1
|
Kuiper JWP, Gregg HL, Schüber M, Klein J, Hauck CR. Controling the cytoskeleton during CEACAM3-mediated phagocytosis. Eur J Cell Biol 2024; 103:151384. [PMID: 38215579 DOI: 10.1016/j.ejcb.2024.151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
Collapse
Affiliation(s)
| | - Helena L Gregg
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Meike Schüber
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Jule Klein
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, Germany.
| |
Collapse
|
2
|
Joo V, Petrovas C, de Leval L, Noto A, Obeid M, Fenwick C, Pantaleo G. A CD64/FcγRI-mediated mechanism hijacks PD-1 from PD-L1/2 interaction and enhances anti-PD-1 functional recovery of exhausted T cells. Front Immunol 2023; 14:1213375. [PMID: 37622123 PMCID: PMC10446174 DOI: 10.3389/fimmu.2023.1213375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAb) targeting the immune checkpoint inhibitor programmed cell death protein 1 (PD-1) have achieved considerable clinical success in anti-cancer therapy through relieving T cell exhaustion. Blockade of PD-1 interaction with its ligands PD-L1 and PD-L2 is an important determinant in promoting the functional recovery of exhausted T cells. Here, we show that anti-PD-1 mAbs act through an alternative mechanism leading to the downregulation of PD-1 surface expression on memory CD4+ and CD8+ T cells. PD-1 receptor downregulation is a distinct process from receptor endocytosis and occurs in a CD14+ monocyte dependent manner with the CD64/Fcγ receptor I acting as the primary factor for this T cell extrinsic process. Importantly, downregulation of surface PD-1 strongly enhances antigen-specific functional recovery of exhausted PD-1+CD8+ T cells. Our study demonstrates a novel mechanism for reducing cell surface levels of PD-1 and limiting the inhibitory targeting by PD-L1/2 and thereby enhancing the efficacy of anti-PD-1 Ab in restoring T cell functionality.
Collapse
Affiliation(s)
- Victor Joo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Constantinos Petrovas
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Michel Obeid
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Odfalk KF, Bieniek KF, Hopp SC. Microglia: Friend and foe in tauopathy. Prog Neurobiol 2022; 216:102306. [PMID: 35714860 PMCID: PMC9378545 DOI: 10.1016/j.pneurobio.2022.102306] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022]
Abstract
Aggregation of misfolded microtubule associated protein tau into abnormal intracellular inclusions defines a class of neurodegenerative diseases known as tauopathies. The consistent spatiotemporal progression of tau pathology in Alzheimer's disease (AD) led to the hypothesis that tau aggregates spread in the brain via bioactive tau "seeds" underlying advancing disease course. Recent studies implicate microglia, the resident immune cells of the central nervous system, in both negative and positive regulation of tau pathology. Polymorphisms in genes that alter microglial function are associated with the development of AD and other tauopathies. Experimental manipulation of microglia function can alter tau pathology and microglia-mediated neuroinflammatory cascades can exacerbate tau pathology. Microglia also exert protective functions by mitigating tau spread: microglia internalize tau seeds and have the capacity to degrade them. However, when microglia fail to degrade these tau seeds there are deleterious consequences, including secretion of exosomes containing tau that can spread to neurons. This review explores the intersection of microglia and tau from the perspective of neuropathology, neuroimaging, genetics, transcriptomics, and molecular biology. As tau-targeted therapies such as anti-tau antibodies advance through clinical trials, it is critical to understand the interaction between tau and microglia.
Collapse
Affiliation(s)
- Kristian F Odfalk
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pathology and Laboratory Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Sarah C Hopp
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Aoyama M, Tada M, Yokoo H, Demizu Y, Ishii-Watabe A. Fcγ Receptor-Dependent Internalization and Off-Target Cytotoxicity of Antibody-Drug Conjugate Aggregates. Pharm Res 2021; 39:89-103. [PMID: 34961908 PMCID: PMC8837541 DOI: 10.1007/s11095-021-03158-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Purpose Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs’ function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells. Methods The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay. Results Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions. Conclusions These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-021-03158-x.
Collapse
Affiliation(s)
- Michihiko Aoyama
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
5
|
Nawab DH. Vaccinal antibodies: Fc antibody engineering to improve the antiviral antibody response and induce vaccine-like effects. Hum Vaccin Immunother 2021; 17:5532-5545. [PMID: 34844516 PMCID: PMC8903937 DOI: 10.1080/21645515.2021.1985891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/21/2021] [Indexed: 10/19/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic highlights the urgent clinical need for efficient virus therapies and vaccines. Although the functional importance of antibodies is indisputable in viral infections, there are still significant unmet needs that require vast improvements in antibody-based therapeutics. The IgG Fc domain can be engineered to produce antibodies with tailored and potent responses that will meet these clinical demands. Engaging Fc receptors (FcRs) to perform effector functions as cytotoxicity, phagocytosis, complement activation, intracellular neutralization and controlling antibody persistence. Furthermore, it produces vaccine-like effects by activating signals to stimulate T-cell responses, have proven to be required for protection, as neutralization alone does not off the full protection capacity of antibodies. This review highlights antiviral Fc functions and FcRs' contributions in linking innate and adaptive immunity against viral threats. Moreover, it provides the latest Fc engineering strategies to improve the safety and efficacy of human antiviral antibodies and vaccines.
Collapse
Affiliation(s)
- Dhuha H Nawab
- Pharmacy Department, Ministry of Health, Saudi Arabia
| |
Collapse
|
6
|
Geyer CE, Mes L, Newling M, den Dunnen J, Hoepel W. Physiological and Pathological Inflammation Induced by Antibodies and Pentraxins. Cells 2021; 10:1175. [PMID: 34065953 PMCID: PMC8150799 DOI: 10.3390/cells10051175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages play a key role in induction of inflammatory responses. These inflammatory responses are mostly considered to be instigated by activation of pattern recognition receptors (PRRs) or cytokine receptors. However, recently it has become clear that also antibodies and pentraxins, which can both activate Fc receptors (FcRs), induce very powerful inflammatory responses by macrophages that can even be an order of magnitude greater than PRRs. While the physiological function of this antibody-dependent inflammation (ADI) is to counteract infections, undesired activation or over-activation of this mechanism will lead to pathology, as observed in a variety of disorders, including viral infections such as COVID-19, chronic inflammatory disorders such as Crohn's disease, and autoimmune diseases such as rheumatoid arthritis. In this review we discuss how physiological ADI provides host defense by inducing pathogen-specific immunity, and how erroneous activation of this mechanism leads to pathology. Moreover, we will provide an overview of the currently known signaling and metabolic pathways that underlie ADI, and how these can be targeted to counteract pathological inflammation.
Collapse
Affiliation(s)
- Chiara Elisabeth Geyer
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lynn Mes
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Melissa Newling
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
8
|
Tay MZ, Wiehe K, Pollara J. Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Front Immunol 2019; 10:332. [PMID: 30873178 PMCID: PMC6404786 DOI: 10.3389/fimmu.2019.00332] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Antiviral activities of antibodies may either be dependent only on interactions between the antibody and cognate antigen, as in binding and neutralization of an infectious virion, or instead may require interactions between antibody-antigen immune complexes and immunoproteins or Fc receptor expressing immune effector cells. These Fc receptor-dependent antibody functions provide a direct link between the innate and adaptive immune systems by combining the potent antiviral activity of innate effector cells with the diversity and specificity of the adaptive humoral response. The Fc receptor-dependent function of antibody-dependent cellular phagocytosis (ADCP) provides mechanisms for clearance of virus and virus-infected cells, as well as for stimulation of downstream adaptive immune responses by facilitating antigen presentation, or by stimulating the secretion of inflammatory mediators. In this review, we discuss the properties of Fc receptors, antibodies, and effector cells that influence ADCP. We also provide and interpret evidence from studies that support a potential role for ADCP in either inhibiting or enhancing viral infection. Finally, we describe current approaches used to measure antiviral ADCP and discuss considerations for the translation of studies performed in animal models. We propose that additional investigation into the role of ADCP in protective viral responses, the specific virus epitopes targeted by ADCP antibodies, and the types of phagocytes and Fc receptors involved in ADCP at sites of virus infection will provide insight into strategies to successfully leverage this important immune response for improved antiviral immunity through rational vaccine design.
Collapse
Affiliation(s)
- Matthew Zirui Tay
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Justin Pollara
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
9
|
Patel KR, Roberts JT, Barb AW. Multiple Variables at the Leukocyte Cell Surface Impact Fc γ Receptor-Dependent Mechanisms. Front Immunol 2019; 10:223. [PMID: 30837990 PMCID: PMC6382684 DOI: 10.3389/fimmu.2019.00223] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Fc γ receptors (FcγR) expressed on the surface of human leukocytes bind clusters of immunoglobulin G (IgG) to induce a variety of responses. Many therapeutic antibodies and vaccine-elicited antibodies prevent or treat infectious diseases, cancers and autoimmune disorders by binding FcγRs, thus there is a need to fully define the variables that impact antibody-induced mechanisms to properly evaluate candidate therapies and design new intervention strategies. A multitude of factors influence the IgG-FcγR interaction; one well-described factor is the differential affinity of the six distinct FcγRs for the four human IgG subclasses. However, there are several other recently described factors that may prove more relevant for disease treatment. This review covers recent reports of several aspects found at the leukocyte membrane or outside the cell that contribute to the cell-based response to antibody-coated targets. One major focus is recent reports covering post-translational modification of the FcγRs, including asparagine-linked glycosylation. This review also covers the organization of FcγRs at the cell surface, and properties of the immune complex. Recent technical advances provide high-resolution measurements of these often-overlooked variables in leukocyte function and immune system activation.
Collapse
Affiliation(s)
- Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
Schweig JE, Yao H, Beaulieu-Abdelahad D, Ait-Ghezala G, Mouzon B, Crawford F, Mullan M, Paris D. Alzheimer's disease pathological lesions activate the spleen tyrosine kinase. Acta Neuropathol Commun 2017; 5:69. [PMID: 28877763 PMCID: PMC5588676 DOI: 10.1186/s40478-017-0472-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/17/2023] Open
Abstract
The pathology of Alzheimer’s disease (AD) is characterized by dystrophic neurites (DNs) surrounding extracellular Aβ-plaques, microgliosis, astrogliosis, intraneuronal tau hyperphosphorylation and aggregation. We have previously shown that inhibition of the spleen tyrosine kinase (Syk) lowers Aβ production and tau hyperphosphorylation in vitro and in vivo. Here, we demonstrate that Aβ-overexpressing Tg PS1/APPsw, Tg APPsw mice, and tau overexpressing Tg Tau P301S mice exhibit a pathological activation of Syk compared to wild-type littermates. Syk activation is occurring in a subset of microglia and is age-dependently increased in Aβ-plaque-associated dystrophic neurites of Tg PS1/APPsw and Tg APPsw mice. In Tg Tau P301S mice, a pure model of tauopathy, activated Syk occurs in neurons that show an accumulation of misfolded and hyperphosphorylated tau in the cortex and hippocampus. Interestingly, the tau pathology is exacerbated in neurons that display high levels of Syk activation supporting a role of Syk in the formation of tau pathological species in vivo. Importantly, human AD brain sections show both pathological Syk activation in DNs around Aβ deposits and in neurons immunopositive for pathological tau species recapitulating the data obtained in transgenic mouse models of AD. Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aβ deposition and the formation of tau pathological species. Given that we have previously shown that Syk activation also promotes Aβ formation and tau hyperphosphorylation, our data suggest that AD pathological lesions may be self-propagating via a Syk dependent mechanism highlighting Syk as an attractive therapeutic target for the treatment of AD.
Collapse
|
11
|
Messina M, Rogero MM, Fisberg M, Waitzberg D. Health impact of childhood and adolescent soy consumption. Nutr Rev 2017; 75:500-515. [PMID: 28838083 DOI: 10.1093/nutrit/nux016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Soyfoods have been intensely researched, primarily because they provide such abundant amounts of isoflavones. Isoflavones are classified as both plant estrogens and selective estrogen receptor modulators. Evidence suggests that these soybean constituents are protective against a number of chronic diseases, but they are not without controversy. In fact, because soyfoods contain such large amounts of isoflavones, concerns have arisen that these foods may cause untoward effects in some individuals. There is particular interest in understanding the effects of isoflavones in young people. Relatively few studies involving children have been conducted, and many of those that have are small in size. While the data are limited, evidence suggests that soy does not exert adverse hormonal effects in children or affect pubertal development. On the other hand, there is intriguing evidence indicating that when soy is consumed during childhood and/or adolescence, risk of developing breast cancer is markedly reduced. Relatively few children are allergic to soy protein, and most of those who initially are outgrow their soy allergy by 10 years of age. The totality of the available evidence indicates that soyfoods can be healthful additions to the diets of children, but more research is required to allow definitive conclusions to be made.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., Pittsfield, Massachusets, United States
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Mauro Fisberg
- Nutrition and Feeding Difficulty Center, Pensi Institute, José Luiz Setubal Foundation, Sabará Children's Hospital, São Paulo, Brazil
| | - Dan Waitzberg
- University of Sao Paulo Medical School and Ganep Humana Nutrition, São Paulo, Brazil
| |
Collapse
|
12
|
Giambelluca MS, Pouliot M. Early tyrosine phosphorylation events following adenosine A 2A receptor in human neutrophils: identification of regulated pathways. J Leukoc Biol 2017; 102:829-836. [PMID: 28179537 DOI: 10.1189/jlb.2vma1216-517r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
Activation of the adenosine 2A receptor (A2AR) elevates intracellular levels of cAMP and acts as a physiologic inhibitor of inflammatory neutrophil functions. In this study, we looked into the impact of A2AR engagement on early phosphorylation events. Neutrophils were stimulated with well-characterized proinflammatory agonists in the absence or presence of an A2AR agonist {3-[4-[2-[ [6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino] ethyl] phenyl] propanoic acid (CGS 21680)}, PGE2, or a mixture of the compounds RO 20-1724 and forskolin. As assessed by immunoblotting, several proteins were tyrosine phosphorylated; CGS 21680 markedly decreased tyrosine phosphorylation levels of 4 regions (37-45, 50-55, 60, and 70 kDa). Key signaling protein kinases-p38 MAPK, Erk-1/2, PI3K/Akt, Hck, and Syk-showed decreased phosphorylation, whereas Lyn, SHIP-1, or phosphatase and tensin homolog (PTEN) was spared. PGE2 or the intracellular cAMP-elevating combination of RO 20-1724 and forskolin mostly mimicked the effect of CGS 21680. Together, results unveil intracellular signaling pathways targeted by the A2AR, some of which might be key in modulating neutrophil functions.
Collapse
Affiliation(s)
- Miriam S Giambelluca
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Canada
| | - Marc Pouliot
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Canada
| |
Collapse
|
13
|
Ong EZ, Zhang SL, Tan HC, Gan ES, Chan KR, Ooi EE. Dengue virus compartmentalization during antibody-enhanced infection. Sci Rep 2017; 7:40923. [PMID: 28084461 PMCID: PMC5234037 DOI: 10.1038/srep40923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 11/23/2022] Open
Abstract
Secondary infection with a heterologous dengue virus (DENV) serotype increases the risk of severe dengue, through a process termed antibody-dependent enhancement (ADE). During ADE, DENV is opsonized with non- or sub-neutralizing antibody levels that augment entry into monocytes and dendritic cells through Fc-gamma receptors (FcγRs). We previously reported that co-ligation of leukocyte immunoglobulin-like receptor-B1 (LILRB1) by antibody-opsonized DENV led to recruitment of SH2 domain-containing phosphatase-1 (SHP-1) to dephosphorylate spleen tyrosine kinase (Syk) and reduce interferon stimulated gene induction. Here, we show that LILRB1 also signals through SHP-1 to attenuate the otherwise rapid acidification for lysosomal enzyme activation following FcγR-mediated uptake of DENV. Reduced or slower trafficking of antibody-opsonized DENV to lytic phagolysosomal compartments, demonstrates how co-ligation of LILRB1 also permits DENV to overcome a cell-autonomous immune response, enhancing intracellular survival of DENV. Our findings provide insights on how antiviral drugs that modify phagosome acidification should be used for viruses such as DENV.
Collapse
Affiliation(s)
- Eugenia Z Ong
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 138669, Singapore.,Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Summer L Zhang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Hwee Cheng Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Esther S Gan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore.,Department of Microbiology and Immunology, National University of Singapore, 8 Medical Drive, Block MD4, 117545, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, 117597, Singapore.,Singapore MIT Alliance Research and Technology, Infectious Diseases Interdisciplinary Research Group, CREATE Campus, 138602, Singapore
| |
Collapse
|
14
|
Perelman SS, Abrams ME, Eitson JL, Chen D, Jimenez A, Mettlen M, Schoggins JW, Alto NM. Cell-Based Screen Identifies Human Interferon-Stimulated Regulators of Listeria monocytogenes Infection. PLoS Pathog 2016; 12:e1006102. [PMID: 28002492 PMCID: PMC5176324 DOI: 10.1371/journal.ppat.1006102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022] Open
Abstract
The type I interferon (IFN) activated transcriptional response is a critical antiviral defense mechanism, yet its role in bacterial pathogenesis remains less well characterized. Using an intracellular pathogen Listeria monocytogenes (Lm) as a model bacterial pathogen, we sought to identify the roles of individual interferon-stimulated genes (ISGs) in context of bacterial infection. Previously, IFN has been implicated in both restricting and promoting Lm growth and immune stimulatory functions in vivo. Here we adapted a gain-of-function flow cytometry based approach to screen a library of more than 350 human ISGs for inhibitors and enhancers of Lm infection. We identify 6 genes, including UNC93B1, MYD88, AQP9, and TRIM14 that potently inhibit Lm infection. These inhibitors act through both transcription-mediated (MYD88) and non-transcriptional mechanisms (TRIM14). Further, we identify and characterize the human high affinity immunoglobulin receptor FcγRIa as an enhancer of Lm internalization. Our results reveal that FcγRIa promotes Lm uptake in the absence of known host Lm internalization receptors (E-cadherin and c-Met) as well as bacterial surface internalins (InlA and InlB). Additionally, FcγRIa-mediated uptake occurs independently of Lm opsonization or canonical FcγRIa signaling. Finally, we established the contribution of FcγRIa to Lm infection in phagocytic cells, thus potentially linking the IFN response to a novel bacterial uptake pathway. Together, these studies provide an experimental and conceptual basis for deciphering the role of IFN in bacterial defense and virulence at single-gene resolution. While the type I interferon response is known to be activated by both viruses and bacteria, it has mostly been characterized in terms of its antiviral properties. Listeria monocytogenes, an opportunistic Gram-positive bacterial pathogen with up to 50% mortality rate and a variety of clinical manifestations, is a potent activator of interferon secretion. In mouse models, interferon has been previously implicated in both restricting and promoting L. monocytogenes infection. Here, we utilized a high-throughput flow-cytometry based approach to screen a library of human interferon I stimulated genes (ISGs) and identified regulators of L. monocytogenes infection. These include inhibitors that act through both transcriptional (MYD88) and transcription-independent (TRIM14) mechanisms. Strikingly, expression of the human high affinity immunoglobulin receptor FcγRIa (CD64) was found to potently enhance L. monocytogenes infection. Both biochemical and cellular studies indicate that FcγRIa increases primary invasion of L. monocytogenes through a previously uncharacterized IgG-independent internalization mechanism. Together, these studies provide an important insight into the complex role of interferon response in bacterial virulence and host defense.
Collapse
Affiliation(s)
- Sofya S. Perelman
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael E. Abrams
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer L. Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Didi Chen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alyssa Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (JWS); (NMA)
| | - Neal M. Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (JWS); (NMA)
| |
Collapse
|
15
|
Park M, Raftery MJ, Thomas PS, Geczy CL, Bryant K, Tedla N. Leukocyte immunoglobulin-like receptor B4 regulates key signalling molecules involved in FcγRI-mediated clathrin-dependent endocytosis and phagocytosis. Sci Rep 2016; 6:35085. [PMID: 27725776 PMCID: PMC5057125 DOI: 10.1038/srep35085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023] Open
Abstract
FcγRI cross-linking on monocytes may trigger clathrin-mediated endocytosis, likely through interaction of multiple intracellular molecules that are controlled by phosphorylation and dephosphorylation events. However, the identity of phospho-proteins and their regulation are unknown. We proposed the leukocyte immunoglobulin-like receptor B4 (LILRB4) that inhibits FcγRI-mediated cytokine production via Tyr dephosphorylation of multiple kinases, may also regulate endocytosis/phagocytosis through similar mechanisms. FcγRI and/or LILRB4 were antibody-ligated on THP-1 cells, lysates immunoprecipitated using anti-pTyr antibody and peptides sequenced by mass spectrometry. Mascot Search identified 25 Tyr phosphorylated peptides with high confidence. Ingenuity Pathway Analysis revealed that the most significantly affected pathways were clathrin-mediated endocytosis and Fc-receptor dependent phagocytosis. Tyr phosphorylation of key candidate proteins in these pathways included common γ-chain of the Fc receptors, Syk, clathrin, E3 ubiquitin protein ligase Cbl, hepatocyte growth factor-regulated tyrosine kinase substrate, tripartite motif-containing 21 and heat shock protein 70. Importantly, co-ligation of LILRB4 with FcγRI caused significant dephosphorylation of these proteins and was associated with suppression of Fc receptor-dependent uptake of antibody-opsonised bacterial particles, indicating that LILRB4. These results suggest that Tyr phosphorylation may be critical in FcγRI-dependent endocytosis/phagocytosis that may be regulated by LILRB4 by triggering dephosphorylation of key signalling proteins.
Collapse
Affiliation(s)
- Mijeong Park
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, Department of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul S Thomas
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia.,Department of Respiratory Medicine, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Carolyn L Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Katherine Bryant
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Abstract
Mac-1 (CD11b/CD18) is a β2 integrin classically regarded as a pro-inflammatory molecule because of its ability to promote phagocyte cytotoxic functions and enhance the function of several effector molecules such as FcγR, uPAR, and CD14. Nevertheless, recent reports have revealed that Mac-1 also plays significant immunoregulatory roles, and genetic variants in ITGAM, the gene that encodes CD11b, confer risk for the autoimmune disease systemic lupus erythematosus (SLE). This has renewed interest in the physiological roles of this integrin and raised new questions on how its seemingly opposing biological functions may be regulated. Here, we provide an overview of the CD18 integrins and how their activation may be regulated as this may shed light on how the opposing roles of Mac-1 may be elicited. We then discuss studies that exemplify Mac-1's pro-inflammatory versus regulatory roles particularly in the context of IgG immune complex-mediated inflammation. This includes a detailed examination of molecular mechanisms that could explain the risk-conferring effect of rs1143679, a single nucleotide non-synonymous Mac-1 polymorphism associated with SLE.
Collapse
Affiliation(s)
- Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tanya N Mayadas
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses. PLoS Pathog 2016; 12:e1005817. [PMID: 27579713 PMCID: PMC5007037 DOI: 10.1371/journal.ppat.1005817] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced antibodies and therapeutic antibodies will enable a better understanding of their capacity to prevent and/or control HIV-1 infection in vivo.
Collapse
|
18
|
Ayala-Nunez NV, Hoornweg TE, van de Pol DPI, Sjollema KA, Flipse J, van der Schaar HM, Smit JM. How antibodies alter the cell entry pathway of dengue virus particles in macrophages. Sci Rep 2016; 6:28768. [PMID: 27385443 PMCID: PMC4935958 DOI: 10.1038/srep28768] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022] Open
Abstract
Antibody-dependent enhancement of dengue virus (DENV) infection plays an important role in the exacerbation of DENV-induced disease. To understand how antibodies influence the fate of DENV particles, we explored the cell entry pathway of DENV in the absence and presence of antibodies in macrophage-like P388D1 cells. Recent studies unraveled that both mature and immature DENV particles contribute to ADE, hence, both particles were studied. We observed that antibody-opsonized DENV enters P388D1 cells through a different pathway than non-opsonized DENV. Antibody-mediated DENV entry was dependent on FcγRs, pH, Eps15, dynamin, actin, PI3K, Rab5, and Rab7. In the absence of antibodies, DENV cell entry was FcγR, PI3K, and Rab5-independent. Live-cell imaging of fluorescently-labeled particles revealed that actin-mediated membrane protrusions facilitate virus uptake. In fact, actin protrusions were found to actively search and capture antibody-bound virus particles distantly located from the cell body, a phenomenon that is not observed in the absence of antibodies. Overall, similar results were seen for antibody-opsonized standard and antibody-bound immature DENV preparations, indicating that the maturation status of the virus does not control the entry pathway. Collectively, our findings suggest that antibodies alter the cell entry pathway of DENV and trigger a novel mechanism of initial virus-cell contact.
Collapse
Affiliation(s)
- Nilda V Ayala-Nunez
- Dept. of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tabitha E Hoornweg
- Dept. of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Denise P I van de Pol
- Dept. of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas A Sjollema
- Dept. of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacky Flipse
- Dept. of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hilde M van der Schaar
- Dept. of Infectious Diseases &Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jolanda M Smit
- Dept. of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Research into the fundamental mechanisms of erythropoiesis has provided critical insights into inherited and acquired disorders of the erythrocyte. Studies of human erythropoiesis have primarily utilized in-vitro systems, whereas murine models have provided insights from in-vivo studies. This report reviews recent insights into human and murine erythropoiesis gained from transcriptome-based analyses. RECENT FINDINGS The availability of high-throughput genomic methodologies has allowed attainment of detailed gene expression data from cells at varying developmental and differentiation stages of erythropoiesis. Transcriptome analyses of human and murine reveal both stage and species-specific similarities and differences across terminal erythroid differentiation. Erythroid-specific long noncoding RNAs exhibit poor sequence conservation between human and mouse. Genome-wide analyses of alternative splicing reveal that complex, dynamic, stage-specific programs of alternative splicing program are utilized during terminal erythroid differentiation. Transcriptome data provide a significant resource for understanding mechanisms of normal and perturbed erythropoiesis. Understanding these processes will provide innovative strategies to detect, diagnose, prevent, and treat hematologic disease. SUMMARY Understanding the shared and different mechanisms controlling human and murine erythropoiesis will allow investigators to leverage the best model system to provide insights in normal and perturbed erythropoiesis.
Collapse
|
20
|
Dithmer M, Hattermann K, Pomarius P, Aboul Naga SH, Meyer T, Mentlein R, Roider J, Klettner A. The role of Fc-receptors in the uptake and transport of therapeutic antibodies in the retinal pigment epithelium. Exp Eye Res 2016; 145:187-205. [PMID: 26773870 DOI: 10.1016/j.exer.2015.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/11/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
Abstract
In the ophthalmological clinic, intravitreally applied antibodies or Fc-containing fusion proteins are frequently used, but the biology and pharmacokinetics of these therapeutics in the retina are not well understood. We have previously shown intracellular uptake of Fc-containing molecules in RPE cells. In this study, we investigated the involvement of Fc-receptors, both Fcγ-receptors and the neonatal Fc-receptor (FcRn) in the uptake and intracellular trafficking of the VEGF-antagonists bevacizumab, aflibercept and the anti-CD20 antibody rituximab in three different model systems, primary porcine RPE cells, ARPE-19 cells and porcine RPE/choroid explants. The expression of Fcγ-receptors was tested in primary porcine RPE cells, and the expression of Fcγ-receptors I and II could be shown in RT-PCR and qRT-PCR, while the expression of FcRn was additionally confirmed in Western blot and immunocytochemistry. All three compounds, bevacizumab, rituximab and aflibercept, were taken up into the cells and displayed a characteristic time-dependent pattern, as shown in Western blot and immunohistochemistry. The uptake was not altered by the inhibition of Fcγ-receptors using different inhibitors (TruStain FcX, genistein, R406). However, the inhibition of FcRn with an antagonistic antibody reduced intracellular IgG in porcine RPE cells (rituximab) and ARPE-19 cells (bevacizumab, rituximab). Colocalisations between the tested compounds and myosin7a could be found. In addition, limited colocalization with FcRn and the tested compounds, as well as triple localization between compound, FcRn and myosin7a could be detected, indicating a role of myosin7a in FcRn mediated transport. However, the colocalizations are restricted to small fractions of the Fc-containing compounds. Furthermore, the FcRn is mainly found in the membrane section, where only minute amounts of the Fc-containing compounds are seen, suggesting a limited interaction. An apical to choroidal transport of IgG through the RPE/choroid can be found in RPE/choroid explants. Inhibition of FcRn increases the amount of bevacizumab found on the choroidal side, suggesting a role of FcRn in the recycling of bevacizumab. In conclusion, our data indicate a role for FcRn, but not Fcγ-receptors, in the uptake and transport of Fc-containing molecules in the RPE and indicate a recycling function of FcRn in the retina.
Collapse
Affiliation(s)
- Michaela Dithmer
- University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | | | - Prasti Pomarius
- University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | - Shereen Hassan Aboul Naga
- University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany; University of Cairo, Kasr Al-Aini Faculty of Medicine, Cairo, Egypt
| | - Tim Meyer
- Department of Gastroenterology, Charite University Clinic, Berlin, Germany
| | - Rolf Mentlein
- University of Kiel, Department of Anatomy, Kiel, Germany
| | - Johann Roider
- University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | - Alexa Klettner
- University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany.
| |
Collapse
|
21
|
Chan KR, Ong EZ, Mok DZL, Ooi EE. Fc receptors and their influence on efficacy of therapeutic antibodies for treatment of viral diseases. Expert Rev Anti Infect Ther 2015; 13:1351-60. [PMID: 26466016 PMCID: PMC4673539 DOI: 10.1586/14787210.2015.1079127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lack of vaccines against several important viral diseases necessitates the development of therapeutics to save lives and control epidemics. In recent years, therapeutic antibodies have received considerable attention due to their good safety profiles and clinical success when used against viruses such as respiratory syncytial virus, Ebola virus and Hendra virus. The binding affinity of these antibodies can directly impact their therapeutic efficacy. However, we and others have also demonstrated that the subtype of Fc-gamma receptors (FcγRs) engaged influences the stoichiometric requirement for virus neutralization. Hence, the development of therapeutic antibodies against infectious diseases should consider the FcγRs engaged and Fc-effector functions involved. This review highlights the current state of knowledge about FcγRs and FcγR effector functions involved in virus neutralization, with emphasis on factors that can affect FcγR engagement. A better understanding of Fc-FcγR interactions during virus neutralization will allow development of therapeutic antibodies that are efficacious and can be administered with minimal side effects.
Collapse
Affiliation(s)
- Kuan Rong Chan
- a 1 Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Eugenia Z Ong
- b 2 Experimental Therapeutics Centre, Agency for Science Technology and Research, 31 Biopolis Way, Singapore 138669, Singapore
| | - Darren Z L Mok
- c 3 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Eng Eong Ooi
- a 1 Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
22
|
Callaway JB, Smith SA, McKinnon KP, de Silva AM, Crowe JE, Ting JPY. Spleen Tyrosine Kinase (Syk) Mediates IL-1β Induction by Primary Human Monocytes during Antibody-enhanced Dengue Virus Infection. J Biol Chem 2015; 290:17306-20. [PMID: 26032420 PMCID: PMC4498069 DOI: 10.1074/jbc.m115.664136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 11/06/2022] Open
Abstract
Approximately 500,000 people are hospitalized with severe dengue illness annually. Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is believed to contribute to the pathogenic cytokine storm described in severe dengue patients, but the precise signaling pathways contributing to elevated cytokine production are not elucidated. IL-1β is a potent inflammatory cytokine that is frequently elevated during severe dengue, and the unique dual regulation of IL-1β provides an informative model to study ADE-induced cytokines. This work utilizes patient-derived anti-DENV mAbs and primary human monocytes to study ADE-induced IL-1β and other cytokines. ADE of DENV serotype 2 (DENV-2) elevates mature IL-1β secretion by monocytes independent of DENV replication by 4 h postinoculation (hpi). Prior to this, DENV immune complexes activate spleen tyrosine kinase (Syk) within 1 hpi. Syk induces elevated IL1B, TNF, and IL6 mRNA by 2 hpi. Syk mediates elevated IL-1β secretion by activating ERK1/2, and both Syk and ERK1/2 inhibitors ablated ADE-induced IL-1β secretion. Maturation of pro-IL-1β during ADE requires caspase-1 and NLRP3, but caspase-1 is suboptimally increased by ADE and can be significantly enhanced by a typical inflammasome agonist, ATP. Importantly, this inflammatory Syk-ERK signaling axis requires DENV immune complexes, because DENV-2 in the presence of serotype-matched anti-DENV-2 mAb, but not anti-DENV-1 mAb, activates Syk, ERK, and IL-1β secretion. This study provides evidence that DENV-2 immune complexes activate Syk to mediate elevated expression of inflammatory cytokines. Syk and ERK may serve as new therapeutic targets for interfering with ADE-induced cytokine expression during severe dengue.
Collapse
Affiliation(s)
- Justin B Callaway
- From the Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center
| | - Scott A Smith
- the Vanderbilt Vaccine Center and the Departments of Medicine
| | | | | | - James E Crowe
- the Vanderbilt Vaccine Center and Pathology, Microbiology, and Immunology, and Pediatrics, Vanderbilt Medical Center, Nashville, Tennessee 37232
| | - Jenny P-Y Ting
- From the Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Department of Genetics, and Institute of Inflammatory Diseases, University of North Carolina, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
23
|
Immunomodulatory effects of Lactobacillus rhamnosus GG on dendritic cells, macrophages and monocytes from healthy donors. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
24
|
Molfetta R, Quatrini L, Gasparrini F, Zitti B, Santoni A, Paolini R. Regulation of fc receptor endocytic trafficking by ubiquitination. Front Immunol 2014; 5:449. [PMID: 25278942 PMCID: PMC4166898 DOI: 10.3389/fimmu.2014.00449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022] Open
Abstract
Most immune cells, particularly phagocytes, express various receptors for the Fc portion of the different immunoglobulin isotypes (Fc receptors, FcRs). By binding to the antibody, they provide a link between the adaptive immune system and the powerful effector functions triggered by innate immune cells such as mast cells, neutrophils, macrophages, and NK cells. Upon ligation of the immune complexes, the downstream signaling pathways initiated by the different receptors are quite similar for different FcR classes leading to the secretion of preformed and de novo synthesized pro-inflammatory mediators. FcR engagement also promotes negative signals through the combined action of several molecules that limit the extent and duration of positive signaling. To this regard, ligand-induced ubiquitination of FcRs for IgE (FcεR) and IgG (FcγR) has become recognized as a key modification that generates signals for the internalization and/or delivery of engaged receptor complexes to lysosomes or cytoplasmic proteasomes for degradation, providing negative-feedback regulation of Fc receptor activity. In this review, we discuss recent advances in our understanding of the molecular mechanisms that ensure the clearance of engaged Fcε and Fcγ receptor complexes from the cell surface with an emphasis given to the cooperation between the ubiquitin pathway and endosomal adaptors including the endosomal sorting complex required for transport (ESCRT) in controlling receptor internalization and sorting along the endocytic compartments.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Linda Quatrini
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Francesca Gasparrini
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK , London , UK
| | - Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy ; Institute Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy ; Institute Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| |
Collapse
|
25
|
Vogelpoel LTC, Hansen IS, Visser MW, Nagelkerke SQ, Kuijpers TW, Kapsenberg ML, de Jong EC, den Dunnen J. FcγRIIa cross-talk with TLRs, IL-1R, and IFNγR selectively modulates cytokine production in human myeloid cells. Immunobiology 2014; 220:193-9. [PMID: 25108563 DOI: 10.1016/j.imbio.2014.07.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 01/05/2023]
Abstract
Myeloid antigen-presenting cells (APCs) tailor immune responses to the pathogen involved through the production of specific pro- and anti-inflammatory cytokines. It is becoming increasingly clear that the ultimate cytokine profile produced by myeloid APCs crucially depends on interaction between multiple pathogen recognizing receptors. In this respect, we recently identified an important role for cross-talk between Fc gamma receptor IIa (FcγRIIa) and Toll-like receptors (TLRs) in human dendritic cells (DCs), which induces anti-bacterial immunity through the selective induction of TNFα and Th17-promoting cytokines. Here, we show that FcγRIIa-TLR cross-talk is not restricted to DCs, but is a common feature of various human myeloid APC subsets including monocytes and macrophages. Interestingly, FcγRIIa-TLR cross-talk in monocytes resulted in the induction of a cytokine profile distinct from that in DCs and macrophages, indicating that FcγRIIa stimulation induces cell-type and tissue specific responses. Surprisingly, we show that the FCGR2A H131R single nucleotide polymorphism (SNP), which is known to greatly affect FcγRIIa-mediated uptake of IgG2-opsonized bacteria, did not affect FcγRIIa-dependent cytokine production, indicating that these processes are differently regulated. In addition, we demonstrate that FcγRIIa selectively synergized with TLRs, IL-1R, and IFNγR, but did not affect cytokine production induced by other receptors such as C-type lectin receptor Dectin-1. Taken together, these data demonstrate that FcγRIIa-dependent modulation of cytokine production is more widespread than previously considered, and indicate that cross-talk of FcγRIIa with various receptors and in multiple cell types contributes to the induction of pathogen and tissue-specific immunity.
Collapse
Affiliation(s)
- Lisa T C Vogelpoel
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivo S Hansen
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marijke W Visser
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sietse Q Nagelkerke
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martien L Kapsenberg
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther C de Jong
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Behnen M, Leschczyk C, Möller S, Batel T, Klinger M, Solbach W, Laskay T. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. THE JOURNAL OF IMMUNOLOGY 2014; 193:1954-65. [PMID: 25024378 DOI: 10.4049/jimmunol.1400478] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Canonical neutrophil antimicrobial effector mechanisms, such as degranulation, production of reactive oxygen species, and release of neutrophil extracellular traps (NETs), can result in severe pathology. Activation of neutrophils through immune complexes (ICs) plays a central role in the pathogenesis of many autoimmune inflammatory diseases. In this study, we report that immobilized ICs (iICs), which are hallmarks of several autoimmune diseases, induce the release of NETs from primary human neutrophils. The iIC-induced NET formation was found to require production of reactive oxygen species by NADPH oxidase and myeloperoxidase and to be mediated by FcγRIIIb. Blocking of the β2 integrin macrophage-1 Ag but not lymphocyte function-associated Ag-1 abolished iIC-induced NET formation. This suggests that FcγRIIIb signals in association with macrophage-1 Ag. As intracellular signaling pathways involved in iIC-induced NET formation we identified the tyrosine kinase Src/Syk pathway, which downstream regulates the PI3K/Akt, p38 MAPK, and ERK1/2 pathways. To our knowledge, the present study shows for the first time that iICs induce NET formation. Thus, we conclude that NETs contribute to pathology in autoimmune inflammatory disorders associated with surface-bound ICs.
Collapse
Affiliation(s)
- Martina Behnen
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| | - Christoph Leschczyk
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| | - Sonja Möller
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| | - Tobit Batel
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| | - Matthias Klinger
- Institute of Anatomy, University of Lübeck, D-23538 Lübeck, Germany
| | - Werner Solbach
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| | - Tamás Laskay
- Institute for Medical Microbiology and Hygiene, University of Lübeck, D-23538 Lübeck, Germany; and
| |
Collapse
|
27
|
Abstract
We recently developed fluorescence-activated cell sorting (FACS)-based methods to purify morphologically and functionally discrete populations of cells, each representing specific stages of terminal erythroid differentiation. We used these techniques to obtain pure populations of both human and murine erythroblasts at distinct developmental stages. RNA was prepared from these cells and subjected to RNA sequencing analyses, creating unbiased, stage-specific transcriptomes. Tight clustering of transcriptomes from differing stages, even between biologically different replicates, validated the utility of the FACS-based assays. Bioinformatic analyses revealed that there were marked differences between differentiation stages, with both shared and dissimilar gene expression profiles defining each stage within transcriptional space. There were vast temporal changes in gene expression across the differentiation stages, with each stage exhibiting unique transcriptomes. Clustering and network analyses revealed that varying stage-specific patterns of expression observed across differentiation were enriched for genes of differing function. Numerous differences were present between human and murine transcriptomes, with significant variation in the global patterns of gene expression. These data provide a significant resource for studies of normal and perturbed erythropoiesis, allowing a deeper understanding of mechanisms of erythroid development in various inherited and acquired erythroid disorders.
Collapse
|
28
|
Allaeys I, Marceau F, Poubelle PE. NLRP3 promotes autophagy of urate crystals phagocytized by human osteoblasts. Arthritis Res Ther 2013; 15:R176. [PMID: 24456929 PMCID: PMC4061723 DOI: 10.1186/ar4365] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 10/08/2013] [Indexed: 02/08/2023] Open
Abstract
Introduction Monosodium urate (MSU) microcrystals present in bone tissues of chronic gout can be ingested by nonprofessional phagocytes like osteoblasts (OBs) that express NLRP3 (nucleotide-binding domain and leucine-rich repeat region containing family of receptor protein 3). MSU is known to activate NLRP3 inflammasomes in professional phagocytes. We have identified a new role for NLRP3 coupled to autophagy in MSU-stimulated human OBs. Methods Normal human OBs cultured in vitro were investigated for their capacity for phagocytosis of MSU microcrystals by using confocal microscopy. Subsequent mineralization and matrix metalloproteinase activity were evaluated, whereas regulatory events of phagocytosis were deciphered by using signaling inhibitors, phosphokinase arrays, and small interfering RNAs. Statistics were carried out by using paired or unpaired t tests, and the one-way ANOVA, followed by multiple comparison test. Results Most of the OBs internalized MSU in vacuoles. This process depends on signaling via PI3K, protein kinase C (PKC), and spleen tyrosine kinase (Syk), but is independent of Src kinases. Simultaneously, MSU decreases phosphorylation of the protein kinases TOR (target of rapamycin) and p70S6K. MSU activates the cleavage of microtubule-associated protein light chain 3 (LC3)-I into LC3-II, and MSU microcrystals are coated with GFP-tagged LC3. However, MSU-stimulated autophagy in OBs absolutely requires the phagocytosis process. We find that MSU upregulates NLRP3, which positively controls the formation of MSU-autophagosomes in OBs. MSU does not increase death and late apoptosis of OBs, but reduces their proliferation in parallel to decreasing their competence for mineralization and to increasing their matrix metalloproteinase activity. Conclusions MSU microcrystals, found locally encrusted in the bone matrix of chronic gout, activate phagocytosis and NLRP3-dependent autophagy in OBs, but remain intact in permanent autophagosomes while deregulating OB functions.
Collapse
|
29
|
Veale MF, Healey G, Sparrow RL. Longer storage of red blood cells is associated with increased in vitro erythrophagocytosis. Vox Sang 2013; 106:219-26. [PMID: 24117950 DOI: 10.1111/vox.12095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/08/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Refrigerated storage of red blood cells (RBCs) induces numerous changes that may target the cells for erythrophagocytosis following transfusion. The influence of storage upon the phagocytosis of unseparated and fractionated young and old stored RBCs was investigated using two in vitro quantitative phagocytosis assays. MATERIALS AND METHODS Leucocyte-depleted RBC units were sampled at day 1 or 42 of storage. Young and old RBCs were fractionated at day 1 by density centrifugation and stored in paediatric packs for up to 42 days. RBCs were labelled with the fluorescent dye PKH26 and incubated with the human monocytic cell line THP-1. Erythrophagocytosis was quantified by flow cytometry and plate fluorometric assays. RESULTS A higher proportion of THP-1 cells phagocytosed RBCs stored for 42 days compared with 1 day (41% and 24% respectively; P<0·0001). This was associated with an increased mean number of RBCs phagocytosed per THP-1 cell (5·2±0·6 and 3·3±0·2 respectively; P<0·002). Erythrophagocytosis of fractionated young and old RBCs increased with longer storage duration up to 28 days (P<0·05). However, no significant differences were observed between erythrophagocytosis of young and old RBCs. CONCLUSION The susceptibility of stored RBCs to erythrophagocytosis significantly increased with longer storage time of the RBC units. Storage duration of RBCs had a greater influence on in vitro erythrophagocytosis than the chronological age of the RBCs at donation.
Collapse
Affiliation(s)
- M F Veale
- Research and Development, Australian Red Cross Blood Service, Melbourne, Vic., Australia
| | | | | |
Collapse
|
30
|
Abstract
Kawasaki disease (KD) is a diffuse vasculitis occurring in children and showing predilection for the coronary arteries. The etiology remains unknown, although some risk factors for susceptibility have been defined. Asian ethnicity is a primary risk factor. Several theories have circulated regarding the differences in KD ethnic incidence. Those theories implicating genetic differences among populations as the cause for this discrepancy have dominated and are areas of active investigation by multiple research groups. Differences in diet between Asians and Westerners are touted as reasons for certain ethnic-related discrepancies in susceptibility to cardiovascular disease and cancer in adults. Surprisingly, these cultural dietary differences have not been previously considered as the source of the discrepancy in KD incidence among these ethnic populations. Recent data from genetic studies have highlighted the role of specific immune receptors in the pathogenesis of KD. Functions of the Fcγ receptors (FcGRs) are modulated by isoflavones in soy, in particular, genistein. Epidemiological data from Hawaiian populations support an association between soy consumption and KD. These observations form the basis of a hypothesis: isoflavones participate in KD pathogenesis by modulating function of the FcGRs and by disrupting the balance between activation and inhibition of the inflammatory response.
Collapse
Affiliation(s)
- Michael A Portman
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
31
|
Berlacher MD, Vieth JA, Heflin BC, Gay SR, Antczak AJ, Tasma BE, Boardman HJ, Singh N, Montel AH, Kahaleh MB, Worth RG. FcγRIIa Ligation Induces Platelet Hypersensitivity to Thrombotic Stimuli. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:244-54. [DOI: 10.1016/j.ajpath.2012.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 01/18/2023]
|
32
|
Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo. Blood 2012; 120:4421-31. [PMID: 22955924 DOI: 10.1182/blood-2011-12-401133] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Soluble immune complexes (ICs) are abundant in autoimmune diseases, yet neutrophil responses to these soluble humoral factors remain uncharacterized. Moreover, the individual role of the uniquely human FcγRIIA and glycophosphatidylinositol (GPI)-linked FcγRIIIB in IC-mediated inflammation is still debated. Here we exploited mice and cell lines expressing these human neutrophil FcγRs to demonstrate that FcγRIIIB alone, in the absence of its known signaling partners FcγRIIA and the integrin Mac-1, internalizes soluble ICs through a mechanism used by GPI-anchored receptors and fluid-phase endocytosis. FcγRIIA also uses this pathway. As shown by intravital microscopy, FcγRIIA but not FcγRIIIB-mediated neutrophil interactions with extravascular soluble ICs results in the formation of neutrophil extracellular traps (NETs) in tissues. Unexpectedly, in wild-type mice, IC-induced NETosis does not rely on the NADPH oxidase, myeloperoxidase, or neutrophil elastase. In the context of soluble ICs present primarily within vessels, FcγRIIIB-mediated neutrophil recruitment requires Mac-1 and is associated with the removal of intravascular IC deposits. Collectively, our studies assign a new role for FcγRIIIB in the removal of soluble ICs within the vasculature that may serve to maintain homeostasis, whereas FcγRIIA engagement of tissue soluble ICs generates NETs, a proinflammatory process linked to autoimmunity.
Collapse
|
33
|
Riquelme SA, Bueno SM, Kalergis AM. IgG keeps virulent Salmonella from evading dendritic cell uptake. Immunology 2012; 136:291-305. [PMID: 22352313 DOI: 10.1111/j.1365-2567.2012.03578.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are phagocytic professional antigen-presenting cells that can prime naive T cells and initiate anti-bacterial immunity. However, several pathogenic bacteria have developed virulence mechanisms to impair DC function. For instance, Salmonella enterica serovar Typhimurium can prevent DCs from activating antigen-specific T cells. In addition, it has been described that the Salmonella Pathogenicity Island 1 (SPI-1), which promotes phagocytosis of bacteria in non-phagocytic cells, can suppress this process in DCs in a phosphatidylinositol 3-kinase (PI3K) -dependent manner. Both mechanisms allow Salmonella to evade host adaptive immunity. Recent studies have shown that IgG-opsonization of Salmonella can restore the capacity of DCs to present antigenic peptide-MHC complexes and prime T cells. Interestingly, T-cell activation requires Fcγ receptor III (FcγRIII) expression over the DC surface, suggesting that this receptor could counteract both antigen presentation and phagocytosis evasion by bacteria. We show that, despite IgG-coated Salmonella retaining its capacity to secrete anti-capture proteins, DCs are efficiently capable of engulfing a large number of IgG-coated bacteria. These results suggest that DCs employ another mechanism to engulf IgG-coated Salmonella, different from that used for free bacteria. In this context, we noted that DCs do not employ PI3K, actin cytoskeleton or dynamin to capture IgG-coated bacteria. Likewise, we observed that the capture is an FcγR-independent mechanism. Interestingly, these internalized bacteria were rapidly targeted for degradation within lysosomal compartments. Hence, our results suggest a novel mechanism in DCs that does not employ PI3K/actin cytoskeleton/dynamin/FcγRs to engulf IgG-coated Salmonella, is not affected by anti-capture SPI-1-derived effectors and enhances DC immunogenicity, bacterial degradation and antigen presentation.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
34
|
Ghaffarian R, Bhowmick T, Muro S. Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1. J Control Release 2012; 163:25-33. [PMID: 22698938 DOI: 10.1016/j.jconrel.2012.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/21/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Bioavailability of oral drugs, particularly large hydrophilic agents, is often limited by poor adhesion and transport across gastrointestinal (GI) epithelial cells. Drug delivery systems, such as sub-micrometer polymer carriers (nanocarriers, NCs) coupled to affinity moieties that target GI surface markers involved in transport, may improve this aspect. To explore this strategy, we coated 100-nm polymer particles with an antibody to ICAM-1 (a protein expressed on the GI epithelium and other tissues) and evaluated targeting, uptake, and transport in human GI epithelial cells. Fluorescence and electron microscopy, and radioisotope tracing revealed that anti-ICAM NCs specifically bound to cells in culture, were internalized via CAM-mediated endocytosis, trafficked by transcytosis across cell monolayers without disrupting the permeability barrier or cell viability, and enabled transepithelial transport of a model therapeutic enzyme (α-galactosidase, deficient in lysosomal Fabry disease). These results indicate that ICAM-1 targeting may provide delivery of therapeutics, such as enzymes, to and across the GI epithelium.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, 2330 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
35
|
Huang Y, Biswas C, Klos Dehring DA, Sriram U, Williamson EK, Li S, Clarke F, Gallucci S, Argon Y, Burkhardt JK. The actin regulatory protein HS1 is required for antigen uptake and presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:5952-63. [PMID: 22031761 DOI: 10.4049/jimmunol.1100870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hematopoietic actin regulatory protein hematopoietic lineage cell-specific protein 1 (HS1) is required for cell spreading and signaling in lymphocytes, but the scope of HS1 function in Ag presentation has not been addressed. We show that dendritic cells (DCs) from HS1(-/-) mice differentiate normally and display normal LPS-induced upregulation of surface markers and cytokines. Consistent with their normal expression of MHC and costimulatory molecules, HS1(-/-) DCs present OVA peptide efficiently to CD4(+) T cells. However, presentation of OVA protein is defective. Similarly, MHC class I-dependent presentation of VSV8 peptide to CD8(+) T cells occurs normally, but cross-presentation of GRP94/VSV8 complexes is defective. Analysis of Ag uptake pathways shows that HS1 is required for receptor-mediated endocytosis, but not for phagocytosis or macropinocytosis. HS1 interacts with dynamin 2, a protein involved in scission of endocytic vesicles. However, HS1(-/-) DCs showed decreased numbers of endocytic invaginations, whereas dynamin-inhibited cells showed accumulation of these endocytic intermediates. Taken together, these studies show that HS1 promotes an early step in the endocytic pathway that is required for efficient Ag presentation of exogenous Ag by DCs.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
37
|
Li CY, Chao LK, Wang SC, Chang HZ, Tsai ML, Fang SH, Liao PC, Ho CL, Chen ST, Cheng WC, Chiang CS, Kuo YH, Hua KF, Hsu IC. Honokiol inhibits LPS-induced maturation and inflammatory response of human monocyte-derived dendritic cells. J Cell Physiol 2011; 226:2338-49. [DOI: 10.1002/jcp.22576] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Bertram A, Ley K. Protein kinase C isoforms in neutrophil adhesion and activation. Arch Immunol Ther Exp (Warsz) 2011; 59:79-87. [PMID: 21298489 DOI: 10.1007/s00005-011-0112-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/08/2010] [Indexed: 01/13/2023]
Abstract
Neutrophils are the first line of defense against bacterial and mycotic pathogens. In order to reach the pathogens, neutrophils need to transmigrate through the vascular endothelium and migrate to the site of infection. Defense strategies against pathogens include phagocytosis, production and release of oxygen radicals through the oxidative burst, and degranulation of antimicrobial and inflammatory molecules. Protein kinase C (PKC)-δ is required for full assembly of NADPH oxidase and activation of the respiratory burst. Neutrophils also express PKC-α and -β, which may be involved in adhesion, degranulation and phagocytosis, but the evidence is not conclusive yet. This review focuses on the potential impact of protein kinase C isoforms on neutrophil adhesion and activation.
Collapse
Affiliation(s)
- Anna Bertram
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | | |
Collapse
|
39
|
Huang ZY, Hunter S, Chien P, Kim MK, Han-Kim TH, Indik ZK, Schreiber AD. Interaction of two phagocytic host defense systems: Fcγ receptors and complement receptor 3. J Biol Chem 2011; 286:160-8. [PMID: 21044955 PMCID: PMC3012970 DOI: 10.1074/jbc.m110.163030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/12/2010] [Indexed: 01/08/2023] Open
Abstract
Phagocytosis of foreign pathogens by cells of the immune system is a vitally important function of innate immunity. The phagocytic response is initiated when ligands on the surface of invading microorganisms come in contact with receptors on the surface of phagocytic cells such as neutrophils, monocytes/macrophages, and dendritic cells. The complement receptor CR3 (CD11b/CD18, Mac-1) mediates the phagocytosis of complement protein (C3bi)-coated particles. Fcγ receptors (FcγRs) bind IgG-opsonized particles and provide a mechanism for immune clearance and phagocytosis of IgG-coated particles. We have observed that stimulation of FcγRs modulates CR3-mediated phagocytosis and that FcγRIIA and FcγRI exert opposite (stimulatory and inhibitory) effects. We have also determined that an intact FcγR immunoreceptor tyrosine-based activation motif is required for these effects, and we have investigated the involvement of downstream effectors. The ability to up-regulate or down-regulate CR3 signaling has important implications for therapeutics in disorders involving the host defense system.
Collapse
Affiliation(s)
- Zhen-Yu Huang
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Sharon Hunter
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Paul Chien
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Moo-Kyung Kim
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Tae-Hee Han-Kim
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Zena K. Indik
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Alan D. Schreiber
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
40
|
Internalization of IgG-coated targets results in activation and secretion of soluble CD40 ligand and RANTES by human platelets. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:210-6. [PMID: 21177916 DOI: 10.1128/cvi.00296-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelets are crucial elements for maintenance of hemostasis. Other functions attributable to platelets are now being appreciated, such as their role in inflammatory reactions and host defense. Platelets have been reported to bind immunological stimuli like IgG complexes, and for nearly 50 years it has been speculated that platelets may participate in immunological reactions. Platelets have been reported to bind and internalize various substances, similar to other leukocytes, such as macrophages and dendritic cells. In the present study, we tested the hypothesis that human platelets can bind and internalize IgG-coated particles, similar to leukocytes. To this end, we observed that interaction with IgG-coated beads resulted in platelet activation (as measured by CD62P expression), internalization of targets, and significant soluble CD40 ligand (sCD40L) and RANTES (regulated upon activation, normal T cell expresses and secreted) secretion. Blocking FcγRIIA with monoclonal antibody (MAb) IV.3 or inhibiting actin remodeling with cytochalasin D inhibited platelet activation, internalization, and cytokine production. These data suggest that platelets are capable of mediating internalization of IgG-coated particles, resulting in platelet activation and release of both sCD40L and RANTES.
Collapse
|
41
|
Dykstra T, Utermoehlen O, Haas A. Defined particle ligands trigger specific defense mechanisms of macrophages. Innate Immun 2010; 17:388-402. [PMID: 20682584 DOI: 10.1177/1753425910374889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Phagocytosis is a receptor-mediated process for sequestration and inactivation of infectious microbes. It can be triggered by microbial surface compounds or particle-attached host proteins. We monitored the effector functions of murine bone marrow-derived macrophages (BMMs) in response to polystyrene-streptavidin beads coated with the defined ligands IgG1, β-glucan, mannan, complement factors C1q or iC3b, or fibronectin (FN). Cell-autonomous effector mechanisms (uptake, phagosome maturation, cytokine responses and killing activity) were differentially triggered. All particle-ligand complexes stimulated the release of nitric oxide, but only beads coated with IgG, complement factors or FN caused production of superoxide. Beads coated with C1q, iC3b or FN strongly stimulated the secretion of pro-inflammatory TNF-α, IL-6, and IL-1β and also of anti-inflammatory IL-10. Escherichia coli coated with C1q, iC3b or FN was killed much less efficiently than with any of the other ligands, depending on the presence of IL-10 activity. This indicated an important role of IL-10 as regulator of cell-autonomous immune functions of macrophages. Our data show that defined ligands on microbial surfaces are interesting candidates to activate innate defense mechanisms selectively and specifically.
Collapse
|
42
|
Corrotte M, Nyguyen APT, Harlay ML, Vitale N, Bader MF, Grant NJ. Ral isoforms are implicated in Fc gamma R-mediated phagocytosis: activation of phospholipase D by RalA. THE JOURNAL OF IMMUNOLOGY 2010; 185:2942-50. [PMID: 20679536 DOI: 10.4049/jimmunol.0903138] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phagocytosis is an essential element of the immune response permitting the elimination of pathogens, cellular debris, apoptotic cells, and tumor cells. Recently, both phospholipase D (PLD) isoforms, PLD1 and PLD2, were shown to be necessary for efficient FcgammaR-mediated phagocytosis. In this study, we investigated the role of a potential PLD regulator, the Ral GTPases RalA and RalB, in murine RAW 264.7 macrophages. Both Ral isoforms are expressed in macrophages and are transiently activated following FcgammaR stimulation. When Ral expression levels were varied using Ral mutants or interference RNA, phagocytosis assays revealed that Ral isoforms have antagonistic effects; RalA is a positive modulator, whereas RalB plays a negative role. We then focused on RalA and its possible relationship with PLD. The increase in PLD activity that occurs when phagocytosis is stimulated was inhibited in cells with reduced RalA protein, but it was unaffected by reduced levels of RalB. Furthermore, in macrophages transfected with dsRed-RalA and GFP-PLD1 or GFP-PLD2, RalA colocalized with PLD1 and PLD2 at the phagocytic cup during phagosome formation. Additional results obtained from immunoprecipitation of PLD from macrophages transfected with myc-RalA and hemagglutinin-tagged PLD1 or PLD2 indicated an enhanced interaction of RalA with both PLD isoforms during phagocytic stimulation. The increase in RalA and PLD1 interaction was transient and correlated with the time course of RalA activation. These findings reveal a novel pathway involving RalA and PLD in the regulation of FcgammaR-mediated phagocytosis.
Collapse
Affiliation(s)
- Matthias Corrotte
- Département Neurotransmission et Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3212, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
43
|
Vieth JA, Kim MK, Pan XQ, Schreiber AD, Worth RG. Differential requirement of lipid rafts for FcγRIIA mediated effector activities. Cell Immunol 2010; 265:111-9. [PMID: 20728077 PMCID: PMC2975250 DOI: 10.1016/j.cellimm.2010.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/11/2010] [Accepted: 07/28/2010] [Indexed: 01/18/2023]
Abstract
Immunoglobulin G (IgG) dependent activities are important in host defense and autoimmune diseases. Various cell types including macrophages and neutrophils contribute to pathogen destruction and tissue damage through binding of IgG to Fcγ receptors (FcγR). One member of this family, FcγRIIA, is a transmembrane glycoprotein known to mediate binding and internalization of IgG-containing targets. FcγRIIA has been observed to translocate into lipids rafts upon binding IgG-containing targets. We hypothesize that lipid rafts participate to different extents in binding and internalizing targets of different sizes. We demonstrate that disruption of lipid rafts with 8mM methyl-β-cyclodextrin (MβCD) nearly abolishes binding (91% reduction) and phagocytosis (60% reduction) of large IgG-coated targets. Conversely, binding and internalization of small IgG-complexes is less dependent on lipid rafts (49% and 17% inhibition at 8mM MβCD, respectively). These observations suggest that differences between phagocytosis and endocytosis may arise as early as the initial stages of ligand recognition.
Collapse
Affiliation(s)
- Joshua A. Vieth
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Moo-kyung Kim
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Xiao Qing Pan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Alan D. Schreiber
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Randall G. Worth
- Department of Medical Microbiology & Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| |
Collapse
|
44
|
Hulse KE, Reefer AJ, Engelhard VH, Patrie JT, Ziegler SF, Chapman MD, Woodfolk JA. Targeting allergen to FcgammaRI reveals a novel T(H)2 regulatory pathway linked to thymic stromal lymphopoietin receptor. J Allergy Clin Immunol 2010; 125:247-56.e1-8. [PMID: 20109752 DOI: 10.1016/j.jaci.2009.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/31/2009] [Accepted: 10/19/2009] [Indexed: 01/19/2023]
Abstract
BACKGROUND The molecule H22-Fel d 1, which targets cat allergen to FcgammaRI on dendritic cells (DCs), has the potential to treat cat allergy because of its T-cell modulatory properties. OBJECTIVE We sought to investigate whether the T-cell response induced by H22-Fel d 1 is altered in the presence of the T(H)2-promoting cytokine thymic stromal lymphopoietin (TSLP). METHODS Studies were performed in subjects with cat allergy with and without atopic dermatitis. Monocyte-derived DCs were primed with H22-Fel d 1 in the presence or absence of TSLP, and the resulting T-cell cytokine repertoire was analyzed by flow cytometry. The capacity for H22-Fel d 1 to modulate TSLP receptor expression on DCs was examined by flow cytometry in the presence or absence of inhibitors of Fc receptor signaling molecules. RESULTS Surprisingly, TSLP alone was a weak inducer of T(H)2 responses irrespective of atopic status; however, DCs coprimed with TSLP and H22-Fel d 1 selectively and synergistically amplified T(H)2 responses in highly atopic subjects. This effect was OX40 ligand independent, pointing to an unconventional TSLP-mediated pathway. Expression of TSLP receptor was upregulated on atopic DCs primed with H22-Fel d 1 through a pathway regulated by FcgammaRI-associated signaling components, including src-related tyrosine kinases and Syk, as well as the downstream molecule phosphoinositide 3-kinase. Inhibition of TSLP receptor upregulation triggered by H22-Fel d 1 blocked TSLP-mediated T(H)2 responses. CONCLUSION Discovery of a novel T(H)2 regulatory pathway linking FcgammaRI signaling to TSLP receptor upregulation and consequent TSLP-mediated effects questions the validity of receptor-targeted allergen vaccines.
Collapse
Affiliation(s)
- Kathryn E Hulse
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA 22908-1355, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Eggink LL, Salas M, Hanson CV, Hoober JK. Peptide sugar mimetics prevent HIV type 1 replication in peripheral blood mononuclear cells in the presence of HIV-positive antiserum. AIDS Res Hum Retroviruses 2010; 26:149-60. [PMID: 20156098 DOI: 10.1089/aid.2009.0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cells of the immune system express a number of receptors that bind carbohydrate ligands. We questioned whether peptide mimetics of these ligands will activate phagocytic cells and thereby enhance an antiviral response. Short peptide sequences were identified by computational modeling of docking to glycan-specific lectins, selected as receptor analogs, and incorporated into quadravalent structures by peptide synthesis. A peptide with the sequence HPSLK bound to several lectins specific for monosaccharides and to lectins specific for Neu5Ac-Gal-containing complex glycans, whereas a longer sequence, NPSHPLSG, bound only lectins specific for the more complex glycans. In cultures of peripheral blood mononuclear cells (PBMCs) these peptides stimulated phagocytosis of opsonized microspheres. The peptides inhibited replication of HIV-1 in PBMC cultures by 20-80% at concentrations between 1 nM and 1 muM but inhibited replication 100% in the presence of diluted HIV-positive antiserum that alone inhibited replication by 30%. HPSLK caused about 50% loss of viability of cells at 1 mM, a concentration 10(6)-fold higher than an effective inhibitory concentration, but no toxicity was observed with NPSHPLSG. These results demonstrated that peptidomimetics of glycan ligands of cellular receptors are effective in activating phagocytosis, which may be a factor in providing complete inhibition of HIV-1 replication in vitro.
Collapse
Affiliation(s)
| | - Maria Salas
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | - Carl V. Hanson
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California 94804
| | | |
Collapse
|
46
|
Bertolotto M, Dallegri F, Dapino P, Quercioli A, Pende A, Ottonello L, Montecucco F. Sulphasalazine accelerates apoptosis in neutrophils exposed to immune complex: Role of caspase pathway. Clin Exp Pharmacol Physiol 2009; 36:1132-1135. [PMID: 19473188 DOI: 10.1111/j.1440-1681.2009.05215.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Neutrophils release several histotoxic molecules that cause tissue injury. Neutrophil apoptosis is a crucial process that governs the persistence of inflammatory disorders and tissue damage. Thus, in the present study, we investigated whether the anti-inflammatory drug sulphasalazine (SSZ) affects neutrophil apoptosis in the presence of insoluble immune complex (IC). 2. Neutrophils were obtained from healthy donors. Neutrophils were resuspended in incubation medium and incubated for 2-12 h with or without 10, 30 or 100 micromol/L SSZ and 25 microg/mL IC. In some experiments, cells were co-incubated with 20 micromol/L Z-IETD-fmk (a caspase 8 inhibitor) or 20 micromol/L Z-LEHD-fmk (a caspase 9 inhibitor). Apoptosis was evaluated morphologically on cytological preparations stained with May-Grünwald-Giemsa as well as by flow cytometry analysis of annexin V and propidium iodide staining. Caspase 3 activity was determined spectrophotometrically. 3. At 100 micromol/L, SSZ significantly accelerated IC-induced neutrophil apoptosis. Treatment of neutrophils with 20 micromol/L of the caspase 8 or 9 inhibitors Z-IETD-fmk or Z-LEHD-fmk, respectively, demonstrated that the SSZ-induced pro-apoptotic effect was mediated by a caspase 8- but not caspase 9-dependent pathway. The caspase 3 activity assay showed that treatment with 100 micromol/L SSZ increased caspase 3 activation. 4. In conclusion, the results of the present study indicate that it is possible that the molecular mechanism underlying SSZ protection against neutrophil-mediated tissue injury inflammatory disorders, such as rheumatoid arthritis and inflammatory bowel diseases, involves a caspase 8-dependent pathway.
Collapse
Affiliation(s)
- M Bertolotto
- Clinic of Internal Medicine I, Department of Internal Medicine, University of Genoa, Medical School, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Erdman LK, Cosio G, Helmers AJ, Gowda DC, Grinstein S, Kain KC. CD36 and TLR interactions in inflammation and phagocytosis: implications for malaria. THE JOURNAL OF IMMUNOLOGY 2009; 183:6452-9. [PMID: 19864601 DOI: 10.4049/jimmunol.0901374] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD36 participates in macrophage internalization of a variety of particles, and has been implicated in inflammatory responses to many of these ligands. To what extent CD36 cooperates with other receptors in mediating these processes remains unclear. Because CD36 has been shown to cooperate with TLR2, we investigated the roles and interactions of CD36 and TLRs in inflammation and phagocytosis. Using Ab-induced endocytosis of CD36 and phagocytosis of erythrocytes displaying Abs to CD36, we show that selective engagement and internalization of this receptor did not lead to proinflammatory cytokine production by primary human and murine macrophages. In addition, CD36-mediated phagocytosis of Plasmodium falciparum malaria-parasitized erythrocytes (PEs), which contain parasite components that activate TLRs, also failed to induce cytokine secretion from primary macrophages. Furthermore, we demonstrate that CD36-mediated internalization did not require TLR2 or the TLR-signaling molecule IRAK4. However, macrophage pretreatment with TLR agonists markedly stimulated particle uptake via CD36. Similarly, PE uptake was unaffected by TLR deficiency, but in wild-type cells was increased by pretreatment with purified P. falciparum glycosylphosphatidylinositols, which activate TLR2. Our findings indicate that CD36 must cooperate with other receptors such as TLRs to participate in cytokine responses. Although purified P. falciparum components activate TLRs, CD36-mediated internalization of intact PEs is not inflammatory. Further, CD36 mediates internalization of particles, including PEs, independently of TLR signaling, but can functionally cooperate with TLRs to enhance internalization.
Collapse
Affiliation(s)
- Laura K Erdman
- McLaughlin-Rotman Centre for Global Health, McLaughlin Centre for Molecular Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Ennaciri J, Girard D. IL-4Rα, a New Member that Associates with Syk Kinase: Implication in IL-4-Induced Human Neutrophil Functions. THE JOURNAL OF IMMUNOLOGY 2009; 183:5261-9. [DOI: 10.4049/jimmunol.0900109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Geahlen RL. Syk and pTyr'd: Signaling through the B cell antigen receptor. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1115-27. [PMID: 19306898 PMCID: PMC2700185 DOI: 10.1016/j.bbamcr.2009.03.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/06/2009] [Indexed: 11/18/2022]
Abstract
The B cell receptor (BCR) transduces antigen binding into alterations in the activity of intracellular signaling pathways through its ability to recruit and activate the cytoplasmic protein-tyrosine kinase Syk. The recruitment of Syk to the receptor, its activation and its subsequent interactions with downstream effectors are all regulated by its phosphorylation on tyrosine. This review discusses our current understanding of how this phosphorylation regulates the activity of Syk and its participation in signaling through the BCR.
Collapse
Affiliation(s)
- Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
50
|
Fumoto S, Nishi J, Ishii H, Wang X, Miyamoto H, Yoshikawa N, Nakashima M, Nakamura J, Nishida K. Rac-Mediated Macropinocytosis Is a Critical Route for Naked Plasmid DNA Transfer in Mice. Mol Pharm 2009; 6:1170-9. [DOI: 10.1021/mp900042p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Junya Nishi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroki Ishii
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Xuan Wang
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naoki Yoshikawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mikiro Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Junzo Nakamura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|