1
|
Yang Y, Cai Q, Zhu M, Rong J, Feng X, Wang K. Exploring the double-edged role of cellular senescence in chronic liver disease for new treatment approaches. Life Sci 2025; 373:123678. [PMID: 40324645 DOI: 10.1016/j.lfs.2025.123678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Cellular senescence is a fundamental yet complex defense mechanism that restricts excessive proliferation, maintains cellular homeostasis under various stress conditions-such as oncogenic activation and inflammation-and serves as a dynamic stress response program involved in development, aging, and immunity. Its reversibility depends on essential maintenance components. Cellular senescence is a "double-edged sword": on one hand, it limits the malignant proliferation of damaged cells, thereby preventing tumor development. However, by retaining secretory functions, senescent cells can also induce persistent changes in the microenvironment and disrupt homeostasis, leading to tissue inflammation, fibrosis, and carcinogenesis. Senescence plays a critical role in the pathogenesis of various chronic liver diseases, including chronic viral hepatitis, liver fibrosis, and hepatocellular carcinoma. It exerts a dual influence by facilitating immune evasion and inflammation in chronic viral hepatitis, modulating hepatic stellate cell activity in fibrosis, and reshaping the tumor microenvironment to accelerate hepatocarcinogenesis. This article reviews the characteristics of cellular senescence and its role in the pathogenesis of these chronic liver diseases while exploring potential treatment and prevention strategies. The aim is to provide a comprehensive reference for future clinical and research investigations into chronic liver disease.
Collapse
Affiliation(s)
- Yiwen Yang
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Qun Cai
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Mingyan Zhu
- Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jianning Rong
- Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Xudong Feng
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.
| | - Ke Wang
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Weng K, He Y, Weng X, Yuan Y. Exercise alleviates osteoporosis by regulating the secretion of the Senescent Associated Secretory Phenotype. Bone 2025; 196:117485. [PMID: 40216288 DOI: 10.1016/j.bone.2025.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
As the elderly population grows, the number of patients with metabolic bone diseases such as osteoporosis has increased sharply, posing a significant threat to public health and social economics. Although pharmacological therapies for osteoporosis demonstrate therapeutic benefits, their prolonged use is associated with varying degrees of adverse effects. As a non-pharmacological intervention, exercise is widely recognized for its cost-effectiveness, safety, and lack of toxic side effects, making it a recommended treatment for osteoporosis prevention and management. Previous studies have demonstrated that exercise can improve metabolic bone diseases by modulating the Senescent Associated Secretory Phenotype (SASP). However, the mechanisms through which exercise influences SASP remain unclear. Therefore, this review aims to summarize the effects of exercise on SASP and elucidate the specific mechanisms by which exercise regulates SASP to alleviate osteoporosis, providing a theoretical basis for osteoporosis through exercise and developing targeted therapies.
Collapse
Affiliation(s)
- Kaihong Weng
- Graduate School, Guangzhou Sport University, 510500 Guangzhou, China
| | - Yuting He
- Graduate School, Guangzhou Sport University, 510500 Guangzhou, China
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, 510500 Guangzhou, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 510500 Guangzhou, China.
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, 510500 Guangzhou, China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 510500 Guangzhou, China.
| |
Collapse
|
3
|
Aswani BS, Sajeev A, Hegde M, Mishra A, Abbas M, Vayalpurayil T, Sethi G, Kunnumakkara AB. Exosomal dynamics: Bridging the gap between cellular senescence and cancer therapy. Mech Ageing Dev 2025; 225:112045. [PMID: 40074065 DOI: 10.1016/j.mad.2025.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Cancer remains one of the most devastating diseases, severely affecting public health and contributing to economic instability. Researchers worldwide are dedicated to developing effective therapeutics to target cancer cells. One promising strategy involves inducing cellular senescence, a complex state in which cells exit the cell cycle. Senescence has profound effects on both physiological and pathological processes, influencing cellular systems through secreted factors that affect surrounding and distant cells. Among these factors are exosomes, small extracellular vesicles that play crucial roles in cellular communication, development, and defense, and can contribute to pathological conditions. Recently, there has been increasing interest in engineering exosomes as precise drug delivery vehicles, capable of targeting specific cells or intracellular components. Studies have emphasized the significant role of exosomes from senescent cells in cancer progression and therapy. Notably, chemotherapeutic agents can alter the tumor microenvironment, induce senescence, and trigger immune responses through exosome-mediated cargo transfer. This review explores the intricate relationship between cellular senescence, exosomes, and cancer, examining how different therapeutics can eliminate cancer cells or promote drug resistance. It also investigates the molecular mechanisms and signaling pathways driving these processes, highlighting current challenges and proposing future perspectives to uncover new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Anamika Mishra
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
4
|
Hwang JM, Lee SH, Baek EJ, Kim HRC, Oh JH, Lee JS, Lee SH. Comparison of the effects of fractional microneedle radiofrequency and microneedling on modulating the senescent fibroblast milieu in aged skin. Sci Rep 2025; 15:18296. [PMID: 40419589 DOI: 10.1038/s41598-025-02545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Skin ageing is a complex and multifaceted biological process that involves the accumulation of senescent dermal fibroblasts. While fractional microneedle radiofrequency (MNRF) is widely used for skin rejuvenation, the underlying molecular mechanisms are unknown. This study aimed to investigate the efficacy of fractional MNRF in altering the cellular milieu of aged skin and to evaluate clinical skin improvements. Thirty female volunteers aged ≥ 60 years with visible periorbital wrinkles received four consecutive treatments of either microneedling or MNRF on randomly assigned facial sides. Based on biophysical measurements, MNRF treatment improved wrinkles, elasticity, hydration, and transepidermal water loss compared to baseline. Histological analysis revealed that the MNRF-treated sides exhibited increased proliferation of non-senescent fibroblasts, a reduced number of senescent fibroblasts, and elevated collagen and elastin levels, compared to the MN-treated sides. In additional analyses, differences in collagen density and hydration between the two sides of the face were statistically significant only in subjects with a marked reduction in senescent fibroblasts in MNRF-treated sides. Our data suggest that, compared to MN, MNRF induces greater clinical and histological improvements in aged skin, likely by altering the dermal fibroblast milieu through the dual effect of eliminating senescent fibroblasts and increasing the number of non-senescent fibroblasts.
Collapse
Affiliation(s)
- Jung Min Hwang
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Hyun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jae Baek
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Rin Charlotte Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Centre, Seoul National University, Seoul, Korea
| | - Ji Su Lee
- Department of Dermatology, Seoul National University Hospital, Seoul, Korea
| | - Si-Hyung Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Dermatology, Seoul National University Hospital, Seoul, Korea.
- Institute of Human-Environmental Interface Biology, Medical Research Centre, Seoul National University, Seoul, Korea.
| |
Collapse
|
5
|
Tang Z, Wang XL, Deng YX, Xiao Y, Xu JW, Wang L, Qi XL. ABT263 Ameliorates Cellular Senescence, Aβ-Dependent Pathology and Cognitive Decline in Aged APP/PS1 Mice via Regulating PI3K/AKT/GSK-3β Pathways. Cell Biochem Biophys 2025:10.1007/s12013-025-01745-y. [PMID: 40293699 DOI: 10.1007/s12013-025-01745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/30/2025]
Abstract
Alzheimer's disease is defined pathologically by the irregular buildup of senile plaques, neurofibrillary tangles, and associated neuroinflammation. As aging progresses, senescent cells gradually accumulate and significantly contribute to brain dysfunction; however, the precise mechanisms driving aging remain unclear. In the current study, ABT263, a potent senolytic drug, was administered orally to APP/PS1 mice (n = 16) for five days per cycle throughout the course of two cycles, and their behavioral tests in the Morris water maze were evaluated. Using mouse hippocampal tissue, senescence-related gene expression and SASP-associated protein expression were assessed using biochemical tests and immunohistochemical labeling. The Morris water maze test results indicated that ABT263 alleviated spatial memory impairment and reduced amyloid-β (Aβ) accumulation in APP/PS1 mice. Additionally, ABT263 treatment led to a decline in senescence-associated β-galactosidase activity, p16 senescence-related gene expression, and the expression of SASP-associated proteins, including IL-6, IL-8, and MMP-1. Further investigation revealed that ABT263 enhanced the phosphorylation levels of phosphatidylinositol-3 kinase (PI3K) (Tyr458), serine/threonine kinase AKT (S473), and glycogen synthase kinase-3β (GSK-3β) (Ser9) in APP/PS1 mice. Our results showed that ABT263 protected neurons against Aβ pathology, reduced the accumulation of senescent cells, and improved cognitive decline by enhancing PI3K/AKT/GSK-3 activity.
Collapse
Affiliation(s)
- Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, P. R. China
| | - Xiao-Ling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, P. R. China
| | - Yu-Xin Deng
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, P. R. China
| | - Jian-Wei Xu
- Guizhou Province Key Laboratory of Regenerative Medicine, Guiyang, P. R. China
| | - Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, P. R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, P. R. China.
| |
Collapse
|
6
|
Yang J, Han J. Comprehensive analysis based on IFN-γ and SASP related genes, bulk RNA and single-cell sequencing to evaluate the prognosis and immune landscape of stomach adenocarcinoma. Genes Genomics 2025:10.1007/s13258-025-01646-7. [PMID: 40293675 DOI: 10.1007/s13258-025-01646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) represents the predominant subtype of gastric cancer, known for its drug resistance, unfavorable prognosis, and low cure rates. IFN-γ serves as a cytokine generated by immune cells, instrumental in tumor immune clearance and essential to the tumor microenvironment. The aging-associated secretory phenotype (SASP) can modify the local tissue environment, facilitating gastric cancer progression and chemotherapy resistance. OBJECTIVE This study intends to identify STAD subtypes based on IFN-γ and SASP-related genes and to develop a risk prognostic model for predicting patient survival, tumor immune microenvironment, and responses to drug treatment. METHODS The genomic and clinical datasets originate from the Cancer Genome Atlas (TCGA) database, while the genes associated with IFN-γ and SASP come from pertinent scholarly articles. We discovered the prognostic genes linked to IFN-γ and SASP in STAD using Cox regression analysis. Next, we applied non-negative matrix factorization (NMF) to categorize LIHC into distinct molecular subtypes, identifying differentially expressed genes across these subtypes. Following this, we developed a predictive model using Cox and LASSO regression analyses to stratify patients into specific risk categories, validating the model to assess the prognostic significance of the identified signatures. Lastly, we integrated single-cell data to elucidate the immune landscape of STAD and identified potential drugs along with their sensitivity profiles. RESULTS We identified 17 prognostic genes related to IFN-γ and SASP, successfully classifying patients into two distinct molecular subtypes. These subtypes exhibited notable differences in immune profiles and prognostic outcomes. We pinpointed three differentially expressed genes to establish risk characteristics and created a prognostic model capable of accurately predicting patient outcomes. Our findings revealed a strong association between STAD and the extracellular matrix, low-risk group exhibited favorable prognosis, and may derive greater benefits from immunotherapy. CONCLUSION We developed a risk model using IFN-γ and SASP-associated genes to predict the prognosis of STAD patients more accurately. Additionally, we assessed the immune landscape of STAD by integrating bulk RNA and single-cell sequencing analyses. This approach may yield valuable insights for clinical decision-making and immunotherapy strategies in STAD.
Collapse
Affiliation(s)
- Jie Yang
- Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, No.353 North Labor Road, Xi'an, 710016, Shanxi, China
| | - Junwei Han
- Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, No.353 North Labor Road, Xi'an, 710016, Shanxi, China.
| |
Collapse
|
7
|
Agrawal N, Afzal M, Almalki WH, Ballal S, Sharma GC, Krithiga T, Panigrahi R, Saini S, Ali H, Goyal K, Rana M, Abida Khan. Longevity mechanisms in cardiac aging: exploring calcium dysregulation and senescence. Biogerontology 2025; 26:94. [PMID: 40259024 DOI: 10.1007/s10522-025-10229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025]
Abstract
Cardiac aging is a multistep process that results in a loss of various structural and functional heart abilities, increasing the risk of heart disease. Since its remarkable discovery in the early 1800s, when limestone is heated, calcium's importance has been defined in numerous ways. It can help stiffen shells and bones, function as a reducing agent in chemical reactions, and play a central role in cellular signalling. The movement of calcium ions in and out of cells and between those is referred to as calcium signalling. It influences the binding of the ligand, enzyme activity, electrochemical gradients, and other cellular processes. Calcium signalling is critical for both contraction and relaxation under the sliding filament model of heart muscle. However, with age, the heart undergoes changes that lead to increases in cardiac dysfunction, such as myocardial fibrosis, decreased cardiomyocyte function, and noxious disturbances in calcium homeostasis. Additionally, when cardiac tissues age, cellular senescence, a state of irreversible cell cycle arrest, accumulates and begins to exacerbate tissue inflammation and fibrosis. This review explores the most recent discoveries regarding the role of senescent cell accumulation and calcium signalling perturbances in cardiac aging. Additionally, new treatment strategies are used to reduce aged-related heart dysfunction by targeting senescent cells and modulating calcium homeostasis.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Abida Khan
- Center For Health Research, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
8
|
Yun JE, Kang SR, Kim JY, Kim HJ, Kobayashi M, Arai T. Effect of resveratrol supplementation on lipid metabolism in healthy and obese cats. Front Vet Sci 2025; 12:1565367. [PMID: 40308696 PMCID: PMC12042225 DOI: 10.3389/fvets.2025.1565367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction The prevalence of lipid metabolism disorders, including obesity, increases with age in cats and humans. Obesity is a condition characterized by systemic low-grade inflammation and oxidative stress caused by excessive visceral fat accumulation. Resveratrol (RSV), a natural plant polyphenol, modulates the expression of anti-inflammatory factors. This study aimed to investigate the effects of resveratrol supplementation on lipid metabolism in both healthy and obese cats and assess its potential as a dietary supplement for improving lipid metabolism disorders in this population. Methods Plasma metabolite and hormone concentrations, and enzyme activities were measured in healthy, obese, and overweight cats supplemented with RSV for 4 weeks. RVS was supplemented at 1 mg/kg body weight/day (low dose) and 5 mg/kg/day (high dose) in capsules for 4 weeks. Results Body weight, body condition score, BUN, and insulin concentrations did not change in obese or overweight cats with RSV supplementation for 4 weeks. Plasma triglyceride, free fatty acids, and serum amyloid A (SAA) concentrations and lactate dehydrogenase (LDH) activities decreased, and adiponectin concentrations increased markedly in obese and overweight cats after RSV supplementation. Discussion Decreased plasma SAA concentrations and LDH activities and increased plasma adiponectin concentrations in obese and overweight cats seem to be induced by the improvement in liver function and the anti-inflammatory effect of RSV. Moreover, RSV supplementation may be useful in treating lipid metabolism disorders, including obesity, in cats.
Collapse
Affiliation(s)
| | | | | | | | | | - Toshiro Arai
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| |
Collapse
|
9
|
Tillman L, Margalef Rieres J, Ahjem E, Bishop-Guest F, McGrath M, Hatrick H, Pranjol MZI. Thinking Outside the Therapeutic Box: The Potential of Polyphenols in Preventing Chemotherapy-Induced Endothelial Dysfunction. Cells 2025; 14:566. [PMID: 40277892 PMCID: PMC12026109 DOI: 10.3390/cells14080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The numerous side effects and adverse health implications associated with chemotherapies have long plagued the field of cancer care. Whilst in some cases a curative measure, this highly toxic intervention consistently scores poorly on quantitative measures of tolerability and safety. Of these side effects, cardiac and microvascular defects pose the greatest health risk and are the leading cause of death amongst cancer survivors who do not succumb to relapse. In fact, in many low-grade cancers, the risk of recurrence is far outweighed by the cardiovascular risk of morbidity. As such, there is a pressing need to improve outcomes within these populations. Polyphenols are a group of naturally occurring metabolites that have shown potential vasoprotective effects. Studies suggest they possess antioxidant and anti-inflammatory activities, in addition to directly modulating vascular signalling pathways and gene expression. Leveraging these properties may help counteract the vascular toxicity induced by chemotherapy. In this review, we outline the main mechanisms by which the endothelium is damaged by chemotherapeutic agents and discuss the ability of polyphenols to counteract such side effects. We suggest future considerations that may help overcome some of the published limitations of these compounds that have stalled their clinical success. Finally, we briefly explore their pharmacological properties and how novel approaches could enhance their efficacy while minimising treatment-related side effects.
Collapse
Affiliation(s)
- Luke Tillman
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Jaume Margalef Rieres
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Elena Ahjem
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Fynn Bishop-Guest
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Meghan McGrath
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Helena Hatrick
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | | |
Collapse
|
10
|
Liu B, Peng Z, Zhang H, Zhang N, Liu Z, Xia Z, Huang S, Luo P, Cheng Q. Regulation of cellular senescence in tumor progression and therapeutic targeting: mechanisms and pathways. Mol Cancer 2025; 24:106. [PMID: 40170077 PMCID: PMC11963325 DOI: 10.1186/s12943-025-02284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
Cellular senescence, a stable state of cell cycle arrest induced by various stressors or genomic damage, is recognized as a hallmark of cancer. It exerts a context-dependent dual role in cancer initiation and progression, functioning as a tumor suppressor and promoter. The complexity of senescence in cancer arises from its mechanistic diversity, potential reversibility, and heterogeneity. A key mediator of these effects is the senescence-associated secretory phenotype (SASP), a repertoire of bioactive molecules that influence tumor microenvironment (TME) remodeling, modulate cancer cell behavior, and contribute to therapeutic resistance. Given its intricate role in cancer biology, senescence presents both challenges and opportunities for therapeutic intervention. Strategies targeting senescence pathways, including senescence-inducing therapies and senolytic approaches, offer promising avenues for cancer treatment. This review provides a comprehensive analysis of the regulatory mechanisms governing cellular senescence in tumors. We also discuss emerging strategies to modulate senescence, highlighting novel therapeutic opportunities. A deeper understanding of these processes is essential for developing precision therapies and improving clinical outcomes.
Collapse
Affiliation(s)
- Bowei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- National Clinical Research Central for Geriatric Disorders. Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Jiangxi (National Regional Center for Neurological Diseases), Nanchang, Jiangxi, China
| | - Zhigang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- National Clinical Research Central for Geriatric Disorders. Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Jiangxi (National Regional Center for Neurological Diseases), Nanchang, Jiangxi, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, Hunan, China.
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- National Clinical Research Central for Geriatric Disorders. Xiangya Hospital, Central South University, Changsha, China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Jiangxi (National Regional Center for Neurological Diseases), Nanchang, Jiangxi, China.
| |
Collapse
|
11
|
Chu CR, Hochberg M, White D, Rodeo S, Huard J, Shapiro S, Lattermann C, Guilak F. Transformative approaches for effective clinical trials to reduce the disease burden of osteoarthritis. Semin Arthritis Rheum 2025; 71:152652. [PMID: 39970622 DOI: 10.1016/j.semarthrit.2025.152652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
Osteoarthritis (OA) is a leading cause of disability and morbidity that has eluded development of effective disease modifying drugs and therapies. While established OA in the form of symptomatic radiographic disease is a recognizable final common pathway, OA development encompasses a broad spectrum of pathological changes, susceptibilities, and etiological pathways that cannot be considered a single disease process. Beginning with preclinical disease where radiographs are normal, the concept of pre-osteoarthritis (pre-OA) offers a systems-based approach to OA prevention by targeting reduction of OA risk prior to the onset of definable OA. Early OA ensues when cellular, molecular, and joint tissue changes begin to overlap that of OA, a process that can begin before the onset of definitive symptoms or radiographic changes. A myriad of pathways and crossroads of pre-OA and early OA eventually leads to poorly irreversible symptomatic radiographic OA. With increasing recognition of pre-OA and early OA markers, pathways and subtypes, opportunities arise to address these new therapeutic targets. The current status of clinical trials in OA was identified as a critical barrier to progress by the 2022 National Institute of Arthritis, Musculoskeletal, and Skin Diseases (NIAMS) Roundtable on "Cartilage Preservation and Restoration in Knee Osteoarthritis: Challenges, Gaps, and Opportunities". This manuscript summarizes the recommendations of the work group established from the Roundtable to address this issue. The work group recommends that clinical trial design and endpoints evolve to effectively evaluate new treatment approaches suitable for pre-osteoarthritis and early OA by different criteria than what has been set for symptomatic radiographic OA. While symptomatic improvement is the primary goal for palliation of irreversible established OA, important goals for treating earlier disease states include disease modification and prevention, with the potential to alter the natural history of progressive OA. Because symptoms may not correlate with structural changes in pre-OA and early OA, the primary outcomes in these trials need to match the intended mechanistic target and the therapeutic goal for the disease state being treated. The purpose of this manuscript is to transform the approach to clinical trials in OA by establishing a new benchmark of identifying critical outcomes that are appropriate for the joint disease states and subtypes of the target patient population, and the therapeutic or mechanistic target of the intervention being tested. By shifting the approach from using standardized outcomes based on established OA towards customizing clinical trials according to these principles, new precision medicine strategies to address the full spectrum of disease from pre-OA to OA can be more readily advanced into clinical practice.
Collapse
Affiliation(s)
- Constance R Chu
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St 94061, Redwood City, CA 94063, United States.
| | - Marc Hochberg
- Departments of Medicine and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, 20742, United States
| | - Daniel White
- Department of Physical Therapy, University of Delaware, Newark, DE 19716, United States
| | - Scott Rodeo
- Hospital for Special Surgery, New York, NY 10021, United States
| | - Johnny Huard
- Steadman Clinic, Steadman Philippon Research Institute, Vail CO 81657, United States
| | - Shane Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Christian Lattermann
- Department of Orthopaedic Surgery, Massachusetts General-Brigham Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| |
Collapse
|
12
|
Bradley J, O'Shea P, Wrench C, Mattsson J, Paulin R, Overed-Sayer C, Rosenberg L, Olsson H, Gianni D. A secretome screen in primary human lung fibroblasts identifies FGF9 as a novel regulator of cellular senescence. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 32:100223. [PMID: 40024445 DOI: 10.1016/j.slasd.2025.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Senescent cells contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF), a disease with significant unmet need and therefore, there is an interest in discovering new drug targets that regulate this process. We design and perform a phenotypic screen with a secreted protein library in primary human lung fibroblasts to identify modulators of cell senescence. We identify FGF9 as a suppressor of several senescence phenotypes reducing stimulated p21 expression, enlarged morphology, DNA damage and SASP secretion, which is consistent with both DNA-damage and ROS induced senescence. We also show that FGF9 reduces fibroblast activation in both healthy and IPF fibroblasts shown by a reduction in pro-fibrotic markers such as α-smooth muscle actin and COL1A1 mRNA. Our findings identify FGF9 as a suppressor of both senescence and fibrotic features in lung fibroblasts and therefore could be targeted as a new therapeutic strategy for respiratory diseases such as IPF.
Collapse
Affiliation(s)
- Jenna Bradley
- Centre of Genomic Research, Discovery Sciences, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom.
| | - Patrick O'Shea
- Centre of Genomic Research, Discovery Sciences, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom
| | - Catherine Wrench
- Respiratory and Immunology, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom
| | - Johan Mattsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roxane Paulin
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Catherine Overed-Sayer
- Respiratory and Immunology, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom
| | - Laura Rosenberg
- Centre of Genomic Research, Discovery Sciences, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Davide Gianni
- Centre of Genomic Research, Discovery Sciences, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom
| |
Collapse
|
13
|
Kalyoncu M, Demirci D, Eris S, Dayanc B, Cakiroglu E, Basol M, Uysal M, Cakan-Akdogan G, Liu F, Ozturk M, Karakülah G, Senturk S. Escape from TGF-β-induced senescence promotes aggressive hallmarks in epithelial hepatocellular carcinoma cells. Mol Oncol 2025. [PMID: 40083231 DOI: 10.1002/1878-0261.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/16/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Transforming growth factor-β (TGF-β) signaling and cellular senescence are key hallmarks of hepatocellular carcinoma (HCC) pathogenesis. Despite provoking senescence-associated growth arrest in epithelial HCC cells, elevated TGF-β activity paradoxically correlates with increased aggressiveness and poor prognosis in advanced tumors. Whether the transition between these dichotomous functions involves modulation of the senescence phenotype during disease progression remains elusive. Exploiting the epithelial HCC cell line Huh7 as a robust model, we demonstrate that chronic exposure to TGF-β prompts escape from Smad3-mediated senescence, leading to the development of TGF-β resistance. This altered state is characterized by an optimal proliferation rate and the acquisition of molecular and functional traits of less-differentiated mesenchymal cells, coinciding with differential growth capacity in 2D and 3D culture conditions, epithelial-to-mesenchymal transition (EMT), and increased invasiveness in vitro, and metastasis in vivo. Mechanistically, resistant cells exhibit defective activation and nuclear trafficking of Smad molecules, particularly Smad3, as ectopic activation of the TGF-β/Smad3 axis is able to reinstate TGF-β sensitivity. An integrated transcriptomic landscape reveals both shared and distinct gene signatures associated with senescent and TGF-β resistant states. Importantly, genetic ablation and molecular studies identify microtubule affinity regulating kinase 1 (MARK1) and glutamate metabotropic receptor 8 (GRM8) as critical modulators of the resistance phenomenon, potentially by impairing spatiotemporal signaling dynamics of Smad activity. Our findings unveil a novel phenomenon wherein epithelial HCC cells may exploit senescence plasticity as a mechanism to oppose TGF-β anti-tumor responses and progress towards more aggressive HCC phenotypes.
Collapse
Affiliation(s)
| | | | - Sude Eris
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Bengisu Dayanc
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Basol
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Uysal
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Turkey
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mehmet Ozturk
- Department of Medical Biology, Izmir Tinaztepe University School of Medicine, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
14
|
García-Domínguez M. Pathological and Inflammatory Consequences of Aging. Biomolecules 2025; 15:404. [PMID: 40149940 PMCID: PMC11939965 DOI: 10.3390/biom15030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Aging is a complex, progressive, and irreversible biological process that entails numerous structural and functional changes in the organism. These changes affect all bodily systems, reducing their ability to respond and adapt to the environment. Chronic inflammation is one of the key factors driving the development of age-related diseases, ultimately causing a substantial decline in the functional abilities of older individuals. This persistent inflammatory state (commonly known as "inflammaging") is characterized by elevated levels of pro-inflammatory cytokines, an increase in oxidative stress, and a perturbation of immune homeostasis. Several factors, including cellular senescence, contribute to this inflammatory milieu, thereby amplifying conditions such as cardiovascular disease, neurodegeneration, and metabolic disorders. Exploring the mechanisms of chronic inflammation in aging is essential for developing targeted interventions aimed at promoting healthy aging. This review explains the strong connection between aging and chronic inflammation, highlighting potential therapeutic approaches like pharmacological treatments, dietary strategies, and lifestyle changes.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
15
|
Zare E, Hosseini ES, Azad FS, Javid A, Javazm RR, Abessi P, Montazeri F, Hoseini SM. Replicative senescence in amniotic fluid-derived mesenchymal stem cells and its impact on their immunomodulatory properties. Histochem Cell Biol 2025; 163:34. [PMID: 40042688 DOI: 10.1007/s00418-025-02364-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 05/13/2025]
Abstract
The expansion of mesenchymal stem cells (MSCs) for clinical applications is often limited by replicative senescence, a growth arrest induced by various stresses during in vitro culture, yet its impact on the immunomodulatory properties of MSCs remains unclear. This study derived MSCs from the amniotic fluid (AF-MSCs) of seven first-trimester pregnancies, characterized them through flow cytometry, and evaluated their osteogenic differentiation potential before expanding the cells to compare immunoregulatory gene expression in proliferative and senescent states. Additionally, an assessment of the adipogenic differentiation potential of AF-MSCs from three samples was conducted following their recovery from approximately 9 months of cryopreservation, with results showing that these recovered cells retain the capacity for adipogenic differentiation. Molecular analysis revealed no significant differences in the expression of key immunoregulatory genes, such as TGFβ, IL-10, IDO, and VCAM-1, between proliferative and senescent cells, although senescent cells showed downregulation of FASL and upregulation of IL-6, COX1, and HLA-G. Markers of cell proliferation, including FOXM1 and B-MYB, were significantly downregulated in senescent cells, confirming the progression of replicative senescence. Despite expectations, the results indicated that some immunomodulatory markers remained stable or were even enhanced in senescent AF-MSCs. These findings highlight the resilience of AF-MSC immunomodulatory properties during prolonged in vitro expansion, supporting their potential for therapeutic applications despite the challenges posed by replicative senescence.
Collapse
Affiliation(s)
- Elham Zare
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Elham Sadat Hosseini
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Faezeh Sadat Azad
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Amane Javid
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Reza Rafiei Javazm
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Panteha Abessi
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Seyed Mehdi Hoseini
- Hematology and Oncology Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
16
|
Wang TW, Nakanishi M. Immune surveillance of senescence: potential application to age-related diseases. Trends Cell Biol 2025; 35:248-257. [PMID: 39025762 DOI: 10.1016/j.tcb.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
Several lines of evidence suggest that the age-dependent accumulation of senescent cells leads to chronic tissue microinflammation, which in turn contributes to age-related pathologies. In general, senescent cells can be eliminated by the host's innate and adaptive immune surveillance system, including macrophages, NK cells, and T cells. Impaired immune surveillance leads to the accumulation of senescent cells and accelerates the aging process. Recently, senescent cells, like cancer cells, have been shown to express certain types of immune checkpoint proteins as well as non-classical immune-tolerant MHC variants, leading to immune escape from surveillance systems. Thus, immune checkpoint blockade (ICB) may be a promising strategy to enhance immune surveillance of senescence, leading to the amelioration of some age-related diseases and tissue dysfunction.
Collapse
Affiliation(s)
- Teh-Wei Wang
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
17
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
18
|
Sloan N, Mares J, Daly A, Coie L, Grier S, Barretto N, Casel O, Kang K, Jackson C, Pedersen M, Khiste S, Fullerton B, Petrescu J, Mattison C, Smith C, Suh Y, Menon V, Phatnani H. Uncovering the Signatures of Cellular Senescence in the Human Dorsolateral Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639091. [PMID: 40027780 PMCID: PMC11870546 DOI: 10.1101/2025.02.19.639091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Identifying senescent cells poses challenges due to their rarity, heterogeneity, and lack of a definitive marker. We performed Visium spatial transcriptomics (ST) and single nucleus RNA sequencing (snRNA-seq) on non-pathological human tissue to build a transcriptomic atlas of aging and senescence in the dorsolateral prefrontal cortex (dlPFC). We identified markers characteristic of aging dlPFC cortical layers and cell types. We also observed an increase in astrocyte abundance and decrease in somatostatin expressing inhibitory neurons. Overall, the senescence profile in the dlPFC was highly heterogeneous and heavily influenced by cell type identity and cortical layer. Combined unbiased analysis of ST and snRNA-seq datasets revealed gene expression modules encoding for communities of microglia and endothelial cells in the white matter and regional astrocytes programs that were strongly enriched with age and for senescence-related genes. These findings will help facilitate future studies exploring the function of senescent cell subpopulations in the aging brain.
Collapse
|
19
|
González I, Maldonado-Agurto R. The role of cellular senescence in endothelial dysfunction and vascular remodelling in arteriovenous fistula maturation. J Physiol 2025. [PMID: 39977444 DOI: 10.1113/jp287387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Haemodialysis (HD) is often required for patients with end-stage renal disease. Arteriovenous fistulas (AVFs), a surgical procedure connecting an artery to a vein, are the preferred vascular access for HD due to their durability and lower complication rates. The aim of AVFs is to promote vein remodelling to accommodate increased blood flow needed for dialysis. However, many AVFs fail to mature properly, making them unsuitable for dialysis. Successful maturation requires remodelling, resulting in an increased luminal diameter and thickened walls to support the increased blood flow. After AVF creation, haemodynamic changes due to increased blood flow on the venous side of the AVF initiate a cascade of events that, when successful, lead to the proper maturation of the AVF, making it suitable for cannulation. In this process, endothelial cells play a crucial role since they are in direct contact with the frictional forces exerted by the blood, known as shear stress. Patients requiring HD often have other conditions that increase the burden of senescent cells, such as ageing, diabetes and hypertension. These senescent cells are characterized by irreversible growth arrest and the secretion of pro-inflammatory and pro-thrombotic factors, collectively known as the senescence-associated secretory phenotype (SASP). This accumulation can impair vascular function by promoting inflammation, reducing vasodilatation, and increasing thrombosis risk, thus hindering proper AVF maturation and function. This review explores the contribution of senescent endothelial cells to AVF maturation and explores potential therapeutic strategies to alleviate the effects of senescent cell accumulation, aiming to improve AVF maturation rates.
Collapse
Affiliation(s)
- Ignacia González
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Rodrigo Maldonado-Agurto
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
20
|
González I, Arredondo SB, Maldonado-Agurto R. Transcriptional activation of genes associated with the matrisome is a common feature of senescent endothelial cells. Biogerontology 2025; 26:59. [PMID: 39948317 PMCID: PMC11825616 DOI: 10.1007/s10522-025-10191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Cellular senescence is a stable cell cycle arrest that occurs in response to various stress stimuli and affects multiple cell types, including endothelial cells (ECs). Senescent cells accumulate with age, and their removal has been linked to reduced age-related diseases. However, some senescent cells are important for tissue homeostasis. Therefore, understanding the diversity of senescent cells in a cell-type-specific manner and their underlying molecular mechanisms is essential. Senescence impairs key ECs functions which are necessary for vascular homeostasis, leading to endothelial dysfunction and age-related vascular diseases. In order to gain insights into these mechanisms, we analyzed publicly available RNA-seq datasets to identify gene expression changes in senescent ECs induced by doxorubicin, irradiation, and replication exhaustion. While only a few genes were consistently differentially expressed across all conditions, some gene ontologies (GO) were shared. Among these, our analysis focused on validating the expression of genes associated with the matrisome, which includes genes encoding for extracellular matrix (ECM) structural components and ECM-associated proteins, in a doxorubicin-induced senescence model. Our results show that the matrisome transcriptome undergoes significant remodeling in senescent endothelial cells, regardless of the specific inducers of senescence, highlighting the importance of understanding how ECM alterations affect senescence.
Collapse
Affiliation(s)
- Ignacia González
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Sebastián B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Maldonado-Agurto
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.
| |
Collapse
|
21
|
Agyapong N, Dominguez-Ortega L, Macdonough B, Mulluso P, Patel S, Prajapati B, Saville B, Shapiro A, Trim E, Battaglia K, Herrera J, Garifo-MacPartland G, Newcombe D, Okundaye L, Paglia H, Paxson J. Quiescence modulates age-related changes in the functional capacity of highly proliferative canine lung mesenchymal stromal cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.637273. [PMID: 39974876 PMCID: PMC11839019 DOI: 10.1101/2025.02.08.637273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The functional capacity of highly proliferative cell populations changes with age. Here, we report that the proliferative capacity of canine lung mesenchymal stromal cells (LMSCs) declines with increasing age of the donor. However, other functional changes such as reduced autophagy, reduced migration/wound healing, increased production of reactive oxygen species, and increased senescence are not significantly altered with increasing age. Furthermore, transcriptomic profiling suggests minimal age-related changes. These data suggest that the reduced proliferative capacity of lung LMSCs isolated from aging donors may be associated with reversible cell cycle arrest (quiescence), rather than irreversible cell cycle arrest (senescence). Similar findings have been reported in other systems, including neural and muscle stem cells that are associated with low turnover-rate tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ethan Trim
- College of the Holy Cross, Worcester MA USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee AMY, Schreiber A. Autophagy-dependent changes in alternative splicing bias translation toward inflammation in senescent cells. Dev Cell 2025; 60:337-339. [PMID: 39904318 DOI: 10.1016/j.devcel.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 02/06/2025]
Abstract
Despite limited translational capacity, senescent cells trigger inflammation by upregulating the translation and secretion of proinflammatory factors. In this issue of Developmental Cell, Kim et al. identify that altered autophagy and SFPQ-dependent EIF4H splicing during senescence redirects translation to promote inflammation, informing therapeutic strategies for cancer and other age-related diseases.
Collapse
Affiliation(s)
- Anson Ming Yan Lee
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Anne Schreiber
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|
23
|
Guo S, Zhang Y, Wang Y, Guo T, Zhu J, Chang L, Ling W, Westover KD, Zhou Z, Wei X. DCR2-targeted ultrasound nanobubbles loaded with verteporfin promote M2 macrophage polarization to overcome doxorubicin resistance in breast cancer. CHEMICAL ENGINEERING JOURNAL 2025; 505:159277. [DOI: 10.1016/j.cej.2025.159277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
|
24
|
Fang Y, Peck MR, Quinn K, Chapman JE, Medina D, McFadden SA, Bartke A, Hascup ER, Hascup KN. Senolytic intervention improves cognition, metabolism, and adiposity in female APP NL-F/NL-F mice. GeroScience 2025; 47:1123-1138. [PMID: 39120687 PMCID: PMC11872876 DOI: 10.1007/s11357-024-01308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Senescent cells accumulate throughout the body and brain contributing to unhealthy aging and Alzheimer's disease (AD). The APPNL-F/NL-F amyloidogenic AD mouse model exhibits increased markers of senescent cells and the senescence-associated secretory phenotype (SASP) in visceral white adipose tissue and the hippocampus before plaque accumulation and cognitive decline. We hypothesized that senolytic intervention would alleviate cellular senescence thereby improving spatial memory in APPNL-F/NL-F mice. Thus, 4-month-old male and female APPNL-F/NL-F mice were treated monthly with vehicle, 5 mg/kg dasatinib + 50 mg/kg quercetin, or 100 mg/kg fisetin. Blood glucose levels, energy metabolism, spatial memory, amyloid burden, and senescent cell markers were assayed. Dasatinib + quercetin treatment in female APPNL-F/NL-F mice increased oxygen consumption and energy expenditure resulting in decreased body mass. White adipose tissue mass was decreased along with senescence markers, SASP, blood glucose, and plasma insulin and triglycerides. Hippocampal senescence markers and SASP were reduced along with soluble and insoluble amyloid-β (Aβ)42 and senescence-associated-β-gal activity leading to improved spatial memory. Fisetin had negligible effects on these measures in female APPNL-F/NL-F mice while neither senolytic intervention altered these parameters in the male mice. Considering women have a greater risk of dementia, identifying senotherapeutics appropriate for sex and disease stage is necessary for personalized medicine.
Collapse
Affiliation(s)
- Yimin Fang
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Mackenzie R Peck
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Kathleen Quinn
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Jenelle E Chapman
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - David Medina
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Samuel A McFadden
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Erin R Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Kevin N Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
25
|
Xu Y, Chen L, Liu W, Chen L. [Advances in inflammaging in liver disease]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025; 54:90-98. [PMID: 39828280 PMCID: PMC11956859 DOI: 10.3724/zdxbyxb-2024-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Inflammaging is a process of cellular dysfunction associated with chronic inflammation, which plays a significant role in the onset and progression of liver diseases. Research on its mechanisms has become a hotspot. In viral hepatitis, inflammaging primarily involve oxidative stress, cell apoptosis and necrosis, as well as gut microbiota dysbiosis. In non-alcoholic fatty liver disease, inflammaging is more complex, involving insulin resistance, fat deposition, lipid metabolism disorders, gut microbiota dysbiosis, and abnormalities in NAD+ metabolism. In liver tumors, inflammaging is characterized by weakening of tumor suppressive mechanisms, remodeling of the liver microenvironment, metabolic reprogramming, and enhanced immune evasion. Therapeutic strategies targeting inflammaging have been developing recently, and antioxidant therapy, metabolic disorder improvement, and immunotherapy are emerging as important interventions for liver diseases. This review focuses on the mechanisms of inflammaging in liver diseases, aiming to provide novel insights for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Yanping Xu
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Luyi Chen
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weili Liu
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liying Chen
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
26
|
Fernandes Dias S, Oertel MF, Guerreiro Stücklin A, Gerber NU, Colombo E, van Doormaal TPC, Krayenbühl N. Case Report: Clinical awareness about the effect of laser interstitial thermal therapy on pediatric high-grade brain tumors after radiotherapy. Front Surg 2025; 11:1462074. [PMID: 39897706 PMCID: PMC11782241 DOI: 10.3389/fsurg.2024.1462074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
The use of magnetic resonance-guided laser interstitial thermal therapy (LITT) for the treatment of brain tumors and epileptic lesions has increased in the field of pediatric neurosurgery. However, very little is known about the effect of LITT on pediatric high-grade tumors that have been previously treated with radiotherapy. We report on two cases of children with an unexpected rapid brain tumor progression after LITT. The first case was an 11-year-old boy with a periventricular metastasis of a recurrent anaplastic ependymoma treated with proton-therapy and radiosurgery. The second case was a 6-year-old girl with a Lynch-syndrome and a recurrence of a mesio-temporo-occipital high-grade glioma admitted to gross total resection, proton-therapy, chemotherapy, bevacizumab and immune checkpoint inhibitor. Due to evidence of tumor progression in both cases, a decision was made to perform LITT. Shortly after the laser ablation, we observed a significant tumor growth along the trajectory of the LITT catheters, accompanied by clinical deterioration. The effect of LITT on pediatric ependymoma and high-grade glioma recurrence after radiotherapy is still unclear. The tumor expansion following LITT in these two patients should drive a deeper awareness of the effect of radiation and LITT on the tumor-environment. The breakage of the morphogenetic boundaries of the neuromeres, to which each tumor was initially confined, through the placement of the LITT catheters should be considered while trying to understand the disease spread mechanisms. Based on the experience of our center, we advise a careful implementation of this technique on pediatric high-grade central nervous system tumors, particularly in recurrent tumors that were previously treated with radiotherapy, until the underlying pathophysiologic mechanism has been better understood.
Collapse
Affiliation(s)
- Sandra Fernandes Dias
- Division of Pediatric Neurosurgery, University Children’s Hospital Zurich – Eleonoren Foundation, Zurich, Switzerland
| | - Markus F. Oertel
- Department of Neurosurgery and Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ana Guerreiro Stücklin
- Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich – Eleonoren Foundation, Zurich, Switzerland
| | - Nicolas U. Gerber
- Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich – Eleonoren Foundation, Zurich, Switzerland
| | - Elisa Colombo
- Department of Neurosurgery and Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tristan P. C. van Doormaal
- Department of Neurosurgery and Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Pediatric Neurosurgery, University Children’s Hospital Zurich – Eleonoren Foundation, Zurich, Switzerland
| |
Collapse
|
27
|
Sato M, Torigoe D, Kinoshita Y, Cyuman M, Toda C, Sato M, Ikeda K, Kadomatsu T, Horiguchi H, Morinaga J, Fukami H, Sugizaki T, Miyata K, Kusaba R, Okadome Y, Matsunaga E, Node K, Oike Y. Long-term intake of Tamogi-take mushroom (Pleurotus cornucopiae) mitigates age-related cardiovascular dysfunction and extends healthy life expectancy. NPJ AGING 2025; 11:1. [PMID: 39779757 PMCID: PMC11711650 DOI: 10.1038/s41514-024-00191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Age-related declines in cardiac function and exercise tolerance interfere with healthy living and decrease healthy life expectancy in older individuals. Tamogi-take mushrooms (Pleurotus cornucopiae) are known to contain high levels of Ergothioneine (EGT), an antioxidant with potential health benefits. In this study, we assessed the possibility that long-term consumption of Tamogi-take mushrooms might attenuate age-related decline in cardiac and vascular endothelial function in mice. We found that long-term intake of Tamogi-take mushrooms significantly maintained cardiac and vascular endothelial function and improved exercise tolerance in mice. Long-term mushroom consumption also increased levels of Nrf2 (Nuclear factor E2-related factor 2) protein in heart tissues and increased translation of HO-1 (Heme Oxygenase 1) proteins, which have antioxidant effects in heart and aortic tissues. Finally, long-term Tamogi-take mushroom consumption inhibited ROS accumulation with aging and reduced expression of inflammatory biomarkers. We conclude that ingestion of Tamogi-take mushrooms could serve as a dietary intervention to promote cardiovascular health, support healthy aging and slow the progression of age-related diseases.
Collapse
Affiliation(s)
- Michio Sato
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
- Division of Kumamoto Mouse Clinic (KMC), Kumamoto University, Kumamoto, Japan
| | - Daisuke Torigoe
- Division of Laboratory Animal Science, Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Yuya Kinoshita
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Momoka Cyuman
- Division of Laboratory Animal Science, Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Chitoku Toda
- Department of Neuroscience for Metabolic Control, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaru Sato
- Laboratory of Biomolecule Analysis, Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Kazutaka Ikeda
- Laboratory of Biomolecule Analysis, Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
- Laboratory of Omics and Informatics, Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Haruki Horiguchi
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
- Department of Disease Genome Epidemiology, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kumamoto, Japan
| | - Hirotaka Fukami
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryoko Kusaba
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Yusuke Okadome
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Eiji Matsunaga
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan.
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
- Division of Laboratory Animal Science, Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, Japan.
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
28
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
29
|
Shimizu K, Inuzuka H, Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol 2025; 108:1-16. [PMID: 39557316 DOI: 10.1016/j.semcancer.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cellular senescence is a state of permanent proliferative arrest that occurs in response to DNA damage-inducing endogenous and exogenous stresses, and is often accompanied by dynamic molecular changes such as a senescence-associated secretory phenotype (SASP). Accumulating evidence indicates that age-associated increases in the upstream and downstream signals of regulated cell death, including apoptosis, necroptosis, pyroptosis, and ferroptosis, are closely related to the induction of cellular senescence and its phenotype. Furthermore, elevated levels of pro-inflammatory SASP factors with aging can be both a cause and consequence of several cell death modes, suggesting the reciprocal effects of cellular senescence and cells undergoing regulated cell death. Here, we review the critical molecular pathways of the regulated cell death forms and describe the crosstalk between aging-related signals and cancer. In addition, we discuss how targeting regulated cell death could be harnessed in therapeutic interventions for cancer. ABBREVIATIONS: Abbreviations that are not standard in this field are defined at their first occurrence in the article and are used consistently throughout the article.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, USA
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
30
|
Li JX, Dang YM, Liu MC, Gao LQ, Lin H. Fibroblasts in heterotopic ossification: mechanisms and therapeutic targets. Int J Biol Sci 2025; 21:544-564. [PMID: 39781450 PMCID: PMC11705629 DOI: 10.7150/ijbs.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/07/2024] [Indexed: 01/12/2025] Open
Abstract
Heterotopic ossification (HO) refers to the abnormal formation of bone in non-skeletal tissues. Fibroblasts have traditionally been viewed as stationary cells primarily responsible for producing extracellular matrix during tissue repair and fibrosis. However, recent discoveries regarding their plasticity-encompassing roles in inflammation, extracellular matrix remodeling, and osteogenesis-highlight their potential as key contributors to the development of HO. In this review, we systematically summarize the diverse phenotypic and functional plasticity of fibroblasts in HO. Furthermore, we evaluate the possible interaction between fibroblasts and macrophages in pathophysiological processes and signaling pathways. Finally, we highlight the potential strategies for preventing and treating HO by targeting fibroblast activities.
Collapse
Affiliation(s)
- Jia-xin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan-miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Meng-chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lin-qing Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
31
|
Huang Y, Li X, Xu S, Zu D, Liu H, He H, Bao Q, He Y, Liang C, Shi Y, Cheng X, Teng Y, Ye Z. Polyvinyl chloride nanoplastics suppress homology-directed repair and promote oxidative stress to induce esophageal epithelial cellular senescence and cGAS-STING-mediated inflammation. Free Radic Biol Med 2025; 226:288-301. [PMID: 39515594 DOI: 10.1016/j.freeradbiomed.2024.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Nanoplastics (NPs), which are characterized by plastic particles smaller than 1 μm, have emerged as pervasive environmental pollutants, raising concerns about their potential toxicity to living organisms. Numerous investigations have highlighted the tendency of NPs to accumulate in organs, resulting in toxic effects. Despite polyvinyl chloride (PVC) being one of the most prevalent NPs, its impact on the esophagus and the associated underlying mechanisms remain largely unknown. In this study, we investigated the impact of PVC NPs on the esophagus and found that PVC NPs exposure induces oxidative stress and elicits DNA damage responses. Further analysis revealed that PVC NPs inhibit the homology-directed repair (HDR) pathway by suppressing the expression of breast cancer susceptibility gene 2 (BRCA2) and growth factor receptor-bound protein 2 (GRB2), resulting in genomic instability. Additionally, the release of free DNA activates cGAS-STING and the downstream NF-κB signaling, elevating inflammatory factors and chemokines, which further leads to cellular senescence. In vivo experiments corroborated these findings, showing that PVC NPs induced oxidative stress, inflammation, and cellular senescence, subsequently impacting mouse behavior. This study contributes novel insights into the health risks associated with PVC NPs exposure and identifies potential therapeutic targets.
Collapse
Affiliation(s)
- Yixing Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Otorhinolaryngology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shengfeng Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dan Zu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; School of Life Sciences, Tianjin University, Tianjin, 300100, China
| | - Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Hanyi He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Qimei Bao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yanhua He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Chen Liang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yin Shi
- Department of Biochemistry, and Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Yaoshu Teng
- Department of Otorhinolaryngology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
32
|
Pei Y, Mou Z, Jiang L, Yang J, Gu Y, Min J, Sunzhang L, Xiong N, Xu X, Chi H, Xu K, Liu S, Luo H. Aging and head and neck cancer insights from single cell and spatial transcriptomic analyses. Discov Oncol 2024; 15:801. [PMID: 39692961 PMCID: PMC11655923 DOI: 10.1007/s12672-024-01672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma(HNSCC) is the sixth most common malignancy worldwide, with more than 890,000 new cases and 450,000 deaths annually. Its major risk factors include smoking, alcohol abuse, aging, and poor oral hygiene. Due to the lack of early and effective detection and screening methods, many patients are diagnosed at advanced stages with a five-year survival rate of less than 50%. In this study, we deeply explored the expression of Aging-related genes(ARGs) in HNSCC and analyzed their prognostic significance using single-cell sequencing and spatial transcriptomics analysis. This research aims to provide new theoretical support and directions for personalized treatment. Annually, more than 890,000 new cases of head and neck squamous cell carcinoma (HNSCC) are diagnosed globally, leading to 450,000 deaths, making it the sixth most common malignancy worldwide. The primary risk factors for HNSCC include smoking, alcohol abuse, aging, and poor oral hygiene. Many patients are diagnosed at advanced stages due to the absence of early and effective detection and screening methods, resulting in a five-year survival rate of less than 50%. In this research, single cell sequencing and spatial transcriptome analysis were used to investigate the expression of Aging-related genes (ARGs) in HNSCC and to analyse their prognostic significance. This research aims to provide new theoretical support and directions for personalized treatment. METHODS In this study, we investigated the association between HNSCC and AGRs by utilizing the GSE139324 series in the GEO database alongside the TCGA database, combined with single-cell sequencing and spatial transcriptomics analysis. The data were analyzed using Seurat and tSNE tools to reveal intercellular communication networks. For the spatial transcriptome data, SCTransform and RunPCA were applied to examine the metabolic activities of the cells. Gene expression differences were determined through spacerxr and RCTD tools, while the limma package was employed to identify differentially expressed genes and to predict recurrence rates using Cox regression analysis and column line plots. These findings underscore the potential importance of molecular classification, prognostic assessment, and personalized treatment of HNSCC. RESULTS This study utilized HNSCC single-cell sequencing data to highlight the significance of ARGs in the onset and prognosis of HNSCC. It revealed that the proportion of monocytes and macrophages increased, while the proportion of B cells decreased. Notably, high expression of the APOE gene in monocytes was closely associated with patient prognosis. Additionally, a Cox regression model was developed based on GSTP1 and age to provide personalized prediction tools for clinical use in predicting patient survival. CONCLUSIONS We utilized single-cell sequencing and spatial transcriptomics to explore the cellular characteristics of HNSCC and its interaction with the tumor microenvironment. Our findings reveal that HNSCC tissues show increased mononuclear cells and demonstrate enhanced activity in ARGs, thereby advancing our understanding of HNSCC development mechanisms.
Collapse
Affiliation(s)
- Yi Pei
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Zhuying Mou
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yuheng Gu
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Jie Min
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lingyi Sunzhang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Nan Xiong
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Xiang Xu
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
| | - Sinian Liu
- Department of Pathology, Xichong People's Hospital, Nanchong, 637200, China.
| | - Huiyan Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
| |
Collapse
|
33
|
Wakabayashi J, Hamaguchi T, Morifuji M, Nagata M. Nicotinamide mononucleotide suppresses cellular senescence and increases aquaporin 5 expression in the submandibular gland of aged male mice to ameliorate aging-related dry mouth. Biogerontology 2024; 26:18. [PMID: 39633075 DOI: 10.1007/s10522-024-10162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Dry mouth results from decreased saliva secretion due to aging or drug side effects. Decreased saliva secretion causes dryness in the oral cavity that makes swallowing difficult and increases the risk of aspiration pneumonia. There are few fundamental treatments for dry mouth. Here we investigated whether treatment of old mice with nicotinamide mononucleotide (NMN) improved factors associated with dry mouth. Young (16-week-old) and old (113-week-old) male mice were treated subcutaneously with saline or NMN (300 mg/kg) once every two days for four weeks and saliva secretion was measured. The amount of nicotinamide adenine dinucleotide (NAD+) in salivary gland tissues was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene expression in the intestinal tract and salivary glands was measured by real-time PCR. The population of cells with acetylation in the submandibular gland was quantified by immunohistological staining. SA-β-gal activity in the submandibular gland was measured to assess cell senescence. Statistical analysis was performed by one-way analysis of variance with Tukey post hoc analysis. The submandibular glands from old mice treated with NMN exhibited increased saliva secretion and NAD+ levels, which both decrease with aging. In addition, the submandibular glands from NMN-treated old mice had decreased acetylation, numbers of senescent cells, and levels of senescence-associated secretory phenotype (SASP) factors, which all increase with aging, as well as increased aquaporin5 (AQP5) mRNA expression. NMN administration may improve dry mouth by regulating cellular senescence in the submandibular gland and increasing expression of AQP5, a water channel involved in saliva secretion, to inhibit age-related decreases in saliva secretion. It is necessary to elucidate further mechanism and confirm its effectiveness in humans.
Collapse
Affiliation(s)
- Jun Wakabayashi
- Wellness Science Labs, Meiji Holdings Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Takahiro Hamaguchi
- Wellness Science Labs, Meiji Holdings Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Masashi Morifuji
- Wellness Science Labs, Meiji Holdings Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan.
| | - Masashi Nagata
- Wellness Science Labs, Meiji Holdings Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| |
Collapse
|
34
|
Schmid SM, Hoffman JM, Prescott J, Ernst H, Promislow DEL, Creevy KE. The companion dog as a model for inflammaging: a cross-sectional pilot study. GeroScience 2024; 46:5395-5407. [PMID: 38822125 PMCID: PMC11494019 DOI: 10.1007/s11357-024-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Inflammaging, the chronic, progressive proinflammatory state associated with aging, has been associated with multiple negative health outcomes in humans. The pathophysiology of inflammaging is complex; however, it is often characterized by high serum concentrations of inflammatory mediators such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and C-reactive protein (CRP). Few studies have evaluated the effects of age on inflammatory cytokines in companion dogs, and most of these studies included dogs of a single breed. In this cross-sectional study, we measured multiple circulating inflammatory markers and hematological parameters in banked serum samples from 47 healthy companion dogs of various breeds enrolled in the Dog Aging Project. Using univariate linear models, we investigated the association of each of these markers with age, sex, body weight, and body condition score (BCS), a measure of obesity in the dog. Serum IL-6, IL-8, and TNF-α concentrations were all positively associated with age. Lymphocyte count was negatively associated with age. Platelet count had a negative association with body weight. IL-2, albumin, cholesterol, triglyceride, bilirubin, S100A12, and NMH concentrations were not associated with age, weight, BCS, or sex after adjustment for multiple comparisons. Our findings replicate previous findings in humans, including increases in IL-6 and TNF-α with age, giving more evidence to the strength of the companion dog as a model for human aging.
Collapse
Affiliation(s)
- Sarah M Schmid
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
| | - Jessica M Hoffman
- Department of Biological Sciences, College of Science and Mathematics, Augusta University, Augusta, GA, USA
| | - Jena Prescott
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Holley Ernst
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Daniel E L Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
- Jean Mayer USDA Human Nutrition Research Center On Aging, Tufts University, Boston, MA, USA
| | - Kate E Creevy
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
35
|
Zhang X, He B, Lu J, Bao Q, Wang J, Yang Y. The crucial roles and research advances of cGAS‑STING pathway in liver diseases. Ann Med 2024; 56:2394588. [PMID: 39183465 PMCID: PMC11348815 DOI: 10.1080/07853890.2024.2394588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammation responses have identified as a key mediator of in various liver diseases with high morbidity and mortality. cGAS-STING signalling is essential in innate immunity since it triggers release of type I interferons and various of proinflammatory cytokines. The potential connection between cGAS-STING pathway and liver inflammatory diseases has recently been reported widely. In our review, the impact of cGAS-STING on liver inflammation and regulatory mechanism are summarized. Furthermore, many inhibitors of cGAS-STING signalling as promising agents to cure liver inflammation are also explored in detail. A comprehensive knowledge of molecular mechanisms of cGAS-STING signalling in liver inflammation is vital for exploring novel treatments and providing recommendations and perspectives for future utilization.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Wei M, Li Q, Li S, Wang D, Wang Y. Multifaceted roles of cGAS-STING pathway in the lung cancer: from mechanisms to translation. PeerJ 2024; 12:e18559. [PMID: 39588006 PMCID: PMC11587877 DOI: 10.7717/peerj.18559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Lung cancer (LC) remains one of the most prevalent and lethal malignancies globally, with a 5-year survival rate for advanced cases persistently below 10%. Despite the significant advancements in immunotherapy, a substantial proportion of patients with advanced LC fail to respond effectively to these treatments, highlighting an urgent need for novel immunotherapeutic targets. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has gained prominence as a potential target for improving LC immunotherapy due to its pivotal role in enhancing anti-tumor immune responses, augmenting tumor antigen presentation, and promoting T cell infiltration. However, emerging evidence also suggests that the cGAS-STING pathway may have pro-tumorigenic effects in the context of LC. This review aims to provide a comprehensive analysis of the cGAS-STING pathway, including its biological composition, activation mechanisms, and physiological functions, as well as its dual roles in LC and the current and emerging LC treatment strategies that target the pathway. By addressing these aspects, we intend to highlight the potential of the cGAS-STING pathway as a novel immunotherapeutic target, while also considering the challenges and future directions for its clinical application.
Collapse
Affiliation(s)
- Mingming Wei
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhou Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shengrong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Chen XQ, Yang Q, Chen WM, Chen ZW, Guo GH, Zhang X, Sun XM, Shen T, Xiao FH, Li YF. Dual Role of Lysosome in Cancer Development and Progression. FRONT BIOSCI-LANDMRK 2024; 29:393. [PMID: 39614447 DOI: 10.31083/j.fbl2911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 12/01/2024]
Abstract
Lysosomes are essential intracellular catabolic organelles that contain digestive enzymes involved in the degradation and recycle of damaged proteins, organelles, etc. Thus, they play an important role in various biological processes, including autophagy regulation, ion homeostasis, cell death, cell senescence. A myriad of studies has shown that the dysfunction of lysosome is implicated in human aging and various age-related diseases, including cancer. However, what is noteworthy is that the modulation of lysosome-based signaling and degradation has both the cancer-suppressive and cancer-promotive functions in diverse cancers depending on stage, biology, or tumor microenvironment. This dual role limits their application as targets in cancer therapy. In this review, we provide an overview of lysosome and autophagy-lysosomal pathway and outline their critical roles in many cellular processes, including cell death. We highlight the different functions of autophagy-lysosomal pathway in cancer development and progression, underscoring its potential as a target for effective cancer therapies.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Quan Yang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Wei-Min Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Zi-Wei Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Guang-Hui Guo
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xuan Zhang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xiao-Ming Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650000 Kunming, Yunnan, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| |
Collapse
|
38
|
Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the progression of liver fibrosis. Biogerontology 2024; 26:10. [PMID: 39546058 DOI: 10.1007/s10522-024-10153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Ageing is an inevitable and multifaceted biological process that impacts a wide range of cellular and molecular mechanisms, leading to the development of various diseases, such as liver fibrosis. Liver fibrosis progresses to cirrhosis, which is an advanced form due to high amounts of extracellular matrix and restoration of normal liver structure with failure to repair damaged tissue and cells, marking the end of liver function and total liver failure, ultimately death. The most important factors are reactive oxygen species (ROS) and cellular senescence. Oxidative stress is defined as an impairment by ROS, which are by-products of the mitochondrial electron transport chain and other key molecular pathways that induce cell damage and can activate cellular senescence pathways. Cellular senescence is characterized by pro-inflammatory cytokines, growth factors, and proteases secreted by senescent cells, collectively known as the senescence-associated secretory phenotype (SASP). The presence of senescent cells, which disrupt tissue architecture and function and increase senescent cell production in liver tissues, contributes to fibrogenesis. Hepatic stellate cells (HSCs) are activated in response to chronic liver injury, oxidative stress, and senescence signals that drive excessive production and deposition of extracellular matrix. This review article aims to provide a comprehensive overview of the pathogenic role of ROS and cellular senescence in the aging liver and their contribution to fibrosis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Abha, Aseer, Saudi Arabia.
| |
Collapse
|
39
|
Wang Y, Cao X, Yang C, Fan J, Zhang X, Wu X, Guo W, Sun S, Liu M, Zhang L, Li T. Ferroptosis and immunosenescence in colorectal cancer. Semin Cancer Biol 2024; 106-107:156-165. [PMID: 39419366 DOI: 10.1016/j.semcancer.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Colorectal cancer (CRC), ranked as the globe's third leading malignancy. Despite advancements in therapeutic approaches, the mortality rate remains distressingly high for those afflicted with advanced stages of the disease. Ferroptosis is a programmed form of cell death. The ways of ferroptosis mainly include promoting the accumulation of cellular ROS and increasing the level of cellular Labile iron pool (LIP). Immunosenescence is characterized by a gradual deterioration of the immune system's ability to respond to pathogens and maintain surveillance against cancer cells. In CRC, this decline is exacerbated by the tumor microenvironment, which can suppress the immune response and promote tumor progression. This paper reviews the relationship between iron prolapse and immune senescence in colorectal cancer, focusing on the following aspects: firstly, the different pathways that induce iron prolapse in colorectal cancer; secondly, immune-immune senescence in colorectal cancer; and lastly, the interactions between immune senescence and iron prolapse in colorectal cancer, e.g., immune-immune senescent cells often exhibit increased oxidative stress, leading to the accumulation of ROS, and consequently to lipid peroxidation and induction of iron-induced cell death. At the same time, ferroptosis induces immune cell senescence as well as alterations in the immune microenvironment by promoting the death of damaged or diseased cells and leading to the inflammation usually associated with it. In conclusion, by exploring the potential targets of ferroptosis and immune senescence in colorectal cancer therapy, we hope to provide a reference for future research.
Collapse
Affiliation(s)
- Yao Wang
- Inpatient ward 8, General Surgery, Harbin Medical University Affiliated Second Hospital, Harbin 150000, China
| | - Xinran Cao
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Chunbaixue Yang
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Jianchun Fan
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Hebei 075000, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China.
| | - Xueliang Wu
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Hebei 075000, China; Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Shoutian Sun
- Department of Emergency, Zibo Central Hospital, Zibo 255024, China.
| | - Ming Liu
- General Surgery, Harbin Medical University Affiliated Fourth Hospital, Harbin 150000, China.
| | - Lifen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
40
|
Kusaba A, Tago E, Kusaba H, Kawasumi K. Study of age-related changes in plasma metabolites and enzyme activity of healthy small dogs that underwent medical checkups. Front Vet Sci 2024; 11:1437805. [PMID: 39512918 PMCID: PMC11541835 DOI: 10.3389/fvets.2024.1437805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction In Japan, the importance of medical checkups for pet dogs is increasing. In this study, we retrospectively explored the effects of age on plasma biomarkers in healthy small dogs that underwent medical checkups. Methods Based on the modified American Animal Hospital Association Canine Life Stage Guidelines, 52 healthy small dogs were divided into 3 groups according to their life stage: young adult (1-4 years old), mature adult (5-11 years old), senior (12-15 years old). None of the dogs were obese. Plasma was collected from animals that underwent medical checkups at Muromi Animal Hospital (Fukuoka, Japan). Plasma glucose, triglyceride (TG), total protein, blood urea nitrogen (BUN), creatinine, total cholesterol, and albumin concentrations; alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase (ALP) activities; c-reactive protein (CRP), non-esterified fatty acid, malondialdehyde (MDA), serum amyloid A (SAA), insulin, and adiponectin (ADN) concentrations; glutathione peroxidase (GPx), superoxide dismutase (SOD), malate dehydrogenase (MDH), and lactate dehydrogenase (LDH) activities; and M/L ratio (MDH/LDH) were examined. Changes in the abovementioned plasma biomarker levels were compared between canines in different life stages. Results Plasma ADN concentrations and GPx, SOD, and MDH activities significantly decreased with age, whereas plasma ALP, BUN, TG, and MDA concentrations gradually increased. Plasma SAA levels measured by the latex agglutination method in 51 of the 52 small dogs that underwent medical checkups were below the detection limit. Conclusion Plasma ADN concentrations, GPx, SOD activity, and BUN levels may be important biomarkers for clarifying the effect of age in healthy dogs that undergo medical checkups. However, plasma SAA values obtained by the latex agglutination method were not considered an age-related inflammation marker for healthy dogs.
Collapse
Affiliation(s)
- Akio Kusaba
- Laboratory of Veterinary Biochemistry, Nippon Veterinary and Life Science University, Musashino, Japan
- Muromi Animal Hospital, Fukuoka, Japan
| | - Erika Tago
- Laboratory of Veterinary Biochemistry, Nippon Veterinary and Life Science University, Musashino, Japan
| | | | - Koh Kawasumi
- Laboratory of Veterinary Biochemistry, Nippon Veterinary and Life Science University, Musashino, Japan
| |
Collapse
|
41
|
Moon H, Jeong D, Choi JW, Jeong S, Kim H, Song BW, Lim S, Kim IK, Lee S, Kim SW. Microplastic exposure linked to accelerated aging and impaired adipogenesis in fat cells. Sci Rep 2024; 14:23920. [PMID: 39397046 PMCID: PMC11471870 DOI: 10.1038/s41598-024-74892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Our research explores the detrimental effects of microplastic (MP) exposure on adipose tissue aging and function, emphasizing the potential health risks associated with environmental pollutants. Utilizing both in vivo and in vitro models, we discovered that MPs accumulate in adipose tissues, leading to cellular senescence, inflammation, and hindered adipogenic differentiation. Notably, our findings demonstrate that MPs prompt an aging response in both epididymal and inguinal white adipose tissue, increase senescence-associated β-galactosidase activity, and upregulate key senescence and inflammatory markers. Furthermore, we show that MPs disrupt normal adipogenic differentiation by reducing lipid droplet formation and downregulating critical adipogenic markers. These insights highlight the urgent need for further investigation into the long-term consequences of MP pollution on biological aging and underscore the importance of developing public health strategies to mitigate these effects.
Collapse
Affiliation(s)
- Hanbyeol Moon
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Damin Jeong
- College of Medicine, Catholic Kwandong University, Gangneung-si, 25601, Gangwon-do, South Korea
| | - Jung-Won Choi
- Department of Convergence Science, International St. Mary's Hospital, Catholic Kwandong University, Incheon Metropolitan City, 22711, South Korea
| | - Seongtae Jeong
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hojin Kim
- Department for Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, 25601, Republic of Korea
| | - Byeong-Wook Song
- College of Medicine, Catholic Kwandong University, Gangneung-si, 25601, Gangwon-do, South Korea
- Department of Convergence Science, International St. Mary's Hospital, Catholic Kwandong University, Incheon Metropolitan City, 22711, South Korea
| | - Soyeon Lim
- College of Medicine, Catholic Kwandong University, Gangneung-si, 25601, Gangwon-do, South Korea
- Department of Convergence Science, International St. Mary's Hospital, Catholic Kwandong University, Incheon Metropolitan City, 22711, South Korea
| | - Il-Kwon Kim
- College of Medicine, Catholic Kwandong University, Gangneung-si, 25601, Gangwon-do, South Korea
- Department of Convergence Science, International St. Mary's Hospital, Catholic Kwandong University, Incheon Metropolitan City, 22711, South Korea
| | - Seahyoung Lee
- College of Medicine, Catholic Kwandong University, Gangneung-si, 25601, Gangwon-do, South Korea
- Department of Convergence Science, International St. Mary's Hospital, Catholic Kwandong University, Incheon Metropolitan City, 22711, South Korea
| | - Sang Woo Kim
- College of Medicine, Catholic Kwandong University, Gangneung-si, 25601, Gangwon-do, South Korea.
- Department of Convergence Science, International St. Mary's Hospital, Catholic Kwandong University, Incheon Metropolitan City, 22711, South Korea.
| |
Collapse
|
42
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
43
|
Grunwell JR, Huang M, Stephenson ST, Tidwell M, Ripple MJ, Fitzpatrick AM, Kamaleswaran R. RNA Sequencing Analysis of Monocytes Exposed to Airway Fluid From Children With Pediatric Acute Respiratory Distress Syndrome. Crit Care Explor 2024; 6:e1125. [PMID: 39365167 PMCID: PMC11458172 DOI: 10.1097/cce.0000000000001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVES Monocytes are plastic cells that assume different polarization states that can either promote inflammation or tissue repair and inflammation resolution. Polarized monocytes are partially defined by their transcriptional profiles that are influenced by environmental stimuli. The airway monocyte response in pediatric acute respiratory distress syndrome (PARDS) is undefined. To identify differentially expressed genes and networks using a novel transcriptomic reporter assay with donor monocytes exposed to the airway fluid of intubated children with and at-risk for PARDS. To determine differences in gene expression at two time points using the donor monocyte assay exposed to airway fluid from intubated children with PARDS obtained 48-96 hours following initial tracheal aspirate sampling. DESIGN In vitro pilot study carried out using airway fluid supernatant. SETTING Academic 40-bed PICU. PARTICIPANTS Fifty-seven children: 44 children with PARDS and 13 children at-risk for PARDS. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We performed bulk RNA sequencing using a transcriptomic reporter assay of monocytes exposed to airway fluid from intubated children to discover gene networks differentiating PARDS from at-risk for PARDS and those differentiating mild/moderate from severe PARDS. We also report differences in gene expression in children with PARDS 48-96 hours following initial tracheal aspirate sampling. We found that interleukin (IL)-10, IL-4, and IL-13, cytokine/chemokine signaling, and the senescence-associated secretory phenotype are upregulated in monocytes exposed to airway fluid from intubated children with PARDS compared with those at-risk for PARDS. Signaling by NOTCH, histone deacetylation/acetylation, DNA methylation, chromatin modifications (B-WICH complex), and RNA polymerase I transcription and its associated regulatory apparatus were upregulated in children with PARDS 48-96 hours following initial tracheal aspirate sampling. CONCLUSIONS We identified gene networks important to the PARDS airway immune response using bulk RNA sequencing from a monocyte reporter assay that exposed monocytes to airway fluid from intubated children with and at-risk for PARDS. Mechanistic investigations are needed to validate our findings.
Collapse
Affiliation(s)
- Jocelyn R. Grunwell
- Department of Pediatrics/Division of Critical Care Medicine, Egleston Hospital, Children’s Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Min Huang
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
| | | | - Mallory Tidwell
- Department of Pediatrics/Division of Critical Care Medicine, Egleston Hospital, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Michael J. Ripple
- Department of Pediatrics/Division of Critical Care Medicine, Egleston Hospital, Children’s Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Anne M. Fitzpatrick
- Department of Pediatrics/Division of Critical Care Medicine, Egleston Hospital, Children’s Healthcare of Atlanta, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Rishikesan Kamaleswaran
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
44
|
Nunes-Oliveira AC, Tempaku PF, Tufik S, Oliveira ACD, D'Almeida V. Cellular senescence and sleep in childhood and adolescence: A scoping review focusing on sleep-disordered breathing. Sleep Med 2024; 122:134-140. [PMID: 39173209 DOI: 10.1016/j.sleep.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Sleep is a fundamental and complex physiological process whose duration decreases and characteristics change with age. Around 50 % of children will experience sleep disturbances at some point in their early life. Sleep disturbances can result in a number of deleterious consequences, including alterations in the levels of cellular senescence (CS) markers. CS is a complex process essential for homeostasis characterized by the irreversible loss of cell proliferation capacity; however, the accumulation of senescent cells can lead to age-related diseases. OBJECTIVE In this review, our objective was to gather information about the relationship between sleep duration, sleep-disordered breathing (SDB) and cellular senescence markers, namely: oxidative stress, inflammation, insulin-like growth factor 1 (IGF-1), and growth hormone (GH) in newborns, children, and teenagers. METHODS To achieve this, we searched six databases: MEDLINE, Scopus, LILACS, Web of Science, Embase, and SciELO, and identified 20 articles that met our inclusion criteria. RESULTS Our results show that better sleep quality and duration and, both the surgical and non-surgical treatment of sleep disorders are associated with a reduction in oxidative stress, inflammation, and telomeric attrition levels. Furthermore, our results also show that surgical treatment for SDB significantly reduced the levels of cellular senescence markers. Further studies need to be conducted in this area, particularly longitudinal studies, for a greater understanding of the mechanisms involved in the relationship between sleep and senescence. CONCLUSION Better sleep quality and duration were associated with less oxidative stress, inflammation, and telomeric attrition and a higher level of IGF-1 in children and teenagers.
Collapse
Affiliation(s)
- Ana Carolina Nunes-Oliveira
- Department of Psychobiology, Escola Paulista de Medicina - EPM/Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil.
| | - Priscila Farias Tempaku
- Department of Psychobiology, Escola Paulista de Medicina - EPM/Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil.
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil and Sleep Institute, São Paulo, Brazil.
| | - Allan Chiaratti de Oliveira
- Department of Pediatrics, Escola Paulista de Medicina - EPM/Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil.
| | - Vânia D'Almeida
- Department of Psychobiology and Department of Pediatrics, Escola Paulista de Medicina - EPM/Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil.
| |
Collapse
|
45
|
Teng M, Wu TJ, Jing X, Day BW, Pritchard KA, Naylor S, Teng RJ. Temporal Dynamics of Oxidative Stress and Inflammation in Bronchopulmonary Dysplasia. Int J Mol Sci 2024; 25:10145. [PMID: 39337630 PMCID: PMC11431892 DOI: 10.3390/ijms251810145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common lung complication of prematurity. Despite extensive research, our understanding of its pathophysiology remains limited, as reflected by the stable prevalence of BPD. Prematurity is the primary risk factor for BPD, with oxidative stress (OS) and inflammation playing significant roles and being closely linked to premature birth. Understanding the interplay and temporal relationship between OS and inflammation is crucial for developing new treatments for BPD. Animal studies suggest that OS and inflammation can exacerbate each other. Clinical trials focusing solely on antioxidants or anti-inflammatory therapies have been unsuccessful. In contrast, vitamin A and caffeine, with antioxidant and anti-inflammatory properties, have shown some efficacy, reducing BPD by about 10%. However, more than one-third of very preterm infants still suffer from BPD. New therapeutic agents are needed. A novel tripeptide, N-acetyl-lysyltyrosylcysteine amide (KYC), is a reversible myeloperoxidase inhibitor and a systems pharmacology agent. It reduces BPD severity by inhibiting MPO, enhancing antioxidative proteins, and alleviating endoplasmic reticulum stress and cellular senescence in a hyperoxia rat model. KYC represents a promising new approach to BPD treatment.
Collapse
Affiliation(s)
- Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Tzong-Jin Wu
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Billy W. Day
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Kirkwood A. Pritchard
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (M.T.); (T.-J.W.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| |
Collapse
|
46
|
Jiang H, Wang GT, Wang Z, Ma QY, Ma ZH. Resveratrol inhibits pancreatic cancer proliferation and metastasis by depleting senescent tumor-associated fibroblasts. World J Gastrointest Oncol 2024; 16:3980-3993. [PMID: 39350997 PMCID: PMC11438786 DOI: 10.4251/wjgo.v16.i9.3980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Pancreatic cancer, a formidable gastrointestinal neoplasm, is characterized by its insidious onset, rapid progression, and resistance to treatment, which often lead to a grim prognosis. While the complex pathogenesis of pancreatic cancer is well recognized, recent attention has focused on the oncogenic roles of senescent tumor-associated fibroblasts. However, their precise role in pancreatic cancer remains unknown. Resveratrol is a natural polyphenol known for its multifaceted biological actions, including antioxidative and neuroprotective properties, as well as its potential to inhibit tumor proliferation and migration. Our current investigation builds on prior research and reveals the remarkable ability of resveratrol to inhibit pancreatic cancer proliferation and metastasis. AIM To explore the potential of resveratrol in inhibiting pancreatic cancer by targeting senescent tumor-associated fibroblasts. METHODS Immunofluorescence staining of pancreatic cancer tissues revealed prominent coexpression of α-SMA and p16. HP-1 expression was determined using immunohistochemistry. Cells were treated with the senescence-inducing factors known as 3CKs. Long-term growth assays confirmed that 3CKs significantly decreased the CAF growth rate. Western blotting was conducted to assess the expression levels of p16 and p21. Immunofluorescence was performed to assess LaminB1 expression. Quantitative real-time polymerase chain reaction was used to measure the levels of several senescence-associated secretory phenotype factors, including IL-4, IL-6, IL-8, IL-13, MMP-2, MMP-9, CXCL1, and CXCL12. A scratch assay was used to assess the migratory capacity of the cells, whereas Transwell assays were used to evaluate their invasive potential. RESULTS Specifically, we identified the presence of senescent tumor-associated fibroblasts within pancreatic cancer tissues, linking their abundance to cancer progression. Intriguingly, Resveratrol effectively eradicated these fibroblasts and hindered their senescence, which consequently impeded pancreatic cancer progression. CONCLUSION This groundbreaking discovery reinforces Resveratrol's stature as a potential antitumor agent and positions senescent tumor-associated fibroblasts as pivotal contenders in future therapeutic strategies against pancreatic cancer.
Collapse
Affiliation(s)
- He Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Guo-Tai Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Qing-Yong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhen-Hua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
47
|
Lee EJ, Kim SJ, Jeon SY, Chung S, Park SE, Kim J, Choi SJ, Oh SY, Ryu GH, Jeon HB, Chang JW. Glutaminase-1 inhibition alleviates senescence of Wharton's jelly-derived mesenchymal stem cells via senolysis. Stem Cells Transl Med 2024; 13:873-885. [PMID: 39120480 PMCID: PMC11386220 DOI: 10.1093/stcltm/szae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
Replicative senescence of mesenchymal stem cells (MSCs) caused by repeated cell culture undermines their potential as a cell therapy because of the reduction in their proliferation and therapeutic potential. Glutaminase-1 (GLS1) is reported to be involved in the survival of senescent cells, and inhibition of GLS1 alleviates age-related dysfunction via senescent cell removal. In the present study, we attempted to elucidate the association between MSC senescence and GLS1. We conducted in vitro and in vivo experiments to analyze the effect of GLS1 inhibition on senolysis and the therapeutic effects of MSCs. Inhibition of GLS1 in Wharton's jelly-derived MSCs (WJ-MSCs) reduced the expression of aging-related markers, such as p16, p21, and senescence-associated secretory phenotype genes, by senolysis. Replicative senescence-alleviated WJ-MSCs, which recovered after short-term treatment with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES), showed increased proliferation and therapeutic effects compared to those observed with senescent WJ-MSCs. Moreover, compared to senescent WJ-MSCs, replicative senescence-alleviated WJ-MSCs inhibited apoptosis in serum-starved C2C12 cells, enhanced muscle formation, and hindered apoptosis and fibrosis in mdx mice. These results imply that GLS1 inhibition can ameliorate the therapeutic effects of senescent WJ-MSCs in patients with muscle diseases such as Duchenne muscular dystrophy. In conclusion, GLS1 is a key factor in modulating the senescence mechanism of MSCs, and regulation of GLS1 may enhance the therapeutic effects of senescent MSCs, thereby increasing the success rate of clinical trials involving MSCs.
Collapse
Affiliation(s)
- Eun Joo Lee
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sun Jeong Kim
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Su Yeon Jeon
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soobeen Chung
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sang Eon Park
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jae‑Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139706, Republic of Korea
- Radiological and Medico‑Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Gyu Ha Ryu
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
- The Office of R&D Strategy & Planning, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hong Bae Jeon
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
| | - Jong Wook Chang
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| |
Collapse
|
48
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv Biol (Weinh) 2024; 8:e2400079. [PMID: 38935557 DOI: 10.1002/adbi.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Population aging has increased the global prevalence of aging-related diseases, including cancer, sarcopenia, neurological disease, arthritis, and heart disease. Understanding aging, a fundamental biological process, has led to breakthroughs in several fields. Cellular senescence, evinced by flattened cell bodies, vacuole formation, and cytoplasmic granules, ubiquitously plays crucial roles in tissue remodeling, embryogenesis, and wound repair as well as in cancer therapy and aging. The lack of universal biomarkers for detecting and quantifying senescent cells, in vitro and in vivo, constitutes a major limitation. The applications and limitations of major senescence biomarkers, including senescence-associated β-galactosidase staining, telomere shortening, cell-cycle arrest, DNA methylation, and senescence-associated secreted phenotypes are discussed. Furthermore, explore senotherapeutic approaches for aging-associated diseases and cancer. In addition to the conventional biomarkers, this review highlighted the in vitro, in vivo, and disease models used for aging studies. Further, technologies from the current decade including multi-omics and computational methods used in the fields of senescence and aging are also discussed in this review. Understanding aging-associated biological processes by using cellular senescence biomarkers can enable therapeutic innovation and interventions to improve the quality of life of older adults.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon, 34054, Republic of Korea
| |
Collapse
|
49
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
50
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|