1
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
2
|
Schol P, van Elsas MJ, Middelburg J, Nijen Twilhaar MK, van Hall T, van der Sluis TC, van der Burg SH. Myeloid effector cells in cancer. Cancer Cell 2024; 42:1997-2014. [PMID: 39658540 DOI: 10.1016/j.ccell.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
The role of myeloid cells in tumor immunity is multifaceted. While dendritic cells support T cell-mediated tumor control, the highly heterogenous populations of macrophages, neutrophils, and immature myeloid cells were generally considered immunosuppressive. This view has led to effective therapies reinvigorating tumor-reactive T cells; however, targeting the immunosuppressive effects of macrophages and neutrophils to boost the cancer immunity cycle was clinically less successful. Recent studies interrogating the role of immune cells in the context of successful immunotherapy affirm the key role of T cells, but simultaneously challenge the idea that the cytotoxic function of T cells is the main contributor to therapy-driven tumor regression. Rather, therapy-activated intra-tumoral T cells recruit and activate or reprogram several myeloid effector cell types, the presence of which is necessary for tumor rejection. Here, we reappreciate the key role of myeloid effector cells in tumor rejection as this may help to shape future successful immunotherapies.
Collapse
Affiliation(s)
- Pieter Schol
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marit J van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten K Nijen Twilhaar
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Tetje C van der Sluis
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
3
|
Fu H, Dong S, Li K. Identification of SLC31A1 as a prognostic biomarker and a target for therapeutics in breast cancer. Sci Rep 2024; 14:25120. [PMID: 39448672 PMCID: PMC11502855 DOI: 10.1038/s41598-024-76162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Copper-induced cell death is regulated through protein lipoylation, which is critical for gene expression and phenotypic regulation. Neverless, the role of Cuproptosis-related genes in breast cancer (BC) remains unknown. This study aimed to construct a prognostic signature based on the expression of Cuproptosis-related genes in order to guide the diagnosis and treatment for BC. Cuproptosis-related genes prognostic signature has ata of 1250 BC tissues and 583 normal breast tissues were obtained from The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and GEO GSE65212. The prognostic signature was established and evaluated with nineteen Cuproptosis-related genes. A series of in silico analyses based on SLC31A1, included expression analysis, independent prognostic analysis, correlation analysis, immune-related analysis and survival analysis. Finally, a series of cell experiments (including quantitative real-time polymerase chain reaction and western blot), and mice experiments were applied to evaluate the impact of SLC31A1 on BC. Cuproptosis-related genes prognostic signature has good predictive promising for survival in BC patients. We discovered that SLC31A1SLC31A1 was overexpressed in BC and was its independent prognostic factor. High expression of the SLC31A1 was correlated with poor prognosis and immune infiltrating of BC. SLC31A1 expression is associated with immune, chemotherapeutic and targeted therapy outcomes in BC. The proliferation, migration, and invasiveness of Her2 + enriched BC cells were decreased by SLC31A1 knockdown, also resulting in a decrease in tumor volume in mouse model. SLC31A1 is a candidate biomarker or therapeutic target in precision oncology, with diagnostic and prognostic significance in BC.
Collapse
Affiliation(s)
- Hongtao Fu
- Department of Breast Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, China
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210000, China
| | - Shanshan Dong
- Department of Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Kun Li
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha, 410000, China.
| |
Collapse
|
4
|
Takeuchi E, Ogino H, Kondo K, Okano Y, Ichihara S, Kunishige M, Kadota N, Machida H, Hatakeyama N, Naruse K, Nokihara H, Shinohara T, Nishioka Y. An increased relative eosinophil count as a predictive dynamic biomarker in non-small cell lung cancer patients treated with immune checkpoint inhibitors. Thorac Cancer 2024; 15:248-257. [PMID: 38087769 PMCID: PMC10803223 DOI: 10.1111/1759-7714.15191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND An increased relative eosinophil count (REC) has potential as a predictive biomarker for a beneficial clinical response and outcome to cancer immunotherapies. Therefore, the present study investigated the impact of an increased posttreatment REC on the prognosis of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs). METHODS We retrospectively reviewed all 151 patients diagnosed with NSCLC and treated with ICI monotherapy and blood test data between March 2016 and August 2021 at National Hospital Organization Kochi Hospital and Tokushima University. RESULTS A total of 151 patients with a mean age of 69 years were included. REC after 4 weeks of initial ICI monotherapy was higher than pretreatment REC in 87 patients but not in 64. REC after 4 weeks of the ICI treatment with and without an increased REC were 4.4 and 1.8%, respectively (p < 0.001). Disease control rates (DCR) were significantly higher in patients with than in those without an increased REC (84% vs. 47%, p < 0.001). The median overall survival (OS) of lung cancer patients with or without an increased REC were 674 and 234 days, respectively. A Kaplan-Meier univariate analysis revealed a significant difference in OS between the two groups (p < 0.001). A Cox proportional regression analysis identified an increased REC as an independent predictor of OS (p = 0.003). CONCLUSION ICI-treated NSCLC patients with an increased REC after 4 weeks of treatment had a better DCR and prognosis than the other patients examined.
Collapse
Affiliation(s)
- Eiji Takeuchi
- Department of Clinical InvestigationNational Hospital Organization Kochi HospitalKochiJapan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Kensuke Kondo
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Yoshio Okano
- Department of Respiratory MedicineNational Hospital Organization Kochi HospitalKochiJapan
| | - Seiya Ichihara
- Department of Respiratory MedicineNational Hospital Organization Kochi HospitalKochiJapan
| | - Michihiro Kunishige
- Department of Respiratory MedicineNational Hospital Organization Kochi HospitalKochiJapan
| | - Naoki Kadota
- Department of Respiratory MedicineNational Hospital Organization Kochi HospitalKochiJapan
| | - Hisanori Machida
- Department of Respiratory MedicineNational Hospital Organization Kochi HospitalKochiJapan
| | - Nobuo Hatakeyama
- Department of Respiratory MedicineNational Hospital Organization Kochi HospitalKochiJapan
| | - Keishi Naruse
- Department of PathologyNational Hospital Organization Kochi HospitalKochiJapan
| | - Hiroshi Nokihara
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Tsutomu Shinohara
- Department of Community Medicine for RespirologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| |
Collapse
|
5
|
Caliman E, Fancelli S, Ottanelli C, Mazzoni F, Paglialunga L, Lavacchi D, Michelet MRG, Giommoni E, Napolitano B, Scolari F, Voltolini L, Comin CE, Pillozzi S, Antonuzzo L. Absolute eosinophil count predicts clinical outcomes and toxicity in non-small cell lung cancer patients treated with immunotherapy. Cancer Treat Res Commun 2022; 32:100603. [PMID: 35792426 DOI: 10.1016/j.ctarc.2022.100603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Immune checkpoint inhibitors (ICIs) have led to a paradigm shift in non-small cell lung cancer (NSCLC) treatment. We investigated absolute eosinophil count (AEC) as a predictor of clinical outcomes and toxicity in NSCLC patients receiving ICIs. MATERIALS AND METHODS AEC was retrospectively collected at baseline and during treatment from 158 advanced NSCLC patients treated with single agent anti-PD1/anti-PDL1 monoclonal antibody in first or subsequent line of therapy at Medical Oncology Unit, Careggi University Hospital, Florence (Italy), between January 2016 to October 2020. RESULTS We found a significant association between high baseline AEC (≥130/μL) and better clinical outcomes. The response rates were 64.4% and 35.6% for patients with high and low AEC, respectively (p = 0.009). The high-AEC group showed a significantly longer PFS and OS than the low-AEC group (mPFS = 7.0 months, 95% CI 5.0-10.0 vs 2.5 months, 95% CI 2.0-4.0, p = 0.007 and mOS = 9.0 months, CI 95% 7.0-15.0 vs 5.5 months, 95% CI 4.0-8.0, p = 0.009, respectively). An increased risk of immune-related adverse events (irAEs) was reported in the high-AEC group (p = 0.133). IrAEs resulted an independent prognostic factor for both better outcomes (mPFS = 8.0 months, 95% CI 7.0-12.0 vs 2.0 months, 95% CI 2.0-3.0, p<0.001; mOS = 13.0 months 95% CI 9.0-19.0 vs 4.0 months 95% CI 3.0-6-0, p<0.001) and response to ICIs (response rate = 33.8% vs 14.9%, disease control rate = 72.0% vs 32.1%, p<0.001). CONCLUSION High baseline AEC value (≥130/μL) is a predictive biomarker of clinical benefit and irAEs occurrence in NSCLC patients treated with ICIs.
Collapse
Affiliation(s)
- Enrico Caliman
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Sara Fancelli
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | | | - Luca Paglialunga
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | | | - Elisa Giommoni
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | | | - Federico Scolari
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Luca Voltolini
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Thoracic Surgery Unit, Careggi University Hospital, Florence, Italy
| | - Camilla Eva Comin
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Section of Surgery, Histopathology and Molecular Pathology, University of Florence, Italy
| | - Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy.
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Italy; Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
6
|
Sibille A, Corhay JL, Louis R, Ninane V, Jerusalem G, Duysinx B. Eosinophils and Lung Cancer: From Bench to Bedside. Int J Mol Sci 2022; 23:ijms23095066. [PMID: 35563461 PMCID: PMC9101877 DOI: 10.3390/ijms23095066] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Eosinophils are rare, multifunctional granulocytes. Their growth, survival, and tissue migration mainly depend on interleukin (IL)-5 in physiological conditions and on IL-5 and IL-33 in inflammatory conditions. Preclinical evidence supports an immunological role for eosinophils as innate immune cells and as agents of the adaptive immune response. In addition to these data, several reports show a link between the outcomes of patients treated with immune checkpoint inhibitors (ICI) for advanced cancers and blood eosinophilia. In this review, we present, in the context of non-small cell lung cancer (NSCLC), the biological properties of eosinophils and their roles in homeostatic and pathological conditions, with a focus on their pro- and anti-tumorigenic effects. We examine the possible explanations for blood eosinophilia during NSCLC treatment with ICI. In particular, we discuss the value of eosinophils as a potential prognostic and predictive biomarker, highlighting the need for stronger clinical data. Finally, we conclude with perspectives on clinical and translational research topics on this subject.
Collapse
Affiliation(s)
- Anne Sibille
- Department of Pulmonology, University Hospital of Liège, Domaine de l’Université B35, 4000 Liège, Belgium; (J.-L.C.); (R.L.); (B.D.)
- Correspondence: ; Tel.: +32-4-3667881
| | - Jean-Louis Corhay
- Department of Pulmonology, University Hospital of Liège, Domaine de l’Université B35, 4000 Liège, Belgium; (J.-L.C.); (R.L.); (B.D.)
| | - Renaud Louis
- Department of Pulmonology, University Hospital of Liège, Domaine de l’Université B35, 4000 Liège, Belgium; (J.-L.C.); (R.L.); (B.D.)
| | - Vincent Ninane
- Department of Pulmonary Medicine, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital of Liège, Domaine de l’Université B35, 4000 Liège, Belgium;
| | - Bernard Duysinx
- Department of Pulmonology, University Hospital of Liège, Domaine de l’Université B35, 4000 Liège, Belgium; (J.-L.C.); (R.L.); (B.D.)
| |
Collapse
|
7
|
Schetters STT, Schuijs MJ. Pulmonary Eosinophils at the Center of the Allergic Space-Time Continuum. Front Immunol 2021; 12:772004. [PMID: 34868033 PMCID: PMC8634472 DOI: 10.3389/fimmu.2021.772004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Eosinophils are typically a minority population of circulating granulocytes being released from the bone-marrow as terminally differentiated cells. Besides their function in the defense against parasites and in promoting allergic airway inflammation, regulatory functions have now been attributed to eosinophils in various organs. Although eosinophils are involved in the inflammatory response to allergens, it remains unclear whether they are drivers of the asthma pathology or merely recruited effector cells. Recent findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the question at what point in time their function is regulated. Similarly, eosinophils from different physical locations display phenotypic and functional diversity. However, it remains unclear whether eosinophil plasticity remains as they develop and travel from the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue, eosinophils of different ages and origin along the inflammatory trajectory may exhibit functional diversity as circumstances change. Herein, we outline the inflammatory time line of allergic airway inflammation from acute, late, adaptive to chronic processes. We summarize the function of the eosinophils in regards to their resident localization and time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue that immunological differences in eosinophils are a function of time and space as the allergic inflammatory response is initiated and resolved.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
8
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
9
|
Fettrelet T, Gigon L, Karaulov A, Yousefi S, Simon HU. The Enigma of Eosinophil Degranulation. Int J Mol Sci 2021; 22:ijms22137091. [PMID: 34209362 PMCID: PMC8268949 DOI: 10.3390/ijms22137091] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are specialized white blood cells, which are involved in the pathology of diverse allergic and nonallergic inflammatory diseases. Eosinophils are traditionally known as cytotoxic effector cells but have been suggested to additionally play a role in immunomodulation and maintenance of homeostasis. The exact role of these granule-containing leukocytes in health and diseases is still a matter of debate. Degranulation is one of the key effector functions of eosinophils in response to diverse stimuli. The different degranulation patterns occurring in eosinophils (piecemeal degranulation, exocytosis and cytolysis) have been extensively studied in the last few years. However, the exact mechanism of the diverse degranulation types remains unknown and is still under investigation. In this review, we focus on recent findings and highlight the diversity of stimulation and methods used to evaluate eosinophil degranulation.
Collapse
Affiliation(s)
- Timothée Fettrelet
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420012 Kazan, Russia
- Institute of Biochemistry, Medical School Brandenburg, D-16816 Neuruppin, Germany
- Correspondence: ; Tel.: +41-31-632-3281
| |
Collapse
|
10
|
Mattei F, Andreone S, Marone G, Gambardella AR, Loffredo S, Varricchi G, Schiavoni G. Eosinophils in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:1-28. [PMID: 33119873 DOI: 10.1007/978-3-030-49270-0_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophils are rare blood-circulating and tissue-infiltrating immune cells studied for decades in the context of allergic diseases and parasitic infections. Eosinophils can secrete a wide array of soluble mediators and effector molecules, with potential immunoregulatory activities in the tumor microenvironment (TME). These findings imply that these cells may play a role in cancer immunity. Despite these cells were known to infiltrate tumors since many years ago, their role in TME is gaining attention only recently. In this chapter, we will review the main biological functions of eosinophils that can be relevant within the TME. We will discuss how these cells may undergo phenotypic changes acquiring pro- or antitumoricidal properties according to the surrounding stimuli. Moreover, we will analyze canonical (i.e., degranulation) and unconventional mechanisms (i.e., DNA traps, exosome secretion) employed by eosinophils in inflammatory contexts, which can be relevant for tumor immune responses. Finally, we will review the available preclinical models that could be employed for the study of the role in vivo of eosinophils in cancer.
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli - Monaldi Hospital Pharmacy, Naples, Italy
| | | | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy. .,WAO Center of Excellence, Naples, Italy. .,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy.
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
11
|
Hu G, Wang S, Zhong K, Xu F, Huang L, Chen W, Cheng P. Tumor-associated tissue eosinophilia predicts favorable clinical outcome in solid tumors: a meta-analysis. BMC Cancer 2020; 20:454. [PMID: 32434481 PMCID: PMC7240929 DOI: 10.1186/s12885-020-06966-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Activated eosinophils have been deemed to affect carcinogenesis and tumor progression via various mechanisms in tumor microenvironment. However, the prognostic role of tumor-associated tissue eosinophilia (TATE) in human cancers remains controversial. Therefore, we conducted this meta-analysis to better comprehend the association between TATE and clinical outcomes of patients. Methods We searched PubMed, Embase and EBSCO to determine the researches assessing the association between TATE and overall survival (OS) and/or disease-free survival (DFS) in patients with cancer, then combined relevant data into hazard ratios (HRs) or odds ratio (OR) for OS, DFS and clinicopathological features including lymph node metastasis etc. with STATA 12.0. Results Twenty six researches with 6384 patients were included in this meta-analysis. We found that the presence of TATE was significantly associated with improved OS, but not with DFS in all types of cancers. In stratified analyses based on cancer types, pooled results manifested that the infiltration of eosinophils was remarkably associated with better OS in esophageal carcinoma and colorectal cancer. In addition, TATE significantly inversely correlated with lymph node metastasis, tumor stage and lymphatic invasion of cancer. Conclusion TATE promotes survival in cancer patients, suggesting that it is a valuable prognostic biomarker and clinical application of biological response modifiers or agonists promoting TATE may be the novel therapeutic strategy for patients.
Collapse
Affiliation(s)
- Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China.
| | - Shimin Wang
- Department of Nephrology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China
| | - Kefang Zhong
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China
| | - Feng Xu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China
| | - Wei Chen
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China.
| | - Pu Cheng
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front Immunol 2020; 11:940. [PMID: 32499786 PMCID: PMC7243284 DOI: 10.3389/fimmu.2020.00940] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
The success of cancer immunotherapy relies on the knowledge of the tumor microenvironment and the immune evasion mechanisms in which the tumor, stroma, and infiltrating immune cells function in a complex network. The potential barriers that profoundly challenge the overall clinical outcome of promising therapies need to be fully identified and counteracted. Although cancer immunotherapy has increasingly been applied, we are far from understanding how to utilize different strategies in the best way and how to combine therapeutic options to optimize clinical benefit. This review intends to give a contemporary and detailed overview of the different roles of immune cells, exosomes, and molecules acting in the tumor microenvironment and how they relate to immune activation and escape. Further, current and novel immunotherapeutic options will be discussed.
Collapse
Affiliation(s)
| | | | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Quaglia M, Dellepiane S, Guglielmetti G, Merlotti G, Castellano G, Cantaluppi V. Extracellular Vesicles as Mediators of Cellular Crosstalk Between Immune System and Kidney Graft. Front Immunol 2020; 11:74. [PMID: 32180768 PMCID: PMC7057849 DOI: 10.3389/fimmu.2020.00074] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are known immune-modulators exerting a critical role in kidney transplantation (KT). EV bioactive cargo includes graft antigens, costimulatory/inhibitory molecules, cytokines, growth factors, and functional microRNAs (miRNAs) that may modulate expression of recipient cell genes. As paracrine factors, neutrophil- and macrophage-derived EVs exert immunosuppressive and immune-stimulating effects on dendritic cells, respectively. Dendritic cell-derived EVs mediate alloantigen spreading and modulate antigen presentation to T lymphocytes. At systemic level, EVs exert pleiotropic effects on complement and coagulation. Depending on their biogenesis, they can amplify complement activation or shed complement inhibitors and prevent cell lysis. Likewise, endothelial- and platelet-derived EVs can exert procoagulant/prothrombotic effects and also promote endothelial survival and angiogenesis after ischemic injury. Kidney endothelial- and tubular-derived EVs play a key role in ischemia-reperfusion injury (IRI) and during the healing process; additionally, they can trigger rejection by inducing both alloimmune and autoimmune responses. Endothelial EVs have procoagulant/pro-inflammatory effects and can release sequestered self-antigens, generating a tissue-specific autoimmunity. Renal tubule-derived EVs shuttle pro-fibrotic mediators (TGF-β and miR-21) to interstitial fibroblasts and modulate neutrophil and T-lymphocyte influx. These processes can lead to peritubular capillary rarefaction and interstitial fibrosis-tubular atrophy. Different EVs, including those from mesenchymal stromal cells (MSCs), have been employed as a therapeutic tool in experimental models of rejection and IRI. These particles protect tubular and endothelial cells (by inhibition of apoptosis and inflammation-fibrogenesis or by inducing autophagy) and stimulate tissue regeneration (by triggering angiogenesis, cell proliferation, and migration). Finally, urinary and serum EVs represent potential biomarkers for delayed graft function (DGF) and acute rejection. In conclusion, EVs sustain an intricate crosstalk between graft tissue and innate/adaptive immune systems. EVs play a major role in allorecognition, IRI, autoimmunity, and alloimmunity and are promising as biomarkers and therapeutic tools in KT.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Sergio Dellepiane
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, The Tisch Cancer Institute, New York, NY, United States
| | - Gabriele Guglielmetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- *Correspondence: Vincenzo Cantaluppi
| |
Collapse
|
14
|
Simon HU, Yousefi S, Germic N, Arnold IC, Haczku A, Karaulov AV, Simon D, Rosenberg HF. The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. Int Arch Allergy Immunol 2019; 181:11-23. [PMID: 31786573 DOI: 10.1159/000504847] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Eosinophils and their secretory mediators play an important role in the pathogenesis of infectious and inflammatory disorders. Although eosinophils are largely evolutionally conserved, their physiologic functions are not well understood. Given the availability of new eosinophil-targeted depletion therapies, there has been a renewed interest in understanding eosinophil biology as these strategies may result in secondary disorders when applied over long periods of time. Recent data suggest that eosinophils are not only involved in immunological effector functions but also carry out tissue protective and immunoregulatory functions that actively contribute to the maintenance of homeostasis. Prolonged eosinophil depletion may therefore result in the development of secondary disorders. Here, we review recent literature pointing to important roles for eosinophils in promoting immune defense, antibody production, activation of adipose tissue, and tissue remodeling and fibrosis. We also reflect on patient data from clinical trials that feature anti-eosinophil therapeutics.
Collapse
Affiliation(s)
- Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland, .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation,
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nina Germic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Isabelle C Arnold
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Angela Haczku
- University of California, Davis, Davis, California, USA
| | - Alexander V Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Jia S, Li W, Liu P, Xu LX. A role of eosinophils in mediating the anti-tumour effect of cryo-thermal treatment. Sci Rep 2019; 9:13214. [PMID: 31519961 PMCID: PMC6744470 DOI: 10.1038/s41598-019-49734-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Previous, we established a novel therapeutic approach to tumour of cryo-thermal therapy, which can induce durable anti-tumour memory immunity mediated by CD4+ T cell, and contribute to prolonged survival in B16F10 murine melanoma model and 4T1 murine mammary carcinoma. It has become apparent that innate immune cells are involved in the regulation of adaptive T cell immunity. Our previous studies revealed that cryo-thermal therapy induced M1 macrophage polarization and DCs maturation were required for the shaping of systemic long-lived T cell mediated anti-tumour memory immunity. Eosinophils are multifunctional innate effector cells and there is lack of knowledge on the role of eosinophils in cryo-thermal-induced anti-tumour immunity. This study revealed that cryo-thermal therapy activated eosinophils in spleen at early stage following the treatment. Furthermore, cryo-thermal-activated eosinophils exerted versatile immunologic regulation from innate immunity to anti-tumour adaptive immunity, such as M1 macrophage polarization, DCs maturation, differentiation of CD4-CTL subtypes and enhanced cytotoxicity of CD8+ T cells. Our study indicated that the cryo-thermal-activated eosinophils was essential for the shaping of durable anti-tumour memory immunity. Thus, our results present a new concept for eosinophils mediated anti-tumour immunity after cryo-thermal therapy.
Collapse
Affiliation(s)
- Shengguo Jia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wentao Li
- Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Lisa X Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
16
|
Onyema OO, Guo Y, Mahgoub B, Wang Q, Manafi A, Mei Z, Banerjee A, Li D, Stoler MH, Zaidi MT, Schrum AG, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Eosinophils downregulate lung alloimmunity by decreasing TCR signal transduction. JCI Insight 2019; 4:128241. [PMID: 31167966 DOI: 10.1172/jci.insight.128241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Despite the accepted notion that granulocytes play a universally destructive role in organ and tissue grafts, it has been recently described that eosinophils can facilitate immunosuppression-mediated acceptance of murine lung allografts. The mechanism of eosinophil-mediated tolerance, or their role in regulating alloimmune responses in the absence of immunosuppression, remains unknown. Using lung transplants in a fully MHC-mismatched BALB/c (H2d) to C57BL/6 (H2b) strain combination, we demonstrate that eosinophils downregulate T cell-mediated immune responses and play a tolerogenic role even in the absence of immunosuppression. We further show that such downregulation depends on PD-L1/PD-1-mediated synapse formation between eosinophils and T cells. We also demonstrate that eosinophils suppress T lymphocyte responses through the inhibition of T cell receptor/CD3 (TCR/CD3) subunit association and signal transduction in an inducible NOS-dependent manner. Increasing local eosinophil concentration, through administration of intratracheal eotaxin and IL-5, can ameliorate alloimmune responses in the lung allograft. Thus, our data indicate that eosinophil mobilization may be utilized as a novel means of lung allograft-specific immunosuppression.
Collapse
Affiliation(s)
| | - Yizhan Guo
- Department of Surgery, Carter Center for Immunology, and
| | - Bayan Mahgoub
- Department of Surgery, Carter Center for Immunology, and
| | - Qing Wang
- Department of Surgery, Carter Center for Immunology, and
| | - Amir Manafi
- Department of Surgery, Carter Center for Immunology, and
| | - Zhongcheng Mei
- Department of Surgery, Carter Center for Immunology, and
| | | | - Dongge Li
- Department of Surgery, Carter Center for Immunology, and
| | - Mark H Stoler
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Melissa T Zaidi
- Molecular Microbiology and Immunology, Surgery, Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Adam G Schrum
- Molecular Microbiology and Immunology, Surgery, Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University, St. Louis, Missouri, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University, St. Louis, Missouri, USA
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona, USA
| | | |
Collapse
|
17
|
Simon SCS, Utikal J, Umansky V. Opposing roles of eosinophils in cancer. Cancer Immunol Immunother 2019; 68:823-833. [PMID: 30302498 PMCID: PMC11028063 DOI: 10.1007/s00262-018-2255-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
Abstract
Eosinophils are a subset of granulocytes mostly known for their ability to combat parasites and induce allergy. Although they were described to be related to cancer more than 100 years ago, their role in tumors is still undefined. Recent observations revealed that they display regulatory functions towards other immune cell subsets in the tumor microenvironment or direct cytotoxic functions against tumor cells, leading to either antitumor or protumor effects. This paradoxical role of eosinophils was suggested to be dependent on the different factors in the TME. In addition, the clinical relevance of these cells has been recently addressed. In most cases, the accumulation of eosinophils both in the tumor tissue, called tumor-associated tissue eosinophilia, and in the peripheral blood were reported to be prognostic markers for a better outcome of cancer patients. In immunotherapy of cancer, particularly in therapy with immune checkpoint inhibitors, eosinophils were even shown to be a potential predictive marker for a beneficial clinical response. A better understanding of their role in cancer progression will help to establish them as prognostic and predictive markers and to design strategies for targeting eosinophils.
Collapse
Affiliation(s)
- Sonja C S Simon
- Skin Cancer Unit, Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
18
|
The role of extracellular vesicles when innate meets adaptive. Semin Immunopathol 2018; 40:439-452. [PMID: 29616308 PMCID: PMC6208666 DOI: 10.1007/s00281-018-0681-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.
Collapse
|
19
|
Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G, Mattei F, Marone G, Schiavoni G. Eosinophils: The unsung heroes in cancer? Oncoimmunology 2017; 7:e1393134. [PMID: 29308325 DOI: 10.1080/2162402x.2017.1393134] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of a cancer. Eosinophils are components of the immune microenvironment that modulates tumor initiation and progression. Although canonically associated with a detrimental role in allergic disorders, these cells can induce a protective immune response against helminthes, viral and bacterial pathogens. Eosinophils are a source of anti-tumorigenic (e.g., TNF-α, granzyme, cationic proteins, and IL-18) and protumorigenic molecules (e.g., pro-angiogenic factors) depending on the milieu. In several neoplasias (e.g., melanoma, gastric, colorectal, oral and prostate cancer) eosinophils play an anti-tumorigenic role, in others (e.g., Hodgkin's lymphoma, cervical carcinoma) have been linked to poor prognosis, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of eosinophils and their mediators could be cancer-dependent. The microlocalization (e.g., peritumoral vs intratumoral) of eosinophils could be another important aspect in the initiation/progression of solid and hematological tumors. Increasing evidence in experimental models indicates that activation/recruitment of eosinophils could represent a new therapeutic strategy for certain tumors (e.g., melanoma). Many unanswered questions should be addressed before we understand whether eosinophils are an ally, adversary or neutral bystanders in different types of human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Valeria Lucarini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital Pharmacy, Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
20
|
Abstract
Eosinophils are a minority circulating granulocyte classically viewed as being involved in host defense against parasites and promoting allergic reactions. However, a series of new regulatory functions for these cells have been identified in the past decade. During homeostasis, eosinophils develop in the bone marrow and migrate from the blood into target tissues following an eotaxin gradient, with interleukin-5 being a key cytokine for eosinophil proliferation, survival, and priming. In multiple target tissues, eosinophils actively regulate a variety of immune functions through their vast arsenal of granule products and cytokines, as well as direct cellular interaction with cells in proximity. The immunologic regulation of eosinophils extends from innate immunity to adaptive immunity and also involves non-immune cells. Herein, we summarize recent findings regarding novel roles of murine and human eosinophils, focusing on interactions with other hematopoietic cells. We also review new experimental tools available and remaining questions to uncover a greater understanding of this enigmatic cell.
Collapse
|
21
|
Breedveld A, Groot Kormelink T, van Egmond M, de Jong EC. Granulocytes as modulators of dendritic cell function. J Leukoc Biol 2017. [DOI: 10.1189/jlb.4mr0217-048rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Samarasinghe AE, Melo RCN, Duan S, LeMessurier KS, Liedmann S, Surman SL, Lee JJ, Hurwitz JL, Thomas PG, McCullers JA. Eosinophils Promote Antiviral Immunity in Mice Infected with Influenza A Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3214-3226. [PMID: 28283567 PMCID: PMC5384374 DOI: 10.4049/jimmunol.1600787] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 02/11/2017] [Indexed: 12/26/2022]
Abstract
Eosinophils are multifunctional cells of the innate immune system linked to allergic inflammation. Asthmatics were more likely to be hospitalized but less likely to suffer severe morbidity and mortality during the 2009 influenza pandemic. These epidemiologic findings were recapitulated in a mouse model of fungal asthma wherein infection during heightened allergic inflammation was protective against influenza A virus (IAV) infection and disease. Our goal was to delineate a mechanism(s) by which allergic asthma may alleviate influenza disease outcome, focused on the hypothesis that pulmonary eosinophilia linked with allergic respiratory disease is able to promote antiviral host defenses against the influenza virus. The transfer of eosinophils from the lungs of allergen-sensitized and challenged mice into influenza virus-infected mice resulted in reduced morbidity and viral burden, improved lung compliance, and increased CD8+ T cell numbers in the airways. In vitro assays with primary or bone marrow-derived eosinophils were used to determine eosinophil responses to the virus using the laboratory strain (A/PR/08/1934) or the pandemic strain (A/CA/04/2009) of IAV. Eosinophils were susceptible to IAV infection and responded by activation, piecemeal degranulation, and upregulation of Ag presentation markers. Virus- or viral peptide-exposed eosinophils induced CD8+ T cell proliferation, activation, and effector functions. Our data suggest that eosinophils promote host cellular immunity to reduce influenza virus replication in lungs, thereby providing a novel mechanism by which hosts with allergic asthma may be protected from influenza morbidity.
Collapse
Affiliation(s)
- Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103;
- Children's Foundation Research Institute, Memphis, TN 38103
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Federal University of Juiz de Fora, Juiz de Fora, MG 36036, Brazil
| | - Susu Duan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Kim S LeMessurier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
- Children's Foundation Research Institute, Memphis, TN 38103
| | - Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - James J Lee
- Department of Biochemistry, Mayo Clinic, Scottsdale, AZ 85259
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Jonathan A McCullers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
- Children's Foundation Research Institute, Memphis, TN 38103
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
23
|
Friedenberg SG, Strange HR, Guillaumin J, VanGundy ZC, Crouser ED, Papenfuss TL. Effect of disrupted mitochondria as a source of damage-associated molecular patterns on the production of tumor necrosis factor α by splenocytes from dogs. Am J Vet Res 2017; 77:604-12. [PMID: 27227498 DOI: 10.2460/ajvr.77.6.604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effects of damage-associated molecular patterns (DAMPs) derived from disrupted mitochondria on canine splenocytes and other immune cells. SAMPLES Liver, spleen, and bone marrow samples obtained from 8 cadavers of healthy research Beagles that had been euthanized for other purposes. PROCEDURES Mitochondria were obtained from canine hepatocytes, and mitochondrial DAMPs (containing approx 75% mitochondrial proteins) were prepared. Mitochondrial DAMPs and the nuclear cytokine high-mobility group box protein 1 were applied to splenocytes, bone marrow-differentiated dendritic cells, and a canine myelomonocytic cell (DH82) line for 6 or 24 hours. Cell culture supernatants from splenocytes, dendritic cells, and DH82 cells were assayed for tumor necrosis factor α with an ELISA. Expression of tumor necrosis factor α mRNA in splenocytes was evaluated with a quantitative real-time PCR assay. RESULTS In all cell populations evaluated, production of tumor necrosis factor α was consistently increased by mitochondrial DAMPs at 6 hours (as measured by an ELISA). In contrast, high-mobility group box protein 1 did not have any independent proinflammatory effects in this experimental system. CONCLUSIONS AND CLINICAL RELEVANCE The study revealed an in vitro inflammatory effect of mitochondrial DAMPs (containing approx 75% mitochondrial proteins) in canine cells and validated the use of an in vitro splenocyte model to assess DAMP-induced inflammation in dogs. This experimental system may aid in understanding the contribution of DAMPs to sepsis and the systemic inflammatory response syndrome in humans. Further studies in dogs are needed to validate the biological importance of these findings and to evaluate the in vivo role of mitochondrial DAMPs in triggering and perpetuating systemic inflammatory states.
Collapse
|
24
|
Lin JY, Ta YC, Liu IL, Chen HW, Wang LF. Suppressive effects of primed eosinophils on single epicutaneous sensitization through regulation of dermal dendritic cells. Exp Dermatol 2016; 25:548-52. [DOI: 10.1111/exd.12998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Jing-Yi Lin
- Department of Dermatology; Chang Gung Memorial Hospital; Keelung Taiwan
- Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Yng-Cun Ta
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - I-Lin Liu
- Department of Dermatology; Taipei City Hospital Heping Fuyou branch; Taipei Taiwan
| | - Hsi-Wen Chen
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Li-Fang Wang
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
25
|
Lotfi R, Kaltenmeier C, Lotze MT, Bergmann C. Until Death Do Us Part: Necrosis and Oxidation Promote the Tumor Microenvironment. Transfus Med Hemother 2016; 43:120-32. [PMID: 27226794 DOI: 10.1159/000444941] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/23/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor proliferation is concomitant with autophagy, limited apoptosis, and resultant necrosis. Necrosis is associated with the release of damage-associated molecular pattern molecules (DAMPs), which act as 'danger signals', recruiting inflammatory cells, inducing immune responses, and promoting wound healing. Most of the current treatment strategies for cancer (chemotherapy, radiation therapy, hormonal therapy) promote DAMP release following therapy-induced tumor death by necroptosis and necrosis. Myeloid cells (monocytes, dendritic cells (DCs), and granulocytes), as well as mesenchymal stromal cells (MSCs) belong to the early immigrants in response to unscheduled cell death, initiating and modulating the subsequent inflammatory response. Responding to DAMPs, MSCs, and DCs promote an immunosuppressive milieu, while eosinophils induce oxidative conditions limiting the biologic activity of DAMPs over time and distance. Regulatory T cells are strongly affected by pattern recognition receptor signaling in the tumor microenvironment and limit immune reactivity coordinately with myeloid-derived suppressor cells. Means to 'aerobically' oxidize DAMPs provide a novel strategy for limiting tumor progression. The present article summarizes our current understanding of the impact of necrosis on the tumor microenvironment and the influence of oxidative conditions found within this setting.
Collapse
Affiliation(s)
- Ramin Lotfi
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen, Ulm, Germany
| | - Christof Kaltenmeier
- University of Pittsburgh Schools of the Health Sciences G.27A Hillman Cancer Center, Pittsburgh, PA, USA
| | - Michael T Lotze
- University of Pittsburgh Schools of the Health Sciences G.27A Hillman Cancer Center, Pittsburgh, PA, USA
| | - Christoph Bergmann
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Long H, Liao W, Wang L, Lu Q. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System. Transfus Med Hemother 2016; 43:96-108. [PMID: 27226792 PMCID: PMC4872051 DOI: 10.1159/000445215] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/04/2016] [Indexed: 12/18/2022] Open
Abstract
Eosinophils have traditionally been associated with allergic diseases and parasite infection. Research advances in the recent decades have brought evolutionary changes in our understanding of eosinophil biology and its roles in immunity. It is currently recognized that eosinophils play multiple roles in both innate and adaptive immunity. As effector cells in innate immunity, eosinophils exert a pro-inflammatory and destructive role in the Th2 immune response associated with allergic inflammation or parasite infection. Eosinophils can also be recruited by danger signals released by pathogen infections or tissue injury, inducing host defense against parasitic, fungal, bacterial or viral infection or promoting tissue repair and remodeling. Eosinophils also serve as nonprofessional antigen-presenting cells in response to allergen challenge or helminth infection, and, meanwhile, are known to function as a versatile coordinator that actively regulates or interacts with various immune cells including T lymphocytes and dendritic cells. More roles of eosinophils implicated in immunity have been proposed including in immune homeostasis, allograft rejection, and anti-tumor immunity. Eosinophil interactions with structural cells are also implicated in the mechanisms in allergic inflammation and in Helicobacter pylori gastritis. These multifaceted roles of eosinophils as both players and coordinators in immune system are discussed in this review.
Collapse
Affiliation(s)
- Hai Long
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Wei Liao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Ling Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| |
Collapse
|
27
|
Mucosal Eosinophils. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Chu DK, Jimenez-Saiz R, Verschoor CP, Walker TD, Goncharova S, Llop-Guevara A, Shen P, Gordon ME, Barra NG, Bassett JD, Kong J, Fattouh R, McCoy KD, Bowdish DM, Erjefält JS, Pabst O, Humbles AA, Kolbeck R, Waserman S, Jordana M. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. ACTA ACUST UNITED AC 2014; 211:1657-72. [PMID: 25071163 PMCID: PMC4113937 DOI: 10.1084/jem.20131800] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4(+/+) or il4(-/-) eosinophils. Eosinophils controlled CD103(+) dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity.
Collapse
Affiliation(s)
- Derek K Chu
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Rodrigo Jimenez-Saiz
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Christopher P Verschoor
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Tina D Walker
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Susanna Goncharova
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Alba Llop-Guevara
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Pamela Shen
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Melissa E Gordon
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Nicole G Barra
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jennifer D Bassett
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Joshua Kong
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Ramzi Fattouh
- Clinical Microbiology, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario M5S 1A8, Canada
| | - Kathy D McCoy
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM), University of Bern, 3008 Bern, Switzerland
| | - Dawn M Bowdish
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jonas S Erjefält
- Department of Experimental Medical Science, Lund University, SE-22184 Lund, Sweden Department of Respiratory Medicine and Allergology, Lund University Hospital, SE-22185 Lund, Sweden
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Alison A Humbles
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MA 20878
| | - Roland Kolbeck
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MA 20878
| | - Susan Waserman
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Manel Jordana
- McMaster Immunology Research Centre (MIRC), Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
29
|
Huang L, Gebreselassie NG, Gagliardo LF, Ruyechan MC, Lee NA, Lee JJ, Appleton JA. Eosinophil-derived IL-10 supports chronic nematode infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:4178-87. [PMID: 25210122 DOI: 10.4049/jimmunol.1400852] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Eosinophilia is a feature of the host immune response that distinguishes parasitic worms from other pathogens, yet a discrete function for eosinophils in worm infection has been elusive. The aim of this study was to clarify the mechanism(s) underlying the striking and unexpected observation that eosinophils protect intracellular, muscle-stage Trichinella spiralis larvae against NO-mediated killing. Our findings indicate that eosinophils are specifically recruited to sites of infection at the earliest stage of muscle infection, consistent with a local response to injury. Early recruitment is essential for larval survival. By producing IL-10 at the initiation of infection, eosinophils expand IL-10(+) myeloid dendritic cells and CD4(+) IL-10(+) T lymphocytes that inhibit inducible NO synthase (iNOS) expression and protect intracellular larvae. The results document a novel immunoregulatory function of eosinophils in helminth infection, in which eosinophil-derived IL-10 drives immune responses that eventually limit local NO production. In this way, the parasite co-opts an immune response in a way that enhances its own survival.
Collapse
Affiliation(s)
- Lu Huang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Nebiat G Gebreselassie
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Lucille F Gagliardo
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Maura C Ruyechan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Nancy A Lee
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259; and
| | - James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Judith A Appleton
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
30
|
Immunological alterations and associated diseases in mandrills (Mandrillus sphinx) naturally co-infected with SIV and STLV. Virology 2014; 454-455:184-96. [DOI: 10.1016/j.virol.2014.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/16/2014] [Accepted: 02/18/2014] [Indexed: 12/11/2022]
|
31
|
Wong TW, Doyle AD, Lee JJ, Jelinek DF. Eosinophils regulate peripheral B cell numbers in both mice and humans. THE JOURNAL OF IMMUNOLOGY 2014; 192:3548-58. [PMID: 24616476 DOI: 10.4049/jimmunol.1302241] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The view of eosinophils (Eos) as solely effector cells involved in host parasite defense and in the pathophysiology of allergic diseases has been challenged in recent years. In fact, there is a growing realization that these cells interact with other components of innate and adaptive immunity. For example, mouse Eos were recently demonstrated to promote plasma cell retention in the bone marrow. However, it remains unknown whether Eos influence the biology of normal B lymphocytes. In this study, we specifically assessed the effect of Eos on B cell survival, proliferation, and Ig secretion. Our data first revealed that the genetic deletion of Eos from NJ1638 IL-5 transgenic hypereosinophilic mice (previously shown to display profound B cell expansion) resulted in the near abolishment of the B cell lymphocytosis. In vitro studies using human tissues demonstrated Eos' proximity to B cell follicles and their ability to promote B cell survival, proliferation, and Ig secretion via a contact-independent mechanism. Additionally, this ability of Eos to enhance B cell responsiveness was observed in both T-independent and T-dependent B cell activation and appears to be independent of the activation state of Eos. Finally, a retrospective clinical study of hypereosinophilic patients revealed a direct correlation between peripheral blood eosinophil levels and B cell numbers. Taken together, our study identifies a novel role for Eos in the regulation of humoral immunity via their impact on B cell homeostasis and proliferation upon activation.
Collapse
Affiliation(s)
- Tina W Wong
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | | | | | |
Collapse
|
32
|
The importance of eosinophil, platelet and dendritic cell in asthma. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60413-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Huang HB, Liu YX, Hou Y, Wen L, Ge XH, Peng KM, Liu HZ. Distribution patterns of stromal eosinophil cells in chick thymus during postnatal development. Vet Immunol Immunopathol 2013; 153:123-127. [PMID: 23333191 DOI: 10.1016/j.vetimm.2012.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 01/21/2023]
Abstract
Eosinophils are a type of thymic stromal cell that are present in the thymus of both humans and mice. They participate in regulating T-cell development under non-pathological conditions. However, studies are scarce regarding the role of eosinophils in the development of the thymus in chickens. Therefore, this study investigated the distribution of eosinophils in normal chicken thymi at different stages of development. Seven thymi were obtained from chickens at days 1, 21 and 35 of development. The distribution of eosinophils in the thymi was analyzed by histological and immunohistochemical techniques using Lendrum's chromotrope 2R method and an antibody against eosinophilic cationic protein (ECP), respectively. Eosinophils were constitutively located in the chick thymus. They were mainly distributed in the thymic corticomedullary junction and medulla, especially around vessels and Hassall's corpuscles, and only a few were in the trabeculae among thymic lobules and around vessels. There were none in the cortex. The number of thymic eosinophils decreased with increasing age (P<0.01). These results indicated that eosinophils comprise a type of thymic stromal cells in the chick, which may regulate thymic development, especially during the early stages of development.
Collapse
Affiliation(s)
- Hai-Bo Huang
- Department of Anatomy, Histology and Embryology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 2012. [PMID: 23154224 DOI: 10.1038/nri334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Eosinophils have been traditionally perceived as terminally differentiated cytotoxic effector cells. Recent studies have profoundly altered this simplistic view of eosinophils and their function. New insights into the molecular pathways that control the development, trafficking and degranulation of eosinophils have improved our understanding of the immunomodulatory functions of these cells and their roles in promoting homeostasis. Likewise, recent developments have generated a more sophisticated view of how eosinophils contribute to the pathogenesis of different diseases, including asthma and primary hypereosinophilic syndromes, and have also provided us with a more complete appreciation of the activities of these cells during parasitic infection.
Collapse
Affiliation(s)
- Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
35
|
Abstract
Eosinophils have been traditionally perceived as terminally differentiated cytotoxic effector cells. Recent studies have profoundly altered this simplistic view of eosinophils and their function. New insights into the molecular pathways that control the development, trafficking and degranulation of eosinophils have improved our understanding of the immunomodulatory functions of these cells and their roles in promoting homeostasis. Likewise, recent developments have generated a more sophisticated view of how eosinophils contribute to the pathogenesis of different diseases, including asthma and primary hypereosinophilic syndromes, and have also provided us with a more complete appreciation of the activities of these cells during parasitic infection.
Collapse
|
36
|
Campisano S, Mac Keon S, Gazzaniga S, Ruiz MS, Traian MD, Mordoh J, Wainstok R. Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors. Vaccine 2012; 31:354-61. [PMID: 23146677 DOI: 10.1016/j.vaccine.2012.10.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 10/25/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
Abstract
We have initially shown that DC/ApoNec vaccine can induce protection against the poorly immunogenic B16F1 melanoma in mice. The population of DC obtained for vaccination after 7days culture with murine GM-CSF is heterogeneous and presents about 60% of CD11c+ DC. Therefore, our purpose was to identify the phenotype of the cells obtained after differentiation and its immunogenicity once injected. DC were separated with anti-CD11c microbeads and the two populations identified in terms of CD11c positivity (DC+ and DC-) were also studied. Approximately 26.6% of the cells in DC+ fraction co-expressed CD11c+ and F4/80 markers and 75.4% were double positive for CD11c and CD11b markers. DC+ fraction also expressed Ly6G. DC- fraction was richer in CD11c-/F4/80+ macrophages (44.7%), some of which co-expressed Ly6G (41.8%), and F4/80-/Ly6-G+ neutrophils (34.6%). Both DC+ and DC- fractions displayed similar capacity to phagocyte and endocyte antigens and even expressed levels of MHC Class II and CD80, CD83 and CD86 costimulatory molecules similar to those in the DC fraction. However, only DC/ApoNec vaccine was capable to induce protection in mice (p<0.01). After 24h co-culture, no detectable level of IL-12 was recorded in DC/ApoNec vaccine, either in supernatant or intracellularly. Therefore, the protection obtained with DC/ApoNec vaccine seemed to be independent of the vaccine's ability to secrete this inflammatory cytokine at the time of injection. In conclusion, we demonstrated that all cell types derived from the culture of mouse bone marrow with GM-CSF are necessary to induce antitumor protection in vivo.
Collapse
Affiliation(s)
- Sabrina Campisano
- Depto. de Química Biológica, Ciudad Universitaria, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
37
|
Brandenburg LO, Jansen S, Albrecht LJ, Merres J, Gerber J, Pufe T, Tauber SC. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol 2012; 255:18-31. [PMID: 23141747 DOI: 10.1016/j.jneuroim.2012.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 11/26/2022]
Abstract
During bacterial infections, antimicrobial peptides are synthesised as an important part of the innate immune system. However, expression and function in the central nervous system (CNS) need further investigations. The aim of this study was to examine the involvement of the pattern-recognition-receptor toll-like receptor 9 (TLR9) in the expression of the cathelin-related antimicrobial peptide (CRAMP) and to characterise the participating signal transduction pathways. In primary TLR9 deficient and wildtype mice astrocytes as well as microglia cells, the expression of CRAMP after treatment with the TLR9 agonist unmethylated cytosine-guanine oligodeoxynucleotide motifs (CpG-DNA) was examined in vitro. In vivo CRAMP expression after intraventricular infusion of CpG-DNA in TLR9 deficient and wildtype mice as well as in mice with pneumococcal meningitis localised in glial cells was determined. Furthermore, the regulation of different signal transduction pathways involved in CpG-DNA-induced CRAMP expression in glial cells was analysed. An in vitro and in vivo CpG-DNA-induced increase of CRAMP expression in astrocytes and microglia cells using real time RT-PCR and immunofluorescence was demonstrated. Different signal transduction pathways such as mitogen-activated protein kinases and inflammatory mediated pathways are involved in the expression of CRAMP in primary glial cells. Interestingly, TLR9-deficient glial cells showed a reduced but not completely abolished CRAMP mRNA expression and ERK1/2 phosphorylation in response to CpG-DNA treatment. On the other side in vivo, TLR9 deletion did not change CRAMP expression after bacterial infection. In conclusion, our results show that TLR9 can induce the expression of antimicrobial peptides such as CRAMP in response to bacterial DNA motifs in primary glial cells. Additional findings suggest also that CpG-DNA-induced effects are not only mediated by TLR9, but also mediated by other pattern recognition receptors.
Collapse
|
38
|
Abstract
The pattern-recognition receptor (PRR) family includes Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs) and the receptor for advanced glycation end products (RAGE). They recognize various microbial signatures or host-derived danger signals and trigger an immune response. Eosinophils are multifunctional leucocytes involved in the pathogenesis of several inflammatory processes, including parasitic helminth infection, allergic diseases, tissue injury and tumour immunity. Human eosinophils express several PRRs, including TLR1-5, TLR7, TLR9, NOD1, NOD2, Dectin-1 and RAGE. Receptor stimulation induces survival, oxidative burst, activation of the adhesion system and release of cytokines (interleukin-1β, interleukin-6, tumour necrosis factor-α and granulocyte-macrophage colony-stimulating factor), chemokines (interleukin-8 and growth-related oncogene-α) and cytotoxic granule proteins (eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase and major basic protein). It is also evident that eosinophils play an immunomodulatory role by interacting with surrounding cells. The presence of a broad range of PRRs in eosinophils indicates that they are not only involved in defence against parasitic helminths, but also against bacteria, viruses and fungi. From a clinical perspective, eosinophilic PRRs seem to be involved in both allergic and malignant diseases by causing exacerbations and affecting tumour growth, respectively.
Collapse
Affiliation(s)
- Anne Månsson Kvarnhammar
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
39
|
Herzog GI, Solgi G, Wiegmann DS, Nienhaus C, Schrezenmeier H, Yildiz T, Lotfi R. Quality of tumor lysates used for pulsing dendritic cells is influenced by the method used to harvest adherent tumor cells. BMC Res Notes 2011; 4:153. [PMID: 21615909 PMCID: PMC3121621 DOI: 10.1186/1756-0500-4-153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 05/26/2011] [Indexed: 12/29/2022] Open
Abstract
Background Lysates from tumor cells are reported to induce maturation of dendritic cells (DCs) and are used in clinical settings for DC-based vaccination against solid tumors. Nevertheless, the maturation inducing effect of tumor lysates on DCs is discussed controversially and the efficacy of tumor vaccines varies significantly. Findings Using three individual adherent colorectal tumor cell lines we also faced the difficulty to obtain consistent results regarding maturation inducing effect of tumor lysates on DCs. Therefore, we compared different methods to prepare tumor cell lysate and could demonstrate that trypsinizing as a method to harvest adherent tumor cells has a significant negative impact on biologic activity of tumor lysates. Specifically, we assessed induction of maturation markers CD40, CD80, and CD86 on DCs which were treated with differently prepared lysates. Conclusions Trypsinizing is a very common way of harvesting adherent cells from culture flasks. Our results shall call investigators' attention to the enzymatic activity of trypsin degrading some possibly important proteins on the surface of cultured cells. Specifically for DC-based vaccination against tumor antigens investigators should avoid trypsin.
Collapse
|
40
|
Lotfi R, Herzog GI, DeMarco RA, Beer-Stolz D, Lee JJ, Rubartelli A, Schrezenmeier H, Lotze MT. Eosinophils Oxidize Damage-Associated Molecular Pattern Molecules Derived from Stressed Cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5023-31. [DOI: 10.4049/jimmunol.0900504] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Fujiwara RT, Cançado GGL, Freitas PA, Santiago HC, Massara CL, Carvalho ODS, Corrêa-Oliveira R, Geiger SM, Bethony J. Necator americanus infection: a possible cause of altered dendritic cell differentiation and eosinophil profile in chronically infected individuals. PLoS Negl Trop Dis 2009; 3:e399. [PMID: 19308259 PMCID: PMC2654967 DOI: 10.1371/journal.pntd.0000399] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 02/26/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Hookworms survive for several years (5 to 7 years) in the host lumen, inducing a robust but largely ineffective immune response. Among the most striking aspects of the immune response to hookworm (as with many other helminths) is the ablation of parasite-specific T cell proliferative response (hyporesponsiveness). While the role of the adaptive immune response in human helminth infection has been well investigated, the role of the innate immune responses (e.g., dendritic cells and eosinophils) has received less attention and remains to be clearly elucidated. METHODOLOGY/PRINCIPAL FINDINGS We report on the differentiation/maturation of host dendritic cells in vitro and the eosinophil activation/function associated with human hookworm infection. Mature DCs (mDCs) from Necator americanus (Necator)-infected individuals showed an impaired differentiation process compared to the mDCs of non-infected individuals, as evidenced by the differential expression of CD11c and CD14. These same hookworm-infected individuals also presented significantly down-regulated expression of CD86, CD1a, HLA-ABC, and HLA-DR. The lower expression of co-stimulatory and antigen presentation molecules by hookworm-infected-derived mDCs was further evidenced by their reduced ability to induce cell proliferation. We also showed that this alternative DC differentiation is partially induced by excreted-secreted hookworm products. Conversely, eosinophils from the same individuals showed a highly activated status, with an upregulation of major cell surface markers. Antigen-pulsed eosinophils from N. americanus-infected individuals induced significant cell proliferation of autologous PBMCs, when compared to non-infected individuals. CONCLUSION Chronic N. americanus infection alters the host's innate immune response, resulting in a possible modulation of the maturation process of DCs, a functional change that may diminish their ability for antigen presentation and thus contribute to the ablation of the parasite-specific T cell proliferative response. Interestingly, a concomitant upregulation of the major cell surface markers of eosinophils was observed in hookworm-infected individuals, indicative of antigen-specific immune responses, especially antigen presentation. We showed that in addition to the postulated role of the eosinophils as effector cells against helminth infection, activated cells may also be recruited to sites of inflammation and contribute to the immune response acting as antigen presenting cells.
Collapse
Affiliation(s)
- Ricardo T. Fujiwara
- Laboratory of Cellular and Molecular Immunology, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme G. L. Cançado
- Laboratory of Cellular and Molecular Immunology, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Paula A. Freitas
- Laboratory of Cellular and Molecular Immunology, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helton C. Santiago
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Cristiano Lara Massara
- Laboratory of Helminthology and Medical Malacology, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Omar dos Santos Carvalho
- Laboratory of Helminthology and Medical Malacology, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Corrêa-Oliveira
- Laboratory of Cellular and Molecular Immunology, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Stefan M. Geiger
- Laboratory of Cellular and Molecular Immunology, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Jeffrey Bethony
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| |
Collapse
|
42
|
Abstract
Eosinophils are usually considered as end-stage degranulating effector cells of innate immunity. However, accumulating evidence has revealed additional roles for eosinophils that are immunoregulatory in nature in both the adaptive and innate arms of immunity. Specifically, eosinophils have key immunoregulatory roles as professional antigen-presenting cells and as modulators of CD4(+) T cell, dendritic cell, B cell, mast cell, neutrophil, and basophil functions. This review addresses the emerging immunoregulatory roles of eosinophils with a focus on recent data that support this new paradigm. Recognizing both the effector and immunoregulatory functions of eosinophils will enable a fuller understanding of the roles of eosinophils in allergic airways inflammation and may be pertinent to therapies that target eosinophils both for their acute and ongoing immunomodulatory functions.
Collapse
Affiliation(s)
- P Akuthota
- Division of Pulmonary and Critical Care Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|