed with the D2 receptor in the indirect pathway MSNs. In contrast, all other GABAergic, serotonergic and dopaminergic markers in the dorsal striatum had comparable labeling densities. These results indicate alterations in the indirect pathway of the BG, with possible implications for the execution of competing motor programs and E/I imbalance in the direct/indirect motor feedback pathways through thalamic and motor cortical areas. Results also provide insights regarding the efficacy of FDA-approved drugs used to treat individuals with ASD acting on specific DA and 5-HT receptor subtypes.
Collapse
Affiliation(s)
- Cheryl Brandenburg
- Autism Neurocircuitry Laboratory, Hussman Institute for Autism, Baltimore, MD, United States.,Program in Neuroscience, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| | - Jean-Jacques Soghomonian
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Kunzhong Zhang
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ina Sulkaj
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Brianna Randolph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Marissa Kachadoorian
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Gene J Blatt
- Autism Neurocircuitry Laboratory, Hussman Institute for Autism, Baltimore, MD, United States
| |
Collapse
|
41
|
Jones DN, Erwin JM, Sherwood CC, Hof PR, Raghanti MA. A comparison of cell density and serotonergic innervation of the amygdala among four macaque species. J Comp Neurol 2020; 529:1659-1668. [PMID: 33022073 DOI: 10.1002/cne.25048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023]
Abstract
The genus Macaca is an ideal model for investigating the biological basis of primate social behavior from an evolutionary perspective. A significant amount of behavioral diversity has been reported among the macaque species, but little is known about the neural substrates that support this variation. The present study compared neural cell density and serotonergic innervation of the amygdala among four macaque species using histological and immunohistochemical methods. The species examined included rhesus (Macaca mulatta), Japanese (M. fuscata), pigtailed (M. nemestrina), and moor macaques (M. maura). We anticipated that the more aggressive rhesus and Japanese macaques would have lower serotonergic innervation within the amygdala compared to the more affiliative pigtailed and moor macaques. In contrast to our prediction, pigtailed macaques had higher serotonergic innervation than Japanese and moor macaques in the basal and central amygdala nuclei when controlling for neuron density. Our analysis of neural cell populations revealed that Japanese macaques possess significantly higher neuron and glia densities relative to the other three species, however we observed no glia-to-neuron ratio differences among species. The results of this study revealed serotonergic innervation and cell density differences among closely related macaque species, which may play a role in modulating subtle differences in emotional processing and species-typical social styles.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Joseph M Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|
42
|
Hur J, Smith JF, DeYoung KA, Anderson AS, Kuang J, Kim HC, Tillman RM, Kuhn M, Fox AS, Shackman AJ. Anxiety and the Neurobiology of Temporally Uncertain Threat Anticipation. J Neurosci 2020; 40:7949-7964. [PMID: 32958570 PMCID: PMC7548695 DOI: 10.1523/jneurosci.0704-20.2020] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 01/18/2023] Open
Abstract
When extreme, anxiety-a state of distress and arousal prototypically evoked by uncertain danger-can be debilitating. Uncertain anticipation is a shared feature of situations that elicit signs and symptoms of anxiety across psychiatric disorders, species, and assays. Despite the profound significance of anxiety for human health and wellbeing, the neurobiology of uncertain-threat anticipation remains unsettled. Leveraging a paradigm adapted from animal research and optimized for fMRI signal decomposition, we examined the neural circuits engaged during the anticipation of temporally uncertain and certain threat in 99 men and women. Results revealed that the neural systems recruited by uncertain and certain threat anticipation are anatomically colocalized in frontocortical regions, extended amygdala, and periaqueductal gray. Comparison of the threat conditions demonstrated that this circuitry can be fractionated, with frontocortical regions showing relatively stronger engagement during the anticipation of uncertain threat, and the extended amygdala showing the reverse pattern. Although there is widespread agreement that the bed nucleus of the stria terminalis and dorsal amygdala-the two major subdivisions of the extended amygdala-play a critical role in orchestrating adaptive responses to potential danger, their precise contributions to human anxiety have remained contentious. Follow-up analyses demonstrated that these regions show statistically indistinguishable responses to temporally uncertain and certain threat anticipation. These observations provide a framework for conceptualizing anxiety and fear, for understanding the functional neuroanatomy of threat anticipation in humans, and for accelerating the development of more effective intervention strategies for pathological anxiety.SIGNIFICANCE STATEMENT Anxiety-an emotion prototypically associated with the anticipation of uncertain harm-has profound significance for public health, yet the underlying neurobiology remains unclear. Leveraging a novel neuroimaging paradigm in a relatively large sample, we identify a core circuit responsive to both uncertain and certain threat anticipation, and show that this circuitry can be fractionated into subdivisions with a bias for one kind of threat or the other. The extended amygdala occupies center stage in neuropsychiatric models of anxiety, but its functional architecture has remained contentious. Here we demonstrate that its major subdivisions show statistically indistinguishable responses to temporally uncertain and certain threat. Collectively, these observations indicate the need to revise how we think about the neurobiology of anxiety and fear.
Collapse
Affiliation(s)
- Juyoen Hur
- Department of Psychology, Yonsei University, Seoul, 03722, Republic of Korea
| | | | | | - Allegra S Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee 37240
| | - Jinyi Kuang
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hyung Cho Kim
- Departments of Psychology
- Neuroscience and Cognitive Science Program
| | | | - Manuel Kuhn
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478
| | - Andrew S Fox
- Department of Psychology
- California National Primate Research Center, University of California, Davis, California 95616
| | - Alexander J Shackman
- Departments of Psychology
- Neuroscience and Cognitive Science Program
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
43
|
Morphofunctional Alterations of the Hypothalamus and Social Behavior in Autism Spectrum Disorders. Brain Sci 2020; 10:brainsci10070435. [PMID: 32650534 PMCID: PMC7408098 DOI: 10.3390/brainsci10070435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
An accumulating body of evidence indicates a tight relationship between the endocrine system and abnormal social behavior. Two evolutionarily conserved hypothalamic peptides, oxytocin and arginine-vasopressin, because of their extensively documented function in supporting and regulating affiliative and socio-emotional responses, have attracted great interest for their critical implications for autism spectrum disorders (ASD). A large number of controlled trials demonstrated that exogenous oxytocin or arginine-vasopressin administration can mitigate social behavior impairment in ASD. Furthermore, there exists long-standing evidence of severe socioemotional dysfunctions after hypothalamic lesions in animals and humans. However, despite the major role of the hypothalamus for the synthesis and release of oxytocin and vasopressin, and the evident hypothalamic implication in affiliative behavior in animals and humans, a rather small number of neuroimaging studies showed an association between this region and socioemotional responses in ASD. This review aims to provide a critical synthesis of evidences linking alterations of the hypothalamus with impaired social cognition and behavior in ASD by integrating results of both anatomical and functional studies in individuals with ASD as well as in healthy carriers of oxytocin receptor (OXTR) genetic risk variant for ASD. Current findings, although limited, indicate that morphofunctional anomalies are implicated in the pathophysiology of ASD and call for further investigations aiming to elucidate anatomical and functional properties of hypothalamic nuclei underlying atypical socioemotional behavior in ASD.
Collapse
|
44
|
Duan X, Wang R, Xiao J, Li Y, Huang X, Guo X, Cao J, He L, He C, Ling Z, Shan X, Chen H, Kang X, Chen H. Subcortical structural covariance in young children with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109874. [PMID: 31981719 DOI: 10.1016/j.pnpbp.2020.109874] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Abstract
Abnormalities in the structure of subcortical regions are central to numerous behaviors affected by autism spectrum disorder (ASD), and these regions may undergo atypical coordinated neurodevelopment. However, relatively little is known about morphological correlations among subcortical structures in young children with ASD. In this study, using volumetric-based methodology and structural covariance approach, we investigated structural covariance of subcortical brain volume in 40 young children with ASD (<7.5 years old) and 38 age-, gender-, and handedness-matched typically developing (TD) children. Results showed that compared with TD children, children with ASD exhibited decreased structural covariation between the left and right cerebral hemispheres, specifically between the left and right thalami, right globus pallidus and left nucleus accumbens, and left globus pallidus and right nucleus accumbens. Compared with TD children, children with ASD exhibited increased structural covariation between adjacent regions, such as between the right globus pallidus and right putamen. Additionally, abnormalities in subcortical structural covariance can predict social communication and repetitive and stereotypic behavior in young children with ASD. Overall, these results suggest decreased long-range structural covariation and enhanced local covariation in subcortical structures in children with ASD, highlighting aberrant developmental coordination or synchronized maturation between subcortical regions that play crucial roles in social cognition and behavior in ASD.
Collapse
Affiliation(s)
- Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Runshi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ya Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jing Cao
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu 611135, China
| | - Liyao He
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu 611135, China
| | - Changchun He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zihan Ling
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Heng Chen
- Medical College of Guizhou University, Guiyang 550025, PR China
| | - Xiaodong Kang
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu 611135, China.
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
45
|
Xiao R, Zhong H, Li X, Ma Y, Zhang R, Wang L, Zang Z, Fan X. Abnormal Cerebellar Development Is Involved in Dystonia-Like Behaviors and Motor Dysfunction of Autistic BTBR Mice. Front Cell Dev Biol 2020; 8:231. [PMID: 32318573 PMCID: PMC7154340 DOI: 10.3389/fcell.2020.00231] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022] Open
Abstract
Motor control and learning impairments are common complications in individuals with autism spectrum disorder (ASD). Abnormal cerebellar development during critical phases may disrupt these motor functions and lead to autistic motor dysfunction. However, the underlying mechanisms behind these impairments are not clear. Here, we utilized BTBR T+ Itprtf/J (BTBR) mice, an animal model of autism, to investigate the involvement of abnormal cerebellar development in motor performance. We found BTBR mice exhibited severe dystonia-like behavior and motor coordination or motor learning impairments. The onset of these abnormal movements coincided with the increased proliferation of granule neurons and enhanced foliation, and Purkinje cells displayed morphological hypotrophy with increased dendritic spine formation but suppressed maturation. The migration of granule neurons seemed unaffected. Transcriptional analyses confirmed the differential expression of genes involved in abnormal neurogenesis and revealed TRPC as a critical regulator in proliferation and synaptic formation. Taken together, these findings indicate that abnormal cerebellar development is closely related to dystonia-like behavior and motor dysfunction of BTBR mice and that TRPC may be a novel risk gene for ASD that may participate in the pathological process of autistic movement disorders.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Hongyu Zhong
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Yuanyuan Ma
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China.,Department of Basic Nursing, School of Nursing, Army Medical University, Chongqing, China
| | - Ruiyu Zhang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
46
|
Decreased density of cholinergic interneurons in striatal territories in Williams syndrome. Brain Struct Funct 2020; 225:1019-1032. [PMID: 32189114 DOI: 10.1007/s00429-020-02055-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
Williams syndrome (WS) is a rare neurodevelopmental disorder caused by the hemideletion of approximately 25-28 genes at 7q11.23. Its unusual social and cognitive phenotype is most strikingly characterized by the disinhibition of social behavior, in addition to reduced global IQ, with a relative sparing of language ability. Hypersociality and increased social approach behavior in WS may represent a unique inability to inhibit responses to specific social stimuli, which is likely associated with abnormalities of frontostriatal circuitry. The striatum is characterized by a diversity of interneuron subtypes, including inhibitory parvalbumin-positive interneurons (PV+) and excitatory cholinergic interneurons (Ch+). Animal model research has identified an important role for these specialized cells in regulating social approach behavior. Previous research in humans identified a depletion of interneuron subtypes associated with neuropsychiatric disorders. Here, we examined the density of PV+ and Ch+ interneurons in the striatum of 13 WS and neurotypical (NT) subjects. We found a significant reduction in the density of Ch+ interneurons in the medial caudate nucleus and nucleus accumbens, important regions receiving cortical afferents from the orbitofrontal and ventromedial prefrontal cortex, and circuitry involved in language and reward systems. No significant difference in the distribution of PV+ interneurons was found. The pattern of decreased Ch+ interneuron densities in WS differs from patterns of interneuron depletion found in other disorders.
Collapse
|
47
|
Dong Z, Chen W, Chen C, Wang H, Cui W, Tan Z, Robinson H, Gao N, Luo B, Zhang L, Zhao K, Xiong WC, Mei L. CUL3 Deficiency Causes Social Deficits and Anxiety-like Behaviors by Impairing Excitation-Inhibition Balance through the Promotion of Cap-Dependent Translation. Neuron 2020; 105:475-490.e6. [PMID: 31780330 PMCID: PMC7007399 DOI: 10.1016/j.neuron.2019.10.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/11/2019] [Accepted: 10/27/2019] [Indexed: 01/30/2023]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with symptoms including social deficits, anxiety, and communication difficulties. However, ASD pathogenic mechanisms are poorly understood. Mutations of CUL3, which encodes Cullin 3 (CUL3), a component of an E3 ligase complex, are thought of as risk factors for ASD and schizophrenia (SCZ). CUL3 is abundant in the brain, yet little is known of its function. Here, we show that CUL3 is critical for neurodevelopment. CUL3-deficient mice exhibited social deficits and anxiety-like behaviors with enhanced glutamatergic transmission and neuronal excitability. Proteomic analysis revealed eIF4G1, a protein for Cap-dependent translation, as a potential target of CUL3. ASD-associated cellular and behavioral deficits could be rescued by pharmacological inhibition of the eIF4G1 function and chemogenetic inhibition of neuronal activity. Thus, CUL3 is critical to neural development, neurotransmission, and excitation-inhibition (E-I) balance. Our study provides novel insight into the pathophysiological mechanisms of ASD and SCZ.
Collapse
Affiliation(s)
- Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenbing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Chao Chen
- The Laboratory of Vector Biology and Control, College of Engineering, Beijing Normal University (Zhuhai), Zhuhai 519085, China
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhibing Tan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heath Robinson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Lei Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
48
|
Golubova TF, Tsukurova L, Korsunskaya LL, Osipyan RR, Vlasenko SV, Savchuk EA. [S100B protein in the blood of children with autism spectrum disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:76-83. [PMID: 31994518 DOI: 10.17116/jnevro201911912176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIM To evaluate the plasma content of S100B protein in children with autism spectrum disorders (ASD). MATERIAL AND METHODS Forty-five children with autism (item F84 of ICD-10), aged from 6 to 15 years, were examined. The control group (KG) consisted of 25 healthy children. The study included examination by specialists, an assessment of the severity of the disease using the Children's Rating Scale of Autism scale (CARS), evaluation of S100B in blood serum. RESULTS The content of S100B in children with autism was significantly higher in comparison with KG. The level of S100B in children with ASD with abnormal development of brain structures (MRI) was significantly higher compared with KG and a group of children without signs of disturbance of brain structures. S100B levels were higher in children with severe ASD, and differed from controls in children with moderate ASD. CONCLUSION The majority of children with ASD show signs of stress of neuroprotective mechanisms, and children with anomalies of brain structures have signs of hypoxia of the brain and damage of the blood-brain barrier.
Collapse
Affiliation(s)
- T F Golubova
- Research Institute of Children's Balneology, Physiotherapy and Medical Rehabilitation, Yevpatoria, Russia
| | - La Tsukurova
- Research Institute of Children's Balneology, Physiotherapy and Medical Rehabilitation, Yevpatoria, Russia
| | - L L Korsunskaya
- Vernadsky Crimean Federal University, Georgievsky Medical Academy , Simferopol, Russia
| | - R R Osipyan
- Kuban State Medical University, Krasnodar, Russia
| | - S V Vlasenko
- Research Institute of Children's Balneology, Physiotherapy and Medical Rehabilitation, Yevpatoria, Russia; Glinka 'Evpatoria Military Children's Clinical Sanatorium' of the Ministry of Defense of the Russia, Yevpatoria, Russia
| | - E A Savchuk
- Vernadsky Crimean Federal University, Georgievsky Medical Academy , Simferopol, Russia
| |
Collapse
|
49
|
Pirone A, Viaggi C, Cantile C, Giannessi E, Pardini C, Vaglini F, Miragliotta V. Morphological alterations of the reticular thalamic nucleus in Engrailed-2 knockout mice. J Anat 2020; 236:883-890. [PMID: 31972897 DOI: 10.1111/joa.13150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 11/27/2022] Open
Abstract
The reticular thalamic nucleus (Rt) is a sheet of neurons that surrounds the dorsal thalamus laterally, along its dorso-ventral and rostro-caudal axes. It consists of inhibitory neurons releasing gamma-aminobutyric acid (GABA). This nucleus participates in the circuitry between the thalamus and the cerebral cortex, and its impairment is associated with neuro-psychiatric disorders. In this study, we investigated the Rt anatomy of Engrailed-2 knockout mice (En2-/- ), a mouse model of autism spectrum disorder (ASD), using parvalbumin as an immunohistochemical marker. We compared 4- and 6-week-old wild type (WT) and En2-/- mice using various morphometric parameters: cell area, shape factor, circularity and cell density. Significant differences were present in 6-week-old male mice with different genetic background (WT vs. En2-/- ): the Rt neurons of En2-/- mice showed a bigger cell area, shape factor and circularity when compared with WT. Age (4 weeks vs. 6 weeks) influenced the shape factor of WT females, the circularity and cell density of En2-/- males, and the shape factor and circularity of En2-/- females. Gender affected cell density in 4-week-old WT mice, shape factor and cellularity of 6-week-old WT mice, and cell area, shape factor and cell density of En2-/- at 6 weeks. Intrasubject (left-right) asymmetry of Rt was never observed. These results show for the first time that sex- and age-related changes occur in the Rt GABAergic neurons of the En2-/- ASD mouse model.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Cristina Viaggi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Carlo Cantile
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Carla Pardini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Francesca Vaglini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | |
Collapse
|
50
|
De Zeeuw CI, Canto CB. Sleep deprivation directly following eyeblink-conditioning impairs memory consolidation. Neurobiol Learn Mem 2020; 170:107165. [PMID: 31953233 PMCID: PMC7184677 DOI: 10.1016/j.nlm.2020.107165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/05/2019] [Accepted: 01/12/2020] [Indexed: 10/31/2022]
Abstract
The relation between sleep and different forms of memory formation continues to be a relevant topic in our daily life. Sleep has been found to affect cerebellum-dependent procedural memory formation, but it remains to be elucidated to what extent the level of sleep deprivation directly after motor training also influences our ability to store and retrieve memories. Here, we studied the effect of disturbed sleep in mice during two different time-windows, one covering the first four hours following eyeblink conditioning (EBC) and another window following the next period of four hours. Compared to control mice with sleep ad libitum, the percentage of conditioned responses and their amplitude were impaired when mice were deprived of sleep directly after conditioning. This impairment was still significant when the learned EBC responses were extinguished and later reacquired. However, consolidation of eyeblink responses was not affected when mice were deprived later than four hours after acquisition, not even when tested during a different day-night cycle for control. Moreover, mice that slept longer directly following EBC showed a tendency for more conditioned responses. Our data indicate that consolidation of motor memories can benefit from sleep directly following memory formation.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Netherlands Institute for Neuroscience, KNAW, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Cathrin B Canto
- Netherlands Institute for Neuroscience, KNAW, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|